WO2017073483A1 - 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料 - Google Patents

繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料 Download PDF

Info

Publication number
WO2017073483A1
WO2017073483A1 PCT/JP2016/081266 JP2016081266W WO2017073483A1 WO 2017073483 A1 WO2017073483 A1 WO 2017073483A1 JP 2016081266 W JP2016081266 W JP 2016081266W WO 2017073483 A1 WO2017073483 A1 WO 2017073483A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
weight
parts
organic
Prior art date
Application number
PCT/JP2016/081266
Other languages
English (en)
French (fr)
Inventor
三辻祐樹
平田慎
土谷敦岐
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680061407.2A priority Critical patent/CN108350192B/zh
Priority to JP2016565713A priority patent/JP6123956B1/ja
Priority to EP16859713.6A priority patent/EP3369765A4/en
Priority to KR1020187013825A priority patent/KR20180079345A/ko
Priority to US15/770,132 priority patent/US10584218B2/en
Publication of WO2017073483A1 publication Critical patent/WO2017073483A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/14Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length of filaments or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to a fiber reinforced thermoplastic resin molded article containing carbon fibers and organic fibers and a fiber reinforced thermoplastic resin molding material.
  • reinforcing fibers and thermoplastic resins are widely used for sports equipment applications, aerospace applications and general industrial applications because they are lightweight and have excellent mechanical properties.
  • these reinforcing fibers include metal fibers such as aluminum fibers and stainless fibers, inorganic fibers such as silicon carbide fibers and carbon fibers, and organic fibers such as aramid fibers and polyparaphenylene benzoxazole (PBO) fibers.
  • Carbon fiber is suitable from the viewpoint of the balance of specific strength, specific rigidity and lightness, and among them, polyacrylonitrile-based carbon fiber is preferably used.
  • Examples of the means for increasing the mechanical properties of the carbon fiber reinforced thermoplastic resin molded article include a method of increasing the carbon fiber content. When the carbon fiber content is increased, the carbon fiber is molded into the carbon fiber reinforced thermoplastic resin. In products, it tends to exist non-uniformly, often causing a reduction in impact strength. Then, as another means for improving the mechanical properties of the carbon fiber reinforced thermoplastic resin molded article, for example, there is a method of adding organic fibers having flexibility and excellent elongation at break in addition to carbon fibers.
  • a long fiber reinforced composite resin composition excellent in mechanical strength and imparted with conductivity a long fiber reinforced composite resin composition containing an olefin resin, an organic long fiber, and a carbon fiber has been proposed (for example, Patent Document 1). Further, as a fiber reinforced plastic having excellent impact resistance, a fiber reinforced plastic composed of a reinforced fiber and a thermoplastic resin, and a fiber reinforced plastic composed of a carbon fiber and a heat resistant organic fiber has been proposed (for example, , See Patent Document 2).
  • a fiber reinforced thermoplastic resin molded article excellent in impact strength and low temperature impact strength a fiber reinforced thermoplastic resin molded article containing carbon fiber, organic fiber and thermoplastic resin, and an average fiber length of carbon fiber and organic fiber Are each in a specific range, and further, a fiber reinforced thermoplastic resin molded article in which the average fiber end distance between the carbon fiber and the organic fiber and the average fiber length have a specific relationship has been proposed (for example, Patent Document 3). reference). JP 2009-114332 A JP 2014-62143 A International Publication No. 2014/098103
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a fiber-reinforced thermoplastic resin molded article having excellent impact strength and surface appearance.
  • the fiber-reinforced thermoplastic resin molded article of the present invention has the following configuration. That is, 5 to 45 parts by weight of carbon fiber (A) and 1 to 45 parts by weight of organic fiber (B) with respect to 100 parts by weight of the total of carbon fiber (A), organic fiber (B) and thermoplastic resin (C) , A fiber-reinforced thermoplastic resin molded article containing 10 to 94 parts by weight of the thermoplastic resin (C),
  • the average fiber length of the carbon fibers in the fiber-reinforced thermoplastic resin molded article in (A) (L A) is 0.3 ⁇ 3 mm
  • the average fiber length of the organic fibers in the fiber-reinforced thermoplastic resin molded product in (B) (L B) is 0.5 ⁇ 5 mm
  • the fiber-reinforced thermoplastic number average fiber diameter (d B) is 35 ⁇ 300 [mu] m Resin molded product.
  • the fiber reinforced thermoplastic resin molding material of this invention has either of the following structures. That is, 5 to 45 parts by weight of carbon fiber (A) and 1 to 45 parts by weight of organic fiber (B) with respect to 100 parts by weight of the total of carbon fiber (A), organic fiber (B) and thermoplastic resin (C)
  • a fiber reinforced thermoplastic resin molding material comprising 10 to 94 parts by weight of the thermoplastic resin (C) and 1 to 25 parts by weight of a compound (D) having a melt viscosity at 200 ° C.
  • the number average fiber diameter (d B ) of the organic fiber (B) is 35 to 300 ⁇ m, and the fiber bundle (E) containing the carbon fiber (A) and the organic fiber (B) is impregnated with the compound (D).
  • the composite (F) includes the thermoplastic resin (C), the carbon fiber (A) and the organic fiber (B) are unevenly distributed in the cross section of the fiber bundle (E), and the length of the fiber bundle (E) and the fiber reinforced heat A fiber reinforced thermoplastic resin molding material whose length is substantially the same. Or 5 to 45 weights of carbon fiber (A) is added to 100 weight parts of carbon fiber (A), thermoplastic resin (C) and compound (D) having a melt viscosity at 200 ° C.
  • thermoplastic resin (C) 35 to 94 parts by weight, 1 to 25 parts by weight of the compound (D) having a melt viscosity at 200 ° C. lower than that of the thermoplastic resin (C), and the carbon fiber (A) containing the compound (D ) Containing the thermoplastic resin (C) on the outside of the composite (G) impregnated with carbon, and the length of the carbon fiber (A) and the length of the carbon fiber reinforced thermoplastic resin molding material are substantially the same.
  • the fiber reinforced thermoplastic resin molding material (X) the organic fiber (B), the thermoplastic resin (H) and the compound (I) having a melt viscosity at 200 ° C.
  • thermoplastic resin (H) 1 to 45 parts by weight of organic fiber (B), heatable 35 to 94 parts by weight of the functional resin (H), 1 to 25 parts by weight of the compound (I) whose melt viscosity at 200 ° C. is lower than that of the thermoplastic resin (C), and the number average fiber diameter of the organic fiber (B) ( a fiber reinforced thermoplastic resin molding material including an organic fiber reinforced thermoplastic resin molding material (Y) having a d B ) of 35 to 300 ⁇ m.
  • the fiber-reinforced thermoplastic resin molded product of the present invention has a high reinforcing effect and is excellent in impact strength and surface appearance.
  • the fiber-reinforced thermoplastic resin molded article of the present invention is extremely useful for electrical / electronic equipment, OA equipment, home appliances, housings, automobile parts, and the like.
  • a fiber bundle (E) cross section it is a schematic diagram which shows a molding material cross section of the form in which the carbon fiber (A) includes the organic fiber (B).
  • a fiber bundle (E) cross section it is a schematic diagram which shows the molding material cross section of the form in which the organic fiber (B) includes the carbon fiber (A).
  • the fiber-reinforced thermoplastic resin molded product of the present invention contains at least carbon fiber (A), organic fiber (B), and thermoplastic resin (C).
  • the molded article of the present invention preferably further contains a compound (D) having a melt viscosity at 200 ° C. lower than that of the thermoplastic resin (C).
  • Carbon fiber (A) is a continuous reinforcing fiber bundle that imparts high mechanical properties to a molded product as a reinforcing material.
  • the organic fiber (B) is also a continuous reinforcing fiber bundle and is characterized by having flexibility. Since the organic fiber (B) has flexibility, it is difficult to break at the time of molding, and tends to be present in the molded product while being bent and maintaining a long fiber length. Therefore, compared to a fiber bundle composed only of carbon fibers (A) that are rigid, brittle, and easy to break, the use of a fiber bundle (E) containing organic fibers (B) makes the molded article high as a reinforcing material. Impact strength can be imparted.
  • the thermoplastic resin (C) is a matrix resin having a relatively high viscosity and high physical properties such as toughness, and has a role of firmly holding the carbon fibers (A) and the organic fibers (B) in the molded product.
  • the molded product of the present invention is 5 to 45 parts by weight (5 parts by weight or more) of carbon fiber (A) with respect to 100 parts by weight in total of carbon fiber (A), organic fiber (B) and thermoplastic resin (C). 45 parts by weight or less).
  • the content of the carbon fiber (A) is preferably 10 parts by weight or more.
  • content of carbon fiber (A) exceeds 45 weight part, the dispersibility of the carbon fiber (A) in a molded article will fall, and it will cause the fall of the impact strength and surface appearance of a molded article in many cases.
  • the content of the carbon fiber (A) is preferably 30 parts by weight or less.
  • a PAN-type carbon fiber, a pitch-type carbon fiber, a cellulose-type carbon fiber, a vapor growth type carbon fiber, these graphitized fibers, etc. are illustrated.
  • PAN-based carbon fibers are carbon fibers made from polyacrylonitrile fibers.
  • Pitch-based carbon fiber is carbon fiber made from petroleum tar or petroleum pitch.
  • Cellulosic carbon fibers are carbon fibers made from viscose rayon, cellulose acetate, or the like.
  • Vapor-grown carbon fibers are carbon fibers made from hydrocarbons or the like.
  • PAN-based carbon fibers are preferable because they are excellent in balance between strength and elastic modulus.
  • carbon fibers coated with a metal such as nickel, copper, or ytterbium can also be used.
  • the surface oxygen concentration ratio [O / C] which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy, is 0.05. Those that are ⁇ 0.5 are preferred.
  • the surface oxygen concentration ratio is 0.05 or more, a sufficient amount of functional groups can be secured on the surface of the carbon fiber, and stronger adhesiveness can be obtained, so that bending strength and tensile strength are further improved. 0.08 or more is more preferable, and 0.1 or more is more preferable.
  • the surface oxygen concentration ratio is more preferably 0.4 or less, and further preferably 0.3 or less.
  • the surface oxygen concentration ratio of the carbon fiber (A) is determined by X-ray photoelectron spectroscopy according to the following procedure. First, when a sizing agent or the like is attached to the carbon fiber surface, the sizing agent or the like attached to the carbon fiber surface is removed with a solvent. A carbon fiber bundle is cut into 20 mm, spread on a copper sample support, and arranged to form a measurement sample. The measurement sample is set in the sample chamber of the X-ray photoelectron spectrometer, the inside of the sample chamber is kept at 1 ⁇ 10 ⁇ 8 Torr, and measurement is performed using AlK ⁇ 1,2 as the X-ray source.
  • the kinetic energy value (KE) of the C 1s main peak is adjusted to 1,202 eV as a peak correction value associated with charging during measurement.
  • K. E. As a result, a C 1s peak area is obtained by drawing a straight base line in the range of 1,191 to 1,205 eV.
  • K. E. As a result, the O 1s peak area is obtained by drawing a straight base line in the range of 947 to 959 eV.
  • the surface oxygen concentration ratio is calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area.
  • the sensitivity correction value is set to 1.74.
  • the means for adjusting the surface oxygen concentration ratio [O / C] to 0.05 to 0.5 is not particularly limited.
  • techniques such as electrolytic oxidation, chemical oxidation, and vapor phase oxidation Among them, electrolytic oxidation treatment is preferable.
  • the number of single fibers when the carbon fiber (A) is a reinforcing fiber bundle is not particularly limited, but is preferably 100 to 350,000, and more preferably 20,000 to 100,000 from the viewpoint of productivity. preferable.
  • the carbon fiber (A) may be surface-treated for the purpose of improving the adhesion between the carbon fiber (A) and the thermoplastic resin (C) which is a matrix resin.
  • the surface treatment method include electrolytic treatment, ozone treatment, and ultraviolet treatment.
  • the carbon fiber is provided with a sizing agent for the purpose of preventing the fluff of the carbon fiber (A) and improving the adhesion between the carbon fiber (A) and the thermoplastic resin (C) as the matrix resin. It doesn't matter. By applying a sizing agent, the adhesiveness with the thermoplastic resin (C) and the bending strength and impact strength of the molded product can be further improved.
  • the sizing agent examples include an epoxy resin, a phenol resin, polyethylene glycol, polyurethane, polyester, an emulsifier, and a surfactant. Two or more of these may be used.
  • the sizing agent is preferably water-soluble or water-dispersible, and an epoxy resin excellent in wettability with the carbon fiber (A) is preferable. Of these, polyfunctional epoxy resins are more preferred.
  • polyfunctional epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, aliphatic epoxy resin, phenol novolac type epoxy resin and the like.
  • an aliphatic epoxy resin that easily exhibits adhesiveness with the matrix resin is preferable. Since the aliphatic epoxy resin has a flexible skeleton, it has a high toughness structure even if the crosslinking density is high. When present between the carbon fiber / thermoplastic resin, the strength of the molded product can be further improved because it is flexible and difficult to peel.
  • Examples of the polyfunctional aliphatic epoxy resin include diglycidyl ether compounds and polyglycidyl ether compounds.
  • Diglycidyl ether compounds include ethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, Examples include polytetramethylene glycol diglycidyl ether and polyalkylene glycol diglycidyl ethers.
  • Polyglycidyl ether compounds include glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ethers, sorbitol polyglycidyl ether, arabitol polyglycidyl ether, trimethylolpropane polyglycidyl ethers, trimethylolpropane glycidyl ether , Pentaerythritol polyglycidyl ether, aliphatic polyhydric alcohol and the like.
  • aliphatic epoxy resins trifunctional or higher functional aliphatic epoxy resins are preferable, and aliphatic polyglycidyl ether compounds having three or more highly reactive glycidyl groups are more preferable.
  • the aliphatic polyglycidyl ether compound has a good balance of flexibility, crosslink density, and compatibility with the matrix resin, and can further improve adhesiveness.
  • glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyethylene glycol glycidyl ethers, and polypropylene glycol glycidyl ether are more preferable.
  • the adhesion amount of the sizing agent is preferably 0.01% by weight or more and 10% by weight or less, where the total weight of the carbon fiber (A) and the sizing agent is 100% by weight.
  • the sizing agent adhesion amount is 0.01% by weight or more, the adhesiveness with the thermoplastic resin (C) is further improved. 0.05 weight% or more is more preferable, and 0.1 weight% or more is further more preferable.
  • the sizing agent adhesion amount is 10% by weight or less, the physical properties of the thermoplastic resin (C) can be maintained at a higher level. 5% by weight or less is more preferable, and 2% by weight or less is more preferable.
  • the amount of the sizing agent attached is, for example, that of the sizing agent obtained by heating the carbon fiber to which the sizing agent is attached in a nitrogen atmosphere at 500 ° C. for 15 minutes and then burning off by heating at 500 ° C. for 15 minutes from the weight change before and after the heating It can be determined by calculating the weight.
  • the means for applying the sizing agent is not particularly limited.
  • a sizing treatment liquid prepared by dissolving or dispersing a sizing agent in a solvent (including a dispersion medium in the case of dispersion) is prepared. And a method of removing the solvent by drying and vaporizing the carbon fiber.
  • the method of applying the sizing treatment liquid to the carbon fiber include, for example, a method of immersing the carbon fiber in the sizing treatment liquid via a roller, a method of contacting the carbon fiber with the roller to which the sizing treatment liquid is attached, And a method of spraying on carbon fiber.
  • the method for applying the sizing treatment liquid may be either a batch type or a continuous type, but a continuous type that can improve productivity and reduce variation is preferable.
  • the drying temperature and drying time should be adjusted according to the amount of sizing agent attached. The complete removal of the solvent used in the sizing solution and the time required for drying are shortened, while the sizing agent is prevented from thermal deterioration, and the sizing-treated carbon fiber (A) becomes hard and spreads. From the viewpoint of prevention, the drying temperature is preferably 150 ° C. or higher and 350 ° C. or lower, and more preferably 180 ° C. or higher and 250 ° C. or lower.
  • Examples of the solvent used in the sizing treatment liquid include water, methanol, ethanol, dimethylformamide, dimethylacetamide, acetone and the like, but water is preferable from the viewpoint of easy handling and disaster prevention. Therefore, when using a compound insoluble or hardly soluble in water as a sizing agent, it is preferable to add an emulsifier and a surfactant and use it as an aqueous dispersion.
  • an anionic emulsifier such as a styrene-maleic anhydride copolymer, an olefin-maleic anhydride copolymer, a naphthalene sulfonate formalin condensate, polyacrylic acid soda, Cationic emulsifiers such as polyethyleneimine and polyvinylimidazoline, nonionic emulsifiers such as nonylphenol ethylene oxide adduct, polyvinyl alcohol, polyoxyethylene ether ester copolymer, sorbitan ester ethyl oxide adduct, and the like can be used.
  • a nonionic emulsifier having a small interaction is preferable because it hardly inhibits the adhesion effect of the functional group contained in the sizing agent.
  • the average fiber length of the carbon fiber (A) in the molded article of the present invention (L A) is 0.3 ⁇ 3mm (0.3 mm or less than 3mm).
  • L A is preferably equal to or greater than 0.5mm.
  • the average fiber length (L A ) of the carbon fiber (A) exceeds 3 mm, the entanglement between the single fibers of the carbon fibers (A) increases, and it becomes difficult to uniformly disperse in the molded product.
  • L A is preferably 2mm or less, more preferably 1.5 mm, more preferably 1.2mm or less.
  • the “average fiber length” of the carbon fiber (A) in the present invention means that the weight average molecular weight calculation method is applied to the calculation of the fiber length, and the contribution of the fiber length is not simply taken as the number average. The average fiber length calculated from the following formula in consideration. However, the following formula is applied when the fiber diameter and density of the carbon fiber (A) are constant.
  • Average fiber length ⁇ (Mi 2 ⁇ Ni) / ⁇ (Mi ⁇ Ni) Mi: Fiber length (mm)
  • Ni The number of carbon fibers having a fiber length Mi.
  • the average fiber length can be measured by the following method.
  • the molded product is heated while being sandwiched between glass plates on a hot stage set at 300 ° C., and is uniformly dispersed in a film form.
  • a film in which carbon fibers are uniformly dispersed is observed with an optical microscope (50 to 200 times).
  • the fiber length of 1,000 carbon fibers (A) selected at random is measured, and the average fiber length (L A ) is calculated from the above formula.
  • the average fiber length of the carbon fiber (A) in the molded product can be adjusted by, for example, molding conditions.
  • molding conditions include, in the case of injection molding, pressure conditions such as back pressure and holding pressure, time conditions such as injection time and pressure holding time, temperature conditions such as cylinder temperature and mold temperature, and the like.
  • pressure conditions such as back pressure and holding pressure
  • time conditions such as injection time and pressure holding time
  • temperature conditions such as cylinder temperature and mold temperature, and the like.
  • the shearing force in the cylinder can be increased, so that the average fiber length of the carbon fibers (A) can be shortened.
  • shortening the injection time can increase the shearing force at the time of injection, and the average fiber length of the carbon fibers (A) can be shortened.
  • the average fiber length of the carbon fibers (A) in the molded product can be set within a desired range by appropriately changing the conditions as described above.
  • the number average fiber diameter of the carbon fibers in the molded article of the present invention (A) (d A) is not particularly limited, from the viewpoint of mechanical properties and surface appearance of molded articles, preferably 1 ⁇ 20 [mu] m, more preferably 3 ⁇ 15 [mu] m .
  • the “number average fiber diameter” of the carbon fiber (A) in the present invention refers to an average fiber diameter calculated from the following formula.
  • Number average fiber diameter ⁇ (di ⁇ Ni) / ⁇ (Ni) di: Fiber diameter ( ⁇ m) Ni: The number of carbon fibers having a fiber diameter di.
  • the number average fiber diameter can be measured by the following method.
  • the molded product is heated while being sandwiched between glass plates on a hot stage set at 300 ° C., and is uniformly dispersed in a film form.
  • a film in which carbon fibers are uniformly dispersed is observed with an optical microscope (200 to 1,000 times).
  • the fiber diameter of 10 carbon fibers (A) selected at random is measured, and the number average fiber diameter is calculated from the above formula.
  • the fiber diameter of the carbon fiber is an arbitrary point B on the observed fiber contour A of the carbon fiber (A) and the fiber contour facing the fiber contour A (4).
  • Let the shortest distance (6) with part A '(5) be the number average value of the total 200 places measured about 20 places chosen at random per carbon fiber (A).
  • the observation screen is appropriately moved to a new observation screen that can be measured.
  • the carbon fiber used for the molding material is selected from carbon fibers having various fiber diameters to have a desired fiber diameter.
  • the fiber diameter of the carbon fiber can be within the above range.
  • the molded product of the present invention contains an organic fiber (B) in addition to the carbon fiber (A) described above. Since inorganic fibers such as carbon fiber (A) are rigid and brittle, they are not easily entangled and easily broken. Therefore, the fiber bundle which consists only of inorganic fiber has the subject that it is easy to cut during manufacture of a molded article, or it is easy to drop
  • the content of the organic fiber (B) in the molded product is 1 to 45 parts by weight with respect to a total of 100 parts by weight of the carbon fiber (A), the organic fiber (B), and the thermoplastic resin (C). (1 to 45 parts by weight).
  • the content of the organic fiber (B) is preferably 5 parts by weight or more.
  • the content of the organic fiber (B) exceeds 45 parts by weight, the entanglement between the fibers increases, the dispersibility of the organic fiber (B) in the molded product decreases, and the impact strength and surface of the molded product decrease. Often causes deterioration in appearance.
  • the content of the organic fiber (B) is preferably 30 parts by weight or less.
  • the tensile elongation at break of the organic fiber (B) is preferably 10% or more, and more preferably 20% or more from the viewpoint of adjusting the average fiber length of the organic fiber to a range described later and further improving the impact strength.
  • 50% or less is preferable, and 40% or less is more preferable.
  • the tensile breaking elongation (%) of the organic fiber (B) can be determined by the following method. Perform a tensile test in a standard condition (20 ° C, 65% RH) room with a grip interval of 250 mm and a tensile speed of 300 mm / min, and measure the length during fiber cutting. Calculate from the data as a chuck shortage), calculate up to 2 decimal places using the following formula, and round off the 2nd decimal place. The average value of the number of data n3 is obtained and set as the tensile elongation at break in the present invention.
  • Tensile breaking elongation (%) [(length at cutting (mm) ⁇ 250) / 250] ⁇ 100.
  • Organic fiber (B) can be appropriately selected within a range that does not significantly reduce the mechanical properties of the molded product.
  • polyolefin resins such as polyethylene and polypropylene
  • polyamide resins such as nylon 6, nylon 66 and aromatic polyamide
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • polyether ketone polyether sulfone
  • polyarylene sulfide Mention may be made of fibers obtained by spinning a resin such as liquid crystal polyester. Two or more of these may be used.
  • the thermoplastic resin (C) which is a matrix resin.
  • the melting temperature of the organic fiber (B) is preferably 30 ° C. to 150 ° C., more preferably 50 ° C. to 100 ° C. higher than the molding temperature (melting temperature) of the thermoplastic resin (C).
  • the organic fiber (B) using a resin that is incompatible with the thermoplastic resin (C) exists in the molded product while maintaining the fiber state, the impact strength of the molded product can be further improved.
  • examples of organic fibers (B) having a high melting temperature include polyamide fibers, polyester fibers, polyarylene sulfide fibers, and fluororesin fibers. In the present invention, at least one selected from the group consisting of these as organic fibers (B). It is preferred to use seed fibers.
  • the average fiber length (L B ) of the organic fiber (B) in the molded product of the present invention is 0.5 mm to 5 mm (0.5 mm or more and 5 mm or less).
  • L B is preferably at least 1 mm, more preferably not less than 1.5 mm.
  • the average fiber length (L B ) exceeds 5 mm, the entanglement between the single yarns of the organic fibers (B) increases, and it becomes difficult to uniformly disperse in the molded product, so that the impact strength decreases.
  • L B is preferably 4mm or less, more preferably less than 3mm.
  • the “average fiber length” of the organic fiber (B) in the present invention is the same as that of the carbon fiber (A), by applying the calculation method of the weight average molecular weight to the calculation of the fiber length, and simply taking the number average. Instead, it means the average fiber length calculated from the following formula considering the contribution of fiber length. However, the following formula is applied when the fiber diameter and density of the organic fiber (B) are constant.
  • Average fiber length ⁇ (Mi 2 ⁇ Ni) / ⁇ (Mi ⁇ Ni) Mi: Fiber length (mm)
  • Ni Number of organic fibers having a fiber length Mi.
  • the average fiber length can be measured by the following method.
  • the molded product is heated while being sandwiched between glass plates on a hot stage set at 300 ° C., and is uniformly dispersed in a film form.
  • a film in which organic fibers are uniformly dispersed is observed with an optical microscope (50 to 200 times).
  • the fiber length of 1,000 organic fibers (B) selected at random is measured, and the average fiber length (L B ) is calculated from the above formula.
  • the average fiber length of the organic fiber (B) in the molded product can be adjusted by, for example, the type of the above-described organic fiber (B), molding conditions, and the like.
  • the molding conditions include, in the case of injection molding, pressure conditions such as back pressure and holding pressure, time conditions such as injection time and pressure holding time, temperature conditions such as cylinder temperature and mold temperature, and the like.
  • pressure conditions such as back pressure and holding pressure
  • time conditions such as injection time and pressure holding time
  • temperature conditions such as cylinder temperature and mold temperature
  • shortening the injection time can increase the shearing force at the time of injection, and the average fiber length of the organic fibers (B) can be shortened.
  • the viscosity of the flowing resin can be increased and the shearing force can be increased, so that the average fiber length of the organic fiber (B) can be shortened.
  • the average fiber length of the organic fibers (B) in the molded product can be within a desired range.
  • the organic fiber (B) in the molded article of the present invention is characterized in that its number average fiber diameter (d B ) is 35 to 300 ⁇ m (35 ⁇ m or more and 300 ⁇ m or less).
  • d B number average fiber diameter
  • the number average fiber diameter (d B ) of the organic fiber (B) is less than 35 ⁇ m, a larger number of organic fibers are formed even with the same weight as compared with the organic fiber having the number average fiber diameter (d B ) of 35 ⁇ m or more. It will be present in the product, it will be difficult to suppress the entanglement between the organic fibers, and the surface appearance of the molded product cannot be improved.
  • the number average fiber diameter (d B ) of the organic fiber (B) is preferably 50 ⁇ m or more, and more preferably 80 ⁇ m or more. On the other hand, when the number average fiber diameter (d B ) of the organic fibers (B) exceeds 300 ⁇ m, the unevenness of the fibers becomes conspicuous on the surface of the molded product, and as a result, the surface appearance decreases.
  • the number average fiber diameter (d B ) is preferably 150 ⁇ m or less.
  • the “number average fiber diameter” of the organic fiber (B) in the present invention refers to an average fiber diameter calculated from the following formula.
  • Number average fiber diameter ⁇ (di ⁇ Ni) / ⁇ (Ni) di: Fiber diameter ( ⁇ m) Ni: Number of organic fibers having a fiber diameter di.
  • the number average fiber diameter can be measured by the following method.
  • the molded product is heated while being sandwiched between glass plates on a hot stage set at 300 ° C., and is uniformly dispersed in a film form.
  • a film in which organic fibers are uniformly dispersed is observed with an optical microscope (200 to 1,000 times).
  • the fiber diameter of 10 organic fibers (B) selected at random is measured, and the number average fiber diameter is calculated from the above formula.
  • the fiber diameter of the organic fiber is, as shown in FIG. 4, an arbitrary point B on the fiber contour portion A of the observed organic fiber (B) and a fiber contour facing the fiber contour portion A (4).
  • the shortest distance (6) with the part A ′ (5) is the number average value of a total of 200 points measured at 20 points randomly selected per organic fiber (B).
  • the observation screen is appropriately moved to a new observation screen that can be measured.
  • the organic fiber used in the molding material is selected from organic fibers having various fiber diameters having a desired fiber diameter.
  • the fiber diameter of an organic fiber can be made into the said range.
  • the organic fiber (B) in the molded article of the present invention preferably has an aspect ratio (L B [ ⁇ m] / d B [ ⁇ m]) in the range of 5 to 100 (5 or more and 100 or less).
  • Means for setting the aspect ratio in the above range includes balancing the average fiber length and the number average fiber diameter.
  • the aspect ratio is set to 100 or less, formation of irregularities on the surface of the molded product of the organic fiber (B) can be suppressed, and the surface appearance of the molded product can be further enhanced.
  • As a means for setting the aspect ratio to 100 or less it is possible to appropriately reduce the average fiber length L B and appropriately increase the number average fiber diameter L A.
  • the aspect ratio is more preferably 70 or less.
  • the aspect ratio (L B / d B ) is calculated using the average fiber length L B and the number average fiber diameter d B described above.
  • the aspect ratio of the organic fibers (B) in the molded article as a means for the above range, for example, to the average fiber length L B and the number average fiber diameter d B in the molded article within the preferred range described above Etc.
  • the ratio (n B / n A ) of the converted number n B of the organic fibers (B) to the converted number n A of the carbon fibers (A) in the molded article of the present invention is 0.001 to 0.01 (0 .001 or more and 0.01 or less).
  • the converted number is an index representing the number of carbon fibers or organic fibers in 1 g of the molded product, and each number average fiber diameter d ( ⁇ m), average fiber length L (mm), fiber content w (mass) %) And specific gravity ⁇ (g / cm 3 ).
  • Conversion number ((1 ⁇ w / 100) / ((d / 2) 2 ⁇ ⁇ ⁇ L ⁇ ⁇ )) ⁇ 10 9
  • the ratio of pi converted number (n B / n A) is at least 0.001, organic fibers (B) to improve the impact properties at least 0.1% of the number of carbon fibers (A) Will be included.
  • the carbon fiber (A) is rigid and brittle, so it is difficult to be entangled and easily broken, but the organic fiber (B) that is flexible and difficult to break is present in the molded product in an amount of 0.1% or more of the carbon fiber (A). Strength can be improved.
  • the ratio (n B / n A ) of the converted number is more preferably 0.003 or more.
  • the ratio (n B / n A ) of the converted number is 0.01 or less, the number of the organic fibers (B) can be easily dispersed one by one. The surface appearance can be further improved.
  • the ratio (n B / n A ) of the converted number is more preferably 0.008 or less.
  • the specific gravity of the carbon fiber (A) or the organic fiber (B) can be measured by a liquid immersion method by removing a part of the carbon fiber (A) or the organic fiber (B) from the molded product. Distilled water is used as the liquid for the immersion method, and the specific gravity can be determined by measuring the specific gravity of 0.5 g of carbon fiber (A) or organic fiber (B) three times and calculating the average value. .
  • the organic fiber (B) and the matrix resin are burned off at a predetermined temperature to leave only the carbon fiber (A), or the matrix resin and the organic fiber are soluble. There is a method in which the carbon fiber (A) is taken out after being dissolved in a solvent.
  • the organic fiber there is a method for taking out using the difference in specific gravity between the carbon fiber (A) and the organic fiber (B). After dissolving only the matrix resin in a soluble solvent and taking out the carbon fibers (A) and the organic fibers (B), for example, a solvent having a specific gravity larger than that of the organic fibers (B) and smaller than that of the carbon fibers (A). As a result, only the organic fiber (B) floats in the solvent, and the organic fiber (B) can be taken out.
  • the number average fiber diameter and the average fiber length of the organic fibers in the molded product are set in the above preferable ranges, carbon fibers (A), and organic fibers (B).
