TWI784540B - 半導體裝置及電力轉換裝置 - Google Patents

半導體裝置及電力轉換裝置 Download PDF

Info

Publication number
TWI784540B
TWI784540B TW110118723A TW110118723A TWI784540B TW I784540 B TWI784540 B TW I784540B TW 110118723 A TW110118723 A TW 110118723A TW 110118723 A TW110118723 A TW 110118723A TW I784540 B TWI784540 B TW I784540B
Authority
TW
Taiwan
Prior art keywords
metal
guard ring
mentioned
semiconductor device
semiconductor substrate
Prior art date
Application number
TW110118723A
Other languages
English (en)
Other versions
TW202213772A (zh
Inventor
古川智康
川瀬大助
Original Assignee
日商日立功率半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立功率半導體股份有限公司 filed Critical 日商日立功率半導體股份有限公司
Publication of TW202213772A publication Critical patent/TW202213772A/zh
Application granted granted Critical
Publication of TWI784540B publication Critical patent/TWI784540B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本發明之目的在於提供一種於具有藉由護環包圍半導體主動區域之終端構造之半導體裝置中,可抑制連接於護環之金屬層之腐蝕的高可靠性之半導體裝置。 本發明之特徵在於具備:主動區域,其形成於半導體基板之主面;及護環區域,其以包圍上述主動區域之方式形成於上述主面;上述護環區域具有:護環,其形成於上述半導體基板;層間絕緣膜,其以覆蓋上述護環之方式形成於上述半導體基板上;場板,其配置於上述層間絕緣膜上且經由貫通上述層間絕緣膜之接觸件與上述護環電性連接;及保護膜,其覆蓋上述場板;上述場板以與上述護環相接之第1金屬、與相接配置於上述第1金屬上且標準電位較上述第1金屬低之第2金屬之積層構造構成,上述第1金屬與上述保護膜之接觸面積相對於上述第2金屬與上述保護膜之接觸面積之比例為0.05以下。

Description

半導體裝置及電力轉換裝置
本發明係關於一種半導體裝置之構造,尤其關於一種有效應用於具有藉由護環包圍半導體主動區域之終端構造之半導體裝置的技術。
半導體裝置於系統LSI(Large Scale Integration:大型積體電路)或電力轉換裝置、混合動力汽車、或電動汽車等之控制裝置等廣闊之領域中使用。例如,反相器等電力轉換裝置之主要零件即IGBT模組(Insulated Gate Bipolar Transistor:絕緣閘極型雙極電晶體,以下簡稱為IGBT)係面向鐵路或電力、電動汽車而使用,除低成本化與小型化外,還謀求於高溫多濕環境下亦高度可靠之功率模組。同樣,謀求功率模組內之功率器件晶片除低成本化與小型化外,於高溫多濕環境下亦實現高可靠化之新技術。
此種背景下,作為包圍功率器件晶片之主動區域之終端構造之小型化技術,例如於專利文獻1中,提案有一種技術,其特徵在於具有連接於護環之障壁金屬層與場電極之積層構造,且於橫穿終端區域之方向,障壁金屬層之一部分自場電極之兩側突出。
藉此,可兼顧高耐壓化與小型化。
又,於專利文獻2之圖19中,提案有一種技術,其於SBD元件中,具有互補性設置於構成陽極電極之鋁系金屬膜上之有機系最終鈍化膜與UBM(Under Bump Metal:凸塊下金屬)層,由包含下層鋁系金屬膜、鋁擴散障壁金屬膜、上層鋁系金屬膜等之多層鋁系金屬構成陽極電極與場電極,且上述SBD元件具有設置於半導體基板之主面之肖特基障壁二極體(Schottky Barrier Diode,以下稱為SBD)之活性區域、及自其端部設置於外側之周邊部之PSG(Phosphorus Silicate Glass:磷矽酸鹽玻璃)膜被覆區域。
藉此,可抑制裂縫產生。
又,於專利文獻3中,提案有一種構造,其中圍繞活性區域之周圍之邊緣終端區域具有:電場緩和機構,其包含護環、與護環接觸之第1場板、及隔著層間絕緣膜設置於第1場板上之第2場板;且第2場板之厚度較第1場板之厚度厚,第2場板間之間隔較第1場板間之間隔寬,於第2場板與層間絕緣膜之間,設置有與第2場板導電接觸之障壁金屬膜,障壁金屬膜之間隔與第1場板間之間隔相等。
