TWI776877B - 用於相關電子開關(ces)裝置操作的方法、系統及裝置 - Google Patents

用於相關電子開關(ces)裝置操作的方法、系統及裝置 Download PDF

Info

Publication number
TWI776877B
TWI776877B TW107111735A TW107111735A TWI776877B TW I776877 B TWI776877 B TW I776877B TW 107111735 A TW107111735 A TW 107111735A TW 107111735 A TW107111735 A TW 107111735A TW I776877 B TWI776877 B TW I776877B
Authority
TW
Taiwan
Prior art keywords
volatile memory
current
state
access
ces
Prior art date
Application number
TW107111735A
Other languages
English (en)
Other versions
TW201842498A (zh
Inventor
穆蒂 巴爾嘉瓦
維克斯 錢德
Original Assignee
英商Arm股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Arm股份有限公司 filed Critical 英商Arm股份有限公司
Publication of TW201842498A publication Critical patent/TW201842498A/zh
Application granted granted Critical
Publication of TWI776877B publication Critical patent/TWI776877B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/14Protection against unauthorised use of memory or access to memory
    • G06F12/1416Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights
    • G06F12/1425Protection against unauthorised use of memory or access to memory by checking the object accessibility, e.g. type of access defined by the memory independently of subject rights the protection being physical, e.g. cell, word, block
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0059Security or protection circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • G11C17/165Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Electronic Switches (AREA)

Abstract

所揭露為用於相關電子開關(CES)裝置操作的方法、系統及裝置。在一個態樣中,可將CES裝置置於傳導性或低阻抗狀態中,或絕緣性或高阻抗狀態中。在一個實施例中,可應用具有足夠高的電流的程式訊號於CES裝置以永久地將CES裝置置於傳導性或低阻抗狀態中。

Description

用於相關電子開關(CES)裝置操作的方法、系統及裝置
揭示了用於使用記憶體裝置的技術。