  • the amount of is within the above-mentioned preferable range.
  • the molded article of the present invention is 10 to 94 parts by weight (10 parts by weight) of thermoplastic resin (C) with respect to 100 parts by weight of the total of carbon fiber (A), organic fiber (B) and thermoplastic resin (C). More than 94 parts by weight).
  • content of a thermoplastic resin (C) is less than 10 weight part, the dispersibility of a fiber will fall and impact strength will fall.
  • the content of the thermoplastic resin (C) is preferably 20 parts by weight or more, and more preferably 30 parts by weight or more.
  • thermoplastic resin (C) exceeds 94 parts by weight, the content of the carbon fiber (A) and the organic fiber (B) is relatively reduced, so that the reinforcing effect by the fiber is reduced, and the impact is reduced. Strength decreases.
  • the content of the thermoplastic resin (C) is preferably 85 parts by weight or less, and more preferably 75 parts by weight or less.
  • the thermoplastic resin (C) preferably has a molding temperature (melting temperature) of 200 to 450 ° C.
  • thermoplastic resins (C) polyolefin resins, polyamide resins, and polycarbonate resins that are lightweight and have a good balance of mechanical properties and moldability are more preferable, and polypropylene resins are more preferable because they are excellent in chemical resistance and moisture absorption. .
  • the polypropylene resin may be unmodified or modified.
  • the unmodified polypropylene resin specifically, at least one selected from the group consisting of a propylene homopolymer, propylene and an ⁇ -olefin, a conjugated diene, a non-conjugated diene, and other thermoplastic monomers.
  • a propylene homopolymer propylene and an ⁇ -olefin
  • a conjugated diene a non-conjugated diene
  • other thermoplastic monomers examples include copolymers with monomers.
  • examples of the copolymer include a random copolymer or a block copolymer.
  • ⁇ -olefin examples include ethylene, 1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-hexene, 4,4- ⁇ -olefins having 2 to 12 carbon atoms other than propylene such as dimethyl-1-hexene, 1-nonene, 1-octene, 1-heptene, 1-hexene, 1-decene, 1-undecene, 1-dodecene, etc. Can be mentioned.
  • conjugated diene or non-conjugated diene examples include butadiene, ethylidene norbornene, dicyclopentadiene, 1,5-hexadiene, and the like. Two or more of these may be used.
  • polypropylene, ethylene / propylene copolymer, propylene / 1-butene copolymer, ethylene / propylene / 1-butene copolymer, and the like are preferable.
  • a homopolymer of propylene is preferable from the viewpoint of further improving the rigidity of the molded product.
  • Random copolymers or block copolymers of propylene and ⁇ -olefin, conjugated diene and non-conjugated diene are preferable from the viewpoint of further improving the impact strength of the molded product.
  • the modified polypropylene resin is preferably an acid-modified polypropylene resin, more preferably an acid-modified polypropylene resin having a carboxylic acid and / or a carboxylic acid group bonded to a polymer chain.
  • the acid-modified polypropylene resin can be obtained by various methods.
  • an unmodified polypropylene resin has a neutralized or non-neutralized carboxylic acid group monomer and / or a saponified or unsaponified carboxylic acid ester group
  • the monomer can be obtained by graft polymerization.
  • a monomer having a neutralized or non-neutralized carboxylic acid group or a monomer having a saponified or unsaponified carboxylic acid ester group, for example, examples thereof include ethylenically unsaturated carboxylic acid, its anhydride, and ethylenically unsaturated carboxylic acid ester.
  • Examples of the ethylenically unsaturated carboxylic acid include (meth) acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, and isocrotonic acid.
  • Examples of the anhydride include nadic acid TM (endocis-bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid), maleic anhydride, and citraconic anhydride.
  • ethylenically unsaturated carboxylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, and tert-butyl (meth) Acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, Octadecyl (meth) acrylate, stearyl (meth) acrylate, tridecyl (meth) acrylate, lauroyl (meth) acrylate, cyclohexyl (meth
  • Hydroxyl group-containing (meth) acrylic acid esters glycidyl (meth) acrylate, epoxy group-containing (meth) acrylic acid esters such as methyl glycidyl (meth) acrylate, N N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N, N-dipropylaminoethyl (meth) acrylate, N, N- Examples include aminoalkyl (meth) acrylates such as dibutylaminoethyl (meth) acrylate and N, N-dihydroxyethylaminoethyl (meth) acrylate.
  • an acid anhydride of an ethylenically unsaturated carboxylic acid is preferable, and maleic anhydride is more preferable.
  • the weight ratio of the unmodified polypropylene resin and the modified polypropylene resin be 95/5 to 75/25. More preferably, it is 95/5 to 80/20, and still more preferably 90/10 to 80/20.
  • Polyamide resin is a resin mainly composed of amino acid, lactam, or diamine and dicarboxylic acid.
  • the main raw materials include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ⁇ -caprolactam and ⁇ -laurolactam, tetramethylenediamine, Hexamethylenediamine, 2-methylpentamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine, etc.
  • Aromatic diamines such as aliphatic diamine, metaxylylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl- 3,5,5-trimethyl Cyclohexane, bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethylpiperazine, etc.
  • a polyamide resin having a melting point of 200 ° C. or higher is particularly useful from the viewpoint of excellent heat resistance and strength.
  • Specific examples thereof include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipamide copolymer (nylon 6/66), polytetramethylene adipa Midon (nylon 46), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyhexamethylene terephthalamide / polycaproamide copolymer (nylon 6T / 6), polyhexamethylene adipamide / Polyhexamethylene terephthalamide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I), polyhexamethylene adipamide / polyhexamethylene terephthalamide
  • the degree of polymerization of the polyamide resin is not particularly limited, but the relative viscosity of a solution obtained by dissolving 0.25 g of the polyamide resin in 25 mL of 98% concentrated sulfuric acid at 25 ° C. may be in the range of 1.5 to 5.0. A polyamide resin in the range of 2.0 to 3.5 is more preferable.
  • the polycarbonate resin is obtained by reacting a dihydric phenol and a carbonate precursor.
  • the copolymer obtained using 2 or more types of dihydric phenols or 2 or more types of carbonate precursors may be sufficient.
  • the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • a polycarbonate resin described in JP-A-2002-129027 can be used.
  • dihydric phenol examples include 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, bis (4-hydroxyphenyl) alkane (such as bisphenol A), 2,2-bis ⁇ ( 4-hydroxy-3-methyl) phenyl ⁇ propane, ⁇ , ⁇ ′-bis (4-hydroxyphenyl) -m-diisopropylbenzene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, etc. . Two or more of these may be used. Among these, bisphenol A is preferable, and a polycarbonate resin excellent in impact resistance can be obtained. On the other hand, a copolymer obtained using bisphenol A and another dihydric phenol is excellent in terms of high heat resistance or low water absorption.
  • carbonate precursor for example, carbonyl halide, carbonic acid diester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
  • a catalyst In producing the polycarbonate resin from the dihydric phenol and the carbonate precursor, a catalyst, a terminal blocking agent, an antioxidant for preventing the oxidation of the dihydric phenol, or the like may be used as necessary.
  • the polycarbonate resin may be a branched polycarbonate resin obtained by copolymerization of a trifunctional or higher polyfunctional aromatic compound, or an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid. It may be a polymerized polyester carbonate resin, may be a copolymerized polycarbonate resin copolymerized with a bifunctional aliphatic alcohol (including an alicyclic group), or may be a bifunctional carboxylic acid and a bifunctional fat. It may be a polyester carbonate resin copolymerized with a group alcohol. Two or more of these polycarbonate resins may be used.
  • the molecular weight of the polycarbonate resin is not specified, but a viscosity average molecular weight of 10,000 to 50,000 is preferable.
  • a viscosity average molecular weight of 10,000 to 50,000 is preferable.
  • the strength of the molded product can be further improved. 15,000 or more is more preferable, and 18,000 or more is more preferable.
  • the viscosity average molecular weight is 50,000 or less, the moldability is improved. It is more preferably 40,000 or less, and further preferably 30,000 or less.
  • the other polycarbonate resin it is preferable to use a polycarbonate resin having a viscosity average molecular weight of more than 50,000, preferably more than 80,000.
  • Such polycarbonate resin has high entropy elasticity and is advantageous when used in combination with gas-assist molding, as well as improved properties such as anti-drip characteristics, draw-down characteristics, and improved jetting properties derived from high entropy elasticity. Exhibiting properties).
  • the viscosity average molecular weight (M) of the polycarbonate resin is obtained by substituting the specific viscosity ( ⁇ sp ) obtained at 20 ° C. from a solution of 0.7 g of the polycarbonate resin in 100 mL of methylene chloride into the following equation.
  • the molded article of the present invention contains a compound (D) having a melt viscosity at 200 ° C. lower than that of the thermoplastic resin (C) in addition to the carbon fiber (A), the organic fiber (B), and the thermoplastic resin (C).
  • the melt viscosity at 200 ° C. of the compound (D) having a melt viscosity at 200 ° C. lower than that of the thermoplastic resin (C) (sometimes referred to as “compound (D)”) is preferably 5 Pa ⁇ s or less, and preferably 2 Pa ⁇ s or less. More preferred is 1.5 Pa ⁇ s or less.
  • molding carbon fiber (A) and organic fiber (B) can be improved more, and the bending strength and tensile strength of a molded article can be improved more.
  • the melt viscosity at 200 ° C. of the thermoplastic resin (C) and the compound (D) can be measured with a viscoelasticity measuring device at 0.5 Hz using a 40 mm parallel plate.
  • the molded product of the present invention can be obtained by using the molding material of the present invention described later.
  • the molten compound (D) is then impregnated into carbon fiber (A) roving, organic fiber (B) roving, or fiber bundle (E) to give composites (G), (J), (F), respectively. Is made.
  • the melting temperature (temperature in the melting bath) when supplying the compound (D) is preferably 100 to 300 ° C.
  • the roving of the carbon fiber (A) of the compound (D) and the roving of the organic fiber (B) As an index of impregnation into the fiber bundle (E), attention was focused on the melt viscosity at 200 ° C. of the compound (D). If the melt viscosity at 200 ° C. is in the above preferred range, the impregnation is excellent in the preferred melt temperature range, so that the dispersibility of the carbon fiber (A) and the organic fiber (B) is further improved, and the impact of the molded product The strength can be further improved.
  • Examples of the compound (D) include compounds having a number average molecular weight of 200 to 50,000.
  • a compound having a number average molecular weight of 200 to 50,000 is usually a relatively brittle and easily crushed solid or liquid at room temperature. Since such a compound has a low molecular weight, it has high fluidity and can enhance the effect of dispersing the carbon fibers (A) and the organic fibers (B) in the thermoplastic resin (C). That is, if the number average molecular weight is 200 or more, the mechanical properties of the molded article, in particular, the bending strength and the tensile strength can be further improved.
  • the number average molecular weight is more preferably 1,000 or more.
  • the number average molecular weight is 50,000 or less, the viscosity is moderately low, so that the carbon fiber (A) and the organic fiber (B) contained in the molded product are excellent in impregnation, and in the molded product.
  • the dispersibility of the carbon fiber (A) and the organic fiber (B) can be further improved.
  • the number average molecular weight is more preferably 3,000 or less.
  • the number average molecular weight of this compound can be measured using gel permeation chromatography (GPC).
  • thermoplastic resin (C) those having high affinity with the thermoplastic resin (C) are preferable. Dispersibility of carbon fiber (A) and organic fiber (B) in order to be compatible with thermoplastic resin (C) efficiently by selecting compound (D) having high affinity with thermoplastic resin (C) Can be further improved.
  • Compound (D) is appropriately selected according to the combination with the thermoplastic resin (C) which is a matrix resin.
  • a terpene resin is preferably used when the molding temperature is in the range of 150 ° C. to 270 ° C.
  • an epoxy resin is preferably used when the molding temperature is in the range of 270 ° C. to 320 ° C.
  • the thermoplastic resin (C) is a polypropylene resin
  • the compound (D) is preferably a terpene resin.
  • the thermoplastic resin (C) is a polycarbonate resin
  • the compound (D) is preferably an epoxy resin.
  • the thermoplastic resin (C) is a polyamide resin
  • the compound (D) is preferably a terpene phenol resin.
  • the content of the compound (D) in the molded article of the present invention is 1 to 25 parts by weight (1 part by weight with respect to 100 parts by weight in total of the carbon fiber (A), the organic fiber (B), and the thermoplastic resin (C). Part to 25 parts by weight). If content of a compound (D) is 1 weight part or more, the fluidity
  • the compound (D) preferably has a weight loss by heating of 5% by weight or less at a molding temperature measured at a temperature rising rate of 10 ° C./min (in air).
  • the loss on heating is 5% by weight or less, generation of cracked gas can be suppressed when the carbon fibers (A) and the organic fibers (B) are impregnated, and generation of voids can be suppressed when molded. it can. Further, the generated gas can be suppressed particularly in molding at a high temperature. 3% by weight or less is more preferable.
  • the loss on heating at the molding temperature of the compound (D) represents the weight loss rate of the compound (D) after heating under the heating conditions, where the weight of the compound (D) before heating is 100%. It can ask for.
  • the weight before and after heating can be determined by measuring the weight at the molding temperature by thermogravimetric analysis (TGA) in a platinum sample pan under an air atmosphere at a temperature rising rate of 10 ° C./min. it can.
  • Loss on heating [% by weight] ⁇ (weight before heating ⁇ weight after heating) / weight before heating ⁇ ⁇ 100.
  • the epoxy resin preferably used as the compound (D) is a compound having two or more epoxy groups, is substantially free of a curing agent, and is so-called three-dimensional crosslinked even when heated. It does not cure by.
  • the compound (D) preferably has a glycidyl group, tends to interact with the carbon fiber (A) and the organic fiber (B), is easily compatible with the fiber bundle (E) at the time of impregnation, and is easily impregnated. Moreover, the dispersibility of the carbon fiber (A) and the organic fiber (B) during the molding process is further improved.
  • examples of the compound having a glycidyl group include glycidyl ether type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, and alicyclic epoxy resins. Two or more of these may be used.
  • Examples of the glycidyl ether type epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, halogenated bisphenol A type epoxy resin, bisphenol S type epoxy resin, resorcinol type epoxy resin, hydrogenated bisphenol.
  • glycidyl ester type epoxy resin examples include hexahydrophthalic acid glycidyl ester and dimer acid diglycidyl ester.
  • glycidylamine type epoxy resin examples include triglycidyl isocyanurate, tetraglycidyl diaminodiphenylmethane, tetraglycidyl metaxylenediamine, aminophenol type epoxy resin, and the like.
  • Examples of the alicyclic epoxy resin include 3,4-epoxy-6-methylcyclohexyl methyl carboxylate, 3,4-epoxycyclohexyl methyl carboxylate, and the like.
  • a glycidyl ether type epoxy resin is preferable because of excellent balance between viscosity and heat resistance, and a bisphenol A type epoxy resin and a bisphenol F type epoxy resin are more preferable.
  • the number average molecular weight of the epoxy resin used as the compound (D) is preferably 200 to 5,000. If the number average molecular weight of the epoxy resin is 200 or more, the mechanical properties of the molded product can be further improved. 800 or more is more preferable, and 1,000 or more is more preferable. On the other hand, if the number average molecular weight of the epoxy resin is 5,000 or less, the fiber bundle (E) has excellent impregnation properties, and the dispersibility of the carbon fibers (A) and the organic fibers (B) can be further improved. . 4,000 or less is more preferable, and 3,000 or less is more preferable. In addition, the number average molecular weight of an epoxy resin can be measured using a gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • terpene resin for example, a polymer or copolymer obtained by polymerizing a terpene monomer with an aromatic monomer, if necessary, in the presence of a Friedel-Crafts type catalyst in an organic solvent, etc. Is mentioned.
  • terpene monomer examples include ⁇ -pinene, ⁇ -pinene, dipentene, d-limonene, myrcene, alloocimene, ocimene, ⁇ -ferrandrene, ⁇ -terpinene, ⁇ -terpinene, terpinolene, 1,8-cineole, And monocyclic monoterpenes such as 1,4-cineole, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, sabinene, paramentadienes, and carenes.
  • aromatic monomer examples include styrene and ⁇ -methylstyrene.
  • thermoplastic resin (C) thermoplastic resin
  • homopolymers of these terpene monomers are more preferable.
  • hydrogenated terpene resins obtained by hydrogenating these terpene resins are preferred because they are more compatible with thermoplastic resins (C), particularly polypropylene resins.
  • the glass transition temperature of the terpene resin is not particularly limited, but is preferably 30 to 100 ° C. When the glass transition temperature is 30 ° C. or higher, the handleability of the compound (D) is excellent during molding. Moreover, the compound (D) at the time of a shaping
  • the number average molecular weight of the terpene resin is preferably 200 to 5,000. If the number average molecular weight is 200 or more, the mechanical properties of the molded article, in particular, the bending strength and the tensile strength can be further improved. Moreover, if the number average molecular weight is 5,000 or less, the viscosity of the terpene resin is moderately low, so that the impregnation property is excellent, and the dispersibility of the carbon fiber (A) and the organic fiber (B) in the molded product is further improved. Can be made. The number average molecular weight of the terpene resin can be measured using gel permeation chromatography (GPC).
  • the terpene phenol resin is obtained by reacting a terpene monomer and phenols with a catalyst.
  • phenols those having 1 to 3 alkyl groups, halogen atoms and / or hydroxyl groups on the benzene ring of phenol are preferably used. Specific examples thereof include cresol, xylenol, ethylphenol, butylphenol, t-butylphenol, nonylphenol, 3,4,5-trimethylphenol, chlorophenol, bromophenol, chlorocresol, hydroquinone, resorcinol, orcinol and the like. . Two or more of these may be used. Among these, phenol and cresol are preferable.
  • the number average molecular weight of the terpene phenol resin is preferably 200 to 5,000. If the number average molecular weight is 200 or more, the bending strength and tensile strength of the molded product can be further improved. Further, when the number average molecular weight is 5,000 or less, the viscosity of the terpene phenol resin is moderately low, so that the impregnation property is excellent, and the dispersibility of the carbon fiber (A) and the organic fiber (B) in the molded product is further improved. Can be improved.
  • the number average molecular weight of the terpene phenol resin can be measured using gel permeation chromatography (GPC).
  • the molded article of the present invention may contain other components in addition to the above (A) to (D) as long as the object of the present invention is not impaired.
  • other components include thermosetting resins, inorganic fillers other than carbon fibers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents , Deodorizers, anti-coloring agents, heat stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents.
  • a molded product can be obtained by molding the molding material of the present invention described later.
  • the molding method include molding methods having excellent productivity such as injection molding, autoclave molding, press molding, filament winding molding, and stamping molding. A combination of these can also be used.
  • integral molding such as insert molding and outsert molding, can be applied.
  • a bonding method having excellent productivity such as a correction treatment by heating, heat welding, vibration welding, ultrasonic welding, or the like can be used.
  • a molding method using a mold is preferable, and a continuously stable molded product can be obtained particularly by a molding method using an injection molding machine.
  • the conditions for injection molding are not particularly specified, but for example, injection time: 0.5 seconds to 10 seconds, more preferably 2 seconds to 10 seconds, back pressure: 0.1 MPa to 10 MPa, more preferably 2 MPa to 8 MPa, Holding pressure: 1 MPa to 50 MPa, more preferably 1 MPa to 30 MPa, Holding pressure time: 1 second to 20 seconds, more preferably 5 seconds to 20 seconds, Cylinder temperature: 200 ° C. to 320 ° C., Mold temperature: 20 ° C. to 100 ° C. A condition of ° C is preferred.
  • the cylinder temperature indicates the temperature of the portion where the molding material of the injection molding machine is heated and melted
  • the mold temperature indicates the temperature of the mold for injecting a resin for forming a predetermined shape.
  • thermoplastic resin molding material of the present invention (sometimes referred to as “molding material”) suitable for obtaining the molded product of the present invention will be described.
  • the number average fiber diameter (d B ) of ( B ) is 35 to 300 ⁇ m (35 ⁇ m or more and 300 ⁇ m or less), and the fiber bundle (E) containing the carbon fiber (A) and the organic fiber (B) is impregnated with the compound (D).
  • thermoplastic resin (C) outside the composite (F) In the cross section of the fiber bundle (E), the carbon fiber (A) and the organic fiber (B) are unevenly distributed, and the length of the fiber bundle (E) and the length of the fiber reinforced thermoplastic resin molding material are substantially the same ( Hereinafter, it may be referred to as “the molding material of the first embodiment”), (2) the carbon fiber (A), the thermoplastic resin (C), and a compound having a melt viscosity at 200 ° C.
  • thermoplastic resin (C) D) 5 to 45 parts by weight (5 to 45 parts by weight) of carbon fiber (A) and 35 to 94 parts by weight (35 parts by weight or more) of thermoplastic resin (C) with respect to 100 parts by weight in total of D) 94 parts by weight or less) and 1 to 25 parts by weight (1 part by weight or more and 25 parts by weight or less) of the compound (D) having a melt viscosity at 200 ° C. lower than that of the thermoplastic resin (C).
  • the organic fiber (B) is added in an amount of 1 to 45 parts by weight (1 part by weight or more and 45 parts by weight) with respect to 100 parts by weight in total of the plastic resin (H) and the compound (I) having a melt viscosity at 200 ° C.
  • thermoplastic resin (H) Part or less 35 to 94 parts by weight (35 to 94 parts by weight) of thermoplastic resin (H), 1 to 25 parts by weight (1 to 25 parts by weight) of compound (I), and organic A molding material (hereinafter referred to as “second embodiment”) including an organic fiber reinforced thermoplastic resin molding material (Y) having a number average fiber diameter (d B ) of the fiber ( B ) of 35 to 300 ⁇ m (35 ⁇ m or more and 300 ⁇ m or less).
  • the molding material is sometimes referred to as the composition of the present invention. It can be suitably used as a molding material for obtaining the goods.
  • the molding material according to the first aspect of the present invention which is used to obtain the above-mentioned molded article, contains at least carbon fiber (A), organic fiber (B), thermoplastic resin (C) and compound (D),
  • the number average fiber diameter (d B ) of the organic fiber (B) is 35 to 300 ⁇ m (35 ⁇ m or more and 300 ⁇ m or less).
  • the molding material according to the first aspect of the present invention includes a composite (F) obtained by impregnating the fiber bundle (E) containing the carbon fiber (A) and the organic fiber (B) with the compound (D). Including the thermoplastic resin (C) outside the composite (F).
  • the effects of the carbon fiber (A), the organic fiber (B), the thermoplastic resin (C) and the compound (D) are as described above for the molded article of the present invention.
  • the compound (D) is filled in the thermoplastic resin (C) between the single fibers of the carbon fiber (A) and the organic fiber (B) which are continuous fiber bundles.
  • the composite (F) is in a state in which the carbon fibers (A) and the organic fibers (B) are dispersed like islands in the sea of the compound (D).
  • the molding material according to the first aspect of the present invention includes a thermoplastic resin (C) outside the composite (F) formed by impregnating the fiber bundle (E) with the compound (D).
  • the thermoplastic resin (C) is arranged so as to cover the periphery of the composite (F), or the composite (F) and the thermoplastic resin (C) are A configuration in which the layers are arranged in layers and the outermost layer is the thermoplastic resin (C) is desirable.
  • the compound (D) often has a low molecular weight, and is usually a relatively brittle and easily crushed solid or liquid at room temperature.
  • the thermoplastic resin (C) on the outside of the composite (F)
  • the high molecular weight thermoplastic resin (C) protects the composite (F) and can be used during transportation and handling of the molding material.
  • the shape of the molding material can be maintained by suppressing the crushing and scattering of the compound (D) due to impact, abrasion and the like. From the viewpoint of handleability, the molding material of the present invention preferably retains the aforementioned shape until it is used for molding.
  • thermoplastic resin (C) Even if the composite (F) and the thermoplastic resin (C) are in a state in which the thermoplastic resin (C) partially enters the composite (F) and is compatible in the vicinity of the boundary.
  • the fiber bundle (E) may be impregnated with the thermoplastic resin (C).
  • the carbon fiber (A) and the organic fiber (B) are unevenly distributed in the cross section of the fiber bundle (E).
  • the fiber bundle (E) cross section refers to a cross section perpendicular to the fiber longitudinal direction of the fiber bundle (E).
  • the carbon fibers (A) and the organic fibers (B) are unevenly distributed, thereby suppressing the entanglement of the carbon fibers (A) and the organic fibers (B) at the time of molding.
  • a molded product in which the organic fibers (B) are uniformly dispersed can be obtained. For this reason, the impact strength of the molded product can be further improved.
  • “unevenly distributed” means that the carbon fibers (A) and the organic fibers (B) are not evenly present in all regions in the cross section of the fiber bundle (E), but are partially unevenly distributed. Say that exists.
  • a so-called core-sheath structure such as a form containing the fiber (A), or in a cross section of the fiber bundle (E) as shown in FIG.
  • a bundle of carbon fibers (A) and a bundle of organic fibers (B) are A structure or the like that exists in a state separated by a certain boundary portion is an example of the “uneven distribution” in the present invention.
  • “encapsulation” means a state in which the carbon fiber (A) is arranged in the core and the organic fiber (B) is arranged in the sheath, or the organic fiber (B) is in the core, and the carbon fiber (A ) In the sheath.
  • at least a part of each of the carbon fiber (A) and the organic fiber (B) is in contact with the thermoplastic resin (C) of the outer layer in the cross section of the fiber bundle (E).
  • the carbon fiber (A) or the organic fiber (B) is in contact with the thermoplastic resin (C)
  • the carbon fiber (A) or the organic fiber (B) is thermoplastic via the compound (D).
  • An embodiment in contact with the resin (C) is also included.
  • the present invention as a method for confirming that the carbon fibers (A) and the organic fibers (B) are unevenly distributed in the cross section of the fiber bundle (E), for example, it is perpendicular to the fiber longitudinal direction of the molding material.
  • a method of observing a cross section with an optical microscope set at a magnification of 300 times, performing image processing on the obtained microscopic image, and analyzing the image is given.
  • the carbon fiber (A) bundle and the organic fiber (B) bundle are aligned to obtain the above molding material.
  • the method of producing is mentioned.
  • the carbon fibers (A) and the organic fibers (B) exist as independent fiber bundles, and can be unevenly distributed.
  • Increasing the number of single fibers in the bundle of carbon fibers (A) and the bundle of organic fibers (B) can increase the number of bundles; decreasing the number of single fibers can decrease the number of bundles; Is possible.
  • the length of the fiber bundle (E) and the length of the molding material are preferably substantially the same. Since the length of the fiber bundle (E) is substantially the same as the length of the molding material, the fiber length of the carbon fiber (A) and the organic fiber (B) in the molded product can be increased. Dynamic characteristics can be obtained.
  • the length of the molding material is the length of the fiber bundle (E) orientation direction in the molding material. Further, “substantially the same length” means that the fiber bundle (E) is intentionally cut inside the molding material, or the fiber bundle (E) that is significantly shorter than the entire length of the molding material is substantially included. Do not do it.
  • the amount of the fiber bundle (E) shorter than the total length of the molding material is not limited, but the content of the fiber bundle (E) having a length of 50% or less of the total length of the molding material is the total fiber bundle (E).
  • the content is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the molding material is preferably continuous while maintaining substantially the same cross-sectional shape in the longitudinal direction.
  • the length of the molding material of the first aspect is usually in the range of 3 mm to 15 mm.
  • the molding material of the first aspect comprises 5 to 45 parts by weight (5 parts by weight) of carbon fiber (A) with respect to 100 parts by weight in total of carbon fiber (A), organic fiber (B) and thermoplastic resin (C). Part to 45 parts by weight).
  • the content of the carbon fiber (A) is more preferably 10 parts by weight or more.
  • the content of the carbon fiber (A) is more preferably 30 parts by weight or less from the viewpoint of improving the dispersibility of the carbon fiber (A) in the molded product and further improving the impact strength of the molded product.
  • the organic fiber (B) is contained in an amount of 1 to 45 parts by weight (1 part by weight or more and 45 parts by weight or less) with respect to a total of 100 parts by weight of the above (A) to (C).
  • the content of the organic fiber (B) is preferably 5 parts by weight or more.
  • the content of the organic fiber (B) is more preferably 30 parts by weight or less from the viewpoint of improving the dispersibility of the organic fiber (B) in the molded product and further improving the impact strength of the molded product.
  • 10 to 94 parts by weight (10 to 94 parts by weight) of the thermoplastic resin (C) is contained with respect to 100 parts by weight of the total of (A) to (C).
  • the content of the thermoplastic resin (C) is preferably 20 parts by weight or more, and more preferably 30 parts by weight or more. From the viewpoint of improving the impact strength of the molded article, the content of the thermoplastic resin (C) is preferably 85 parts by weight or less, and more preferably 75 parts by weight or less. Further, the compound (D) is contained in an amount of 1 to 25 parts by weight (1 part by weight or more and 25 parts by weight or less) with respect to 100 parts by weight of the total of (A) to (C). From the viewpoint of improving the fluidity and dispersibility of the carbon fibers (A) and the organic fibers (B) during the molding process, the content of the compound (D) is more preferably 2 parts by weight or more and further preferably 4 parts by weight or more. . On the other hand, from the viewpoint of further improving the bending strength, tensile strength and impact strength of the molded product, the content of the compound (D) is more preferably 20 parts by weight or less, and further preferably 15 parts by weight or less.
  • the organic fiber (B) in the molding material of the first aspect is characterized in that its number average fiber diameter (d B ) is 1 to 10 ⁇ m (1 ⁇ m or more and 10 ⁇ m or less). Since the number average fiber diameter of the organic fibers (B) (d B) is not changed basically at the front and rear production of the molding material, 1 ⁇ 10 [mu] m the number average fiber diameter (d B) of the organic fiber as a raw material (B) By doing, the number average fiber diameter (d B ) of the organic fibers (B) in the molding material can be easily adjusted to the above-mentioned desired range.
  • the number average fiber diameter (d B ) of the organic fibers (B) in the molding material is more preferably 3 ⁇ m or more, and more preferably 8 ⁇ m or less.
  • the “number average fiber diameter” of the organic fiber (B) in the present invention refers to an average fiber diameter calculated from the following formula.
  • Number average fiber diameter ⁇ (di ⁇ Ni) / ⁇ (Ni) di: Fiber diameter ( ⁇ m) Ni: Number of organic fibers having a fiber diameter di.
  • the number average fiber diameter of the organic fibers in the molding material can be obtained in the same manner as the number average fiber diameter of the organic fibers in the molded product.
  • the molding material according to the second aspect of the present invention used for obtaining the above-described molded article has at least carbon fiber (A), a thermoplastic resin (C), and a melt viscosity at 200 ° C. from the thermoplastic resin (C).
  • Carbon fiber reinforced thermoplastic resin molding material (X) containing low compound (D) (sometimes referred to as “carbon fiber reinforced molding material”), at least organic fiber (B), thermoplastic resin (H), and at 200 ° C.
  • the carbon fiber reinforced molding material (X) includes a composite (G) obtained by impregnating the carbon fiber (A) with the compound (D), and a thermoplastic resin (C) is provided outside the composite (G). It is preferable to have a configuration including.
  • the organic fiber reinforced molding material (Y) includes a composite (J) obtained by impregnating the organic fiber (B) with the compound (I), and a thermoplastic resin (H) outside the composite (J). ).