藉此,可提高對外來電荷之屏蔽效果。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2010-251404號公報 [專利文獻2]日本專利特開2011-100811號公報 [專利文獻3]國際公開第2014/084124號
[發明所欲解決之問題]
然而,本申請案發明者等研究時判明如專利文獻1或專利文獻3所示,於橫穿終端區域之方向上,障壁金屬層之一部分自場電極之兩側突出之情形時,於高溫多濕下,有異種金屬局部電池化而腐蝕之電腐蝕的問題。
電腐蝕為因異種金屬間之標準電位差引起之局部腐蝕,存在下式(1)之關係。
[數1]
Figure 02_image001
此處,P:腐蝕量、P0:金屬單獨時之腐蝕量、A:標準電位較高之金屬之面積、B:標準電位較低之金屬之面積。另,該式中之面積為表面積。
於專利文獻1、3中,存在障壁金屬層之標準電位較高,以鋁合金形成之場電極之標準電位較低之關係,因上述式(1)之A/B(障壁金屬層之面積/場電極之面積)變大,故電腐蝕加速而於高溫多濕下可靠性存有問題。
又,如專利文獻2所示,於以Al/障壁金屬膜/Al之3層構造,使障壁金屬膜不突出而端部位置一致之情形時,上側層之Al之表面積為上表面部分與側面部分,與此相對,障壁金屬膜與下層側之Al之表面積僅為側面部分,因而下層側之Al之表面積較上層側之Al小。因此,於下層側之Al中,與上層側之Al相比,上述式(1)之A/B(障壁金屬膜之面積/場電極之面積)變大,與上層側之Al相比,下層側之Al存在所謂容易電腐蝕之問題。
因此,本發明之目的在於提供一種於具有藉由護環包圍半導體主動區域之終端構造之半導體裝置中,可抑制連接於護環之金屬層之腐蝕之可靠性較高之半導體裝置及使用其之電力轉換裝置。 [解決問題之技術手段]
為解決上述問題,本發明之特徵在於具備:主動區域,其形成於半導體基板之主面;及護環區域,其以包圍上述主動區域之方式形成於上述主面;且上述護環區域具有:護環,其形成於上述半導體基板;層間絕緣膜,其以覆蓋上述護環之方式形成於上述半導體基板上;場板,其配置於上述層間絕緣膜上且經由貫通上述層間絕緣膜之接觸件與上述護環電性連接;及保護膜,其覆蓋上述場板;且上述場板以與上述護環相接之第1金屬、與相接配置於上述第1金屬上且標準電位較上述第1金屬低之第2金屬之積層構造構成;上述第1金屬與上述保護膜之接觸面積相對於上述第2金屬與上述保護膜之接觸面積之比例為0.05以下。
又,本發明之電力轉換裝置之特徵在於,具備:一對直流端子;數量與交流之相數相同之交流端子;及電力轉換單位,其連接於上述一對直流端子間,包含將開關元件與相反極性之二極體並聯連接之並聯電路2個串聯連接之構成,且數量與上述並聯電路之相互連接點不同之交流端子所連接之交流相數相同;且上述開關元件為上述半導體裝置。 [發明之效果]
根據本發明,可提供一種可靠性較高之半導體裝置,其於具有藉由護環包圍半導體主動區域之終端構造之半導體裝置中,可抑制連接於護環之金屬層之腐蝕。
藉此,可有助於半導體裝置及使用其之電力轉換裝置之可靠性提高與長壽命化。
上述以外之問題、構成及效果藉由以下實施形態之說明而明確。
以下,對本發明之實施形態參照圖式詳細說明。另,於各圖中,參照編號相同者表示同一構成要件或具備類似功能之構成要件。又,p-、p、p+表示半導體層之導電型為p型,且相對之雜質濃度按該順序變高。同樣,n-、n、n+表示半導體層之導電型為n型,且相對之雜質濃度按該順序變高。 [實施例1]
參照圖1至圖7,對本發明之實施例1之半導體裝置與其製造方法進行說明。
圖1係本實施例之半導體裝置即IGBT半導體晶片101之俯視圖。於晶片之中央設置有IGBT之主動區域103。又,設置有IGBT之閘極電壓施加用之閘極電極PAD104。於IGBT半導體晶片101之外周部設置有晶片終端護環區域102。
圖2係IGBT半導體晶片101之主動區域103與晶片終端護環區域102之剖視圖。於主動區域103內,週期性配置溝槽閘極207,且於相鄰之溝槽閘極207間設置有接觸件203。接觸件203貫通絕緣層(層間絕緣膜202)與第1金屬層即射電極201連接。
溝槽閘極207包含閘極絕緣膜208與嵌入溝槽內之多晶矽(Poly-Si),以形成於n-半導體基板209之表面之p基極層206與n+源極層204溝槽MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金屬氧化物半導體場效電晶體),具有進行IGBT半導體晶片101之接通/斷開(ON/OFF)之功能。又,於p基極層206設置有p+層205用以降低與接觸件203之接觸電阻。
溝槽閘極207藉由嵌入溝槽內之多晶矽(Poly-Si)連接於場氧化膜222上之多晶矽閘極配線214,且介隔絕緣層(層間絕緣膜202)藉由接觸件203連接於閘極電極213。
於晶片終端護環區域102,複數個第2導電型(p型)之護環215配置於n-半導體基板209之表面,於晶片終端,第1導電型(n型)之通道擋止件216配置於n-半導體基板209之表面。
複數個第2導電型(p型)之護環215各者介隔場氧化膜222及絕緣層(層間絕緣膜202)藉由對應之接觸件203,分別與對應之第2金屬層217連接。第1導電型(n型)之通道擋止件216介隔絕緣層(層間絕緣膜202)藉由接觸件203,連接於第3金屬層218。