一次性可程式化(OTP)記憶體為可程式化唯讀記憶體的一形式,其中資料被永久儲存且無法修改。換言之,僅可程式化OTP記憶體一次以儲存資料,且所儲存資料無法被重寫/覆寫。典型的OTP記憶體單元可使用具有邏輯狀態「1」的位元來形成或「生成」。可使用電性訊號以燒毀引線而有效地允許OTP記憶體單元的一個或更多個位元的設定。亦即,使用電性訊號燒毀引線可自「1」改變邏輯狀態至「0」。
簡而言之,特定實作係一方法,包括以下步驟:將一寫入電路所產生的一第一程式訊號應用至一相關電子開關(CES)元件的終端,以提供該CES元件中的一第一電流,該第一電流足以將該CES元件置於一高阻抗或絕緣性狀態中;及將來自該寫入電路的一第二程式訊號應用至該CES元件的該等終端,以提供跨該CES元件的終端的一電壓,該電壓足以將該CES元件置於一低阻抗或傳導性狀態中,該第二程式訊號進一步提供該CES元件中的一第二電流,該第二電流具有大於該第一電流的一強度的一強度,其中該第二電流的該強度高至足以防止該CES元件的一後續轉換至該高阻抗或絕緣性狀態,以回應於該寫入電路所產生的一後續應用的程式訊號。
另一實作係一設備,包括:一個或更多個相關電子開關(CES)元件;及一寫入電路,該寫入電路用以:產生一第一程式訊號以應用至該一個或更多個CES元件的其中至少一者的終端,以提供一第一電流至該一個或更多個CES元件的其中該至少一者的終端,該第一電流足以將該一個或更多個CES元件的其中該至少一者置於一高阻抗或絕緣性狀態中;及產生一第二程式訊號以應用至該一個或更多個CES元件的其中該至少一者的該等終端,以提供該一個或更多個CES元件的其中該至少一者中的一第二電流,該第二電流具有大於該第一電流的一強度的一強度,其中該第二電流的該強度高至足以防止該一個或更多個CES元件的其中該至少一者的一後續轉換至該高阻抗或絕緣性狀態,以回應於該寫入電路所產生的一後續應用的程式訊號。
另一特定實作係一方法,包括以下步驟:將一相關電子開關(CES)元件重新設定至一高阻抗或絕緣性狀態,以准許至少一個類型的存取至一安全裝置;及設定該CES元件以藉由應用超過一最大重新設定電流的一順從電流來永久將該CES元件置於一低阻抗或傳導性狀態中,因而後續防止該至少一個類型的存取至該安全裝置。
應理解前述實作僅為範例實作,且所請標的不必限制為該等範例實作的任何特定態樣。
於此描述的實施例係提供一次性可程式化(OTP)記憶體的設備及方法。該設備可包括至少一個相關電子開關(CES)元件,包括在終端之間形成的相關電子材料(CEM)。可同時將CES元件使用為非揮發性儲存以及可致能連接性或在電路中存取的電路元件。如以下更詳細的說明,CES元件可包括可在預先決定的可預測記憶體狀態之間轉換的材料,該轉換至少部分基於傳導性或低阻抗狀態及絕緣性或高阻抗狀態之間的(至少一部分的)材料轉換。在一個態樣中,將CES元件置於傳導性或低阻抗狀態中的操作應用電流至CES元件,該電流高至足以防止CES元件後續轉換至高阻抗或絕緣性狀態。在一實作中,將CES元件永久置於低阻抗或傳導性狀態可防止未來對安全裝置的存取。
本揭示案的特定態樣併入CEM以形成CES元件。在這方面,CES元件可展示一突然的導體/絕緣體轉換,該轉換自電子相關性上升而非固態結構相位改變(例如,相位改變記憶體(PCM)裝置中的結晶/非晶性或電阻性RAM裝置中的絲狀形成及傳導,如上方所討論)。在一個態樣中,CES元件中突然的導體/絕緣體轉換可響應於量子力學現象(相對比於熔化/固化或絲狀形成)。可以幾個態樣之其中任何一者來理解CEM記憶體裝置中的傳導性及絕緣性狀態之間的該量子力學轉換。
在一個態樣中,可以Mott轉換的角度來理解絕緣性狀態及傳導性狀態之間的CES元件的量子力學轉換。在Mott轉換中,若Mott轉換條件發生時,材料可自絕緣性狀態切換至傳導性狀態。準則可由條件(nc )1/3 a =0.26來定義,其中nc 為電子濃度且「a」為Bohr半徑。若達到臨界載子濃度使得Mott準則成立,Mott轉換可發生且狀態可自高電阻/電容改變至低電阻/電容。