  • the effects of the carbon fiber (A) and the organic fiber (B) are as described above for the molded article of the present invention.
  • the thermoplastic resin (C) and the thermoplastic resin (H) are matrix resins having a relatively high viscosity, for example, high physical properties such as toughness, and are impregnated into the carbon fibers (A) or the organic fibers (B) at the time of molding. In the molded product, the carbon fiber (A) or the organic fiber (B) is firmly held.
  • thermoplastic resin (H) the resins exemplified in the thermoplastic resin (C) described above can be used, and the thermoplastic resin (C) and the thermoplastic resin (H) are the same resin. Alternatively, a different resin may be used.
  • Compound (D) and Compound (I) form a composite with carbon fiber (A) or organic fiber (B), and matrix resin (thermoplastic resin (C) or (H)) is carbon fiber during molding.
  • the same kind may be sufficient as a compound (D) and a compound (I).
  • the carbon fiber reinforced molding material (X) in the present invention is a composite in which the compound (D) is filled between the single fibers of the carbon fiber (A) which is a continuous fiber bundle in the thermoplastic resin (C) ( G).
  • the composite (G) is preferably in a state where the carbon fibers (A) are dispersed like islands in the sea of the compound (D).
  • the organic fiber reinforced molding material (Y) also has a composite (J) filled with the compound (I) between each single fiber of the organic fiber (B), and is in the sea of the compound (I). It is preferable that the organic fibers (B) are dispersed like islands.
  • the carbon fiber reinforced molding material (X) in the molding material of the second aspect of the present invention comprises a thermoplastic resin on the outside of the composite (G) obtained by impregnating the carbon fiber (A) with the compound (D). It is preferable to contain (C). In the cross section perpendicular to the longitudinal direction of the carbon fiber reinforced molding material (X), the thermoplastic resin (C) is disposed so as to cover the periphery of the composite (G), or the composite (G) and the heat A configuration in which the plastic resin (C) is arranged in layers and the outermost layer is the thermoplastic resin (C) is desirable.
  • the organic fiber reinforced molding material (Y) preferably includes a thermoplastic resin (H) outside the composite (J) formed by impregnating the organic fiber (B) with the compound (I).
  • the thermoplastic resin (H) is arranged so as to cover the periphery of the composite (J), or the composite (J) and the heat A configuration in which the plastic resin (H) is arranged in layers and the outermost layer is the thermoplastic resin (H) is desirable.
  • the compound (D) and the compound (I) often have a low molecular weight, and are usually relatively brittle and easily crushed at room temperature, or are often liquid.
  • the carbon fiber reinforced molding material (X) or the organic fiber reinforced molding material (Y) includes a thermoplastic resin (C) or (H) outside the composite (G) or the composite (J). Accordingly, the high molecular weight thermoplastic resin (C) or (H) protects the composite (G) or the composite (J), and the compound (D) or the like due to impact or abrasion during transportation or handling of the molding material. Crushing and scattering of (I) can be suppressed and the shape of the molding material can be maintained.
  • the molding material according to the second aspect of the present invention preferably retains the aforementioned shape until it is subjected to molding.
  • thermoplastic resin (C) partially enters a part of the composite (G) in the vicinity of the boundary, and is compatible.
  • the carbon fiber (A) may be impregnated with the thermoplastic resin (C).
  • the composite (J) and the thermoplastic resin (H) are also partially formed in the vicinity of the boundary. It may be in a state where it enters and is compatible, or it may be in a state in which the organic fiber (B) is impregnated with the thermoplastic resin (H).
  • the carbon fiber (A) in the carbon fiber reinforced molding material (X) is preferably substantially the same length as the carbon fiber reinforced molding material (X). Since the length of the carbon fiber (A) in the molded product can be increased by making the length of the carbon fiber (A) substantially the same as the length of the carbon fiber reinforced molding material (X), it is excellent. Mechanical properties can be obtained.
  • the length of the carbon fiber reinforced molding material (X) is the length in the orientation direction of the carbon fiber (A) in the carbon fiber reinforced molding material. Further, “substantially the same length” means that the carbon fiber (A) is intentionally cut inside the molding material, or the carbon fiber (A) that is significantly shorter than the entire length of the molding material is substantially included. Do not do it.
  • the amount of carbon fiber (A) shorter than the total length of the molding material is not limited, but the content of carbon fiber (A) having a length of 50% or less of the total length of the molding material is the total carbon fiber (A).
  • the content is preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the molding material is preferably continuous while maintaining substantially the same cross-sectional shape in the longitudinal direction, but is not limited thereto.
  • the length of the carbon fiber reinforced molding material (X) is usually in the range of 3 mm to 15 mm.
  • the organic fiber reinforced molding material (Y) in the present invention contains an organic fiber (B), a thermoplastic resin (H) and a compound (I), and the organic fiber (B) is impregnated with the compound (I).
  • the structure may include a thermoplastic resin (H) outside the composite (J), or may be a pellet obtained by melt-kneading the composite (J) and the thermoplastic resin (H).
  • the molding material of the second aspect of the present invention has an average fiber length of the organic fiber (B) in the range of 0.1 mm to 10 mm. Preferably there is.
  • the average fiber length of the organic fiber (B) is within the above range, the fiber length of the organic fiber (B) in the molded product can be increased, so that the impact strength of the molded product can be further improved. it can.
  • a range of 1.5 mm to 10 mm is more preferable.
  • the organic fiber reinforced molding material (Y) has a structure containing a thermoplastic resin (H) outside the composite (J) formed by impregnating the organic fiber (B) with the compound (I),
  • the organic fiber (B) is preferably substantially the same length as the organic fiber reinforced molding material (Y). Since the length of the organic fiber (B) in the molded product can be increased by making the length of the organic fiber (B) substantially the same as the length of the organic fiber reinforced molding material (Y), it is excellent. Mechanical properties can be obtained.
  • the length of the organic fiber reinforced molding material (Y) is the length in the orientation direction of the organic fiber (B) in the organic fiber reinforced molding material.
  • substantially the same length means that the organic fiber (B) is intentionally cut inside the molding material, or the organic fiber (B) that is significantly shorter than the entire length of the molding material is substantially included. It is not. More specifically, the distance between the ends in the longitudinal direction of the organic fiber (B) in the organic fiber reinforced molding material (Y) indicates that the length in the longitudinal direction of the organic fiber reinforced molding material (Y) is the same.
  • the content of the organic fiber (B) having a length of 50% or less of the total length of the molding material is preferably 30% by mass or less and more preferably 20% by mass or less in the total organic fiber (B).
  • the molding material is preferably continuous while maintaining substantially the same cross-sectional shape in the longitudinal direction, but is not limited thereto.
  • the length of the organic fiber reinforced molding material (Y) is usually in the range of 3 mm to 15 mm.
  • the “average fiber length” in the molding material of the present invention can be determined in the same manner as the average fiber length in the molded product.
  • constituent elements (A) to (D) of the molding material of the second aspect As the constituent elements (A) to (D) described above for the molded product of the present invention can be used. As (H) and (I), (C) and (D) described above for the molded article of the present invention can be used. Furthermore, what was illustrated as another component about the molded article of this invention can also be contained.
  • the carbon fiber reinforced molding material (X) is a carbon fiber (A) with respect to a total of 100 parts by weight of the carbon fiber (A), the thermoplastic resin (C) and the compound (D). 5 to 45 parts by weight (5 to 45 parts by weight).
  • the content of the carbon fiber (A) is more preferably 10 parts by weight or more.
  • the content of the carbon fiber (A) is more preferably 30 parts by weight or less from the viewpoint of improving the dispersibility of the carbon fiber (A) in the molded product and further improving the impact strength of the molded product.
  • thermoplastic resin (C) contains 35 to 94 parts by weight (35 parts by weight or more and 94 parts by weight or less) of the thermoplastic resin (C).
  • the content of the thermoplastic resin (C) is preferably 20 parts by weight or more, and more preferably 30 parts by weight or more. From the viewpoint of improving the impact strength of the molded article, the content of the thermoplastic resin (C) is preferably 85 parts by weight or less, and more preferably 75 parts by weight or less.
  • the compound (D) it is preferable to contain 1 to 25 parts by weight (1 to 25 parts by weight) of the compound (D).
  • the content of the compound (D) is more preferably 2 parts by weight or more and further preferably 4 parts by weight or more.
  • the content of the compound (D) is more preferably 20 parts by weight or less, and further preferably 15 parts by weight or less.
  • the organic fiber reinforced molding material (Y) is 1 to 45 parts by weight (1 part by weight) of the organic fiber (B) with respect to 100 parts by weight in total of the organic fiber (B), the thermoplastic resin (H) and the compound (I). More than 45 parts by weight).
  • the content of the organic fiber (B) is preferably 5 parts by weight or more.
  • the content of the organic fiber (B) is more preferably 30 parts by weight or less from the viewpoint of improving the dispersibility of the organic fiber (B) in the molded product and further improving the impact strength of the molded product. Further, it contains 35 to 94 parts by weight (35 parts by weight or more and 94 parts by weight or less) of the thermoplastic resin (H).
  • the content of the thermoplastic resin (H) is preferably 20 parts by weight or more, and more preferably 30 parts by weight or more. From the viewpoint of improving the impact strength of the molded article, the content of the thermoplastic resin (H) is preferably 85 parts by weight or less, and more preferably 75 parts by weight or less.
  • the content of the compound (I) is more preferably 2 parts by weight or more, and further preferably 4 parts by weight or more.
  • the content of the compound (I) is more preferably 20 parts by weight or less, and further preferably 15 parts by weight or less.
  • the carbon fiber reinforced molding material (X) in the molding material of the second aspect of the present invention can be obtained, for example, by the following method. First, roving carbon fiber (A) in the longitudinal direction of the fiber, and then melted compound (D) is impregnated into a carbon fiber bundle to produce a composite (G). Further, a molten thermoplastic resin (C The composite (G) is guided to the impregnation die filled with (3), the thermoplastic resin (C) is coated on the outside of the composite (G), and the composite (G) is pulled out through a nozzle. This is a method of obtaining a molding material by pelletizing to a predetermined length after cooling and solidification.
  • thermoplastic fiber (C) may be impregnated in the carbon fiber bundle as long as it is contained outside the composite (G).
  • the carbon fiber reinforced molding material (X) and the organic fiber reinforced molding material (Y) in the molding material of the second aspect of the present invention are mixed in a dry blend and molded to form the carbon fiber (A) and the organic fiber.
  • a fiber-reinforced thermoplastic resin molded article having excellent dispersibility (B) and excellent impact strength and low-temperature impact strength can be obtained.
  • the mixing ratio of the carbon fiber reinforced molding material (X) and the organic fiber reinforced molding material (Y) is about 100 parts by weight of the carbon fiber reinforced molding material (X) and the organic fiber reinforced molding material (Y). It is preferable to contain 50 to 80 parts by weight of the fiber reinforced molding material (X) and 20 to 50 parts by weight of the organic fiber reinforced molding material (Y).
  • a fiber reinforced thermoplastic resin molded product can be obtained with higher productivity.
  • a molding method using a mold is preferable, and various known methods such as injection molding, extrusion molding, and press molding can be used.
  • a continuously stable molded product can be obtained by a molding method using an injection molding machine.
  • the organic fiber (B) in the molding material according to the second aspect of the present invention is characterized in that its number average fiber diameter (d B ) is 35 to 300 ⁇ m (35 ⁇ m or more and 300 ⁇ m or less). Since the number average fiber diameter of the organic fibers (B) (d B) is not changed basically at the front and rear production of the molding material, 35 ⁇ 300 [mu] m the number average fiber diameter (d B) of the organic fiber as a raw material (B) By doing, the number average fiber diameter (d B ) of the organic fibers (B) in the molding material can be easily adjusted to the above-mentioned desired range.
  • the number average fiber diameter (d B ) of the organic fibers (B) in the molding material is more preferably 50 ⁇ m or more, and more preferably 150 ⁇ m or less.
  • the “number average fiber diameter” of the organic fiber (B) in the present invention refers to an average fiber diameter calculated from the following formula.
  • Number average fiber diameter ⁇ (di ⁇ Ni) / ⁇ (Ni) di: Fiber diameter ( ⁇ m) Ni: Number of organic fibers having a fiber diameter di.
  • the number average fiber diameter of the organic fibers in the molding material can be obtained in the same manner as the number average fiber diameter of the organic fibers in the molded product.
  • the aspect ratio (L B [ ⁇ m] / d B [ ⁇ m]) of the organic fiber (B) is 10 to 500 (10 or more and 500 or less). It is preferable.
  • the aspect ratio of the organic fiber (B) in the molded product of the present invention As described above for the aspect ratio of the organic fiber (B) in the molded product of the present invention, as a means for setting the aspect ratio in the above range, it is possible to balance the average fiber length and the number average fiber diameter. It is done.
  • the aspect is more preferably 20 or more.
  • the aspect ratio to 500 or less, formation of irregularities on the surface of the molded product of the organic fiber (B) can be suppressed, and the surface appearance of the molded product can be further enhanced.
  • the aspect ratio of the organic fiber (B) in the molding material can be calculated from the average fiber diameter and the number average fiber length of the organic fiber (B) present in the molding material.
  • the number average fiber diameter of the organic fibers (B) in the molding material can be determined by the method described above.
  • the average fiber length of the organic fiber (B) in the molding material can be measured by the following method.
  • the molding material is heated in a state of being sandwiched between glass plates on a hot stage set at 300 ° C., and is uniformly dispersed in a film form. A film in which organic fibers are uniformly dispersed is observed with an optical microscope (50 to 200 times).
  • the fiber length of 1,000 organic fibers (B) selected at random is measured, and the average fiber length (L B ) is calculated from the above formula.
  • Average fiber length ⁇ (Mi 2 ⁇ Ni) / ⁇ (Mi ⁇ Ni) Mi: Fiber length (mm)
  • Ni Number of organic fibers having fiber length Mi
  • the aspect ratio of the organic fibers (B) in the molding material for example, the average fiber length of the organic fibers (B) in the molding material
  • the number average fiber diameter may be within the above-mentioned preferable range.
  • the molding material of the first aspect of the present invention can be obtained, for example, by the following method.
  • carbon fiber (A) roving and organic fiber (B) roving are combined in parallel to the longitudinal direction of the fiber to produce a fiber bundle (E) having carbon fibers (A) and organic fibers (B).
  • the fiber bundle (E) is impregnated with the melted compound (D) to produce a composite (F), and the composite (F) is further applied to an impregnation die filled with the molten thermoplastic resin (C).
  • the thermoplastic resin (C) is coated on the outside of the composite (F) and pulled out through a nozzle.
  • thermoplastic resin (C) may be impregnated in the fiber bundle (E) as long as it is contained outside the composite (F).
  • the molding material of the 2nd aspect of this invention can be obtained by the following method, for example.
  • the carbon fiber (A) roving was pulled out in the longitudinal direction of the fiber, and then the composite (G) was produced by impregnating the roving of the carbon fiber (A) with the molten compound (D), and further melted.
  • the composite (G) is guided to an impregnation die filled with the thermoplastic resin (C), the thermoplastic resin (C) is coated on the outside of the composite (G), and is pulled out through a nozzle. After cooling and solidifying, pelletizing to a predetermined length, the carbon fiber reinforced molding material (X) is obtained. Further, the roving of the organic fiber (B) having a number average fiber diameter (d B ) of 35 to 300 ⁇ m is drawn out in the longitudinal direction of the fiber, and then the melted compound (I) is used for roving the organic fiber (B).
  • a composite (J) is produced by impregnation, and the composite (J) is guided to an impregnation die filled with a molten thermoplastic resin (H), and the thermoplastic resin (H) is placed outside the composite (J). And then pull through the nozzle. After cooling and solidifying, pelletizing to a predetermined length, an organic fiber reinforced molding material (Y) is obtained.
  • a composite (J) is produced by impregnating the molten compound (I) into an organic fiber bundle, and the composite (J) is combined with the thermoplastic resin (H) in a single-screw or twin-screw extruder.
  • the strand discharged from the die tip is cooled and solidified, and pelletized to a predetermined length to obtain an organic fiber reinforced molding material (Y). Then, there is a method of dry blending two types of molding materials of organic fiber reinforced molding materials (X) and (Y) to form a molding material. If the thermoplastic resin (C) or (H) is contained outside the roving of the carbon fiber (A) or the roving of the organic fiber (B), the roving of the carbon fiber (A) or the organic fiber (B) It may be impregnated during roving.
  • the molded article of the present invention is a fiber reinforced thermoplastic resin molded article having excellent impact strength.
  • the molded article of the present invention can be used for instrument panels, door beams, under covers, lamp housings, pedal housings, radiator supports, spares. It is suitable for automobile parts such as various modules such as a tire cover and a front end.
  • home / office electrical product parts such as telephones, facsimiles, VTRs, copiers, televisions, microwave ovens, audio equipment, toiletries, “Laser Discs (registered trademark)”, refrigerators, air conditioners, and the like are also included.
  • a housing used for a personal computer, a mobile phone or the like, or a member for an electric / electronic device typified by a keyboard support that supports a keyboard inside the personal computer may be used.
  • instrument panels and parts for electrical and electronic equipment casings are preferred as applications that often require a good appearance and require impact strength.
  • Average fiber length ⁇ (Mi 2 ⁇ Ni) / ⁇ (Mi ⁇ Ni) Mi: Fiber length (mm)
  • Ni The number of fibers having a fiber length Mi.
  • the fiber diameter of the carbon fiber (A) or the organic fiber (B) is an arbitrary value on the fiber contour portion A of the observed carbon fiber (A) or organic fiber (B) as shown in FIG.
  • the shortest distance (6) between the point B and the fiber contour A ′ (5) facing the fiber contour A (4) was randomly selected per one carbon fiber (A) or organic fiber (B) 20 It was set as the number average value of the total 200 places measured about the place.
  • the observation screen was appropriately moved to a new observation screen that can be measured.
  • Number average fiber diameter ⁇ (di ⁇ Ni) / ⁇ (Ni) di: Fiber diameter ( ⁇ m) Ni: Number of fibers having a fiber diameter di.
  • Tensile elongation at break (%) [(length during cutting (mm) ⁇ 250) / 250] ⁇ 100.
  • a sizing agent mother liquor in which polyglycerol polyglycidyl ether was dissolved in water so as to be 2% by weight as a polyfunctional compound was prepared, a sizing agent was applied to the carbon fiber by a dipping method, and dried at 230 ° C. went.
  • the carbon fiber thus obtained had a sizing agent adhesion of 1.0% by weight.
  • Polyester (PET) fiber 1 “Tetron” (registered trademark) 56T-36-262 (single fiber fineness 1.6 dtex, fiber diameter 12 ⁇ m, melting point 260 ° C.) manufactured by Toray Industries, Inc. was used. The breaking elongation was measured by the method described in (5) above, and as a result, it was 15%.
  • Polyester fiber 2 “Tetron” (registered trademark) 2200T-480-705M (single fiber fineness 4.6 dtex, fiber diameter 20 ⁇ m, melting point 260 ° C.) manufactured by Toray Industries, Inc. was used. The breaking elongation was measured by the method described in (5) above, and as a result, it was 15%.
  • Polyester (PET) fiber 3 PET dry chip (hereinafter referred to as PET chip) having a viscosity [ ⁇ ] of 0.94 and a COOH end group concentration of 13 equivalents / 10 6 g produced by known melt polycondensation and solid phase polycondensation was continuously fed from the hopper of the single-axis extruder to the single-axis extruder.
  • “Stabilizer” (registered trademark) 7000 product of Raschig AG), which is heated and melted at 80 ° C. as a monocarbodiimide compound (hereinafter referred to as TIC), is added to 100 parts by weight of the above PET chip in the polymer pipe at the lower part of the hopper. .
  • Polyester (PET) fiber 4 PET fiber having a circular cross-sectional shape with a diameter of 50 ⁇ m (single fiber fineness 27 dtex, fiber diameter 50 ⁇ m, except for changing the size of the spinneret for circular cross-sectional yarn, Melting point 260 ° C.). The breaking elongation was measured by the method described in (5) above, and as a result, it was 15%.
  • Polyester (PET) fiber 5 A PET fiber (single fiber fineness 108 dtex, fiber diameter 100 ⁇ m, melting point 260 ° C.) having a circular cross-sectional shape with a diameter of 100 ⁇ m was obtained in the same manner as PET fiber 3 except that the size of the spinneret for circular cross-section yarn was changed. . The breaking elongation was measured by the method described in (5) above and was 15%.
  • Polyester (PET) fiber 6 A PET fiber (single fiber fineness 975 dtex, fiber diameter 290 ⁇ m, melting point 260 ° C.) having a circular cross-sectional shape of 290 ⁇ m in diameter was obtained in the same manner as PET fiber 3 except that the size of the spinneret for circular cross-sectional yarn was changed. . The breaking elongation was measured by the method described in (5) above and was 15%.
  • Thermoplastic resins (C) and (H) PP Polypropylene resin ("Prime Polypro” (registered trademark) J137 manufactured by Prime Polymer Co., Ltd.) and maleic acid-modified polypropylene resin ("Admer” (registered trademark) QE840 manufactured by Mitsui Chemicals, Inc.) (PP) in a weight ratio of 85 / 15 pellet blend was used. It was 50 Pa.s as a result of measuring the melt viscosity in 200 degreeC by the method as described in said (1).
  • PC Polycarbonate resin (“Panlite” (registered trademark) L-1225L manufactured by Idemitsu Co., Ltd.) was used. As with the polypropylene resin described above, the melt viscosity at 200 ° C. was measured by the method described in (1) above, and as a result, it was 14,000 Pa ⁇ s.
  • the thermoplastic resin (C) shown in Table 1 was supplied from the main hopper of the TEX-30 ⁇ type twin screw extruder and melt kneaded at a screw rotation speed of 200 rpm.
  • the melted thermoplastic resin (C) was discharged from the twin-screw extruder into the die and continuously arranged so as to cover the periphery of the composite (G).
  • the obtained strand was cooled and then cut into a pellet length of 7 mm with a cutter to obtain a long fiber pellet (X-1) in which the length of the carbon fiber (A) bundle and the length of the molding material were substantially the same.
  • the take-up speed of the carbon fiber (A) bundle was adjusted so that the carbon fiber (A) was 30 parts by weight with respect to 100 parts by weight of the total of (A), (C) and (D).
  • Carbon fiber reinforced thermoplastic resin molding material (X-2) A long fiber pellet (X-2) was produced in the same manner as in Production Example 1 described above. At this time, the take-up speed of the carbon fiber (A) bundle was adjusted so that the carbon fiber (A) was 40 parts by weight with respect to the total of 100 parts by weight of (A), (C), and (D).
  • the molten thermoplastic resin (H) was discharged into the die from the twin-screw extruder and continuously arranged so as to cover the periphery of the composite (J).
  • the obtained strand was cooled and then cut into a pellet length of 7 mm with a cutter to obtain a long fiber pellet (Y-1) in which the length of the organic fiber (B) bundle and the length of the molding material were substantially the same.
  • the take-up speed of the organic fiber (B) bundle was adjusted so that the organic fiber (B) was 30 parts by weight with respect to 100 parts by weight of the total of (B), (H) and (I).
  • the long fiber pellets thus obtained were injected using an injection molding machine J110AD manufactured by Nippon Steel Co., Ltd., with an injection time of 5 seconds, a back pressure of 5 MPa, a holding pressure of 20 MPa, a holding pressure of 10 seconds, a cylinder temperature of 230 ° C., and a mold.
  • ISO type dumbbell test pieces and 80 mm ⁇ 80 mm ⁇ 2 mm test pieces as molded articles were produced.
  • the cylinder temperature indicates the temperature of the portion where the molding material of the injection molding machine is heated and melted
  • the mold temperature indicates the temperature of the mold for injecting a resin for forming a predetermined shape.
  • the obtained test piece (molded product) was left for 24 hours in a constant temperature and humidity chamber adjusted to a temperature of 23 ° C. and 50% RH, and then subjected to characteristic evaluation. Table 2 summarizes the evaluation results evaluated by the method described above.
  • Example 2 Except having used the polyester (PET) fiber 4 for the organic fiber (B), a molded article was produced and evaluated in the same manner as in Example 1. The evaluation results are collectively shown in Table 2.
  • Example 3 Except having used the polyester (PET) fiber 5 for the organic fiber (B), a molded article was produced and evaluated in the same manner as in Example 1. The evaluation results are collectively shown in Table 2.
  • Example 4 Except having used the polyester (PET) fiber 6 for the organic fiber (B), a molded article was produced and evaluated in the same manner as in Example 1. The evaluation results are collectively shown in Table 2.
  • Example 5 A molded product was produced and evaluated in the same manner as in Example 3 except that the injection molding was set at an injection time of 3 seconds and a back pressure of 10 MPa. The evaluation results are collectively shown in Table 2.
  • Example 6 Other than the total of 100 parts by weight of (A) to (C), the carbon fiber (A) is 30 parts by weight, the thermoplastic resin (C) is 60 parts by weight, and the compound (D) is 11 parts by weight. Were produced in the same manner as in Example 2 and evaluated. The evaluation results are collectively shown in Table 3.
  • Example 7 The organic fiber (B) is 30 parts by weight, the thermoplastic resin (C) is 50 parts by weight, and the compound (D) is 14 parts by weight with respect to a total of 100 parts by weight of (A) to (C).
  • long fiber pellets were produced and evaluated. The evaluation results are collectively shown in Table 3.
  • Example 8 In the fiber bundle (E), long fiber pellets were prepared and evaluated in the same manner as in Example 2 except that the carbon fibers (A) were arranged so as to enclose the organic fibers (B). The evaluation results are collectively shown in Table 3.
  • Example 9 In the fiber bundle (E), long fiber pellets were produced and evaluated in the same manner as in Example 2 except that the organic fibers (B) were arranged so as to enclose the carbon fibers (A). The evaluation results are collectively shown in Table 3.
  • Example 10 The long fiber pellets (X-1) obtained in Production Example 1 and the long fiber pellets (Y-1) obtained in Production Example 3 were added to a total of 100 parts by weight of (X-1) and (Y-1).
  • a molding material was prepared by dry blending such that (X-1) was 67 parts by weight and (Y-1) was 33 parts by weight.
  • carbon fiber (A) is 22 parts by weight
  • the thermoplastic resin (C) was 66 parts by weight
  • the compound (D) was 9 parts by weight.
  • Table 4 summarizes the evaluation results of this molding material evaluated by the method described above.
  • Example 11 The long fiber pellets (X-1) obtained in Production Example 1, the long fiber pellets (Y-2) obtained in Production Example 4, and the pellets of the thermoplastic resin (C) shown in Table 4 are (X A molding material was prepared and evaluated in the same manner as in Example 9 except that dry blending was performed so that -1) was 17 parts by weight, (Y-2) was 75 parts by weight, and (C) was 8 parts by weight. went.
  • the obtained molding material as a whole is 6 parts by weight of carbon fiber (A) and 100 parts by weight of organic fiber (B) with respect to a total of 100 parts by weight of carbon fiber (A), organic fiber (B) and thermoplastic resin (C).
  • the thermoplastic resin (C) was 61 parts by weight
  • the compound (D) was 10 parts by weight.
  • the evaluation results of this molding material are collectively shown in Table 4.
  • Example 12 The long fiber pellets (X-2) obtained in Production Example 2 and the long fiber pellets (Y-2) obtained in Production Example 4 were added to a total of 100 parts by weight of (X-2) and (Y-2).
  • a molding material was prepared and evaluated in the same manner as in Example 9 except that dry blending was performed so that (X-2) was 75 parts by weight and (Y-2) was 25 parts by weight.
  • the obtained molding material as a whole was 33 parts by weight of carbon fiber (A) and 100 parts by weight of organic fiber (B) with respect to a total of 100 parts by weight of carbon fiber (A), organic fiber (B) and thermoplastic resin (C). Was 11 parts by weight, the thermoplastic resin (C) was 56 parts by weight, and the compound (D) was 11 parts by weight.
  • Table 4 The evaluation results of this molding material are collectively shown in Table 4.
  • Example 13 A molding material was prepared and evaluated in the same manner as in Example 10 except that the pellet (Y-4) obtained in Production Example 6 was used instead of the long fiber pellet (Y-1).
  • carbon fiber (A) is 22 parts by weight, organic fiber (B) with respect to 100 parts by weight in total of carbon fiber (A), organic fiber (B) and thermoplastic resin (C). 11 parts by weight, 67 parts by weight of the thermoplastic resin (C) and 9 parts by weight of the compound (D).
  • the evaluation results of this molding material are collectively shown in Table 4.
  • Example 6 A molded product was produced and evaluated in the same manner as in Example 1 except that the injection time in injection molding was 0.5 seconds and the back pressure was 15 MPa. The evaluation results are collectively shown in Table 5.
  • Example 10 A long fiber pellet is produced and evaluated in the same manner as in Example 1 except that the carbon fiber (A) and the organic fiber (B) are arranged in a state of being mixed uniformly in the inner cross section of the fiber bundle (E). It was. The evaluation results are collectively shown in Table 6.
  • the long fiber pellets (X-1) obtained in Production Example 1, the long fiber pellets (Y-3) obtained in Production Example 5, and the thermoplastic resin (C) pellets shown in Table 7 are (X- 1) (X-1) is 10 parts by weight, (Y-3) is 20 parts by weight, and (C) is 70 parts by weight with respect to a total of 100 parts by weight of (Y-3) and (C). Except for dry blending, a molding material was prepared and evaluated in the same manner as in Example 7. The obtained molding material as a whole is 3 parts by weight of carbon fiber (A) and 100% by weight of organic fiber (B) with respect to a total of 100 parts by weight of carbon fiber (A), organic fiber (B) and thermoplastic resin (C). Was 11 parts by weight, the thermoplastic resin (C) was 86 parts by weight, and the compound (D) was 3 parts by weight. The evaluation results of this molding material are collectively shown in Table 7.
  • Comparative Examples 1 and 7 since the number average fiber diameter of the organic fiber (B) was small, the surface appearance was insufficient. Comparative Examples 2, 8, and 12 resulted in low impact strength and bending strength because the content of carbon fiber (A) was small.
  • Comparative Example 3 since the carbon fiber (A) content was large, the dispersibility was low, and the impact strength and the surface appearance were low.
  • Comparative Examples 4 and 9 since the content of the organic fiber (B) is large, there is much entanglement between the organic fibers (B), the dispersibility and the surface appearance are lowered, and fiber breakage due to increased contact between the fibers is caused. As a result, the impact strength was low.
  • Comparative Examples 5 and 6 since the average fiber length of the carbon fiber (A) or the organic fiber (B) was short, the fiber reinforcing effect was weak and the impact strength was low.
  • Comparative Example 10 since the carbon fiber (A) and the organic fiber (B) are arranged in a uniformly mixed state in the inner cross section of the fiber bundle (E) of the molding material, the fibers in the fiber bundle (E) As a result, the average fiber length of the carbon fiber (A) was shortened, and the carbon fiber (A) was not uniformly dispersed in the molded product, resulting in low impact strength. Since Comparative Example 11 did not contain the organic fiber (B), the fiber reinforcing effect was weak and the impact strength was low.
  • the fiber-reinforced thermoplastic resin molded article of the present invention has excellent fiber dispersibility and excellent mechanical properties, particularly impact strength and good surface appearance, it can be used in electrical / electronic equipment, OA equipment, home appliances, housings. It is suitably used for body and automobile parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部、有機繊維(B)を1~45重量部、熱可塑性樹脂(C)を10~94重量部含む繊維強化熱可塑性樹脂成形品であって、繊維強化熱可塑性樹脂成形品中における前記炭素繊維(A)の平均繊維長(L)が0.3~3mmであり、繊維強化熱可塑性樹脂成形品中における前記有機繊維(B)の平均繊維長(L)が0.5~5mmであり、数平均繊維径(d)が35~300μmである繊維強化熱可塑性樹脂成形品。 衝撃強度および表面外観に優れる繊維強化熱可塑性樹脂成形品を提供する。