第2金屬層217覆蓋對應之第2導電型(p型)之護環215之表面上,且至少以2種以上之異種金屬之積層構造構成,該異種金屬之積層構造係第1金屬219與對應之第2導電型(p型)之護環215相接而形成,標準電位較第1金屬219低之第2金屬220相接形成於第1金屬219上。
又,連接於第2導電型(p型)之護環215之第2金屬層217、與連接於第1導電型(n型)之通道擋止件216之第3金屬層218由有機系鈍化膜(保護膜)221覆蓋。
此處,以第1金屬層219與有機系鈍化膜(保護膜)221之接觸面積相對於第2金屬220與有機系鈍化膜(保護膜)221之接觸面積之比例為0.05以下之方式,形成有第1金屬219與第2金屬220之積層構造。
於n-半導體基板209之背面即n-半導體基板209之與形成溝槽閘極207之側之主面(正面)為相反側之主面(背面),依序形成有n型緩衝層210、p型集極層211、及集極電極212。
使用圖3至圖6,對上述第1金屬219與第2金屬220之關係詳細地進行說明。另,為容易理解說明,於圖3及圖5中顯示由以有機系鈍化膜(保護膜)221覆蓋第2金屬層217之前之狀態,即第2金屬220之上表面及側面與第1金屬219之未由第2金屬220覆蓋之上表面及側面露出之狀態。
圖3係顯示護環部之要部剖面中之第1金屬219之露出表面積A與第2金屬220之露出表面積B之關係之模式圖。圖3之左圖(a)係顯示第1金屬219之露出表面積A相對於第2金屬220之露出表面積B之比例較大之情形,圖3之右圖(b)係顯示第1金屬219之露出表面積A相對於第2金屬220之露出表面積B之比例較小之情形。
圖4係顯示第1金屬219之腐蝕量與第1金屬219之露出表面積A相對於第2金屬220之露出表面積B之比例之關係的特性圖。根據本案發明者等之研究,可知因上述之電流反應存在式(1)之關係,故如圖4所示,第1金屬219之露出表面積A相對於第2金屬220之露出表面積B之比例在0.05以下之情形時,可抑制第1金屬219之腐蝕。
圖5係顯示護環部之要部剖面中之第1金屬219上表面之面積Ts1由第2金屬220之面積Bs1覆蓋之比例的模式圖。圖5之左圖(a)顯示第1金屬219上表面(面積:Ts1)由第2金屬220(面積:Bs1)覆蓋之比例較小之情形,圖5之右圖(b)顯示第1金屬219上表面(面積:Ts1)由第2金屬220(面積:Bs1)覆蓋之比例較大之情形。
圖6係顯示第1金屬219之腐蝕量與第1金屬219上表面(面積:Ts1)由第2金屬220(面積:Bs1)覆蓋之比例之關係的特性圖。於高溫多濕條件下,有時封裝內或晶圓製程步驟中殘留之溴離子(Br -)或氯離子(Cl -)、氟離子(F -)等溶入於水分中,該等鹵素成分移動至晶片終端護環區域102之+電位側,成為洩漏路徑或腐蝕之要因。此外,異種金屬局部電池化,成為腐蝕加速之要因。
根據本案發明者等之研究,如圖6所示,可知第1金屬219上表面(面積:Ts1)由第2金屬220(面積:Bs1)覆蓋之比例為90%以上之情形時,可抑制第1金屬219之腐蝕。另,於圖5中,Bs1定義為除接觸件203外之部分,但於圖5中,接觸件203於紙面深度方向亦連續形成,即便有接觸件203斷開之部分,亦因佔全體之1%左右,故於圖6所示之計算結果中為誤差範圍內。
圖7係顯示本實施例(圖2)之IGBT半導體晶片101之製造製程之圖。
<<(a)P井形成>> 首先,準備n-半導體基板209(例如Si晶圓等之半導體晶圓)。
接著,於n-半導體基板209之主面(正面)上成膜絕緣膜(例如SiO 2膜),於絕緣膜上塗佈光阻劑後,藉由光微影將光阻劑圖案化用於形成P井301。
接著,以經圖案化之光阻劑為遮罩,藉由離子注入將p型雜質(例如硼)注入n-半導體基板209內,於去除光阻劑後,藉由退火使p型雜質擴散形成P井301。P井301於晶片終端護環區域102中構成第2導電型(p型)之護環215,於主動區域103中構成多晶矽閘極配線214下之電位穩定化用之p型層。
<<(b)溝槽閘極形成>> 接著,於n-半導體基板209之主面(正面)上成膜絕緣膜(例如SiO 2膜),於絕緣膜上塗佈光阻劑後,藉由光微影將光阻劑圖案化用於形成場氧化膜222。於去除光阻劑後,將經圖案化之絕緣膜作為遮罩,對n-半導體基板209之主面(正面)實施熱氧化處理,將場氧化膜222選擇性形成於n-半導體基板209之主面(正面)上。
於去除經圖案化之絕緣膜後,於n-半導體基板209之主面(正面)上成膜絕緣膜(例如SiO 2膜),於將光阻劑塗佈於絕緣膜上後,藉由光微影將光阻劑及絕緣膜圖案化用於形成溝槽。於去除光阻劑後,將經圖案化之絕緣膜作為遮罩,藉由異向性蝕刻形成溝槽。
接著,於溝槽內形成閘極絕緣膜208後,以嵌入溝槽內之方式堆積多晶矽膜,藉由光微影,加工形成溝槽閘極207及多晶矽閘極配線214。
<<(c)p基極層、n +源極層、通道擋止件形成>> 接著,藉由將用於形成p基極層206而,圖案化之光阻劑作為遮罩,進行p型雜質之離子注入,進而進行熱處理,形成p基極層206。
繼而,將用於形成n +源極層204及第1導電型(n型)之通道擋止件216而圖案化之光阻劑作為遮罩,進行n型雜質之離子注入,形成n+源極層204及第1導電型(n型)之通道擋止件216。