在一個態樣中,可由電子的局部化來控制Mott轉換。隨著載子局部化,電子之間強的庫倫力相互作用將材料帶分開產生絕緣體。若電子不再局部化,弱的庫倫力相互作用可主導帶分開,留下金屬(傳導性)帶。此有時以「擁擠電梯」現象來說明。當電梯僅具有幾個人在其中,人可容易四處移動(對比於傳導狀態)。當電梯達到某濃度的人數,另一方面,乘客可不再移動(對比於絕緣狀態)。然而,應理解為了圖示目的所提供此經典說明(如量子現象的所有經典說明)僅為不完整的對比,且所請標的不為此限制。
在本揭示案的態樣的特定實作中,電阻性切換積體電路記憶體可包括:包含CES元件的電阻性切換記憶體單元;用於將電阻性切換記憶體單元置於第一電阻性狀態或第二電阻性狀態(取決於提供至記憶體單元的訊號)中的寫入電路,其中CES元件的電阻在第二電阻狀態中大於在第一電阻狀態中;及用於感應記憶體單元的狀態及提供對應於記憶體單元的感應狀態的電性訊號的讀取電路。在特定實作中,CES元件可回應於CES裝置的大多數容積中的Mott轉換來切換電阻性狀態。在一個態樣中,CES元件可包括自一群組選擇的材料,該群組包括:鋁、鎘、鉻、鈷、銅、金、鐵、錳、汞、鉬、鎳、鈀、錸、釕、銀、錫、鈦、釩、及鋅(可鏈結至陽離子例如氧或其他類型的配位子),或上述之組合。
在此揭示案中,可通用地使用用語「CES裝置」及「CES元件」。在特定實施例中,CES元件可形成為「CEM隨機存取記憶體(CeRAM)」裝置。在這方面,CeRAM裝置包括可在複數個預先決定的可預測記憶體狀態之間或其間轉換的材料,該轉換至少部分基於傳導性狀態及絕緣性狀態之間的至少一部分的材料轉換來使用量子力學Mott轉換。在這方面,「記憶體狀態」意指記憶體裝置的可預測狀態,指示出一值、符號、參數或條件(僅為提供幾個範例)。在一個特定實作中,如下方所述,可至少部分基於讀取操作中記憶體裝置的終端上所偵測的訊號來偵測記憶體裝置的記憶體狀態。在另一特定實作中,如下方所述,可將記憶體裝置置於特定記憶體狀態中,以藉由在「寫入操作」中應用一個或更多個訊號跨記憶體裝置的終端來代表或儲存特定值、符號或參數。
在特定實作中,CES元件可包括夾在傳導性終端之間的材料。藉由應用特定電壓及電流於終端之間,該材料可在前述傳導性及絕緣性記憶體狀態之間轉換。如下方特定範例實作中所討論,可藉由應用跨終端的第一程式訊號將夾在傳導性終端之間的CES元件的材料置於絕緣性或高阻抗記憶體狀態中,該第一程式訊號具有電壓Vreset 及電流Ireset ,或可藉由應用跨終端的第二程式訊號置於傳導性或低阻抗記憶體狀態中,該第二程式訊號具有電壓Vset 及電流Iset 。在這方面,應理解用語例如「傳導性或低阻抗」記憶體狀態及「絕緣性或高阻抗」記憶體狀態為相對用語且不指定為針對阻抗或傳導的任何特定量或值。例如,在一個態樣中,當記憶體裝置處於第一記憶體狀態時(參考絕緣性或高阻抗記憶體狀態),記憶體裝置較當記憶體裝置處於第二記憶體狀態時(參考傳導性或低阻抗記憶體狀態)更不具傳導性(或更具絕緣性)。
在特定實作中,CeRAM記憶體單元可包括在半導體上形成的金屬/CEM/金屬(M/CEM/M)堆疊。該M/CEM/M堆疊可例如在二極體上形成。在一範例實作中,可自由接面二極體及Schottky二極體組成的群組選擇該二極體。在這方面,應理解「金屬」意指導體,亦即,作用如同金屬的任何材料,包含例如多晶矽或摻雜的半導體。
第1A圖根據實施例展示用於CES元件的電流密度對跨終端(未展示)電壓的繪圖。至少部分基於應用至CES元件的終端的電壓(例如,在寫入操作中),可將CES元件置於傳導性狀態或絕緣性狀態中。例如,應用電壓Vset及電流密度Jset可將CES元件置於傳導性記憶體狀態中,且應用電壓Vreset及電流密度Jreset可將CES元件置於絕緣性記憶體狀態中。在將CES元件置於絕緣性狀態或傳導性狀態中之後,可藉由應用電壓Vread(例如,在讀取操作中)及偵測CeRAM裝置的終端處的電流或電流密度來偵測CES元件的特定狀態。