Description

繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
 本発明は、炭素繊維と有機繊維を含む繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料に関する。
 強化繊維と熱可塑性樹脂を含む成形品は、軽量で優れた力学特性を有するために、スポーツ用品用途、航空宇宙用途および一般産業用途などに広く用いられている。これらの強化繊維としては、アルミニウム繊維やステンレス繊維などの金属繊維、シリコンカーバイド繊維、炭素繊維などの無機繊維、アラミド繊維やポリパラフェニレンベンズオキサゾール(PBO)繊維などの有機繊維などが挙げられる。比強度、比剛性および軽量性のバランスの観点から炭素繊維が好適であり、その中でもポリアクリロニトリル系炭素繊維が好適に用いられる。
 炭素繊維強化熱可塑性樹脂成形品の力学特性を高める手段としては、例えば、炭素繊維の含有量を増やす方法が挙げられるが、炭素繊維含有量を増やすと、炭素繊維が炭素繊維強化熱可塑性樹脂成形品の中で、不均一に存在しやすくなるため、衝撃強度の低下を引き起こすことが多い。そこで、炭素繊維強化熱可塑性樹脂成形品の力学特性を高める別の手段として、例えば、炭素繊維に加え、柔軟性と優れた破断伸度を持つ有機繊維を加える方法が挙げられる。
 機械的強度に優れ、導電性を付与した長繊維強化複合樹脂組成物として、オレフィン系樹脂、有機長繊維、炭素繊維を含有してなる長繊維強化複合樹脂組成物が提案されている(例えば、特許文献1参照)。また、耐衝撃性能に優れた繊維強化プラスチックとして、強化繊維と熱可塑性樹脂とからなる繊維強化プラスチックであって、強化繊維が炭素繊維および耐熱有機繊維からなる繊維強化プラスチックが提案されている(例えば、特許文献2参照)。また、衝撃強度および低温衝撃強度に優れる繊維強化熱可塑性樹脂成形品として、炭素繊維、有機繊維および熱可塑性樹脂を含む繊維強化熱可塑性樹脂成形品であって、炭素繊維と有機繊維の平均繊維長がそれぞれ特定の範囲にあり、さらに、炭素繊維と有機繊維の平均繊維端部間距離と平均繊維長が特定の関係にある繊維強化熱可塑性樹脂成形品が提案されている(例えば、特許文献3参照)。
特開2009-114332号公報 特開2014-62143号公報 国際公開第2014/098103号
 しかしながら、特許文献1~2に記載の技術を用いて得られる成形品は、衝撃強度は向上するものの、有機繊維を添加することにより成形品の表面外観が低下する課題があった。また、特許文献3に記載の技術を用いて得られる成形品は、衝撃強度が大きく向上し、繊維長を特定範囲にすることによって表面外観も改善されている。しかしながら、近年様々な用途への適用拡大に伴い、部材、部品への衝撃強度の確保に加えて、さらなる表面外観向上が期待されている。
 本発明は従来技術の有する上記課題に鑑み、衝撃強度および表面外観に優れる繊維強化熱可塑性樹脂成形品を提供することを目的とする。
 上記の課題を解決するため、本発明の繊維強化熱可塑性樹脂成形品は以下の構成からなる。すなわち、
 炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部、有機繊維(B)を1~45重量部、熱可塑性樹脂(C)を10~94重量部含む繊維強化熱可塑性樹脂成形品であって、
繊維強化熱可塑性樹脂成形品中における前記炭素繊維(A)の平均繊維長(L)が0.3~3mmであり、
繊維強化熱可塑性樹脂成形品中における前記有機繊維(B)の平均繊維長(L)が0.5~5mmであり、数平均繊維径(d)が35~300μmである繊維強化熱可塑性樹脂成形品、である。
 また、本発明の繊維強化熱可塑性樹脂成形材料は、次のいずれかの構成を有する。すなわち、
 炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部、有機繊維(B)を1~45重量部、熱可塑性樹脂(C)を10~94重量部、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を1~25重量部含む繊維強化熱可塑性樹脂成形材料であって、前記有機繊維(B)の数平均繊維径(d)が35~300μmであり、炭素繊維(A)と有機繊維(B)を含む繊維束(E)に化合物(D)を含浸させてなる複合体(F)の外側に熱可塑性樹脂(C)を含み、繊維束(E)断面において炭素繊維(A)と有機繊維(B)が偏在し、繊維束(E)の長さと繊維強化熱可塑性樹脂成形材料の長さが実質的に同じである繊維強化熱可塑性樹脂成形材料、または、
 炭素繊維(A)、熱可塑性樹脂(C)および200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)の合計100重量部に対して、炭素繊維(A)を5~45重量部、熱可塑性樹脂(C)を35~94重量部、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を1~25重量部含み、炭素繊維(A)に化合物(D)を含浸させてなる複合体(G)の外側に熱可塑性樹脂(C)を含み、炭素繊維(A)の長さと炭素繊維強化熱可塑性樹脂成形材料の長さが実質的に同じである炭素繊維強化熱可塑性樹脂成形材料(X)と、有機繊維(B)、熱可塑性樹脂(H)および200℃における溶融粘度が熱可塑性樹脂(H)より低い化合物(I)の合計100重量部に対し、有機繊維(B)を1~45重量部、熱可塑性樹脂(H)を35~94重量部、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(I)を1~25重量部含み、前記有機繊維(B)の数平均繊維径(d)が35~300μmである有機繊維強化熱可塑性樹脂成形材料(Y)とを含む繊維強化熱可塑性樹脂成形材料、である。
 本発明の繊維強化熱可塑性樹脂成形品は、補強効果が高く、衝撃強度および表面外観に優れる。本発明の繊維強化熱可塑性樹脂成形品は、電気・電子機器、OA機器、家電機器、筐体および自動車の部品などに極めて有用である。
繊維束(E)断面において、炭素繊維(A)が有機繊維(B)を内包している形態の、成形材料断面を示す模式図である。 繊維束(E)断面において、有機繊維(B)が炭素繊維(A)を内包している形態の、成形材料断面を示す模式図である。 繊維束(E)断面において、炭素繊維(A)の束と有機繊維(B)の束がある境界部によって分けられた状態でそれぞれ存在している形態の、成形材料断面を表す模式図である。 炭素繊維(A)および有機繊維(B)の繊維径を示す模式図である。
 本発明の繊維強化熱可塑性樹脂成形品(以下、「成形品」という場合がある)は、少なくとも炭素繊維(A)、有機繊維(B)、熱可塑性樹脂(C)を含む。本発明の成形品は、200℃における溶融粘度が熱可塑性樹脂(C)よりも低い化合物(D)をさらに含むことが好ましい。
 炭素繊維(A)は、連続した強化繊維束であり、強化材として成形品に高い力学特性を付与するものである。有機繊維(B)も連続した強化繊維束であり、柔軟性を持つことが特徴である。有機繊維(B)は柔軟性を有することから、成形時に折れにくく、湾曲して長い繊維長を保ったまま成形品中に存在しやすい。そのため、剛直でもろく、絡まりにくく折れやすい炭素繊維(A)のみから構成される繊維束に比べて、有機繊維(B)を含む繊維束(E)を用いることにより、強化材として成形品に高い衝撃強度を付与することができる。熱可塑性樹脂(C)は比較的高粘度の、例えば靭性などの物性が高いマトリックス樹脂であり、成形品において炭素繊維(A)および有機繊維(B)を強固に保持する役割をもつ。
 本発明の成形品は、炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部(5重量部以上45重量部以下)含有する。炭素繊維(A)の含有量が5重量部未満であると、成形品の曲げ特性および衝撃強度が低下する。炭素繊維(A)の含有量は10重量部以上が好ましい。また、炭素繊維(A)の含有量が45重量部を超えると、成形品中の炭素繊維(A)の分散性が低下し、成形品の衝撃強度および表面外観の低下を引き起こすことが多い。炭素繊維(A)の含有量は30重量部以下が好ましい。
 炭素繊維(A)の種類として特に制限はないが、PAN系炭素繊維、ピッチ系炭素繊維、セルロース系炭素繊維、気相成長系炭素繊維、これらの黒鉛化繊維などが例示される。PAN系炭素繊維はポリアクリロニトリル繊維を原料とする炭素繊維である。ピッチ系炭素繊維は石油タールや石油ピッチを原料とする炭素繊維である。セルロース系炭素繊維はビスコースレーヨンや酢酸セルロースなどを原料とする炭素繊維である。気相成長系炭素繊維は炭化水素などを原料とする炭素繊維である。これらのうち、強度と弾性率のバランスに優れる点で、PAN系炭素繊維が好ましい。また、導電性を付与するために、ニッケル、銅またはイッテルビウムなどの金属を被覆した炭素繊維を用いることもできる。
 炭素繊維(A)としては、X線光電子分光法により測定される繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度比[O/C]が、0.05~0.5であるものが好ましい。表面酸素濃度比が0.05以上であることにより、炭素繊維表面に十分な官能基量を確保でき、より強固な接着性を得ることができることから、曲げ強度および引張強度がより向上する。0.08以上がより好ましく、0.1以上がさらに好ましい。また、表面酸素濃度比の上限には特に制限はないが、炭素繊維の取り扱い性、生産性のバランスから、一般的に0.5以下が好ましい。表面酸素濃度比は、0.4以下がより好ましく、0.3以下がさらに好ましい。
 炭素繊維(A)の表面酸素濃度比は、X線光電子分光法により、次の手順にしたがって求める。まず、炭素繊維表面にサイジング剤などが付着している場合には、溶剤で炭素繊維表面に付着しているサイジング剤などを除去する。炭素繊維束を20mmにカットして、銅製の試料支持台に拡げて並べて、測定サンプルとする。測定サンプルをX線光電子分光装置の試料チャンバーにセットし、試料チャンバー中を1×10-8Torrに保ち、X線源としてAlKα1、2を用いて、測定を行う。測定時の帯電に伴うピークの補正値としてC1sの主ピークの運動エネルギー値(K.E.)を1,202eVに合わせる。K.E.として1,191~1,205eVの範囲で直線のベースラインを引くことによりC1sピーク面積を求める。K.E.として947~959eVの範囲で直線のベースラインを引くことによりO1sピーク面積を求める。
 ここで、表面酸素濃度比は、上記O1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出する。X線光電子分光装置として、国際電気(株)製モデルES-200を用いる場合には、感度補正値を1.74とする。
 表面酸素濃度比[O/C]を0.05~0.5に調整する手段としては、特に限定されるものではないが、例えば、電解酸化処理、薬液酸化処理および気相酸化処理などの手法を挙げることができ、中でも電解酸化処理が好ましい。
 炭素繊維(A)を強化繊維束とした場合の単繊維数には、特に制限はないが、100~350,000本が好ましく、生産性の観点から、20,000~100,000本がより好ましい。
 炭素繊維(A)とマトリックス樹脂である熱可塑性樹脂(C)の接着性を向上する等の目的で、炭素繊維(A)は表面処理されたものであってもかまわない。表面処理の方法としては、例えば、電解処理、オゾン処理、紫外線処理等を挙げることができる。
 炭素繊維(A)の毛羽立ちを防止したり、炭素繊維(A)とマトリックス樹脂である熱可塑性樹脂(C)との接着性を向上する等の目的で、炭素繊維はサイジング剤が付与されたものであってもかまわない。サイジング剤を付与することにより、熱可塑性樹脂(C)との接着性および成形品の曲げ強度および衝撃強度をより向上させることができる。
 サイジング剤としては、具体的には、エポキシ樹脂、フェノール樹脂、ポリエチレングリコール、ポリウレタン、ポリエステル、乳化剤あるいは界面活性剤などが挙げられる。これらを2種以上用いてもよい。サイジング剤は、水溶性もしくは水分散性であることが好ましく、炭素繊維(A)との濡れ性に優れるエポキシ樹脂が好ましい。中でも多官能エポキシ樹脂がより好ましい。
 多官能エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂肪族エポキシ樹脂、フェノールノボラック型エポキシ樹脂等が挙げられる。中でも、マトリックス樹脂との接着性を発揮しやすい脂肪族エポキシ樹脂が好ましい。脂肪族エポキシ樹脂は、柔軟な骨格のため、架橋密度が高くとも靭性の高い構造になりやすい。炭素繊維/熱可塑性樹脂間に存在させた場合、柔軟で剥離しにくくさせるため、成形品の強度をより向上させることができる。
 多官能の脂肪族エポキシ樹脂としては、例えば、ジグリシジルエーテル化合物、ポリグリシジルエーテル化合物などが挙げられる。ジグリシジルエーテル化合物としては、エチレングリコールジグリシジルエーテルおよびポリエチレングリコールジグリシジルエーテル類、プロピレングリコールジグリシジルエーテルおよびポリプロピレングリコールジグリシジルエーテル類、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル類等が挙げられる。また、ポリグリシジルエーテル化合物としては、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル類、ソルビトールポリグリシジルエーテル、アラビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル類トリメチロールプロパングリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、脂肪族多価アルコール等が挙げられる。
 上記脂肪族エポキシ樹脂の中でも、3官能以上の脂肪族エポキシ樹脂が好ましく、反応性の高いグリシジル基を3個以上有する脂肪族のポリグリシジルエーテル化合物がより好ましい。脂肪族のポリグリシジルエーテル化合物は、柔軟性、架橋密度、マトリックス樹脂との相溶性のバランスがよく、接着性をより向上させることができる。これらの中でも、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテル類、ポリプロピレングリコールグリシジルエーテル類がさらに好ましい。
 サイジング剤の付着量は、炭素繊維(A)とサイジング剤との合計重量を100重量%として、0.01重量%以上10重量%以下が好ましい。サイジング剤付着量が0.01重量%以上であれば、熱可塑性樹脂(C)との接着性がより向上する。0.05重量%以上がより好ましく、0.1重量%以上がさらに好ましい。一方、サイジング剤付着量が10重量%以下であれば、熱可塑性樹脂(C)の物性をより高いレベルで維持することができる。5重量%以下がより好ましく、2重量%以下がさらに好ましい。サイジング剤の付着量は、例えばサイジング剤が付着した炭素繊維を窒素雰囲気下で500℃×15分間加熱して、加熱前後の重量変化から500℃×15分間の加熱で焼き飛ばされたサイジング剤の重量を算出することにより求めることができる。
 サイジング剤の付与手段としては、特に限定されるものではないが、例えば、サイジング剤を溶媒(分散させる場合の分散媒含む)中に溶解または分散させたサイジング処理液を調製し、該サイジング処理液を炭素繊維に付与した後に、溶媒を乾燥・気化させて除去する方法が挙げられる。サイジング処理液を炭素繊維に付与する方法としては、例えば、ローラーを介して炭素繊維をサイジング処理液に浸漬する方法、サイジング処理液の付着したローラーに炭素繊維を接する方法、サイジング処理液を霧状にして炭素繊維に吹き付ける方法などが挙げられる。また、サイジング処理液の付与方法は、バッチ式および連続式のいずれでもよいが、生産性がよくバラツキが小さくできる連続式が好ましい。この際、炭素繊維(A)に対するサイジング剤の付着量が適正範囲内で均一になるように、サイジング処理液濃度、温度、糸条張力などを調整することが好ましい。また、サイジング処理液付与時に炭素繊維(A)を超音波で加振させることがより好ましい。
 乾燥温度と乾燥時間はサイジング剤の付着量によって調整すべきである。サイジング処理液に用いる溶媒の完全な除去、乾燥に要する時間を短くし、一方、サイジング剤の熱劣化を防止し、サイジング処理された炭素繊維(A)が固くなって拡がり性が悪化することを防止する観点から、乾燥温度は、150℃以上350℃以下が好ましく、180℃以上250℃以下がより好ましい。
 サイジング処理液に使用する溶媒としては、例えば、水、メタノール、エタノール、ジメチルホルムアミド、ジメチルアセトアミド、アセトン等が挙げられるが、取扱いが容易であることおよび防災の観点から、水が好ましい。従って、水に不溶、若しくは難溶の化合物をサイジング剤として用いる場合には、乳化剤、界面活性剤を添加し、水性分散液として用いることが好ましい。具体的には、乳化剤または界面活性剤としては、スチレン-無水マレイン酸共重合体、オレフィン-無水マレイン酸共重合体、ナフタレンスルホン酸塩のホルマリン縮合物、ポリアクリル酸ソーダ等のアニオン系乳化剤、ポリエチレンイミン、ポリビニルイミダゾリン等のカチオン系乳化剤、ノニルフェノールエチレンオキサイド付加物、ポリビニルアルコール、ポリオキシエチレンエーテルエステル共重合体、ソルビタンエステルエチルオキサイド付加物等のノニオン系乳化剤等を用いることができる。相互作用の小さいノニオン系乳化剤が、サイジング剤に含まれる官能基の接着効果を阻害しにくく好ましい。
 本発明の成形品における炭素繊維(A)の平均繊維長(L)は、0.3~3mm(0.3mm以上3mm以下)である。炭素繊維(A)の平均繊維長(L)が0.3mm未満である場合、成形品における炭素繊維(A)の補強効果が十分に発現せず、曲げ強度および引張強度が低下する。Lは0.5mm以上が好ましい。一方、炭素繊維(A)の平均繊維長(L)が3mmを超える場合、炭素繊維(A)同士の単繊維間における絡み合いが増加し、成形品内で均一分散しにくくなるため、曲げ強度、引張強度および分散性が低下する。Lは2mm以下が好ましく、1.5mm以下がより好ましく、1.2mm以下がさらに好ましい。ここで、本発明における炭素繊維(A)の「平均繊維長」とは、重量平均分子量の算出方法を繊維長の算出に適用し、単純に数平均を取るのではなく、繊維長の寄与を考慮した下記の式から算出される平均繊維長を指す。ただし、下記の式は、炭素繊維(A)の繊維径および密度が一定の場合に適用される。
 平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
  Mi:繊維長(mm)
  Ni:繊維長Miの炭素繊維の個数。
 上記平均繊維長の測定は、次の方法により行うことができる。成形品を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させる。炭素繊維が均一分散したフィルムを、光学顕微鏡(50~200倍)にて観察する。無作為に選んだ1,000本の炭素繊維(A)の繊維長を計測して、上記式から平均繊維長(L)を算出する。
 なお、成形品中における炭素繊維(A)の平均繊維長は、例えば、成形条件などにより調整することができる。成形条件としては、例えば、射出成形の場合、背圧や保圧力などの圧力条件、射出時間や保圧時間などの時間条件、シリンダー温度や金型温度などの温度条件などが挙げられる。背圧などの圧力条件を増加させることで、シリンダー内での剪断力を高めることができるため、炭素繊維(A)の平均繊維長を短くすることができる。また、射出時間を短くすることでも射出時の剪断力を高くすることができ、炭素繊維(A)の平均繊維長を短くすることができる。さらにシリンダー温度や金型温度などの温度を下げることで、流動する樹脂粘度を上げることができ剪断力を高めることができるため、炭素繊維(A)の平均繊維長を短くすることができる。本発明においては、上記のように条件を適宜変更することにより、成形品中における炭素繊維(A)の平均繊維長を所望の範囲とすることができる。
 本発明の成形品における炭素繊維(A)の数平均繊維径(d)は特に限定されないが、成形品の力学特性と表面外観の観点から、1~20μmが好ましく、3~15μmがより好ましい。
 ここで、本発明における炭素繊維(A)の「数平均繊維径」とは、下記の式から算出される平均繊維径を指す。
 数平均繊維径=Σ(di×Ni)/Σ(Ni)
  di:繊維径(μm)
  Ni:繊維径diの炭素繊維の個数。
 上記数平均繊維径の測定は、次の方法により行うことができる。成形品を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させる。炭素繊維が均一分散したフィルムを、光学顕微鏡(200~1,000倍)にて観察する。無作為に選んだ10本の炭素繊維(A)の繊維径を計測して、上記式から数平均繊維径を算出する。ここで、炭素繊維の繊維径とは、図4に示すように、観察される炭素繊維(A)の繊維輪郭部A上の任意の点Bと、繊維輪郭部A(4)と向かい合う繊維輪郭部A’(5)との最短距離(6)を、炭素繊維(A)1本あたり無作為に選んだ20箇所について計測した合計200箇所の数平均値とする。観察画面内で炭素繊維(A)が10本に満たない場合には、観察画面を計測可能な新しい観察画面に適宜移動させて計測する。
 炭素繊維の繊維径は成形前後で基本的に変化しないため、成形材料に用いる炭素繊維として、種々の繊維径を有する炭素繊維から所望の繊維径を有するものと選択することにより、成形品中の炭素繊維の繊維径を上記範囲にすることができる。
 本発明の成形品は、前述した炭素繊維(A)に加えて有機繊維(B)を含有する。炭素繊維(A)などの無機繊維は剛直で脆いため、絡まりにくく折れやすい。そのため、無機繊維だけからなる繊維束は、成形品の製造中に切れ易かったり、成形品から脱落しやすいという課題がある。そこで、柔軟で折れにくい有機繊維(B)を含むことにより、成形品の衝撃強度を大幅に向上させることができる。本発明において、成形品中の有機繊維(B)の含有量は、炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、1~45重量部(1重量部以上45重量部以下)である。有機繊維(B)の含有量が1重量部未満である場合、成形品の衝撃特性が低下する。有機繊維(B)の含有量は5重量部以上が好ましい。逆に、有機繊維(B)の含有量が45重量部を超える場合、繊維同士の絡み合いが増加し、成形品中における有機繊維(B)の分散性が低下し、成形品の衝撃強度および表面外観の低下を引き起こすことが多い。有機繊維(B)の含有量は30重量部以下が好ましい。
 有機繊維(B)の引張破断伸度は、有機繊維の平均繊維長を後述する範囲に調整し、衝撃強度をより向上させる観点から、10%以上が好ましく、20%以上がさらに好ましい。一方、繊維強度および成形品の剛性を向上させる観点から、50%以下が好ましく、40%以下がより好ましい。
 有機繊維(B)の引張破断伸度(%)は、次の方法により求めることができる。標準状態(20℃,65%RH)の室内で、つかみ間隔250mm、引張速度300mm/分の条件で引張試験を行い、繊維切断時の長さを測定し(ただし、チャック近傍で切断した場合はチャック切れとしてデータから除く)、次式により小数点2桁まで算出し、小数点2桁目を四捨五入する。データ数n3の平均値を求め、本発明における引張破断伸度とする。
 引張破断伸度(%)=[(切断時の長さ(mm)-250)/250]×100  。
 有機繊維(B)は、成形品の力学特性を大きく低下させない範囲で適宜選択することができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ナイロン6、ナイロン66、芳香族ポリアミド等のポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリエーテルケトン、ポリエーテルスルフォン、ポリアリーレンスルフィド、液晶ポリエステル等の樹脂を紡糸して得られる繊維を挙げることができる。これらを2種以上用いてもよい。これらの有機繊維(B)の中から、マトリックス樹脂である熱可塑性樹脂(C)との組み合わせにより適宜選択して用いることが好ましい。特に、熱可塑性樹脂(C)の成形温度(溶融温度)に対して、有機繊維(B)の溶融温度が30℃~150℃高いことが好ましく、50℃~100℃高いことがより好ましい。あるいは、熱可塑性樹脂(C)と非相溶性である樹脂を用いてなる有機繊維(B)は、成形品内に繊維状態を保ったまま存在するため、成形品の衝撃強度をより向上できるため好ましい。溶融温度の高い有機繊維(B)として、ポリアミド繊維、ポリエステル繊維、ポリアリーレンスルフィド繊維、フッ素樹脂繊維などが挙げられ、本発明においては、有機繊維(B)としてこれらからなる群より選ばれる少なくとも1種の繊維を用いることが好ましい。
 本発明の成形品における有機繊維(B)の平均繊維長(L)は、0.5mm~5mm(0.5mm以上5mm以下)である。有機繊維(B)の平均繊維長(L)が0.5mm未満である場合、成形品における有機繊維(B)の補強効果が十分に発現せず、衝撃強度が低下する。Lは1mm以上が好ましく、1.5mm以上がさらに好ましい。一方で、平均繊維長(L)が5mmを超える場合、有機繊維(B)同士の単糸間での絡み合いが増加し、成形品内で均一分散しにくくなるため、衝撃強度が低下する。Lは4mm以下が好ましく、3mm以下がさらに好ましい。ここで、本発明における有機繊維(B)の「平均繊維長」とは、炭素繊維(A)と同様に、重量平均分子量の算出方法を繊維長の算出に適用し、単純に数平均を取るのではなく、繊維長の寄与を考慮した下記の式から算出される平均繊維長を指す。ただし、下記の式は、有機繊維(B)の繊維径および密度が一定の場合に適用される。
 平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
  Mi:繊維長(mm)
  Ni:繊維長Miの有機繊維の個数。
 上記平均繊維長の測定は、次の方法により行うことができる。成形品を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させる。有機繊維が均一分散したフィルムを、光学顕微鏡(50~200倍)にて観察する。無作為に選んだ1,000本の有機繊維(B)の繊維長を計測して、上記式から平均繊維長(L)を算出する。
 なお、成形品中における有機繊維(B)の平均繊維長は、例えば、前述の有機繊維(B)の種類や、成形条件などにより調整することができる。成形条件としては、例えば、射出成形の場合、背圧や保圧力などの圧力条件、射出時間や保圧時間などの時間条件、シリンダー温度や金型温度などの温度条件などが挙げられる。背圧などの圧力条件を増加させることで、シリンダー内での剪断力を高めることができるため、有機繊維(B)の平均繊維長を短くすることができる。また、射出時間を短くすることでも射出時の剪断力を高くすることができ、有機繊維(B)の平均繊維長を短くすることができる。さらにシリンダー温度や金型温度などの温度を下げることで、流動する樹脂粘度を上げることができ剪断力を高めることができるため、有機繊維(B)の平均繊維長を短くすることができる。本発明においては、上記のように条件を適宜変更することにより、成形品中における有機繊維(B)の平均繊維長を所望の範囲とすることができる。
 また、本発明の成形品における有機繊維(B)は、その数平均繊維径(d)が35~300μm(35μm以上300μm以下)であることを特徴とする。有機繊維(B)の数平均繊維径(d)が35μm未満の場合、数平均繊維径(d)が35μm以上の有機繊維と比較して、同じ重量でもより多い本数の有機繊維が成形品中に存在することになり、有機繊維同士の絡み合いを抑制しにくく、成形品の表面外観を向上させることができない。有機繊維(B)の数平均繊維径(d)は50μm以上が好ましく、さらに好ましくは80μm以上である。一方、有機繊維(B)の数平均繊維径(d)が300μmを超えると、成形品表面で繊維の凹凸が目立つようになり、結果として表面外観が低下する。数平均繊維径(d)は150μm以下が好ましい。
 ここで、本発明における有機繊維(B)の「数平均繊維径」とは、下記の式から算出される平均繊維径を指す。
 数平均繊維径=Σ(di×Ni)/Σ(Ni)
  di:繊維径(μm)
  Ni:繊維径diの有機繊維の個数。
 上記数平均繊維径の測定は、次の方法により行うことができる。成形品を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させる。有機繊維が均一分散したフィルムを、光学顕微鏡(200~1,000倍)にて観察する。無作為に選んだ10本の有機繊維(B)の繊維径を計測して、上記式から数平均繊維径を算出する。ここで、有機繊維の繊維径とは、図4に示すように、観察される有機繊維(B)の繊維輪郭部A上の任意の点Bと、繊維輪郭部A(4)と向かい合う繊維輪郭部A’(5)との最短距離(6)を、有機繊維(B)1本あたり無作為に選んだ20箇所について計測した合計200箇所の数平均値とする。観察画面内で有機繊維(B)が10本に満たない場合には、観察画面を計測可能な新しい観察画面に適宜移動させて計測する。