<<(d)接觸件形成>> 接著,於n-半導體基板209之主面(正面)上堆積層間絕緣膜202,且對層間絕緣膜202實施平坦化處理。對於平坦化,應用例如BPSG(Boron-Phosphors Silicate Glass:磷化硼矽酸鹽玻璃)膜之回焊或CMP(Chemical Mechanical Polishing:化學機械研磨)等之平坦化方法等。
層間絕緣膜202之平坦化後,藉由光微影與異向性蝕刻,形成接觸孔。此時,接觸孔貫通層間絕緣膜202,進而到達p基極層206、p井301、多晶矽閘極配線214、及第1導電型(n型)之通道擋止件216。藉此,剖視觀察p基極層206之情形時,形成一對n+源極層204且形成與後續步驟中形成之接觸金屬層接觸之槽部。
繼而,將形成有接觸孔之層間絕緣膜202作為遮罩,藉由p型雜質之離子注入,於接觸孔之底部形成p+層205。
接著,例如利用濺鍍使可作為Al電極之障壁層,且如Mo、TiW、TiN、Ti、Co、Ni般與Si進行矽化物反應而使Si接觸面低電阻化之金屬成膜,並進行退火,由此形成矽化物層。
接著,藉由以包含如W般高硬度且高熔點金屬之金屬膜嵌入接觸孔內,進而以蝕刻或CMP平坦化,而形成接觸金屬層(接觸件203)。此時,接觸孔以外之部分於W之平坦化後亦未被去除,而殘留於層間絕緣膜202上。
此處,作為Al電極之障壁層之金屬為抑制電流反應,期望為與Al之標準電位(-1.66 V)之電位差較少之金屬。例如,Ti之標準電位為-1.63 V,Co為-0.277 V,Ni為-0.23 V,Mo為-0.2 V。
<<(e)表面電極、有機系鈍化膜形成>> 其後,堆積以鋁(Al)為主成分之金屬層,且藉由光微影與蝕刻形成第1金屬層即射電極201、第2金屬層217及閘極電極213。鋁之蝕刻藉由異向性乾蝕刻而進行,同時亦加工形成障壁層。
其結果,由第2金屬220(Al)之面積Bs1覆蓋障壁層即第1金屬219(例如Ti)上表面之面積Ts1之比例變大,可抑制電流反應,可抑制障壁層(第1金屬219)之腐蝕。
此外,第1金屬219(障壁層:例如Ti)之露出表面積A相對於第2金屬220(Al)之露出表面積B之比例變小,同樣可抑制電流反應,可抑制障壁層(第1金屬219)之腐蝕。
又,第2金屬層217為覆蓋第2導電型(p型)之護環215之表面上之構造,可提高對水分或離子性物質、可動性離子等外來電荷之屏蔽效果,故高電壓施加期間之n-半導體基板209之電位穩定,電場不易發生變動,且阻止電壓穩定。
其後,使包含聚醯亞胺等之有機系鈍化膜221成膜,並以射電極201露出之方式圖案化。
以上之(a)~(e)步驟為n-半導體基板209之正面側處理。
<<(f)背面n緩衝層、p集極層、集極電極形成>> 接著,藉由背面研磨而自背面側將n-半導體基板209研削至期望之厚度。其後,自n-半導體基板209之背面側對n-半導體基板209進行n型及p型雜質之離子注入,進而進行雷射退火,藉此形成n型緩衝層210及p型集極層211。
另,藉由適當調整離子注入時之加速能量,可形成距離n-半導體基板209之背面之深度不同之n型緩衝層210及p型集極層211。
其後,於n-半導體基板209之背面側藉由濺鍍使例如Al-Ti-Ni-Au等積層金屬層成膜,形成集極電極212。
於本實施例之半導體裝置中,第2金屬層217覆蓋第2導電型(p型)之護環215之表面上,可提高對水分或離子性物質、可動性離子等外來電荷之屏蔽效果。因此,可使高電壓施加期間之n-半導體基板209之電位穩定化,電場不易發生變動,且使阻止電壓穩定化。
又,第2金屬層217由異種金屬之積層構造構成,異種金屬之積層構造係第1金屬219與第2導電型(p型)之護環215相接而形成,標準電位較第1金屬219低之第2金屬220相接形成於第1金屬219上,且第1金屬219之上部面積之90%以上由第2金屬220覆蓋,第1金屬219(障壁層:例如Ti)之上表面之面積Ts1由第2金屬220(Al)之面積Bs1覆蓋之比例變大,可抑制電流反應,可抑制障壁層(第1金屬219)之腐蝕。
此外,第1金屬219(障壁層:例如Ti)之露出表面積A相對於第2金屬220(Al)之露出表面積B之比例變小,同樣可抑制電流反應,可抑制障壁層(第1金屬219)之腐蝕。
又,以有機系鈍化膜221覆蓋晶片終端護環區域102機械保護表面,且進行保護免受水分或離子性物質、可動性離子等外來電荷之侵害。
如以上說明,本實施例之半導體裝置構成為,具備主動區域103,其形成於n-半導體基板209之主面;及晶片終端護環區域102,其以包圍主動區域103之方式形成於n-半導體基板209之主面;晶片終端護環區域102具有:形成於n-半導體基板209之第2導電型(p型)之護環215、以覆蓋第2導電型(p型)之護環215之方式形成於n-半導體基板209上之層間絕緣膜202、配置於層間絕緣膜202上且經由貫通層間絕緣膜202之接觸件203與第2導電型(p型)之護環215電性連接之場板(第2金屬層217)、及覆蓋場板(第2金屬層217)之有機系鈍化膜(保護膜)221,場板(第2金屬層217)係由與第2導電型(p型)之護環215相接之第1金屬219、與相接配置於第1金屬219上且標準電位較第1金屬219低之第2金屬220之積層構造構成,第1金屬219與有機系鈍化膜(保護膜)221之接觸面積相對於第2金屬220與有機系鈍化膜(保護膜)221之接觸面積之比例為0.05以下。