根據實施例,第1A圖的CES元件可包含任何過渡金屬氧化物(TMO),例如,如:鈣鈦礦、Mott絕緣體、電荷交換絕緣體、及Anderson無序絕緣體。在特定實作中,CES元件可自切換材料形成,例如:氧化鎳、氧化鈷、氧化鐵、氧化釔、及鈣鈦礦例如摻雜Cr的鈦酸鍶、鈦酸鑭、及錳族包含:哌醋酸鈣、及鑭亞錳酸鹽(僅為提供幾個範例)。特定地,氧化物結合具有不完整 d f 軌道外殼的元素可展示使用於CES元件的足夠的電阻性切換屬性。在一實施例中,可不經電鑄來準備CES元件。 其他實作可施用其他過渡金屬化合物而不偏離所請標的。例如,{M(chxn)2Br}Br2,其中M可包括Pt、Pd、或Ni,且chxn包括1R、2R-環己烷,可使用其他該等金屬複合物而不偏離所請標的。
在一個態樣中,第1A圖的CES元件可包括TMO金屬氧化物可變電阻材料的材料,然而,應理解此僅為示範且不意圖限制所請標的。特定實作也可施用其他可變電阻材料。揭露氧化鎳(NiO)為一個特定TMO。於此討論的NiO材料可使用外在配體來摻雜,可穩定可變電阻屬性。特定地,於此揭露的NiO可變電阻材料可包含含碳配體,可指示為NiO(Cx)。此處,發明所屬領域具有通常知識者可簡單藉由平衡電價針對任何特定含碳配體及含碳配體與NiO的任何特定組合來決定x的值。在另一特定範例中,摻雜外在配體的NiO可表示為NiO(Lx),其中Lx為配體元素或化合物,且x指示針對一個單位的NiO的配體單位的數量。發明所屬領域具有通常知識者可簡單藉由平衡電價針對任何特定配體及配體與NiO或任何其他過渡金屬的任何特定組合來決定x的值。
若應用足夠的偏壓(例如,超過帶分開位能)且達到前述Mott條件(注射的電洞=切換區域中的電子),CES元件可在傳導性狀態及絕緣體狀態之間經由Mott轉換來快速地切換。此可發生在第1A圖中繪製的點108處。在此點處,電子不再隱蔽而變得局部化。此相關性可導致分開帶的強的電子-電子互動位能以形成絕緣體。當CES元件仍於絕緣性狀態中,可藉由電洞的傳輸產生電流。若應用足夠的偏壓跨CES元件的終端,可在金屬-絕緣體-金屬(MIM)裝置的位能障礙之上將電子注射進入MIM二極體。若已注射足夠的電子且應用足夠位能跨終端以將CES元件置於特定的低阻抗或傳導性狀態中,電子的增加可隱蔽電子且移除局部化的電子,而可瓦解帶分開位能而形成金屬。
根據一實施例,可藉由外部應用「順從(compliance)」條件來控制CES元件中的電流,至少部分基於寫入操作期間限制的外部電流來決定該條件,以將CES元件置於傳導性或低阻抗狀態中。此外部應用的順從電流也可設定針對後續重新設定操作的電流密度的條件,以將CES元件置於高阻抗或絕緣性狀態中。如第1A圖的特定實作中所展示,寫入操作期間在點116處將CES元件置於傳導性或低阻抗狀態中所應用的電流密度Jcomp 可決定順從條件,以在後續寫入操作中將CES元件置於高阻抗或絕緣性狀態中。如所展示,後續可藉由在點108處以電壓Vreset 應用電流密度Jreset ≥Jcomp 以將CES元件置於絕緣性或高阻抗狀態中,其中Jcomp 為外部應用。
順從因此可設定CES元件中被電洞「捕捉」的電子數量以用於Mott轉換。換言之,寫入操作中將CES元件置於傳導性記憶體狀態中所應用的電流可決定注射至CES元件的電洞的數量,以用於後續將CES元件轉換至絕緣性記憶體狀態。
如上方所指出,重新設定條件可發生以回應於點108處的Mott轉換。如上方所指出,該Mott轉換可發生於電子濃度n 等於電洞濃度p 的CES元件的條件中。此條件可根據表示式(1)模型化,如下:
Figure AA1
(1) 其中 λTF 為Thomas Fermi隱蔽長度;及C 為常數。
根據一實施例,第1A圖中所展示繪圖的區域104中的電流或電流密度可回應於來自跨CES元件終端所應用的電壓訊號的電洞的注射而存在。此處,電洞的注射可達到針對傳導性狀態至絕緣性狀態轉換的Mott轉換準則(在跨CES元件終端應用臨界電壓VMI 時有電流IMI )。此可根據表示式(2)模型化,如下:
Figure 02_image003
(2) 其中Q (VMI )為帶電的注射的(電洞或電子)且為應用電壓的函數。注射電洞以致能Mott轉換可發生於帶之間且回應於臨界電壓VMI 及臨界電流IMI 。藉由根據表示式(1)以表示式(2)中的IMI 注射的電洞將電子濃度n 與促成Mott轉換的電荷濃度相等,該臨界電壓VMI 對Thomas Fermi隱蔽長度λ TF 的依賴性可根據表示式(3)模型化,如下:
Figure 02_image005
(3) 其中ACeRam 為CES元件的橫截面面積;及 Jreset (VMI )為經過CES元件的電流密度,以臨界電壓VMI 應用至CES元件以將CES元件置於絕緣性狀態中。
根據一實施例,可藉由注射足夠數量的電子以滿足Mott轉換準則來將CES元件置於傳導性記憶體狀態中(例如,藉由自絕緣性記憶體狀態轉換)。
在將CES元件轉換至傳導性記憶體狀態中,在注射了足夠的電子且跨CES元件終端的位能克服臨界切換位能(例如,V set )時,注射的電子開始隱蔽且對雙佔據的電子進行非局部化以反轉不成比例的反應且關閉帶空隙。用於以致能轉換至傳導性狀態的臨界電壓VMI 將CES元件轉換至傳導性狀態的電流密度Jset (VMI )可根據表示式(4)來表示,如下:
Figure AA2
(4) 其中aB 為Bohr半徑。
根據一實施例,可將用於在讀取操作中偵測CES元件的記憶體狀態的「讀取窗」102設定成讀取電壓Vread 下當CES元件處於絕緣性狀態時第1A圖的繪圖的部分106及當CES元件處於傳導性狀態時第1A圖的繪圖的部分104之間的差異。在特定實作中,可使用讀取窗102以決定建構CES元件的材料的Thomas Fermi隱蔽長度λ TF 。例如,在電壓Vreset 時,根據表示式(5),電流密度Jreset 及Jset 可為相關,如下:
Figure 02_image009
(5)
在另一實施例中,可將用於在寫入操作中將CES元件置於絕緣性或傳導性記憶體狀態中的「寫入窗」110設定成Vreset (於Jreset )及Vset (於Jset )之間的差異。|Vset |>|Vreset |的成立致能傳導性及絕緣性狀態之間的切換。Vreset 可大約處於自相關性上升帶分開位能處,且Vset 可大約為該帶分開位能的兩倍。在特定實作中,可至少部分基於CES元件的材料及摻雜來決定寫入窗110的大小。
可藉由CES元件的單數阻抗來代表CES元件中自高阻抗/電容至低阻抗/電容的轉換。第1B圖描繪範例可變阻抗裝置的等效電路的示意圖(例如CES元件),例如可變阻抗裝置124。如所述,可變阻抗裝置124可包括可變電阻及可變電容兩者之特性。例如,在一實施例中,用於可變阻抗裝置的等效電路可包括可變電阻器(例如可變電阻器126)與可變電容器(例如可變電容器128)並聯。當然,雖然可變電阻器126及可變電容器128在第1B圖中被描繪成包括分離的部件,可變阻抗裝置(例如可變阻抗裝置124)可包括實質均質CEM,其中CEM元件包括可變電容及可變電阻之特性。下方的表1描繪用於範例可變阻抗裝置的範例真值表,例如可變阻抗裝置100。
Figure 107111735-A0304-0001
表1
第2圖為根據實施例的系統的示意圖,該系統控制對安全裝置的存取。藉由存取裝置(未展示)儲存或寫入值、符號或參數、或上述之組合至安全記憶體204,或讀取或恢復儲存於或寫入安全記憶體204中的值、符號或參數、或上述之組合,安全記憶體204為可存取的。對安全記憶體204的「存取」可包括不同類型的存取,包含例如:對安全記憶體204的存取以用於儲存或寫入值、參數或符號、或上述之組合至安全記憶體204。另一類型的對安全記憶體204的存取可包括存取安全記憶體204以讀取或恢復儲存於或寫入安全記憶體204中的值、參數或符號、或上述之組合。可至少部分基於訊號「ACCESSENABLE_B」來控制特定類型的對安全記憶體204的存取(例如,存取以寫入或儲存值、參數或符號、或上述之組合)。例如,若訊號ACCESSENABLE_B具有邏輯「1」的值,可准許存取裝置進行特定類型的對安全記憶體204的存取。另一方面,若訊號ACCESSENABLE_B具有邏輯「0」的值,不可准許存取裝置進行特定類型的對安全記憶體204的存取。在特定圖示的實施例中,可至少部分基於訊號位元CES 202的狀態來決定CHIP ENABLE的值或狀態,可置於低阻抗或傳導性狀態、或高阻抗或絕緣性狀態,如上述。例如,若單一位元CES 202處於低阻抗或傳導性狀態(例如,以指示特定類型的對安全記憶體204的存取為不准許的),訊號CHIP ENABLE(作為反向器206的輸出訊號)可具有邏輯「0」的值,且若單一位元CES 202處於高阻抗或絕緣性狀態(例如,以指示特定類型的對安全記憶體204的存取為准許的),訊號CHIP ENABLE可具有邏輯「1」的值。