 有機繊維の繊維径は成形前後で基本的に変化しないため、成形材料に用いる有機繊維として、種々の繊維径を有する有機繊維から所望の繊維径を有するものを選択することにより、成形品中の有機繊維の繊維径を上記範囲にすることができる。
 また、本発明の成形品中における有機繊維(B)は、そのアスペクト比(L[μm]/d[μm])が5~100(5以上100以下)の範囲であることが好ましい。アスペクト比を上記範囲とする手段としては、平均繊維長と、数平均繊維径とのバランスをとることが挙げられる。有機繊維(B)のアスペクト比を5以上とすることにより、衝撃時に加えられた荷重を有機繊維に伝わりやすくすることができ、成形品の衝撃強度をより向上させることができる。アスペクト比を5以上とする手段としては、平均繊維長Lを適度に大きくし、数平均繊維径Lを適度に小さくすることが挙げられる。アスペクトは10以上がより好ましく、20以上がさらに好ましい。一方、アスペクト比を100以下とすることにより、有機繊維(B)の成形品表面への凹凸形成を抑制することができ、成形品の表面外観をより高めることができる。アスペクト比を100以下とする手段としては、平均繊維長Lを適度に小さくし、数平均繊維径Lを適度に大きくすることが挙げられる。アスペクト比は70以下がより好ましい。ここで、アスペクト比(L/d)は、先に記載した平均繊維長Lと数平均繊維径dとを用いて算出する。
 成形品中における有機繊維(B)のアスペクト比を上記範囲にするための手段としては、例えば、成形品中における平均繊維長Lと数平均繊維径dとを前述の好ましい範囲にすることなどが挙げられる。
 また、本発明の成形品中における炭素繊維(A)の換算本数nに対する有機繊維(B)の換算本数nの比(n/n)は、0.001~0.01(0.001以上0.01以下)であることが好ましい。ここで換算本数とは、成形品1g中の炭素繊維または有機繊維の本数を表す指標であり、各々の数平均繊維径d(μm)、平均繊維長L(mm)、繊維含有量w(質量%)、比重ρ(g/cm)から、下記式により算出される数値である。
 換算本数=((1×w/100)/((d/2)×π×L×ρ))×10
  π:円周率
 換算本数の比(n/n)が0.001以上であると、耐衝撃特性を向上させる有機繊維(B)が炭素繊維(A)の本数の0.1%以上含まれることになる。炭素繊維(A)は剛直で脆いため絡まりにくく折れやすいが、柔軟で折れにくい有機繊維(B)が炭素繊維(A)の0.1%以上成形品中に存在することで、成形品の衝撃強度を向上させることができる。換算本数の比(n/n)は0.003以上がより好ましい。また、換算本数の比(n/n)が0.01以下であると、有機繊維(B)が1本1本容易に分散が可能な程度の本数とすることができ、成形品の表面外観をより向上させることができる。換算本数の比(n/n)は上0.008以下がより好ましい。
 ここで、炭素繊維(A)あるいは有機繊維(B)の比重は、炭素繊維(A)あるいは有機繊維(B)の一部を成形品から取り出して液浸法により測定することができる。液浸法の液としては蒸留水を用い、0.5gの炭素繊維(A)あるいは有機繊維(B)の比重を3回測定して、その平均値を算出することにより比重を求めることができる。成形品から炭素繊維(A)を取り出すには、有機繊維(B)およびマトリックス樹脂を所定の温度で焼き飛ばして炭素繊維(A)のみを残存させる方法や、マトリックス樹脂と有機繊維を可溶な溶媒に溶かしてから炭素繊維(A)を取り出す方法がある。有機繊維を取り出す方法は、炭素繊維(A)と有機繊維(B)との比重差を利用して取り出す方法がある。マトリックス樹脂のみ可溶な溶媒に溶かして炭素繊維(A)と有機繊維(B)を取り出してから、例えば有機繊維(B)よりも比重が大きく、炭素繊維(A)よりは比重が小さい溶媒に入れることで、有機繊維(B)のみが溶媒に浮かぶ状況となり、有機繊維(B)を取り出すことが可能となる。
 また、換算本数を上記範囲とする手段としては、例えば、成形品中における有機繊維の数平均繊維径および平均繊維長を上記した好ましい範囲とすること、炭素繊維(A)、有機繊維(B)の量を前述の好ましい範囲とすることなどが挙げられる。
 本発明の成形品は、炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、熱可塑性樹脂(C)を10~94重量部(10重量部以上94重量部以下)含有する。熱可塑性樹脂(C)の含有量が10重量部未満の場合、繊維の分散性が低下し、衝撃強度が低下する。熱可塑性樹脂(C)の含有量は20重量部以上が好ましく、30重量部以上がより好ましい。一方、熱可塑性樹脂(C)の含有量が94重量部を超える場合、相対的に炭素繊維(A)、有機繊維(B)の含有量が少なくなるため、繊維による補強効果が低くなり、衝撃強度が低下する。熱可塑性樹脂(C)の含有量は85重量部以下が好ましく、75重量部以下がより好ましい。
 本発明において熱可塑性樹脂(C)は、成形温度(溶融温度)が200~450℃であるものが好ましい。例えば、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ハロゲン化ビニル樹脂、ポリアセタール樹脂、飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアリールスルホン樹脂、ポリアリールケトン樹脂、ポリアリーレンエーテル樹脂、ポリアリーレンスルフィド樹脂、ポリアリールエーテルケトン樹脂、ポリエーテルスルホン樹脂、ポリアリーレンサルファイドスルフォン樹脂、ポリアリレート樹脂、液晶ポリエステル樹脂、フッ素樹脂等が挙げられる。これらはいずれも、電気絶縁体に相当する。これらを2種以上用いることもできる。これらの樹脂は、末端基が封止または変性されていてもよい。
 前記熱可塑性樹脂(C)の中でも、軽量で力学特性や成形性のバランスに優れるポリオレフィン樹脂、ポリアミド樹脂、ポリカーボネート樹脂がより好ましく、耐薬品性や吸湿性にも優れることから、ポリプロピレン樹脂がさらに好ましい。
 ポリプロピレン樹脂は、無変性のものであっても、変性されたものであってもよい。
 無変性のポリプロピレン樹脂としては、具体的には、プロピレンの単独重合体や、プロピレンとα-オレフィン、共役ジエン、非共役ジエンおよび他の熱可塑性単量体からなる群より選ばれる少なくとも1種の単量体との共重合体などが挙げられる。共重合体としては、ランダム共重合体またはブロック共重合体が挙げられる。α-オレフィンとしては、例えば、エチレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、1-ノネン、1-オクテン、1-ヘプテン、1-ヘキセン、1-デセン、1-ウンデセン、1-ドデセン等の、プロピレンを除く炭素数2~12のα-オレフィンなどが挙げられる。共役ジエンまたは非共役ジエンとしては、例えば、ブタジエン、エチリデンノルボルネン、ジシクロペンタジエン、1,5-ヘキサジエン等が挙げられる。これらを2種以上用いてもよい。例えば、ポリプロピレン、エチレン・プロピレン共重合体、プロピレン・1-ブテン共重合体、エチレン・プロピレン・1-ブテン共重合体などが好適なものとして挙げられる。プロピレンの単独重合体は、成形品の剛性をより向上させる観点から好ましい。プロピレンとα-オレフィン、共役ジエンおよび非共役ジエンなどとのランダム共重合体あるいはブロック共重合体は、成形品の衝撃強度をより向上させる観点から好ましい。
 また、変性ポリプロピレン樹脂としては、酸変性ポリプロピレン樹脂が好ましく、重合体鎖に結合したカルボン酸および/またはカルボン酸塩基を有する、酸変性ポリプロピレン樹脂がより好ましい。上記酸変性ポリプロピレン樹脂は種々の方法で得ることができる。例えば、無変性のポリプロピレン樹脂に、中和されているか、中和されていないカルボン酸基を有する単量体、および/または、ケン化されているか、ケン化されていないカルボン酸エステル基を有する単量体を、グラフト重合することにより得ることができる。
 ここで、中和されているか、中和されていないカルボン酸基を有する単量体、または、ケン化されているか、ケン化されていないカルボン酸エステル基を有する単量体としては、例えば、エチレン系不飽和カルボン酸、その無水物、エチレン系不飽和カルボン酸エステルなどが挙げられる。
 エチレン系不飽和カルボン酸としては、(メタ)アクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸などが例示される。その無水物としては、ナジック酸TM(エンドシス-ビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボン酸)、無水マレイン酸、無水シトラコン酸などが例示できる。
 エチレン系不飽和カルボン酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウロイル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等の(メタ)アクリル酸エステル類、ヒドロキシエチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート、ラクトン変性ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート等の水酸基含有(メタ)アクリル酸エステル類、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル類、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジプロピルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノエチル(メタ)アクリレート、N,N-ジヒドロキシエチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類などが挙げられる。
 これらを2種以上用いることもできる。これらの中でも、エチレン系不飽和カルボン酸の酸無水物類が好ましく、無水マレイン酸がより好ましい。
 成形品の曲げ強度および引張強度を向上させるためには、無変性ポリプロピレン樹脂と変性ポリプロピレン樹脂を共に用いることが好ましい。特に難燃性および力学特性のバランスの観点から、無変性ポリプロピレン樹脂と変性ポリプロピレン樹脂の重量比が95/5~75/25となるように用いることが好ましい。より好ましくは95/5~80/20、さらに好ましくは90/10~80/20である。
 ポリアミド樹脂は、アミノ酸、ラクタム、あるいはジアミンとジカルボン酸を主たる原料とする樹脂である。その主要原料の代表例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミンなどの脂肪族ジアミン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂環族ジアミン、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸などが挙げられる。これらを2種以上用いてもよい。
 本発明においては、耐熱性や強度に優れるという点から、200℃以上の融点を有するポリアミド樹脂が特に有用である。その具体的な例としては、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ナイロン6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリドデカンアミドコポリマー(ナイロン6T/12)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレン)テレフタルアミドコポリマー(ナイロン6T/M5T)、ポリキシリレンアジパミド(ナイロンXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)およびこれらの共重合体などが挙げられる。これらを2種以上用いてもよい。これらの中でも、ナイロン6、ナイロン66がより好ましい。
 ポリアミド樹脂の重合度には特に制限はないが、98%濃硫酸25mLにポリアミド樹脂0.25gを溶解した溶液を25℃で測定した相対粘度が1.5~5.0の範囲であることが好ましく、2.0~3.5の範囲のポリアミド樹脂がより好ましい。
 ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。2種以上の二価フェノールまたは2種以上のカーボネート前駆体を用いて得られる共重合体であってもよい。反応方法の一例として、界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。例えば、特開2002-129027号公報に記載のポリカーボネート樹脂を使用できる。
 二価フェノールとしては、例えば、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、ビス(4-ヒドロキシフェニル)アルカン(ビスフェノールAなど)、2,2-ビス{(4-ヒドロキシ-3-メチル)フェニル}プロパン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、ビスフェノールAが好ましく、耐衝撃特性により優れたポリカーボネート樹脂を得ることができる。一方、ビスフェノールAと他の二価フェノールを用いて得られる共重合体は、高耐熱性または低吸水率の点で優れている。
 カーボネート前駆体としては、例えば、カルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的には、ホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
 上記二価フェノールとカーボネート前駆体からポリカーボネート樹脂を製造するにあたっては、必要に応じて触媒、末端封止剤、二価フェノールの酸化を防止する酸化防止剤などを使用してもよい。
 また、ポリカーボネート樹脂は、三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂であってもよいし、芳香族または脂肪族(脂環族を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂であってもよいし、二官能性脂肪族アルコール(脂環族を含む)を共重合した共重合ポリカーボネート樹脂であってもよいし、二官能性カルボン酸および二官能性脂肪族アルコールを共に共重合したポリエステルカーボネート樹脂であってもよい。また、これらのポリカーボネート樹脂を2種以上用いてもよい。
 ポリカーボネート樹脂の分子量は特定されないが、粘度平均分子量が10,000~50,000のものが好ましい。粘度平均分子量が10,000以上であれば、成形品の強度をより向上させることができる。15,000以上がより好ましく、18,000以上がさらに好ましい。一方、粘度平均分子量が50,000以下であれば、成形加工性が向上する。40,000以下がより好ましく、30,000以下がさらに好ましい。ポリカーボネート樹脂を2種以上用いる場合、少なくとも1種の粘度平均分子量が上記範囲にあることが好ましい。この場合、他のポリカーボネート樹脂として、粘度平均分子量が50,000を超える、好ましくは80,000を超えるポリカーボネート樹脂を用いることが好ましい。かかるポリカーボネート樹脂は、エントロピー弾性が高く、ガスアシスト成形等を併用する場合に有利となる他、高いエントロピー弾性に由来する特性(ドリップ防止特性、ドローダウン特性、およびジェッティング改良などの溶融特性を改良する特性)を発揮する。
 ポリカーボネート樹脂の粘度平均分子量(M)は、塩化メチレン100mLにポリカーボネート樹脂0.7gを溶解した溶液から20℃で求めた比粘度(ηsp)を次式に代入して求めたものである。
 ηsp/c=[η]+0.45×[η](但し[η]は極限粘度)
  [η]=1.23×10-4×M0.83
  c=0.7  。
 本発明の成形品は、炭素繊維(A)と有機繊維(B)と熱可塑性樹脂(C)に加えて、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を含むことが好ましい。200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)(「化合物(D)」という場合がある)の200℃における溶融粘度は、5Pa・s以下が好ましく、2Pa・s以下がより好ましく、1.5Pa・s以下がさらに好ましい。この範囲内に調整することで、炭素繊維(A)および有機繊維(B)の成形時の分散性をより向上させ、成形品の曲げ強度および引張強度をより向上させることができる。ここで、熱可塑性樹脂(C)および化合物(D)の200℃における溶融粘度は、40mmのパラレルプレートを用いて、0.5Hzにて、粘弾性測定器により測定することができる。
 なお、本発明の成形品は、後述する本発明の成形材料を用いることにより得ることができる。成形材料を製造するに際して、後述するように、まずはじめに炭素繊維(A)のロービング、有機繊維(B)のロービング、または炭素繊維(A)と有機繊維(B)を有する繊維束(E)を作製する。次いで、溶融させた化合物(D)を炭素繊維(A)のロービング、有機繊維(B)のロービング、または繊維束(E)に含浸させてそれぞれ複合体(G)、(J)、(F)を作製する。このとき化合物(D)を供給する際の溶融温度(溶融バス内の温度)は100~300℃が好ましいことから、化合物(D)の炭素繊維(A)のロービング、有機繊維(B)のロービング、または繊維束(E)への含浸性の指標として、化合物(D)の200℃における溶融粘度に着目した。200℃における溶融粘度が上記の好ましい範囲であれば、かかる好ましい溶融温度範囲において、含浸性に優れるため、炭素繊維(A)および有機繊維(B)の分散性がより向上し、成形品の衝撃強度をより向上させることができる。
 化合物(D)としては、例えば数平均分子量が200~50,000の化合物が例示できる。数平均分子量が200~50,000の化合物は、常温においては通常比較的脆く破砕しやすい固体であったり、液体であることが多い。かかる化合物は低分子量であるため、高流動性であり、炭素繊維(A)と有機繊維(B)の熱可塑性樹脂(C)内への分散効果を高めることができる。すなわち、数平均分子量が200以上であれば、成形品の力学特性、特に曲げ強度および引張強度をより向上させることができる。数平均分子量は1,000以上がより好ましい。また、数平均分子量が50,000以下であれば、粘度が適度に低いことから、成形品中に含まれる炭素繊維(A)および有機繊維(B)への含浸性に優れ、成形品中における炭素繊維(A)および有機繊維(B)の分散性をより向上させることができる。数平均分子量は3,000以下がより好ましい。なお、かかる化合物の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 化合物(D)としては、熱可塑性樹脂(C)と親和性の高いものが好ましい。熱可塑性樹脂(C)との親和性が高い化合物(D)を選択することによって、熱可塑性樹脂(C)と効率よく相溶するため、炭素繊維(A)や有機繊維(B)の分散性をより向上させることができる。
 化合物(D)は、マトリックス樹脂である熱可塑性樹脂(C)との組み合わせに応じて適宜選択される。例えば、成形温度が150℃~270℃の範囲であればテルペン樹脂が好適に用いられ、270℃~320℃の範囲であればエポキシ樹脂が好適に用いられる。具体的には、熱可塑性樹脂(C)がポリプロピレン樹脂である場合には、化合物(D)はテルペン樹脂が好ましい。熱可塑性樹脂(C)がポリカーボネート樹脂である場合は、化合物(D)はエポキシ樹脂が好ましい。熱可塑性樹脂(C)がポリアミド樹脂である場合は、化合物(D)はテルペンフェノール樹脂が好ましい。
 本発明の成形品における化合物(D)の含有量は、炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、1~25重量部(1重量部以上25重量部以下)が好ましい。化合物(D)の含有量が1重量部以上であれば、成形品内での炭素繊維(A)および有機繊維(B)の流動性がより向上し、分散性がより向上する。2重量部以上がより好ましく、4重量部以上がさらに好ましい。一方、化合物(D)の含有量が25重量部以下であれば、成形品の曲げ強度、引張強度および衝撃強度をより向上させることができる。20重量部以下がより好ましく、15重量部以下がさらに好ましい。
 化合物(D)は、10℃/分昇温(空気中)条件で測定した成形温度における加熱減量が5重量%以下であることが好ましい。かかる加熱減量が5重量%以下の場合、炭素繊維(A)および有機繊維(B)へ含浸した際に分解ガスの発生を抑制することができ、成形した際にボイドの発生を抑制することができる。また、特に高温における成形において、発生ガスを抑制することができる。3重量%以下がより好ましい。
 ここで、化合物(D)の成形温度における加熱減量とは、加熱前の化合物(D)の重量を100%として、前記加熱条件における加熱後の化合物(D)の重量減量率を表し、下記式により求めることができる。なお、加熱前後の重量は、白金サンプルパンを用いて、空気雰囲気下、昇温速度10℃/分の条件にて、成形温度における重量を熱重量分析(TGA)により測定することにより求めることができる。
 加熱減量[重量%]={(加熱前重量-加熱後重量)/加熱前重量}×100  。
 本発明において、化合物(D)として好ましく用いられるエポキシ樹脂は、2つ以上のエポキシ基を有する化合物であって、実質的に硬化剤が含まれておらず、加熱しても、いわゆる三次元架橋による硬化をしないものである。化合物(D)はグリシジル基を有することが好ましく、炭素繊維(A)および有機繊維(B)と相互作用しやすくなり、含浸時に繊維束(E)と馴染みやすく、含浸しやすい。また、成形加工時の炭素繊維(A)および有機繊維(B)の分散性がより向上する。
 ここで、グリシジル基を有する化合物としては、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂が挙げられる。これらを2種以上用いてもよい。
 グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、エーテル結合を有する脂肪族エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。
 グリシジルエステル型エポキシ樹脂としては、例えば、ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸ジグリシジルエステル等が挙げられる。
 グリシジルアミン型エポキシ樹脂としては、例えば、トリグリシジルイソシアヌレート、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルメタキシレンジアミン、アミノフェノール型エポキシ樹脂等が挙げられる。
 脂環式エポキシ樹脂としては、例えば、3,4-エポキシ-6-メチルシクロヘキシルメチルカルボキシレート、3,4-エポキシシクロヘキシルメチルカルボキシレート等が挙げられる。
 中でも、粘度と耐熱性のバランスに優れるため、グリシジルエーテル型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂がより好ましい。
 また、化合物(D)として用いられるエポキシ樹脂の数平均分子量は、200~5,000であることが好ましい。エポキシ樹脂の数平均分子量が200以上であれば、成形品の力学特性をより向上させることができる。800以上がより好ましく、1,000以上がさらに好ましい。一方、エポキシ樹脂の数平均分子量が5,000以下であれば、繊維束(E)への含浸性に優れ、炭素繊維(A)および有機繊維(B)の分散性をより向上させることができる。4,000以下がより好ましく、3,000以下がさらに好ましい。なお、エポキシ樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 また、テルペン樹脂としては、例えば、有機溶媒中でフリーデルクラフツ型触媒存在下、テルペン単量体を、必要に応じて芳香族単量体等と重合して得られる重合体または共重合体などが挙げられる。
 テルペン単量体としては、例えば、α-ピネン、β-ピネン、ジペンテン、d-リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノーレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、サビネン、パラメンタジエン類、カレン類等の単環式モノテルペンなどが挙げられる。また、芳香族単量体としては、例えば、スチレン、α-メチルスチレン等が挙げられる。
 中でも、α-ピネン、β-ピネン、ジペンテン、d-リモネンが熱可塑性樹脂(C)との相溶性に優れるため好ましく、さらに、これらのテルペン単量体の単独重合体がより好ましい。また、これらテルペン樹脂を水素添加処理して得られる水素化テルペン樹脂が、より熱可塑性樹脂(C)、特にポリプロピレン樹脂との相溶性に優れるため好ましい。
 また、テルペン樹脂のガラス転移温度は、特に限定しないが、30~100℃であることが好ましい。ガラス転移温度が30℃以上であると、成形加工時に化合物(D)の取扱性に優れる。また、ガラス転移温度が100℃以下であると、成形加工時の化合物(D)を適度に抑制し、成形性を向上させることができる。
 また、テルペン樹脂の数平均分子量は、200~5,000であることが好ましい。数平均分子量が200以上であれば、成形品の力学特性、特に曲げ強度および引張強度をより向上させることができる。また、数平均分子量が5,000以下であれば、テルペン樹脂の粘度が適度に低いことから含浸性に優れ、成形品中における炭素繊維(A)および有機繊維(B)の分散性をより向上させることができる。なお、テルペン樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 テルペンフェノール樹脂は、テルペン単量体とフェノール類を、触媒により反応させたものである。ここで、フェノール類としては、フェノールのベンゼン環上に、アルキル基、ハロゲン原子および/または水酸基を1~3個有するものが好ましく用いられる。その具体例としては、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、t-ブチルフェノール、ノニルフェノール、3,4,5-トリメチルフェノール、クロロフェノール、ブロモフェノール、クロロクレゾール、ヒドロキノン、レゾルシノール、オルシノールなどを挙げることができる。これらを2種以上用いてもよい。これらの中でも、フェノールおよびクレゾールが好ましい。
 また、テルペンフェノール樹脂の数平均分子量は、200~5,000であることが好ましい。数平均分子量が200以上であれば、成形品の曲げ強度および引張強度をより向上させることができる。また、数平均分子量が5,000以下であれば、テルペンフェノール樹脂の粘度が適度に低いことから含浸性に優れ、成形品中における炭素繊維(A)や有機繊維(B)の分散性をより向上させることができる。なお、テルペンフェノール樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
 本発明の成形品は、本発明の目的を損なわない範囲で、前記(A)~(D)に加えて他の成分を含有してもよい。他の成分の例としては、熱硬化性樹脂、炭素繊維以外の無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤などが挙げられる。
 続いて、本発明の成形品の製造方法について説明する。
 好ましくは後述する本発明の成形材料を成形することにより、成形品を得ることができる。成形方法としては、射出成形、オートクレーブ成形、プレス成形、フィラメントワインディング成形、スタンピング成形などの生産性に優れた成形方法を挙げることができる。これらを組み合わせて用いることもできる。また、インサート成形、アウトサート成形などの一体化成形を適用することができる。さらに、成形後に、加熱による矯正処置や、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法を活用することもできる。これらの中でも、金型を用いた成形方法が好ましく、特に射出成形機を用いた成形方法により、連続的に安定した成形品を得ることができる。射出成形の条件としては、特に規定はないが、例えば射出時間:0.5秒~10秒、より好ましくは2秒~10秒、背圧力:0.1MPa~10MPa、より好ましくは2MPa~8MPa、保圧力:1MPa~50MPa、より好ましくは1MPa~30MPa、保圧時間:1秒~20秒、より好ましくは5秒~20秒、シリンダー温度:200℃~320℃、金型温度:20℃~100℃の条件が好ましい。ここで、シリンダー温度とは、射出成形機の成形材料を加熱溶融する部分の温度を示し、金型温度とは、所定の形状にするための樹脂を注入する金型の温度を示す。これらの条件、特に射出時間、背圧力および金型温度を適宜選択することにより、成形品中の強化繊維の繊維長を容易に調整することができる。