又,第1金屬219之上表面之面積之90%以上由第2金屬220覆蓋。
又,晶片終端護環區域102具有以包圍第2導電型(p型)之護環215之方式形成於n-半導體基板209之第1導電型(n型)之通道擋止件216。
藉此,可實現抑制在高溫多濕下連接於護環之金屬層之腐蝕且抑制在高溫多濕下長期動作時之耐壓劣化或洩漏電流之增大的高度可靠之半導體裝置及使用其之電力轉換裝置。
另,更期望的是,第1金屬219之上表面之大致全體(約100%)由第2金屬220覆蓋,且於剖視觀察場板(第2金屬層217)時,第1金屬219之端部與第2金屬220之端部對齊。藉此,可確實地抑制場板(第2金屬層217)之電腐蝕。
又,於剖視觀察IGBT半導體晶片101時,較佳為場板(第2金屬層217)之兩端自第2導電型(p型)之護環215之兩端突出。其原因在於,可提高晶片終端之場板(第2金屬層217)之電場緩和效果。
又,於本實施例(圖2)中,顯示於n-半導體基板209形成複數個第2導電型(p型)之護環215,複數個第2導電型(p型)之護環215各者經由複數個接觸件203分別與複數塊場板(第2金屬層217)連接之例,但第2導電型(p型)之護環215與場板(第2金屬層217)之組合數並非限定於此者。
例如,亦可構成為,於晶片終端護環區域102,各形成1個第2導電型(p型)之護環215與場板(第2金屬層217)之情形、或於n-半導體基板209形成複數個第2導電型(p型)之護環215,經由複數個接觸件203,與如覆蓋複數個第2導電型(p型)之護環215全體之面積較廣之1個場板(第2金屬層217)連接。
任一種情形時,皆可藉由將構成場板(第2金屬層217)之第1金屬219之面積與第2金屬220之面積設為如上所述之構成,而抑制場板(第2金屬層217)之電腐蝕。 [實施例2]
參照圖8,對本發明之實施例2之半導體裝置進行說明。圖8係本實施例之IGBT半導體晶片101之剖視圖,相當於實施例1(圖2)之變化例。
實施例1(圖2)之晶片終端護環區域102由保護膜即有機系鈍化膜221覆蓋,與此相對,本實施例(圖8)之晶片終端護環區域102由無機系鈍化膜801覆蓋,在該點上與實施例1不同。其他構成與實施例1(圖2)同樣。有機系鈍化膜221具有吸濕性,抑制水分或離子性物質擴散之效果較小,因而藉由將晶片終端護環區域102之保護膜設為SiN、SiON、SiO 2等無機系鈍化膜801,可抑制水分之侵入或離子性物質之擴散。
於本實施例之半導體裝置中,相對於實施例1,可進而防止水分或離子性物質等之侵入,因而可實現抑制在高溫多濕下連接於護環之金屬層之腐蝕,抑制在高溫多濕下長期動作時之耐壓劣化或洩漏電流之增大的可靠度更高之半導體裝置及使用其之電力轉換裝置。 [實施例3]
參照圖9,說明本發明之實施例3之半導體裝置。圖9係本實施例之IGBT半導體晶片101之剖視圖,相當於實施例1(圖2)及實施例2(圖8)之變化例。
本實施例之晶片終端護環區域102由無機系鈍化膜801與有機系鈍化膜221之積層膜覆蓋,在該點上與實施例1及實施例2不同。其他構成與實施例1及實施例2同樣。
無機系鈍化膜801形成於第2金屬層217上。鈍化膜發揮機械保護表面且進行保護免受水分或離子性物質、可動性離子等外來電荷侵害之作用。關於機械保護表面,鈍化膜之厚膜化較為有效。
然而,第2金屬層217之表面具有凹凸,例如若採用SiN作為無機系鈍化膜801並厚膜化,則有因成膜時之應力而發生裂縫的情形。裂縫成為水分或離子性物質之侵入路徑,因而成為對外來電荷之耐壓劣化或洩漏電流增大之原因,招致障壁層(第1金屬219)之腐蝕。
因此,於本實施例中,藉由以無機系鈍化膜801與有機系鈍化膜221之積層膜覆蓋第2金屬層217,將無機系鈍化膜801薄膜化而防止裂縫之產生,機械保護表面效果與防止水分或離子性物質等之侵入,而可實現進而抑制在高溫多濕下連接於護環之金屬層之腐蝕,抑制在高溫多濕下長期動作時之耐壓劣化或洩漏電流之增大的高度可靠之半導體裝置及使用其之電力轉換裝置。 [實施例4]
參照圖10說明將本發明之半導體裝置應用於電力轉換裝置之實施形態之一例。圖10係顯示採用本發明之實施例1~實施例3之半導體裝置作為構成要件之電力轉換裝置600之電路方塊圖。於圖10顯示本實施例之電力轉換裝置600之電路構成、及直流電源與三相交流馬達(交流負載)之連接關係。
於本實施例之電力轉換裝置600中,使用實施例1~實施例3之半導體裝置作為電力開關元件601~606。電力開關元件601~606為例如IGBT。
如圖10所示,本實施例之電力轉換裝置600具備一對直流端子即P端子631、N端子632、數量與交流輸出之相數相同之交流端子即U端子633、V端子634、及W端子635。
又,具備:開關引線,其包含一對電力開關元件601及602之串聯連接,且將連接於該串聯連接點之U端子633作為輸出。以同樣構成具備:開關引線,其包含電力開關元件603及604之串聯連接,且將連接於該串聯連接點之V端子634作為輸出。以同樣構成具備:開關引線,其包含電力開關元件605及606之串聯連接,且將連接於該串聯連接點之W端635作為輸出。