第2圖的特定實施例係基於單一CES位元202的狀態實作對安全記憶體204的存取之控制。在其他實施例中,可藉由多個CES位元的狀態來控制對安全記憶體204的存取之控制。例如,可藉由訊號寫入致能訊號(及對應的CES位元)來控制寫入存取,且可藉由單一讀取致能訊號(及對應的CES位元)來控制讀取存取。在另一實作中,可使用多個CES位元的狀態來控制讀取及寫入存取,繼而限制或禁止僅寫入存取但允許讀取存取。在另一實作中,多個處理核心或應用程式可共用對單一安全記憶體裝置的存取。可使用對應的多個致能訊號(例如,基於對應的CES位元的狀態來決定)以藉由對應應用程式或核心控制對安全記憶體的存取。此外,可使用多個不同致能訊號以獨立控制對安全記憶體的不同對應區塊的存取。
在特定實作中,可藉由形成位元單元的電路來偵測或變更單一位元CES 202的阻抗狀態。在這方面,此處所稱「位元單元」或「位元單元電路」包括能夠代表值、符號、條件或參數為狀態的電路或部分電路。例如,位元單元可包括能夠代表一個或更多個記憶體元件的值、符號、條件或參數為記憶體狀態(或多個狀態)的一個或更多個記憶體元件。在特定實作中,位元單元可代表值、符號、條件或參數為單一位元或多個位元。例如,可藉由獨立控制「寫入操作」中跨記憶體元件終端所應用的電壓及電流,將位元單元中的記憶體元件置於特定記憶體狀態中(例如,傳導性或低阻抗記憶體狀態,或絕緣性或高阻抗記憶體狀態)。如下方特定實作中所討論,可藉由應用一訊號來執行該寫入操作,該訊號經控制以提供跨記憶體元件終端的臨界電流及電壓,以將記憶體元件置於特定記憶體狀態中。在另一態樣中,可藉由對位元線預先充電來偵測或感應「讀取操作」中的位元單元中的記憶體元件的記憶體狀態,接著連接預先充電的位元線至記憶體元件的終端。在這方面,「位元線」包括可連接至記憶體元件的至少一個終端的導體,以在寫入操作期間傳輸訊號來變更記憶體元件的記憶體狀態,或在讀取操作期間傳輸訊號來指示記憶體元件的目前記憶體狀態。根據一實施例,感應電路可基於讀取操作中來自位元線的電流或電壓強度來偵測記憶體元件的記憶體狀態。輸出訊號可具有指示位元單元200的目前記憶體狀態的電壓(例如,為「1」、「0」、或其他符號)。在讀取操作的一個態樣中,為了偵測記憶體元件的目前記憶體狀態,可控制跨記憶體元件終端所應用的訊號之電壓,以免可偵測地變更記憶體元件的目前記憶體狀態。
第3圖為根據實施例的電路的示意圖,可使用該電路以控制對CES位元202的讀取及寫入操作。此處,CES元件51可包括連接至位元線BL的第一終端52及連接至FET M1的終端的第二終端2。然而,應理解此僅為使用於執行在CES元件上寫入或讀取操作的範例電路以實作CES位元202,且所請標的不限於此。
如上方第1A圖中所指出,可基於應用至位元線BL的特定電壓及電流來改變或決定CES元件(例如CES元件51)的阻抗狀態。例如,寫入電路58可提供訊號至位元線BL,使得電壓Vreset 及足夠的電流Ireset 應用至CES元件51,可在重新設定操作中將CES元件51置於絕緣性或高阻抗狀態中。相似地,寫入電路58也可提供訊號至位元線BL,使得電壓Vset 及足夠的電流Iset 應用至CES元件51,可在設定操作中將CES元件51置於傳導性或低阻抗狀態中。如可自第1A圖所觀察,當電壓Vset 的強度大於電壓Vreset 的強度,電流Iset 的強度小於電流Ireset 的強度。