 次に、本発明の成形品を得るために適した、本発明の繊維強化熱可塑性樹脂成形材料(「成形材料」という場合がある)について説明する。本発明においては、(1)炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部(5重量部以上45重量部以下)、有機繊維(B)を1~45重量部(1重量部以上45重量部以下)、熱可塑性樹脂(C)を10~94重量部(10重量部以上94重量部以下)、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を1~25重量部(1重量部以上25重量部以下)含む繊維強化熱可塑性樹脂成形材料であって、有機繊維(B)の数平均繊維径(d)が35~300μm(35μm以上300μm以下)であり、炭素繊維(A)と有機繊維(B)を含む繊維束(E)に化合物(D)を含浸させてなる複合体(F)の外側に熱可塑性樹脂(C)を含み、繊維束(E)断面において炭素繊維(A)と有機繊維(B)が偏在し、繊維束(E)の長さと繊維強化熱可塑性樹脂成形材料の長さが実質的に同じである成形材料(以下、「第一の態様の成形材料」という場合がある)や、(2)炭素繊維(A)、熱可塑性樹脂(C)および200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)の合計100重量部に対して、炭素繊維(A)を5~45重量部(5重量部以上45重量部以下)、熱可塑性樹脂(C)を35~94重量部(35重量部以上94重量部以下)、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を1~25重量部(1重量部以上25重量部以下)含み、炭素繊維(A)に化合物(D)を含浸させてなる複合体(G)の外側に熱可塑性樹脂(C)を含み、炭素繊維(A)の長さと炭素繊維強化熱可塑性樹脂成形材料の長さが実質的に同じである炭素繊維強化熱可塑性樹脂成形材料(X)と、有機繊維(B)、熱可塑性樹脂(H)および200℃における溶融粘度が熱可塑性樹脂(H)より低い化合物(I)の合計100重量部に対し、有機繊維(B)を1~45重量部(1重量部以上45重量部以下)、熱可塑性樹脂(H)を35~94重量部(35重量部以上94重量部以下)、化合物(I)を1~25重量部(1重量部以上25重量部以下)含み、有機繊維(B)の数平均繊維径(d)が35~300μm(35μm以上300μm以下)である有機繊維強化熱可塑性樹脂成形材料(Y)とを含む成形材料(以下、「第二の態様の成形材料」という場合がある)を、本発明の成形品を得るための成形材料として好適に用いることができる。
 まず、第一の態様の成形材料について説明する。前述した成形品を得るために用いられる、本発明の第一の態様の成形材料は、少なくとも炭素繊維(A)、有機繊維(B)、熱可塑性樹脂(C)および化合物(D)を含み、有機繊維(B)の数平均繊維径(d)が35~300μm(35μm以上300μm以下)であることを特徴とする。また、本発明の第一の態様の成形材料は、炭素繊維(A)と有機繊維(B)を含む繊維束(E)に、前記化合物(D)を含浸させてなる複合体(F)を含み、複合体(F)の外側に熱可塑性樹脂(C)を含む構成を有する。炭素繊維(A)、有機繊維(B)、熱可塑性樹脂(C)および化合物(D)の効果は、本発明の成形品について先に説明したとおりである。
 本発明の第一の態様の成形材料は、熱可塑性樹脂(C)内に、連続繊維束である炭素繊維(A)および有機繊維(B)の各単繊維間に化合物(D)が満たされている複合体(F)を有する。複合体(F)は、化合物(D)の海に、炭素繊維(A)および有機繊維(B)が島のように分散している状態である。
 本発明の第一の態様の成形材料は、前記繊維束(E)に前記化合物(D)を含浸させてなる複合体(F)の外側に、熱可塑性樹脂(C)を含む。成形材料の長手方向に対して垂直な断面において、熱可塑性樹脂(C)が複合体(F)の周囲を被覆するように配置されているか、複合体(F)と熱可塑性樹脂(C)が層状に配置され、最外層が熱可塑性樹脂(C)である構成が望ましい。
 本発明の第一の態様の成形材料において、化合物(D)は低分子量である場合が多く、常温においては通常比較的脆く破砕しやすい固体であったり、液体であることが多い。複合体(F)の外側に、熱可塑性樹脂(C)を含む構成とすることにより、高分子量の熱可塑性樹脂(C)が複合体(F)を保護し、成形材料の運搬や取り扱い時の衝撃、擦過などによる化合物(D)の破砕、飛散などを抑制し、成形材料の形状を保持することができる。本発明の成形材料は、取り扱い性の観点から、成形に供されるまで前述の形状を保持することが好ましい。
 複合体(F)と熱可塑性樹脂(C)は、境界付近で部分的に熱可塑性樹脂(C)が複合体(F)の一部に入り込み、相溶しているような状態であってもよいし、繊維束(E)に熱可塑性樹脂(C)が含浸しているような状態になっていてもよい。
 本発明の第一の態様の成形材料は、繊維束(E)断面において炭素繊維(A)と有機繊維(B)が偏在することが好ましい。ここで、繊維束(E)断面とは、繊維束(E)の繊維長手方向に対して垂直な断面を指す。繊維束(E)断面において、炭素繊維(A)と有機繊維(B)が偏在することにより、成形時の炭素繊維(A)および有機繊維(B)の絡み合いを抑制し、炭素繊維(A)および有機繊維(B)が均一に分散した成形品を得ることができる。このため、成形品の衝撃強度をより向上させることができる。ここで、本発明において「偏在」とは、繊維束(E)断面において、炭素繊維(A)と有機繊維(B)がそれぞれ全ての領域において均等に存在するのではなく、部分的に偏って存在することを言う。例えば、図1に示すような、繊維束(E)断面において、炭素繊維(A)が有機繊維(B)を内包している形態や、図2に示すような、有機繊維(B)が炭素繊維(A)を内包している形態などのいわゆる芯鞘型構造や、図3に示すような、繊維束(E)断面において、炭素繊維(A)の束と有機繊維(B)の束がある境界部によって分けられた状態でそれぞれ存在している構造などが、本発明における「偏在」の態様として挙げられる。ここで、本発明において「内包」とは、炭素繊維(A)を芯部、有機繊維(B)を鞘部に配する状態や、または、有機繊維(B)を芯部、炭素繊維(A)を鞘部に配する状態をいう。図3に示す態様の場合、繊維束(E)断面において炭素繊維(A)と有機繊維(B)のそれぞれ少なくとも一部がいずれも外層の熱可塑性樹脂(C)に接している。このとき、炭素繊維(A)または有機繊維(B)が熱可塑性樹脂(C)に接している態様には、炭素繊維(A)または有機繊維(B)が化合物(D)を介して熱可塑性樹脂(C)に接している態様も含むものとする。
 なお、本発明において、繊維束(E)断面において炭素繊維(A)、有機繊維(B)が偏在していることを確認する方法としては、例えば、成形材料の繊維長手方向に対して垂直な断面を倍率300倍に設定した光学顕微鏡にて観察し、得られた顕微鏡像の画像処理を行い解析する手法が挙げられる。
 繊維束(E)の断面において炭素繊維(A)、有機繊維(B)を偏在させる方法としては、炭素繊維(A)の束と有機繊維(B)の束とを引き揃えて上記成形材料を作製する方法が挙げられる。それぞれの束同士を引き揃えて成形材料を作製することで、炭素繊維(A)と有機繊維(B)とが独立した繊維束として存在することになり、偏在させることができる。使用する炭素繊維(A)の束と有機繊維(B)の束の単繊維数を多くすると束を大きくでき、単繊維数を少なくすると束を小さくでき、束の大きさを変えて偏在させることが可能である。
 本発明の第一の態様の成形材料は、繊維束(E)の長さと成形材料の長さが実質的に同じであることが好ましい。繊維束(E)の長さが成形材料の長さと実質的に同じであることにより、成形品における炭素繊維(A)と有機繊維(B)の繊維長を長くすることができるため、より優れた力学特性を得ることができる。なお、成形材料の長さとは、成形材料中の繊維束(E)配向方向の長さである。また、「実質的に同じ長さ」とは、成形材料内部で繊維束(E)が意図的に切断されていたり、成形材料全長よりも有意に短い繊維束(E)が実質的に含まれたりしないことである。特に、成形材料全長よりも短い繊維束(E)の量について限定するわけではないが、成形材料全長の50%以下の長さの繊維束(E)の含有量が、全繊維束(E)中30質量%以下であることが好ましく、20質量%以下であることがより好ましい。成形材料は、長手方向にほぼ同一の断面形状を保ち連続であることが好ましい。
 第一の態様の成形材料の長さは、通常3mm~15mmの範囲である。
 第一の態様の成形材料の各構成要素(A)~(D)としては、本発明の成形品について先に説明した(A)~(D)を用いることができる。また、本発明の成形品について他の成分として例示したものを含有することもできる。
 第一の態様の成形材料は、炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部(5重量部以上45重量部以下)含有する。成形品の曲げ特性および衝撃強度をより向上させる観点から、炭素繊維(A)の含有量は10重量部以上がより好ましい。一方、成形品中の炭素繊維(A)の分散性を向上させ、成形品の衝撃強度をより向上させる観点から、炭素繊維(A)の含有量は30重量部以下がより好ましい。また、前記(A)~(C)の合計100重量部に対して、有機繊維(B)を1~45重量部(1重量部以上45重量部以下)含有する。成形品の衝撃特性をより向上させる観点から、有機繊維(B)の含有量は5重量部以上が好ましい。一方、成形品中の有機繊維(B)の分散性を向上させ、成形品の衝撃強度をより向上させる観点から、有機繊維(B)の含有量は30重量部以下がより好ましい。また、前記(A)~(C)の合計100重量部に対して、熱可塑性樹脂(C)を10~94重量部(10重量部以上94重量部以下)含有する。熱可塑性樹脂(C)の含有量は20重量部以上が好ましく、30重量部以上がより好ましい。成形品の衝撃強度を向上させる観点から、熱可塑性樹脂(C)の含有量は85重量部以下が好ましく、75重量部以下がより好ましい。また、(A)~(C)の合計100重量部に対して、化合物(D)を1~25重量部(1重量部以上25重量部以下)含有する。成形加工時の炭素繊維(A)および有機繊維(B)の流動性および分散性を向上させる観点から、化合物(D)の含有量は2重量部以上がより好ましく、4重量部以上がさらに好ましい。一方、成形品の曲げ強度、引張強度および衝撃強度をより向上させる観点から、化合物(D)の含有量は20重量部以下がより好ましく、15重量部以下がさらに好ましい。
 また、第一の態様の成形材料中における有機繊維(B)は、その数平均繊維径(d)が1~10μm(1μm以上10μm以下)であることを特徴とする。有機繊維(B)の数平均繊維径(d)は成形材料の製造前後で基本的には変化しないため、原料としての有機繊維(B)の数平均繊維径(d)を1~10μmとすることにより、成形材料中における有機繊維(B)の数平均繊維径(d)を前述の所望の範囲に容易に調整することができる。成形材料中における有機繊維(B)の数平均繊維径(d)は3μm以上がより好ましく、また、8μm以下がより好ましい。
 ここで、本発明における有機繊維(B)の「数平均繊維径」とは、下記の式から算出される平均繊維径を指す。
 数平均繊維径=Σ(di×Ni)/Σ(Ni)
  di:繊維径(μm)
  Ni:繊維径diの有機繊維の個数。
 成形材料中における有機繊維の数平均繊維径は、成形品中における有機繊維の数平均繊維径と同様に求めることができる。
 次に、本発明の第二の態様の成形材料について説明する。前述した成形品を得るために用いられる、本発明の第二の態様の成形材料は、少なくとも炭素繊維(A)、熱可塑性樹脂(C)および200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を含む炭素繊維強化熱可塑性樹脂成形材料(X)(「炭素繊維強化成形材料」という場合がある)と、少なくとも有機繊維(B)、熱可塑性樹脂(H)および200℃における溶融粘度が熱可塑性樹脂(H)より低い化合物(I)(「化合物(I)」という場合がある)を含み、有機繊維(B)の数平均繊維径(d)が35~300μm(35μm以上300μm以下)である有機繊維強化熱可塑性樹脂成形材料(Y)(「有機繊維強化成形材料」という場合がある)を含む。炭素繊維強化成形材料(X)は、炭素繊維(A)に、前記化合物(D)を含浸させてなる複合体(G)を含み、複合体(G)の外側に熱可塑性樹脂(C)を含む構成を有することが好ましい。また、有機繊維強化成形材料(Y)は、有機繊維(B)に、前記化合物(I)を含浸させてなる複合体(J)を含み、複合体(J)の外側に熱可塑性樹脂(H)を含む構成を有する。炭素繊維(A)および有機繊維(B)の効果は、本発明の成形品について先に説明したとおりである。また、熱可塑性樹脂(C)および熱可塑性樹脂(H)は比較的高粘度の、例えば靭性などの物性が高いマトリックス樹脂であり、成形時に炭素繊維(A)または有機繊維(B)に含浸され、成形品において炭素繊維(A)または有機繊維(B)を強固に保持する役割をもつ。なお、熱可塑性樹脂(H)は、先に説明した熱可塑性樹脂(C)において例示した樹脂を用いることができ、熱可塑性樹脂(C)と熱可塑性樹脂(H)は、同一の樹脂であっても、異なる樹脂であってもよい。また、化合物(D)および化合物(I)は、炭素繊維(A)または有機繊維(B)と共に複合体を形成し、成形時にマトリックス樹脂(熱可塑性樹脂(C)または(H))を炭素繊維(A)または有機繊維(B)に含浸させることを助け、また炭素繊維(A)または有機繊維(B)がマトリックス樹脂(熱可塑性樹脂(C)または(H))中に分散することを助ける、いわゆる含浸助剤・分散助剤としての役割を持つものである。なお、化合物(D)および化合物(I)は同種であってもよい。
 本発明における炭素繊維強化成形材料(X)は、熱可塑性樹脂(C)内に、連続繊維束である炭素繊維(A)の各単繊維間に化合物(D)が満たされている複合体(G)を有する。複合体(G)は、化合物(D)の海に、炭素繊維(A)が島のように分散している状態であることが好ましい。また、有機繊維強化成形材料(Y)も同様に、有機繊維(B)の各単繊維間に化合物(I)が満たされている複合体(J)を有し、化合物(I)の海に、有機繊維(B)が島のように分散している状態であることが好ましい。
 本発明の第二の態様の成形材料における炭素繊維強化成形材料(X)は、前記炭素繊維(A)に前記化合物(D)を含浸させてなる複合体(G)の外側に、熱可塑性樹脂(C)を含むことが好ましい。炭素繊維強化成形材料(X)の長手方向に対して垂直な断面において、熱可塑性樹脂(C)が複合体(G)の周囲を被覆するように配置されているか、複合体(G)と熱可塑性樹脂(C)が層状に配置され、最外層が熱可塑性樹脂(C)である構成が望ましい。有機繊維強化成形材料(Y)も同様に、前記有機繊維(B)に前記化合物(I)を含浸させてなる複合体(J)の外側に、熱可塑性樹脂(H)を含むことが好ましい。有機繊維強化成形材料(Y)の長手方向に対して垂直な断面において、熱可塑性樹脂(H)が複合体(J)の周囲を被覆するように配置されているか、複合体(J)と熱可塑性樹脂(H)が層状に配置され、最外層が熱可塑性樹脂(H)である構成が望ましい。
 第二の態様の成形材料において、化合物(D)および化合物(I)は低分子量である場合が多く、常温においては通常比較的脆く破砕しやすい固体であったり、液体であることが多い。炭素繊維強化成形材料(X)または有機繊維強化成形材料(Y)においては、複合体(G)または複合体(J)の外側に、熱可塑性樹脂(C)または(H)を含む構成とすることにより、高分子量の熱可塑性樹脂(C)または(H)が複合体(G)または複合体(J)を保護し、成形材料の運搬や取り扱い時の衝撃、擦過などによる化合物(D)または(I)の破砕、飛散などを抑制し、成形材料の形状を保持することができる。本発明の第二の態様の成形材料は、成形に供されるまで前述の形状を保持することが好ましい。
 炭素繊維強化成形材料(X)における、複合体(G)と熱可塑性樹脂(C)は、境界付近で部分的に熱可塑性樹脂(C)が複合体(G)の一部に入り込み、相溶しているような状態であってもよいし、炭素繊維(A)に熱可塑性樹脂(C)が含浸しているような状態になっていてもよい。また、有機繊維強化成形材料(Y)における、複合体(J)と熱可塑性樹脂(H)も同様に、境界付近で部分的に熱可塑性樹脂(H)が複合体(J)の一部に入り込み、相溶しているような状態であってもよいし、有機繊維(B)に熱可塑性樹脂(H)が含浸しているような状態になっていてもよい。
 また、炭素繊維強化成形材料(X)における炭素繊維(A)は、炭素繊維強化成形材料(X)の長さと実質的に同じ長さであることが好ましい。炭素繊維(A)の長さが炭素繊維強化成形材料(X)の長さと実質的に同じであることにより、成形品における炭素繊維(A)の繊維長を長くすることができるため、優れた力学特性を得ることができる。なお、炭素繊維強化成形材料(X)の長さとは、炭素繊維強化成形材料中の炭素繊維(A)の配向方向の長さである。また、「実質的に同じ長さ」とは、成形材料内部で炭素繊維(A)が意図的に切断されていたり、成形材料全長よりも有意に短い炭素繊維(A)が実質的に含まれたりしないことである。特に、成形材料全長よりも短い炭素繊維(A)の量について限定するわけではないが、成形材料全長の50%以下の長さの炭素繊維(A)の含有量が、全炭素繊維(A)中30質量%以下であることが好ましく、20質量%以下であることがより好ましい。成形材料は、長手方向にほぼ同一の断面形状を保ち連続であることが好ましいが、これに限定されるものではない。炭素繊維強化成形材料(X)の長さは、通常3mm~15mmの範囲である。
 本発明における有機繊維強化成形材料(Y)は、有機繊維(B)と熱可塑性樹脂(H)および化合物(I)を含み、前記有機繊維(B)に前記化合物(I)を含浸させてなる複合体(J)の外側に、熱可塑性樹脂(H)を含む構造であるか、または複合体(J)と熱可塑性樹脂(H)の溶融混練により得られるペレットであってもよい。
 本発明の第二の態様の成形材料は、有機繊維強化成形材料(Y)が溶融混練により得られるペレットである場合は、有機繊維(B)の平均繊維長が0.1mm~10mmの範囲であることが好ましい。有機繊維(B)の平均繊維長の長さが前記範囲であることにより、成形品における有機繊維(B)の繊維長を長くすることができるため、成形品の衝撃強度をより向上させることができる。1.5mm~10mmの範囲がより好ましい。
 また、有機繊維強化成形材料(Y)が有機繊維(B)に前記化合物(I)を含浸させてなる複合体(J)の外側に、熱可塑性樹脂(H)を含む構造である場合は、有機繊維(B)は、有機繊維強化成形材料(Y)の長さと実質的に同じ長さであることが好ましい。有機繊維(B)の長さが有機繊維強化成形材料(Y)の長さと実質的に同じであることにより、成形品における有機繊維(B)の繊維長を長くすることができるため、優れた力学特性を得ることができる。なお、有機繊維強化成形材料(Y)の長さとは、有機繊維強化成形材料中の有機繊維(B)の配向方向の長さである。また、「実質的に同じ長さ」とは、成形材料内部で有機繊維(B)が意図的に切断されていたり、成形材料全長よりも有意に短い有機繊維(B)が実質的に含まれたりしていないことである。より具体的には、有機繊維強化成形材料(Y)における有機繊維(B)の長手方向の端部間の距離が、有機繊維強化成形材料(Y)の長手方向の長さと同じことを指し、成形材料全長の50%以下の長さの有機繊維(B)の含有量が、全有機繊維(B)中30質量%以下であることが好ましく、20質量%以下であることがより好ましい。成形材料は、長手方向にほぼ同一の断面形状を保ち連続であることが好ましいが、これに限定されるものではない。また、有機繊維強化成形材料(Y)の長さは、通常3mm~15mmの範囲である。
 ここで、本発明の成形材料における「平均繊維長」とは、成形品中の平均繊維長と同様に求めることができる。
 第二の態様の成形材料の各構成要素(A)~(D)としては、本発明の成形品について先に説明した(A)~(D)を用いることができる。また、(H)および(I)としては、それぞれ本発明の成形品について先に説明した(C)および(D)を用いることができる。さらに、本発明の成形品について他の成分として例示したものを含有することもできる。
 第二の態様の成形材料において、炭素繊維強化成形材料(X)は、炭素繊維(A)、熱可塑性樹脂(C)および化合物(D)の合計100重量部に対して、炭素繊維(A)を5~45重量部(5重量部以上45重量部以下)含有する。成形品の曲げ特性および衝撃強度をより向上させる観点から、炭素繊維(A)の含有量は10重量部以上がより好ましい。一方、成形品中の炭素繊維(A)の分散性を向上させ、成形品の衝撃強度をより向上させる観点から、炭素繊維(A)の含有量は30重量部以下がより好ましい。また、熱可塑性樹脂(C)を35~94重量部(35重量部以上94重量部以下)含有する。熱可塑性樹脂(C)の含有量は20重量部以上が好ましく、30重量部以上がより好ましい。成形品の衝撃強度を向上させる観点から、熱可塑性樹脂(C)の含有量は85重量部以下が好ましく、75重量部以下がより好ましい。
 また、化合物(D)を1~25重量部(1重量部以上25重量部以下)含有することが好ましい。成形加工時の炭素繊維(A)および有機繊維(B)の流動性および分散性を向上させる観点から、化合物(D)の含有量は2重量部以上がより好ましく、4重量部以上がさらに好ましい。一方、成形品の曲げ強度、引張強度および衝撃強度をより向上させる観点から、化合物(D)の含有量は20重量部以下がより好ましく、15重量部以下がさらに好ましい。
 有機繊維強化成形材料(Y)は、有機繊維(B)、熱可塑性樹脂(H)および化合物(I)の合計100重量部に対し、有機繊維(B)を1~45重量部(1重量部以上45重量部以下)含有する。成形品の衝撃特性をより向上させる観点から、有機繊維(B)の含有量は5重量部以上が好ましい。一方、成形品中の有機繊維(B)の分散性を向上させ、成形品の衝撃強度をより向上させる観点から、有機繊維(B)の含有量は30重量部以下がより好ましい。また、熱可塑性樹脂(H)を35~94重量部(35重量部以上94重量部以下)含有する。熱可塑性樹脂(H)の含有量は20重量部以上が好ましく、30重量部以上がより好ましい。成形品の衝撃強度を向上させる観点から、熱可塑性樹脂(H)の含有量は85重量部以下が好ましく、75重量部以下がより好ましい。
 また、化合物(I)を1~25重量部含有する。成形加工時の炭素繊維(A)および有機繊維(B)の流動性および分散性を向上させる観点から、化合物(I)の含有量は2重量部以上がより好ましく、4重量部以上がさらに好ましい。一方、成形品の曲げ強度、引張強度および衝撃強度をより向上させる観点から、化合物(I)の含有量は20重量部以下がより好ましく、15重量部以下がさらに好ましい。
 本発明の第二の態様の成形材料における、炭素繊維強化成形材料(X)は、例えば、次の方法により得ることができる。まず、炭素繊維(A)のロービングを繊維長手方向にし、次いで、溶融させた化合物(D)を炭素繊維束に含浸させて複合体(G)を作製し、さらに、溶融した熱可塑性樹脂(C)で満たした含浸ダイに複合体(G)を導き、熱可塑性樹脂(C)を複合体(G)の外側に被覆させ、ノズルを通して引き抜く。冷却固化後に所定の長さにペレタイズして、成形材料を得る方法である。熱可塑性樹脂(C)は、複合体(G)の外側に含まれていれば、炭素繊維束中に含浸されていてもよい。また、本発明の第二の成形材料における、有機繊維強化成形材料(Y)は、例えば、前述した炭素繊維強化成形材料(X)と同様の方法により製造しても良い。その他の方法として、例えば次の方法により得ることができる。まず、溶融させた化合物(I)を有機繊維束に含浸させて複合体(J)を作製し、複合体(J)を、熱可塑性樹脂(H)と共に単軸または二軸押出機内にて、溶融混練し、ダイ先端から吐出されるストランドを冷却固化後に所定の長さにペレタイズして、成形材料を得る方法である。
 本発明の第二の態様の成形材料における、炭素繊維強化成形材料(X)および有機繊維強化成形材料(Y)をドライブレンドにて混合し、成形することにより、炭素繊維(A)および有機繊維(B)の分散性に優れ、衝撃強度および低温衝撃強度に優れる繊維強化熱可塑性樹脂成形品を得ることができる。炭素繊維強化成形材料(X)と有機繊維強化成形材料(Y)の混合比としては、炭素繊維強化成形材料(X)と有機繊維強化成形材料(Y)の合計100重量部に対して、炭素繊維強化成形材料(X)を50~80重量部、有機繊維強化成形材料(Y)を20~50重量部含有することが好ましい。さらに、溶融混練により製造した有機繊維強化成形材料(Y)を用いることで、より生産性よく繊維強化熱可塑性樹脂成形品を得ることができる。成形方法としては、金型を用いた成形方法が好ましく、射出成形、押出成形、プレス成形など、種々の公知の手法を用いることができる。特に射出成形機を用いた成形方法により、連続的に安定した成形品を得ることができる。
 また、本発明の第二の形態の成形材料中における有機繊維(B)は、その数平均繊維径(d)が35~300μm(35μm以上300μm以下)であることを特徴とする。有機繊維(B)の数平均繊維径(d)は成形材料の製造前後で基本的には変化しないため、原料としての有機繊維(B)の数平均繊維径(d)を35~300μmとすることにより、成形材料中における有機繊維(B)の数平均繊維径(d)を前述の所望の範囲に容易に調整することができる。成形材料中における有機繊維(B)の数平均繊維径(d)は50μm以上がより好ましく、また、150μm以下がより好ましい。
 ここで、本発明における有機繊維(B)の「数平均繊維径」とは、下記の式から算出される平均繊維径を指す。
 数平均繊維径=Σ(di×Ni)/Σ(Ni)
  di:繊維径(μm)
  Ni:繊維径diの有機繊維の個数。
 成形材料中における有機繊維の数平均繊維径は、成形品中における有機繊維の数平均繊維径と同様に求めることができる。
 また、本発明の第一および第二の態様の成形材料は、有機繊維(B)のアスペクト比(L[μm]/d[μm])が10~500(10以上500以下)であることが好ましい。
 本発明の成形品中の有機繊維(B)のアスペクト比について先に説明したとおり、アスペクト比を上記範囲とする手段としては、平均繊維長と、数平均繊維径とのバランスをとることが挙げられる。有機繊維(B)のアスペクト比を10以上とすることにより、衝撃時に加えられた荷重を有機繊維に伝わりやすくすることができ、成形品の衝撃強度をより向上させることができる。アスペクトは20以上がより好ましい。一方、アスペクト比を500以下とすることにより、有機繊維(B)の成形品表面への凹凸形成を抑制することができ、成形品の表面外観をより高めることができる。
 成形材料中の有機繊維(B)のアスペクト比は、成形材料中に存在する有機繊維(B)の平均繊維径と数平均繊維長から算出することができる。成形材料中における有機繊維(B)の数平均繊維径は、前述の方法により求めることができる。また、成形材料中における有機繊維(B)の平均繊維長は、次の方法により測定することができる。成形材料を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させる。有機繊維が均一分散したフィルムを、光学顕微鏡(50~200倍)にて観察する。無作為に選んだ1,000本の有機繊維(B)の繊維長を計測して、上記式から平均繊維長(L)を算出する。
 平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
  Mi:繊維長(mm)
  Ni:繊維長Miの有機繊維の個数
 成形材料中の有機繊維(B)のアスペクト比を上記好ましい範囲にするための手段としては、例えば、成形材料中における有機繊維(B)の平均繊維長と数平均繊維径を前述の好ましい範囲にすることなどが挙げられる。
 次に、本発明の成形材料の製造方法について説明する。