包含電力開關元件601~606之3相量之開關引線連接於P端子631、N端子632之直流端子間,且自未圖示之直流電源供給直流電力。電力轉換裝置600之3相交流端子即U端子633、V端子634、W端子635作為三相交流電源連接於未圖示之三相交流馬達。
於電力開關元件601~606各者,分別反向並聯地連接有二極體621~626。於包含IGBT之電力開關元件601~606之各個閘極輸入端子,連接有閘極驅動電路611~616,且藉由各閘極驅動電路611~616驅動控制。
即,本實施形態之電力轉換裝置600具備如下構成:其係自外部輸入直流電力,將輸入之直流電力轉換為交流電力並輸出之電力轉換裝置,具備用以輸入直流電力之一對直流端子631、632、及與用以輸出交流電力之交流端子且數量與該交流電力之交流相數相同之交流端子633~635,對於相數量之交流端子633~635之各者,於一對直流端子631、632之一端子(P端子631)與另一端子(N端子632)之間,連接將2個並聯電路串聯連接之構成之串聯電路(例如電力開關元件601與二極體621之並聯電路、及電力開關元件602與二極體622之並聯電路之串聯電路),上述2個並聯電路為開關元件(例如電力開關元件601)及極性與該開關元件相反之二極體(例如二極體621)相互並聯連接而成者,且構成該串聯電路之2個並聯電路之相互連接點連接於與該串聯電路對應之相(例如U相)之交流端子(例如U端子633)。
如本實施例,藉由將上述實施例1~實施例3所說明之IGBT半導體晶片101應用於電力轉換裝置之電力開關元件,可謀求電力轉換裝置之可靠性提高與長壽命化。
另,本發明並非限定於上述之實施形態者,而包含多種變化例。例如上述之實施形態係為便於理解地說明本發明而詳細說明者,並非限定於必須具備說明之全部構成者。可將某實施形態之構成之一部分置換為其他實施形態之構成,亦可對某實施形態之構成添加其他實施形態之構成。又,對於各實施形態之構成之一部分,亦可進行其他構成之追加、刪除、置換。
101:IGBT半導體晶片 102:晶片終端護環區域 103:主動區域 104:閘極電極PAD 201:射電極(第1金屬層) 202:層間絕緣膜 203:接觸件 204:n+源極層 205:p+層 206:p基極層 207:溝槽閘極 208:閘極絕緣膜 209:n-半導體基板 210:n型緩衝層 211:p型集極層 212:集極電極 213:閘極電極 214:多晶矽閘極配線 215:第2導電型(p型)之護環 216:第1導電型(n型)之通道擋止件 217:第2金屬層 218:第3金屬層 219:第1金屬 220:第2金屬 221:有機系鈍化膜(保護膜) 222:場氧化膜 301:P井 600:電力轉換裝置 601~606:電力開關元件 611~616:閘極驅動電路 621~626:二極體 631:直流端子 632:直流端子 633:交流端子 634:交流端子 635:交流端子 801:無機系鈍化膜 A:露出表面積 B:露出表面積 Bs1:面積 Ts1:面積
圖1係本發明之實施例1之半導體裝置(IGBT半導體晶片)之俯視圖。 圖2係本發明之實施例1之半導體裝置之剖視圖。 圖3(a)、(b)係顯示護環部之要部剖面中之第1金屬與第2金屬之模式圖。 圖4係顯示本發明之效果之圖。 圖5(a)、(b)係顯示護環部之要部剖面中之第1金屬與第2金屬之模式圖。 圖6係顯示本發明之效果之圖。 圖7(a)~(f)係顯示本發明之實施例1之半導體裝置之製造製程之剖視圖。 圖8係本發明之實施例2之半導體裝置之剖視圖。 圖9係本發明之實施例3之半導體裝置之剖視圖。 圖10係本發明之實施例4之電力轉換裝置之電路方塊圖。
102:終端護環區域
103:主動區域
201:射電極(第1金屬層)
202:層間絕緣膜
203:接觸件
204:n+源極層
205:p+層
206:p基極層
207:溝槽閘極
208:閘極絕緣膜
209:n-半導體基板
210:n型緩衝層
211:p型集極層
212:集極電極
213:閘極電極
214:多晶矽閘極配線
216:第1導電型(n型)之通道擋止件
217:第2金屬層
218:第3金屬層
219:第1金屬
220:第2金屬
221:有機系鈍化膜(保護膜)
222:場氧化膜

Claims (9)

  1. 一種半導體裝置,其特徵在於具備:主動區域,其形成於半導體基板之主面;及護環區域,其以包圍上述主動區域之方式形成於上述主面;且上述護環區域具有:護環,其形成於上述半導體基板;層間絕緣膜,其以覆蓋上述護環之方式形成於上述半導體基板上;場板,其配置於上述層間絕緣膜上且經由貫通上述層間絕緣膜之接觸件與上述護環電性連接;及保護膜,其覆蓋上述場板;且上述場板以與上述護環相接之第1金屬、與相接配置於上述第1金屬上且標準電位較上述第1金屬低之第2金屬之積層構造構成;上述第1金屬與上述保護膜之接觸面積相對於上述第2金屬與上述保護膜之接觸面積之比例為0.05以下;於剖視觀察上述半導體裝置時,上述場板之兩端自上述護環之兩端突出。
  2. 如請求項1之半導體裝置,其中上述第1金屬之上表面之大致全體由上述第2金屬覆蓋;且於剖視觀察上述場板時,上述第1金屬之端部與上述第2金屬之端部對齊。