寫入操作可包括放置記憶體裝置的特定處理,例如藉由應用由寫入電路58產生的「程式訊號」至記憶體裝置終端,來將CES元件51置於複數個預先決定的記憶體狀態的特定記憶體狀態中。預先決定的記憶體狀態的特定一者可對應至應用至記憶體裝置的特定電壓層級(例如,Vset 及Vreset )。相似地,預先決定的記憶體狀態的特定一者可對應至應用至記憶體裝置的特定電流層級(例如,Iset 及Ireset )。據此,在特定實施例中,寫入電路58可產生程式訊號以在寫入操作中將CES元件51置於特定阻抗狀態中,且控制程式訊號以具有對應至特定阻抗狀態的特定電壓層級及電流層級。根據一實施例,FET M1可提供傳導元件以連接CES元件51的終端至參考節點54或自參考節點54斷開CES元件51的終端,以回應於M1上的閘極電壓。在這方面,「傳導元件」包括能夠准許電流經過兩個節點之間的電路元件。在特定實作中,傳導元件可至少部分基於特定條件來變化准許在節點之間經過的電流。下方所述之特定實作將FET施用為傳導元件,以至少部分基於應用至閘極終端的電壓而准許在源極及汲極終端之間經過電流。然而,應理解可將其他類型的裝置(例如,雙極電晶體、二極體、可變電阻等) 使用為傳導元件,且所請標的不限於此。在這方面,具有第一及第二終端的傳導元件可藉由提供第一及第二終端之間的傳導性路徑來「連接」第一及第二終端,該傳導性路徑對特定訊號具有非常小或可忽略的阻抗。在一個特定範例實作中,傳導性元件可至少部分基於提供至傳導性元件的第三終端的訊號來變化第一及第二終端之間的阻抗(例如,基於應用至第三終端的電壓或電流)。在一個態樣中,傳導性元件可「關閉」因而連接第一及第二終端以回應於第三終端上所提供的訊號。相似地,傳導性元件可「開啟」因而斷開第一及第二終端以回應於第三終端上所提供的不同訊號。在一個態樣中,在開啟狀態中的傳導性元件可藉由移除或破壞電路的第一及第二部分之間的傳導性路徑來將電路的第一部分與電路的第二部分隔絕。在另一態樣中,傳導性元件可基於提供至第三終端的訊號在開啟及關閉狀態之間變化第一及第二終端之間的阻抗。在這方面,進一步地,「參考節點」包括電路中的節點,該節點維持於特定電壓層級或處於與電路中另一節點不同的特定電壓。在一個範例中,參考節點可包括或連接至接地節點。在其他特定實作中,參考節點可維持於相對於接地節點的特定電壓。
在第3圖的特定範例實作中,感應電路56可在讀取操作期間耦合至CES元件51的終端。例如,位元線BL可被預先充電至特定電壓,接著關閉FET M1以應用讀取電壓訊號跨CES元件51的終端。回應於讀取電壓訊號,可接著藉由感應電路56來偵測或量測位元線BL上的電流,以決定CES元件51的目前阻抗狀態。在特定實作中,感應電路56處所偵測的CES元件51的目前阻抗狀態可決定訊號「CHIP ENABLE」的值為邏輯「0」或邏輯「1」(例如,作為反向器206的輸出訊號)。
根據一實施例,在將CES元件51置於第一阻抗狀態的第一寫入操作中,藉由回應於閘極電壓而關閉FET M1,寫入電路58可在位元線BL上產生程式訊號以應用至CES元件51。在第一寫入操作中,寫入電路58可產生具有第一寫入電壓及第一寫入電流的第一程式訊號,以應用跨CES元件51的終端來將CES元件51置於第一阻抗中(例如,絕緣性或高阻抗記憶體狀態)。如上方連接第2圖的特定實作所指出,將CES元件51置於第一阻抗狀態中的該寫入操作可將訊號「CHIP ENABLE」置於邏輯「1」狀態中,以准許對安全記憶體204的特定類型的存取。在將CES元件51置於第二阻抗狀態中的第二寫入操作中,寫入電路58可產生具有第二寫入電壓及第二寫入電流的第二程式訊號,以應用至CES元件51的終端來將CES元件51置於第二阻抗狀態中(例如,特定的傳導性或低阻抗記憶體狀態)。再次,如上方連接第2圖的特定實作所指出,將CES元件51置於第二阻抗狀態中的該寫入操作可將訊號「CHIP ENABLE」置於邏輯「0」狀態中,以禁止對安全記憶體204的特定類型的存取。
在特定實作中,CES元件51可具有上方討論參考第1A圖的一個或更多個屬性,其中,在|Ireset |>|Iset |時,|Vreset |<|Vset |。據此,在圖示於第3圖中的特定範例中,第一寫入電壓的強度可大於第二寫入電壓的強度,且第一寫入電流的強度可小於第二寫入電流的強度。在將CES元件51置於第二記憶體狀態中之後,可在讀取操作中跨CES元件51的終端應用第三電壓(例如,Vread )以偵測CES元件51的目前阻抗狀態。當讀取操作期間應用第三電壓時,可將第一及終端之間的電流限制至小於第一電流的強度(例如,|Iread |<|Ireset |)以維持CES元件51的第二阻抗狀態(例如,傳導性或低阻抗記憶體狀態)。