 本発明の第一の態様の成形材料は、例えば、次の方法により得ることができる。まず、炭素繊維(A)のロービングおよび有機繊維(B)のロービングを繊維長手方向に対して並列に合糸し、炭素繊維(A)と有機繊維(B)を有する繊維束(E)を作製する。次いで、溶融させた化合物(D)を繊維束(E)に含浸させて複合体(F)を作製し、さらに、溶融した熱可塑性樹脂(C)で満たした含浸ダイに複合体(F)を導き、熱可塑性樹脂(C)を複合体(F)の外側に被覆させ、ノズルを通して引き抜く。冷却固化後に所定の長さにペレタイズして、成形材料を得る方法がある。熱可塑性樹脂(C)は、複合体(F)の外側に含まれていれば、繊維束(E)中に含浸されていてもよい。また、本発明の第二の態様の成形材料は、例えば、次の方法により得ることができる。炭素繊維(A)のロービングを繊維長手方向に対して引き出し、次いで、溶融させた化合物(D)を炭素繊維(A)のロービングに含浸させて複合体(G)を作製し、さらに、溶融した熱可塑性樹脂(C)で満たした含浸ダイに複合体(G)を導き、熱可塑性樹脂(C)を複合体(G)の外側に被覆させ、ノズルを通して引き抜く。冷却固化後に所定の長さにペレタイズして、炭素繊維強化成形材料(X)を得る。また、数平均繊維径(d)が35~300μmである有機繊維(B)のロービングを繊維長手方向に対して引き出し、次いで、溶融させた化合物(I)を有機繊維(B)のロービングに含浸させて複合体(J)を作製し、さらに、溶融した熱可塑性樹脂(H)で満たした含浸ダイに複合体(J)を導き、熱可塑性樹脂(H)を複合体(J)の外側に被覆させ、ノズルを通して引き抜く。冷却固化後に所定の長さにペレタイズして、有機繊維強化成形材料(Y)を得る。または、溶融させた化合物(I)を有機繊維束に含浸させて複合体(J)を作製し、複合体(J)を、熱可塑性樹脂(H)と共に単軸または二軸押出機内にて、溶融混練し、ダイ先端から吐出されるストランドを冷却固化後に所定の長さにペレタイズして、有機繊維強化成形材料(Y)を得る。そして、有機繊維強化成形材料(X)および(Y)の2種の成形材料をドライブレンドして成形材料とする方法がある。熱可塑性樹脂(C)または(H)は、炭素繊維(A)のロービングまたは有機繊維(B)のロービングの外側に含まれていれば、炭素繊維(A)のロービングまたは有機繊維(B)のロービング中に含浸されていてもよい。
 本発明の成形品は、衝撃強度に優れる繊維強化熱可塑性樹脂成形品であり、本発明の成形品の用途としては、インストルメントパネル、ドアビーム、アンダーカバー、ランプハウジング、ペダルハウジング、ラジエータサポート、スペアタイヤカバー、フロントエンドなどの各種モジュール等の自動車部品に好適である。また、電話、ファクシミリ、VTR、コピー機、テレビ、電子レンジ、音響機器、トイレタリー用品、“レーザーディスク(登録商標)”、冷蔵庫、エアコンなどの家庭・事務電気製品部品も挙げられる。また、パーソナルコンピューター、携帯電話などに使用される筐体や、パーソナルコンピューターの内部でキーボードを支持するキーボード支持体に代表される電気・電子機器用部材なども挙げられる。なかでも、良好な外観を要求されることが多く、衝撃強度も必要となる用途として、インストルメントパネル、電気・電子機器用筐体の部品類が好ましい。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。まず、本実施例で用いる各種特性の評価方法について説明する。
 (1)溶融粘度測定
 各実施例および比較例に用いた熱可塑性樹脂(C)、(H)、化合物(D)および(I)について、40mmのパラレルプレートを用いて、0.5Hzにて、粘弾性測定器により200℃における溶融粘度を測定した。
 (2)成形品および成形材料中における炭素繊維(A)および有機繊維(B)の平均繊維長の測定
 成形品または成形材料を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させた。炭素繊維(A)または有機繊維(B)が均一分散したフィルムを、光学顕微鏡(50~200倍)にて観察した。無作為に選んだ1,000本の炭素繊維(A)と、同様に無作為に選んだ1,000本の有機繊維(B)について、それぞれ繊維長を計測して、下記式から平均繊維長を算出した。
 平均繊維長=Σ(Mi×Ni)/Σ(Mi×Ni)
  Mi:繊維長(mm)
  Ni:繊維長Miの繊維の個数。
 (3)成形品および成形材料中における炭素繊維(A)および有機繊維(B)の数平均繊維径の測定
 成形品または成形材料を300℃に設定したホットステージの上にガラス板間に挟んだ状態で加熱し、フィルム状にして均一分散させた。炭素繊維(A)または有機繊維(B)が均一分散したフィルムを、光学顕微鏡(5~1,000倍)にて観察した。無作為に選んだ10本の炭素繊維(A)または有機繊維(B)の繊維径を計測して、下記式から数平均繊維径を算出した。ここで、炭素繊維(A)または有機繊維(B)の繊維径とは、図4に示すように、観察される炭素繊維(A)または有機繊維(B)の繊維輪郭部A上の任意の点Bと、繊維輪郭部A(4)と向かい合う繊維輪郭部A’(5)との最短距離(6)を、炭素繊維(A)または有機繊維(B)1本あたり無作為に選んだ20箇所について計測した合計200箇所の数平均値とした。なお、観察画面内で炭素繊維(A)または有機繊維(B)が10本に満たない場合には、観察画面を計測可能な新しい観察画面に適宜移動させて計測した。
 数平均繊維径=Σ(di×Ni)/Σ(Ni)
  di:繊維径(μm)
  Ni:繊維径diの繊維の個数。
 (4)成形品における炭素繊維(A)および有機繊維(B)の換算本数比(n/n)の測定
 各実施例および比較例により得られたISO型ダンベル試験片より炭素繊維(A)および有機繊維(B)を取り出し、その比重を、液浸法により測定した。炭素繊維は試験片を500℃で30分間窒素雰囲気下で熱処理することで取り出した。有機繊維(B)は試験片を1クロロナフタレンに溶解させて炭素繊維(A)と有機繊維(B)とを取り出し、クロロホルム中に投入することで炭素繊維(A)を沈め、有機繊維(B)を浮かべて分離して取り出した。なお、液浸法の液としては蒸留水を用い、5本の試験片の比重を測定して、その平均値を算出した。前述の方法で求めた各々の数平均繊維径d(μm)、平均繊維長L(mm)、繊維含有量w(質量%)、比重ρ(g/cm)から、下記式により算出した。
 換算本数=((1×w/100)/((d/2)×π×L×ρ))×10
 (5)引張破断伸度測定
 有機繊維(B)の引張破断伸度(%)は、標準状態(20℃,65%RH)の室内で、つかみ間隔250mm、引張速度300mm/分の条件で引張試験を行い、繊維切断時の長さを算出し(ただし、チャック近傍で切断した場合はチャック切れとしてデータから除く)、次式により小数点2桁まで算出し、小数点2桁目を四捨五入した。各有機繊維(B)についてデータn3の平均値を求め、引張破断伸度とした。
 引張破断伸度(%)=[(切断時の長さ(mm)-250)/250]×100。
 (6)成形品の曲げ強度測定
 各実施例および比較例により得られたISO型ダンベル試験片について、ISO 178に準拠し、3点曲げ試験冶具(圧子半径5mm)を用いて支点距離を64mmに設定し、試験速度2mm/分の試験条件にて曲げ強度を測定した。試験機として、“インストロン”(登録商標)万能試験機5566型(インストロン社製)を用いた。
 (7)成形品のシャルピー衝撃強度測定
 各実施例および比較例により得られたISO型ダンベル試験片の平行部を切り出し、(株)東京試験機製C1-4-01型試験機を用い、ISO179に準拠してVノッチ付きシャルピー衝撃試験を実施し、衝撃強度(kJ/cm)を算出した。
 (8)成形材料の生産性評価
 有機繊維強化成形材料(Y)の時間当たりにおける製造量について計量を行った。10kg/時間以上をA、それ未満をBとした。
 (9)成形材料を用いて得られた成形品の繊維分散性評価
 各実施例および比較例により得られた、80mm×80mm×2mmの試験片の表裏それぞれの面に存在する未分散炭素繊維束の個数を目視でカウントした。評価は50枚の成形品について行い、その合計個数について繊維分散性の判定を以下の基準で行い、A、Bを合格とした。
A:未分散炭素繊維束が1個未満
B:未分散炭素繊維束が1個以上5個未満
C:未分散炭素繊維束が5個以上10個未満
D:未分散炭素繊維束が10個以上。
 (10)成形品の塗装表面外観評価
 各実施例および比較例により得られた、80mm×80mm×2mmの試験片に、アクリル-ウレタン2液塗料(ウレタンPG60/ハードナー、関西ペイント(株)製)、塗装ロボット:川崎重工株式会社製 KE610H、ABB社製 カートリッジベルを用い、塗膜厚み30μmでそれぞれ塗布した後、乾燥温度80℃で30分間乾燥させた。得られた塗装成形品の鮮明度と外観から塗装表面外観を以下基準により目視で判定を行った。AとBを合格レベルとし、CとDを不合格レベルとした。
A:高光沢感が確認される
B:光沢感はあるが高光沢ではない
C:一部分に若干の塗装ムラがある
D:全体的に塗装ムラが目立つ。
 (参考例1)炭素繊維(A)の作製
 ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単糸数24,000本、単繊維径7μm、単位長さ当たりの質量1.6g/m、比重1.8g/cm、表面酸素濃度比[O/C]0.2の連続炭素繊維を得た。この連続炭素繊維のストランド引張強度は4,880MPa、ストランド引張弾性率は225GPaであった。続いて、多官能性化合物としてポリグリセロールポリグリシジルエーテルを2重量%になるように水に溶解させたサイジング剤母液を調製し、浸漬法により炭素繊維にサイジング剤を付与し、230℃で乾燥を行った。こうして得られた炭素繊維のサイジング剤付着量は1.0重量%であった。
 (参考例2)有機繊維(B)
 ポリエステル(PET)繊維1:東レ(株)製“テトロン”(登録商標)56T-36-262(単繊維繊度1.6dtex、繊維径12μm、融点260℃)を用いた。破断伸度を上記(5)に記載の方法により測定した結果、15%であった。
 ポリエステル繊維2:東レ(株)製“テトロン”(登録商標)2200T-480-705M(単繊維繊度4.6dtex、繊維径20μm、融点260℃)を用いた。破断伸度を上記(5)に記載の方法により測定した結果、15%であった。
 ポリエステル(PET)繊維3:公知の溶融重縮合と固相重縮合とによって製造した粘度〔η〕0.94、COOH末端基濃度13当量/10gのPET乾燥チップ(以下、PETチップという)を計量しながら、1軸エクストルダーのホッパーから1軸エクストルダーに連続供給した。同時にホッパー下部のポリマー配管中の上記PETチップ100重量部に対して、モノカルボジイミド化合物(以下、TICという)として80℃で加熱溶融した“Stabilizer”(登録商標)7000(RaschigAG社製品)を、1.3重量部の量比で計量しながら連続供給した。1軸エクストルダー内で約288℃で3分間溶融混練した溶融ポリマーを、ギアポンプを経て紡糸パック内の濾過層を通し、円形断面糸用紡糸口金より紡出した。紡出フィラメントを70℃の湯浴で冷却後、常法に従い合計5.0倍に延伸および熱セットを行い、直径35μmの円形の断面形状を有するPET繊維(単繊維繊度13dtex、繊維径35μm、融点260℃)を得た。破断伸度を上記(5)に記載の方法により測定した結果、15%であった。
 ポリエステル(PET)繊維4:円形断面糸用紡糸口金の大きさを変更した以外はPET繊維3と同様にして、直径50μmの円形の断面形状を有するPET繊維(単繊維繊度27dtex、繊維径50μm、融点260℃)を得た。破断伸度を上記(5)に記載の方法により測定した結果、15%であった。
 ポリエステル(PET)繊維5:
 円形断面糸用紡糸口金の大きさを変更した以外はPET繊維3と同様にして、直径100μmの円形の断面形状を有するPET繊維(単繊維繊度108dtex、繊維径100μm、融点260℃)を得た。破断伸度を上記(5)に記載の方法により測定結果、15%であった。
 ポリエステル(PET)繊維6:
 円形断面糸用紡糸口金の大きさを変更した以外はPET繊維3と同様にして、直径290μmの円形の断面形状を有するPET繊維(単繊維繊度975dtex、繊維径290μm、融点260℃)を得た。破断伸度を上記(5)に記載の方法により測定結果、15%であった。
 (参考例3)熱可塑性樹脂(C)および(H)
 PP:ポリプロピレン樹脂(プライムポリマー(株)製“プライムポリプロ”(登録商標)J137)とマレイン酸変性ポリプロピレン樹脂(三井化学(株)製“アドマー”(登録商標)QE840)(PP)を重量比85/15でペレットブレンドしたものを用いた。200℃における溶融粘度を上記(1)に記載の方法により測定した結果、50Pa・sであった。
 PC:ポリカーボネート樹脂(出光(株)製“パンライト”(登録商標)L-1225L)を用いた。前述したポリプロピレン樹脂と同様に、200℃における溶融粘度を上記(1)に記載の方法により測定した結果、14,000Pa・sであった。
 (参考例4)化合物(D)および(I)
 固体の水添テルペン樹脂(ヤスハラケミカル(株)製“クリアロン”(登録商標)P125、軟化点125℃)を用いた。これを含浸助剤塗布装置内のタンク内に投入し、タンク内の温度を200℃に設定し、1時間加熱して溶融状態にした。この時の、200℃における溶融粘度を上記(1)に記載の方法により測定した結果、1Pa・sであった。
 (製造例1)炭素繊維強化熱可塑性樹脂成形材料(X-1)
 上記に示した炭素繊維(A)束に、表1に示す割合で化合物(D)を含浸させて得られた複合体(G)を、(株)日本製鋼所製TEX-30α型2軸押出機(スクリュー直径30mm、L/D=32)の先端に設置された電線被覆法用のコーティングダイ中に通した。一方、表1に示した熱可塑性樹脂(C)をTEX-30α型2軸押出機のメインホッパーから供給し、スクリュー回転数200rpmで溶融混練した。2軸押出機からダイ内に溶融した熱可塑性樹脂(C)を吐出し、複合体(G)の周囲を被覆するように連続的に配置した。得られたストランドを冷却後、カッターでペレット長7mmに切断して、炭素繊維(A)束の長さと成形材料の長さが実質的に同じである長繊維ペレット(X-1)とした。この時、(A)、(C)および(D)の合計100重量部に対し、炭素繊維(A)が30重量部となるように、炭素繊維(A)束の引取速度を調整した。
 (製造例2)炭素繊維強化熱可塑性樹脂成形材料(X-2)
 上記に示した、製造例1と同様にして長繊維ペレット(X-2)を作製した。この時、(A)、(C)および(D)の合計100重量部に対し、炭素繊維(A)が40重量部となるように、炭素繊維(A)束の引取速度を調整した。
 (製造例3)有機繊維強化熱可塑性樹脂成形材料(Y-1)
 上記に示した有機繊維(B)束に、表1に示す割合で化合物(I)を含浸させた複合体(J)を、(株)日本製鋼所製TEX-30α型2軸押出機(スクリュー直径30mm、L/D=32)の先端に設置された電線被覆法用のコーティングダイ中に通した。一方、表1に示した熱可塑性樹脂(H)をTEX-30α型2軸押出機のメインホッパーから供給し、スクリュー回転数200rpmで溶融混練した。2軸押出機からダイ内に溶融した熱可塑性樹脂(H)を吐出し、複合体(J)の周囲を被覆するように連続的に配置した。得られたストランドを冷却後、カッターでペレット長7mmに切断して、有機繊維(B)束の長さと成形材料の長さが実質的に同じである長繊維ペレット(Y-1)とした。この時、(B)、(H)および(I)の合計100重量部に対し、有機繊維(B)が30重量部となるように、有機繊維(B)束の引取速度を調整した。
 (製造例4)有機繊維強化熱可塑性樹脂成形材料(Y-2)
 上記に示した、製造例3と同様にして長繊維ペレット(Y-2)を作製した。この時、(B)、(H)および(I)の合計100重量部に対し、有機繊維(B)が40重量部となるように、有機繊維(B)束の引取速度を調整した。
 (製造例5)有機繊維強化熱可塑性樹脂成形材料(Y-3)
 上記に示した、製造例3と同様にして長繊維ペレット(Y-3)を作製した。この時、(B)、(H)および(I)の合計100重量部に対し、有機繊維(B)が50重量部となるように、有機繊維(B)束の引取速度を調整した。
 (製造例6)有機繊維強化熱可塑性樹脂成形材料(Y-4)
 上記に示した有機繊維(B)束に、表1に示す割合で化合物(I)を含浸させた複合体(J)を、(株)日本製鋼所製TEX-30α型2軸押出機(スクリュー直径30mm、L/D=32)内で溶融させた熱可塑性樹脂(H)と共に、スクリュー回転速度を200rpmに設定し、シリンダー内で溶融混練し、ダイ先端から吐出されるストランドを冷却固化後、カッターでペレット長7mmに切断しペレット(Y-4)を作製した。この時、(B)、(H)および(I)の合計100重量部に対し、有機繊維(B)が30重量部となるように、有機繊維(B)束の引取速度を調整した。
 (実施例1)
 (株)日本製鋼所製TEX-30α型2軸押出機(スクリュー直径30mm、L/D=32)の先端に設置された電線被覆法用のコーティングダイを設置した長繊維強化樹脂ペレット製造装置を使用し、押出機シリンダー温度を220℃に設定し、表2に示した熱可塑性樹脂(C)をメインホッパーから供給し、スクリュー回転数200rpmで溶融混練した。200℃にて加熱溶融させた化合物(D)を、(A)~(C)の合計100重量部に対し、8重量部となるように吐出量を調整し、溶融した熱可塑性樹脂(C)を吐出するダイス口(直径3mm)へ供給して、炭素繊維(A)および有機繊維(B)からなる繊維束(E)の周囲を被覆するように連続的に配置した。この時の繊維束(E)内部断面は、炭素繊維(A)および有機繊維(B)が偏在していた。偏在状態は、炭素繊維(A)、有機繊維(B)のそれぞれ少なくとも一部が、熱可塑性樹脂(C)に接していた。得られたストランドを冷却後、カッターでペレット長7mmに切断し、長繊維ペレットとした。この時、(A)~(C)の合計100重量部に対し、炭素繊維(A)が20重量部、有機繊維(B)が10重量部となるように、引取速度を調整した。
 こうして得られた長繊維ペレットを、(株)日本製鋼所製射出成形機J110ADを用いて、射出時間5秒、背圧5MPa、保圧力20MPa、保圧時間10秒、シリンダー温度230℃、金型温度60℃の条件で射出成形することにより、成形品としてのISO型ダンベル試験片および80mm×80mm×2mmの試験片を作製した。ここで、シリンダー温度とは、射出成形機の成形材料を加熱溶融する部分の温度を示し、金型温度とは、所定の形状にするための樹脂を注入する金型の温度を示す。得られた試験片(成形品)を、温度23℃、50%RHに調整された恒温恒湿室に24時間静置後に特性評価に供した。前述の方法により評価した評価結果をまとめて表2に示した。
 (実施例2)
 有機繊維(B)にポリエステル(PET)繊維4を用いたこと以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表2に示した。
 (実施例3)
 有機繊維(B)にポリエステル(PET)繊維5を用いたこと以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表2に示した。
 (実施例4)
 有機繊維(B)にポリエステル(PET)繊維6を用いたこと以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表2に示した。
 (実施例5)
 射出成形を射出時間3秒、背圧10MPaと設定したこと以外は、実施例3と同様にして成形品を作製し、評価を行った。評価結果はまとめて表2に示した。
 (実施例6)
 (A)~(C)の合計100重量部に対し、炭素繊維(A)が30重量部、熱可塑性樹脂(C)が60重量部、化合物(D)が11重量部となるようにした以外は、実施例2と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表3に示した。
 (実施例7)
 (A)~(C)の合計100重量部に対し、有機繊維(B)が30重量部、熱可塑性樹脂(C)50重量部、化合物(D)が14重量部となるようにした以外は、実施例2と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表3に示した。
 (実施例8)
 繊維束(E)において、炭素繊維(A)が有機繊維(B)を内包するように配列した以外は、実施例2と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表3に示した。
 (実施例9)
 繊維束(E)において、有機繊維(B)が炭素繊維(A)を内包するように配列した以外は、実施例2と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表3に示した。
 (実施例10)
 製造例1により得られた長繊維ペレット(X-1)と製造例3により得られた長繊維ペレット(Y-1)を、(X-1)および(Y-1)の合計100重量部に対して、(X-1)が67重量部、(Y-1)が33重量部となるようにドライブレンドして成形材料を作製した。得られた成形材料全体としては炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)が22重量部、有機繊維(B)が12重量部、熱可塑性樹脂(C)が66重量部、化合物(D)が9重量部となり、この成形材料について、前述の方法により評価した評価結果をまとめて表4に示した。
 (実施例11)
 製造例1により得られた長繊維ペレット(X-1)、製造例4により得られた長繊維ペレット(Y-2)と、表4に示した熱可塑性樹脂(C)のペレットを、(X-1)が17重量部、(Y-2)が75重量部、(C)が8重量部となるようにドライブレンドした以外は、実施例9と同様にして成形材料を作製し、評価を行った。得られた成形材料全体としては炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)が6重量部、有機繊維(B)が33重量部、熱可塑性樹脂(C)が61重量部、化合物(D)が10重量部となり、この成形材料の評価結果はまとめて表4に示した。
 (実施例12)
 製造例2により得られた長繊維ペレット(X-2)および製造例4により得られた長繊維ペレット(Y-2)を、(X-2)および(Y-2)の合計100重量部に対して、(X-2)が75重量部、(Y-2)が25重量部となるようにドライブレンドした以外は、実施例9と同様にして成形材料を作製し、評価を行った。得られた成形材料全体としては炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)が33重量部、有機繊維(B)が11重量部、熱可塑性樹脂(C)が56重量部、化合物(D)が11重量部となり、この成形材料の評価結果はまとめて表4に示した。
 (実施例13)
 長繊維ペレット(Y-1)にかえて製造例6により得られたペレット(Y-4)を用いた以外は、実施例10と同様にして成形材料を作製し、評価を行った。得られた成形材料全体としては炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)が22重量部、有機繊維(B)が11重量部、熱可塑性樹脂(C)が67重量部、化合物(D)が9重量部となり、この成形材料の評価結果はまとめて表4に示した。
 (比較例1)
 有機繊維(B)にPET繊維2を用いたこと以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例2)
 (A)~(C)の合計100重量部に対し、炭素繊維(A)が3重量部、熱可塑性樹脂(C)が87重量部、化合物(D)が6重量部となるようにした以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例3)
 (A)~(C)の合計100重量部に対し、炭素繊維(A)が50重量部、熱可塑性樹脂(C)が40重量部、化合物(D)が14重量部となるようにした以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例4)
 (A)~(C)の合計100重量部に対し、有機繊維(B)が50重量部、熱可塑性樹脂(C)が30重量部、化合物(D)が16重量部となるようにした以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例5)
 射出成形における背圧力を13MPaとした以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。   
 (比較例6)
 射出成形における射出時間を0.5秒とし、背圧力を15MPaとした以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例7)
 有機繊維(B)にPET繊維1を用いたこと以外は、実施例1と同様にして成形品を作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例8)
 (A)~(C)の合計100重量部に対し、炭素繊維(A)が3重量部、有機繊維(B)が20重量部、熱可塑性樹脂(C)が77重量部、化合物(D)が8重量部となるようにした以外は、実施例1と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表6に示した。
 (比較例9)
 (A)~(C)の合計100重量部に対し、炭素繊維(A)が10重量部、有機繊維(B)が50重量部、熱可塑性樹脂(C)が40重量部、化合物(D)が16重量部となるようにした以外は、実施例1と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表5に示した。
 (比較例10)
 繊維束(E)内部断面において、炭素繊維(A)および有機繊維(B)が均一に混在する状態で配列させた以外は、実施例1と同様にして長繊維ペレットを作製し、評価を行った。評価結果はまとめて表6に示した。
 (比較例11)
 製造例1により得られた長繊維ペレット(X-1)と、表7に示した熱可塑性樹脂(C)ペレットを、(X-1)および(C)の合計100重量部に対して、(X-1)が67重量部、(C)が33重量部となるようにドライブレンドした以外は、実施例7と同様にして成形材料を作製し、評価を行った。得られた成形材料全体としては炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)が20重量部、有機繊維(B)が0重量部、熱可塑性樹脂(C)が80重量部、化合物(D)が5重量部となり、この成形材料の評価結果はまとめて表7に示した。
 (比較例12)
 製造例1により得られた長繊維ペレット(X-1)、製造例5により得られた長繊維ペレット(Y-3)と、表7に示した熱可塑性樹脂(C)ペレットを、(X-1)、(Y-3)および(C)の合計100重量部に対して、(X-1)が10重量部、(Y-3)が20重量部、(C)が70重量部となるようにドライブレンドした以外は、実施例7と同様にして成形材料を作製し、評価を行った。得られた成形材料全体としては炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)が3重量部、有機繊維(B)が11重量部、熱可塑性樹脂(C)が86重量部、化合物(D)が3重量部となり、この成形材料の評価結果はまとめて表7に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例1~13いずれの材料も、炭素繊維(A)および有機繊維(B)の分散性に優れ、高い衝撃強度(シャルピー衝撃強度)と良好な表面外観を示した。
 一方、比較例1、7では、有機繊維(B)の数平均繊維径が小さいため、表面外観が不十分であった。比較例2、8、12は、炭素繊維(A)の含有量が少ないため、衝撃強度および曲げ強度が低い結果となった。比較例3は、炭素繊維(A)の含有量が多いため、分散性が低く、衝撃強度および表面外観が低い結果となった。比較例4、9は、有機繊維(B)の含有量が多いため、有機繊維(B)同士の絡み合いが多く、分散性および表面外観が低下し、また、繊維同士の接触増加による繊維破断が起きたため、衝撃強度が低い結果となった。比較例5、6では、炭素繊維(A)または有機繊維(B)の平均繊維長が短いため、繊維補強効果が弱く、衝撃強度が低い結果となった。比較例10は、成形材料の繊維束(E)内部断面において、炭素繊維(A)と有機繊維(B)を均一に混在する状態で配列させたので、繊維束(E)内での繊維同士の絡み合いが多く、炭素繊維(A)の平均繊維長が短くなり、また、成形品内に均一分散せず、衝撃強度が低い結果となった。比較例11は、有機繊維(B)を含まないため、繊維補強効果が弱く、衝撃強度が低い結果となった。
 本発明の繊維強化熱可塑性樹脂成形品は、優れた繊維分散性を有し、優れた力学特性、特に衝撃強度と良好な表面外観を有するため、電気・電子機器、OA機器、家電機器、筐体および自動車の部品などに好適に用いられる。
1 炭素繊維
2 有機繊維
3 熱可塑性樹脂
4 繊維輪郭部A
5 繊維輪郭部Aと向かい合う繊維輪郭部A’
6 最短距離