  3. 如請求項1之半導體裝置,其中 上述第1金屬之上表面之面積之90%以上由上述第2金屬覆蓋。
  4. 如請求項1之半導體裝置,其中於上述半導體基板形成複數個上述護環;且對於上述複數個護環各者,形成有對應之上述接觸件及上述場板。
  5. 如請求項1之半導體裝置,其中上述護環區域具有以包圍上述護環之方式形成於上述半導體基板之通道擋止件。
  6. 如請求項1之半導體裝置,其具備:保護膜,其覆蓋上述場板;且上述保護膜為有機系鈍化膜、無機系鈍化膜、自下層依序積層有無機系鈍化膜及有機系鈍化膜之積層膜中之任一者。
  7. 如請求項1之半導體裝置,其中上述第2金屬為以Al為主成分之合金;上述第1金屬為Mo、TiW、TiN、Ti、Co、Ni之任一者。
  8. 如請求項1之半導體裝置,其係於上述主動區域內週期性配置有複數個溝槽閘極之IGBT。
  9. 一種電力轉換裝置,其特徵在於具備: 一對直流端子;交流端子,其之數量與交流之相數相同;及電力轉換單位,其連接於上述一對直流端子間,包含將開關元件與相反極性之二極體並聯連接之並聯電路2個串聯連接的構成,且數量與上述並聯電路之相互連接點不同之交流端子所連接之交流相數相同;且上述開關元件為如請求項1至8中任一項之半導體裝置。
TW110118723A 2020-05-25 2021-05-24 半導體裝置及電力轉換裝置 TWI784540B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020090325A JP2021185593A (ja) 2020-05-25 2020-05-25 半導体装置および電力変換装置
JP2020-090325 2020-05-25

Publications (2)

Publication Number Publication Date
TW202213772A TW202213772A (zh) 2022-04-01
TWI784540B true TWI784540B (zh) 2022-11-21

Family

ID=75936823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118723A TWI784540B (zh) 2020-05-25 2021-05-24 半導體裝置及電力轉換裝置

Country Status (5)

Country Link
US (1) US11942512B2 (zh)
EP (1) EP3916803A1 (zh)
JP (1) JP2021185593A (zh)
CN (1) CN113725279A (zh)
TW (1) TWI784540B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023087192A (ja) * 2021-12-13 2023-06-23 株式会社 日立パワーデバイス 半導体装置および電力変換装置
CN114743995A (zh) * 2022-05-11 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板及电子设备
WO2024142638A1 (ja) * 2022-12-27 2024-07-04 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703627A1 (en) * 1994-09-20 1996-03-27 Hitachi, Ltd. Semiconductor device with field plate and power converter using same
JP2010251404A (ja) * 2009-04-13 2010-11-04 Hitachi Ltd 半導体装置
US20160043013A1 (en) * 2013-10-31 2016-02-11 Infineon Technologies Austria Ag Semiconductor Device Having a Locally Reinforced Metallization Structure
US20180226400A1 (en) * 2017-01-26 2018-08-09 Rohm Co., Ltd. Semiconductor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044414A (ja) * 1999-08-04 2001-02-16 Hitachi Ltd 半導体装置
WO2011027523A1 (ja) * 2009-09-03 2011-03-10 パナソニック株式会社 半導体装置およびその製造方法
JP5607339B2 (ja) 2009-11-05 2014-10-15 ルネサスエレクトロニクス株式会社 半導体装置
JP2012004466A (ja) * 2010-06-21 2012-01-05 Hitachi Ltd 半導体装置
JP2014049694A (ja) * 2012-09-03 2014-03-17 Renesas Electronics Corp Igbt
CN104662667B (zh) 2012-11-29 2017-07-11 富士电机株式会社 半导体装置
JP2014175640A (ja) * 2013-03-13 2014-09-22 Renesas Electronics Corp 縦型複合パワーmosfet
US9355958B2 (en) 2013-10-31 2016-05-31 Infineon Technologies Ag Semiconductor device having a corrosion-resistant metallization and method for manufacturing thereof
KR101870809B1 (ko) * 2016-06-21 2018-08-02 현대오트론 주식회사 전력 반도체 소자
JP7316746B2 (ja) * 2017-03-14 2023-07-28 富士電機株式会社 半導体装置および半導体装置の製造方法
JP7476502B2 (ja) * 2019-09-06 2024-05-01 富士電機株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0703627A1 (en) * 1994-09-20 1996-03-27 Hitachi, Ltd. Semiconductor device with field plate and power converter using same
JP2010251404A (ja) * 2009-04-13 2010-11-04 Hitachi Ltd 半導体装置
US20160043013A1 (en) * 2013-10-31 2016-02-11 Infineon Technologies Austria Ag Semiconductor Device Having a Locally Reinforced Metallization Structure
US20180226400A1 (en) * 2017-01-26 2018-08-09 Rohm Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TW202213772A (zh) 2022-04-01
US11942512B2 (en) 2024-03-26
CN113725279A (zh) 2021-11-30
EP3916803A1 (en) 2021-12-01
JP2021185593A (ja) 2021-12-09
US20210367028A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
TWI784540B (zh) 半導體裝置及電力轉換裝置
US11302781B2 (en) Semiconductor device having an electrostatic discharge protection structure
US8592920B2 (en) Semiconductor device and manufacturing method of the same
JP4492735B2 (ja) 半導体装置及び半導体装置の製造方法
US6885061B2 (en) Semiconductor device and a method of manufacturing the same
US7439137B2 (en) Method for manufacturing semiconductor device
WO2017138215A1 (ja) 半導体装置
KR101236498B1 (ko) 전력 반도체장치
JP2012064899A (ja) 半導体装置およびその製造方法
CN111697069A (zh) 半导体装置
JP7028093B2 (ja) 半導体装置
JP2009099872A (ja) 半導体装置及びその製造方法
CN111697076B (zh) 半导体装置
WO2016159385A1 (ja) 半導体装置
CN111180514B (zh) 半导体装置
JP2023011834A (ja) 半導体装置および電力変換装置
JP2012004466A (ja) 半導体装置
JP3744196B2 (ja) 炭化珪素半導体装置及びその製造方法
JP6260711B2 (ja) 半導体装置の製造方法
WO2024209919A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
US20240213357A1 (en) Semiconductor device and method of manufacturing the same
JP2023083120A (ja) 半導体装置およびその製造方法
JP2024040114A (ja) 半導体装置および半導体装置の製造方法
JP2022189411A (ja) 半導体装置およびその製造方法