Claims (9)

  1. 炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部、有機繊維(B)を1~45重量部、熱可塑性樹脂(C)を10~94重量部含む繊維強化熱可塑性樹脂成形品であって、
    繊維強化熱可塑性樹脂成形品中における前記炭素繊維(A)の平均繊維長(L)が0.3~3mmであり、
    繊維強化熱可塑性樹脂成形品中における前記有機繊維(B)の平均繊維長(L)が0.5~5mmであり、数平均繊維径(d)が35~300μmである繊維強化熱可塑性樹脂成形品。
  2. 前記繊維強化熱可塑性樹脂成形品中における前記有機繊維(B)のアスペクト比(L[μm]/d[μm])が5~100である、請求項1に記載の繊維強化熱可塑性樹脂成形品。
  3. 前記繊維強化熱可塑性樹脂成形品中における前記炭素繊維(A)の換算本数nに対する前記有機繊維(B)の換算本数nの比(n/n)が0.001~0.01である、請求項1または2に記載の繊維強化熱可塑性樹脂成形品。
  4. 前記繊維強化熱可塑性樹脂成形品中における前記有機繊維(B)の数平均繊維径(d)が50~150μmである、請求項1~3のいずれかに記載の繊維強化熱可塑性樹脂成形品。
  5. 前記有機繊維(B)がポリアミド繊維、ポリエステル繊維、ポリアリーレンスルフィド繊維およびフッ素繊維からなる群より選択される少なくとも1種である請求項1~4のいずれかに記載の繊維強化熱可塑性樹脂成形品。
  6. 炭素繊維(A)、有機繊維(B)および熱可塑性樹脂(C)の合計100重量部に対して、炭素繊維(A)を5~45重量部、有機繊維(B)を1~45重量部、熱可塑性樹脂(C)を10~94重量部、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を1~25重量部含む繊維強化熱可塑性樹脂成形材料であって、前記有機繊維(B)の数平均繊維径(d)が35~300μmであり、炭素繊維(A)と有機繊維(B)を含む繊維束(E)に化合物(D)を含浸させてなる複合体(F)の外側に熱可塑性樹脂(C)を含み、繊維束(E)断面において炭素繊維(A)と有機繊維(B)が偏在し、繊維束(E)の長さと繊維強化熱可塑性樹脂成形材料の長さが実質的に同じである繊維強化熱可塑性樹脂成形材料。
  7. 炭素繊維(A)、熱可塑性樹脂(C)および200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)の合計100重量部に対して、炭素繊維(A)を5~45重量部、熱可塑性樹脂(C)を35~94重量部、200℃における溶融粘度が熱可塑性樹脂(C)より低い化合物(D)を1~25重量部含み、炭素繊維(A)に化合物(D)を含浸させてなる複合体(G)の外側に熱可塑性樹脂(C)を含み、炭素繊維(A)の長さと炭素繊維強化熱可塑性樹脂成形材料の長さが実質的に同じである炭素繊維強化熱可塑性樹脂成形材料(X)と、有機繊維(B)、熱可塑性樹脂(H)および200℃における溶融粘度が熱可塑性樹脂(H)より低い化合物(I)の合計100重量部に対し、有機繊維(B)を1~45重量部、熱可塑性樹脂(H)を35~94重量部、化合物(I)を1~25重量部含み、前記有機繊維(B)の数平均繊維径(d)が35~300μmである有機繊維強化熱可塑性樹脂成形材料(Y)とを含む繊維強化熱可塑性樹脂成形材料。
  8. 前記繊維強化熱可塑性樹脂成形材料中における前記有機繊維(B)のアスペクト比(L/d)が10~500である、請求項6または7に記載の繊維強化熱可塑性樹脂成形材料。
  9. 前記有機繊維(B)がポリアミド繊維、ポリエステル繊維、ポリアリーレンスルフィド繊維およびフッ素繊維からなる群より選択される少なくとも1種である請求項6~8のいずれかに記載の繊維強化熱可塑性樹脂成形材料。
PCT/JP2016/081266 2015-10-30 2016-10-21 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料 WO2017073483A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680061407.2A CN108350192B (zh) 2015-10-30 2016-10-21 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
JP2016565713A JP6123956B1 (ja) 2015-10-30 2016-10-21 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
EP16859713.6A EP3369765A4 (en) 2015-10-30 2016-10-21 MOLDED FIBER REINFORCED THERMOPLASTIC RESIN AND MOLDED FIBER REINFORCED THERMOPLASTIC RESIN FORMING
KR1020187013825A KR20180079345A (ko) 2015-10-30 2016-10-21 섬유 강화 열가소성 수지 성형품 및 섬유 강화 열가소성 수지 성형 재료
US15/770,132 US10584218B2 (en) 2015-10-30 2016-10-21 Fiber-reinforced thermoplastic resin molded article, and fiber-reinforced thermoplastic resin molding material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015214363 2015-10-30
JP2015-214363 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073483A1 true WO2017073483A1 (ja) 2017-05-04

Family

ID=58631515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081266 WO2017073483A1 (ja) 2015-10-30 2016-10-21 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Country Status (7)

Country Link
US (1) US10584218B2 (ja)
EP (1) EP3369765A4 (ja)
JP (1) JP6123956B1 (ja)
KR (1) KR20180079345A (ja)
CN (1) CN108350192B (ja)
TW (1) TWI784935B (ja)
WO (1) WO2017073483A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529647A (ja) * 2016-10-17 2019-10-17 ボレアリス エージー 繊維補強ポリプロピレン複合材料
JP2019529648A (ja) * 2016-10-17 2019-10-17 ボレアリス エージー 繊維補強ポリプロピレン複合材料
CN110785454A (zh) * 2017-08-08 2020-02-11 东丽株式会社 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
US11015047B1 (en) 2017-09-05 2021-05-25 Toray Industries, Inc. Moldings of fiber-reinforced thermoplastic resin
WO2021106714A1 (ja) * 2019-11-25 2021-06-03 東レ株式会社 繊維強化熱可塑性樹脂成形品
WO2022230800A1 (ja) * 2021-04-26 2022-11-03 東レ株式会社 プリプレグ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967585B2 (en) 2017-03-16 2021-04-06 Guerrilla Industries LLC Composite structures and methods of forming composite structures
CN109853242B (zh) * 2019-01-12 2022-01-04 珠海锦帛复合材料有限公司 一种碳纤维上浆剂及其制备方法
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203306A (ja) * 1987-02-19 1988-08-23 Kawasaki Steel Corp 繊維強化樹脂材料の製造方法
JP2002129027A (ja) 2000-10-25 2002-05-09 Teijin Chem Ltd 熱可塑性樹脂組成物
JP2009013331A (ja) * 2007-07-06 2009-01-22 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物および成形品
JP2009114332A (ja) 2007-11-07 2009-05-28 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物および成形品
JP2012184286A (ja) * 2011-03-03 2012-09-27 Teijin Techno Products Ltd 繊維強化プラスチック及びその製造方法
JP2014062143A (ja) 2012-09-19 2014-04-10 Teijin Ltd 繊維強化プラスチック
WO2014098103A1 (ja) 2012-12-21 2014-06-26 東レ株式会社 繊維強化熱可塑性樹脂成形品、繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形材料の製造方法
JP2015044914A (ja) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート及び繊維強化プラスチック成形体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539577B2 (ja) 1994-07-07 2004-07-07 東洋紡績株式会社 繊維強化複合材料
CN1315463A (zh) * 2000-03-30 2001-10-03 上海杰事杰新材料股份有限公司 一种树脂/纤维复合材料及其制备方法
TWI414543B (zh) * 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
JP2011089060A (ja) 2009-10-23 2011-05-06 Teijin Techno Products Ltd 繊維強化樹脂複合体
JP6087545B2 (ja) * 2012-09-05 2017-03-01 帝人株式会社 繊維強化プラスチック成形用基材
JP6497050B2 (ja) 2013-12-24 2019-04-10 東レ株式会社 繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203306A (ja) * 1987-02-19 1988-08-23 Kawasaki Steel Corp 繊維強化樹脂材料の製造方法
JP2002129027A (ja) 2000-10-25 2002-05-09 Teijin Chem Ltd 熱可塑性樹脂組成物
JP2009013331A (ja) * 2007-07-06 2009-01-22 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物および成形品
JP2009114332A (ja) 2007-11-07 2009-05-28 Mitsubishi Chemicals Corp 長繊維強化複合樹脂組成物および成形品
JP2012184286A (ja) * 2011-03-03 2012-09-27 Teijin Techno Products Ltd 繊維強化プラスチック及びその製造方法
JP2014062143A (ja) 2012-09-19 2014-04-10 Teijin Ltd 繊維強化プラスチック
WO2014098103A1 (ja) 2012-12-21 2014-06-26 東レ株式会社 繊維強化熱可塑性樹脂成形品、繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形材料の製造方法
JP2015044914A (ja) * 2013-08-27 2015-03-12 王子ホールディングス株式会社 繊維強化プラスチック成形体用シート及び繊維強化プラスチック成形体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529647A (ja) * 2016-10-17 2019-10-17 ボレアリス エージー 繊維補強ポリプロピレン複合材料
JP2019529648A (ja) * 2016-10-17 2019-10-17 ボレアリス エージー 繊維補強ポリプロピレン複合材料
US10752762B2 (en) 2016-10-17 2020-08-25 Borealis Ag Fiber reinforced polypropylene composite
US11674025B2 (en) 2016-10-17 2023-06-13 Borealis Ag Fiber reinforced polypropylene composite
CN110785454A (zh) * 2017-08-08 2020-02-11 东丽株式会社 纤维增强热塑性树脂成型品及纤维增强热塑性树脂成型材料
EP3666817A4 (en) * 2017-08-08 2021-04-28 Toray Industries, Inc. MOLDED ARTICLE MADE FROM FIBER-REINFORCED THERMOPLASTIC RESIN AND MOLDED MATERIAL MADE FROM FIBER-REINFORCED THERMOPLASTIC RESIN
US11529769B2 (en) 2017-08-08 2022-12-20 Toray Industries, Inc. Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
US11015047B1 (en) 2017-09-05 2021-05-25 Toray Industries, Inc. Moldings of fiber-reinforced thermoplastic resin
EP3680280A4 (en) * 2017-09-05 2021-06-02 Toray Industries, Inc. FIBER REINFORCED THERMOPLASTIC RESIN MOLDINGS
WO2021106714A1 (ja) * 2019-11-25 2021-06-03 東レ株式会社 繊維強化熱可塑性樹脂成形品
WO2022230800A1 (ja) * 2021-04-26 2022-11-03 東レ株式会社 プリプレグ

Also Published As

Publication number Publication date
US10584218B2 (en) 2020-03-10
EP3369765A4 (en) 2019-09-04
US20180312648A1 (en) 2018-11-01
KR20180079345A (ko) 2018-07-10
EP3369765A1 (en) 2018-09-05
TWI784935B (zh) 2022-12-01
JP6123956B1 (ja) 2017-05-10
JPWO2017073483A1 (ja) 2017-10-26
TW201728647A (zh) 2017-08-16
CN108350192A (zh) 2018-07-31
CN108350192B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP5633660B1 (ja) 繊維強化熱可塑性樹脂成形品、繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形材料の製造方法
JP6123955B1 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP6123956B1 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JP6957859B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
US11529769B2 (en) Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
US11505661B2 (en) Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
JP6554815B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016565713

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770132

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013825

Country of ref document: KR

Kind code of ref document: A