根據一實施例,至少部分基於寫入操作將CES元件51置於傳導性或低阻抗記憶體狀態中,或絕緣性或高阻抗記憶體狀態中,寫入電路58可獨立控制寫入操作中應用至CES元件51的訊號之電壓及電流。例如,針對將CES元件51置於傳導性或低阻抗記憶體狀態中的寫入操作,可應用具有電壓Vset 及電流Iset 的訊號。相似地,針對將CES元件51置於絕緣性或高阻抗記憶體狀態中的寫入操作,可應用具有電壓Vreset 及電流Ireset 的訊號。如第1A圖中所圖示,當電流Iset 可具有小於電流Ireset 的強度時,電壓Vset 可具有大於電壓Vreset 的強度。
為了偵測CES元件51的目前阻抗狀態,在讀取操作中,可跨CES元件51的終端應用讀取電壓Vread ,以回應於關閉FET M1。當應用讀取電壓Vread 時,可接著在感應電路56處感應或量測流經位元線BL的電流,以偵測CES元件51的目前阻抗狀態。在第2圖的特定實作中,特定偵測的目前阻抗狀態可決定訊號「CHIP ENABLE」具有邏輯「0」或「1」的值(例如,作為反向器206的輸出訊號)。
根據一實施例,讀取操作期間可將流經CES元件51終端的電流的強度限制至小於Ireset 的強度。此可防止讀取操作期間CES元件51的目前阻抗狀態意外自傳導性或低阻抗記憶體狀態轉換至絕緣性或高阻抗記憶體狀態。讀取操作期間可例如藉由控制讀取操作期間應用至FET M1的閘極的電壓,來控制CES元件51的終端之間流動的電流。在第3圖的特定實作中,FET M1被配置成NFET。此處,可在寫入操作期間應用FET M1閘極上的加強電壓,以准許足夠的電流流經CES元件51,以將CES元件51置於特定阻抗狀態中。接著,在讀取操作期間降低FET M1閘極上的電壓,以限制流經CES元件51的電流。
如上方連接第1A圖所討論,應用於設定操作中以將CES元件51置於低阻抗或傳導性狀態中的電流的強度可決定電流Ireset 的臨界強度,以供後續應用於將CES元件51轉換至高阻抗或絕緣性狀態中。例如,在設定操作中於點116處所應用以將CES元件轉換至低阻抗或傳導性狀態的電流密度Jcomp 決定臨界電流密度Jreset ,以供後續在重新設定操作中在點108處藉由促成形成CES元件51的CEM中的Mott轉換將CES元件置於高阻抗或絕緣性狀態中。
根據一實施例,可藉由應用程式訊號來應用設定操作至CES元件51,該程式訊號提供CES元件51中的電流,該電流高至足以防止後續的重新設定操作將CES元件51置於高阻抗或絕緣性狀態中。在第4圖的特定實作中,可以低阻抗或傳導性狀態在裝置上形成或「生成」CES元件(例如,CES元件51)。替代地,可藉由應用第一程式訊號以提供電壓Vset ≥V0 及電流密度Jcomp 1 至CES元件的終端,將CES元件置於低阻抗或傳導性狀態中,如點406所描繪。第二程式訊號提供電壓Vreset ≥VB 及電流密度Jreset ≥Jcomp 1 以起始CES元件中的Mott轉換而將CES元件置於高阻抗或絕緣性狀態中。在第2圖的特定範例實作中(其中,CES位元202處於高阻抗或絕緣性狀態中),高阻抗或絕緣性狀態可將邏輯狀態「1」(作為反向器206的輸出訊號)賦予訊號CHIP ENABLE以致能對儲存於安全記憶體204中的資料的存取。此處,例如,安全記憶體204可被存取以例如寫入或儲存值、符號或參數、或上述之組合,例如安全金鑰以供後續讀取或恢復。在重新設定操作在點408處應用程式訊號之後(及,例如,存取CES位元202),可應用提供點416處的電壓Vset ≥V0 及電流密度Jcomp 2 的第三程式訊號至CES元件的終端以起始設定操作而將CES元件返回低阻抗或傳導性狀態。在第2圖的特定範例實作中(其中,CES位元202處於低阻抗或傳導性狀態中),低阻抗或傳導性狀態可將邏輯狀態「1」賦予訊號CHIP ENABLE以禁止對儲存於安全記憶體204中的資料的存取。
根據一實施例,在寫入操作中產生程式訊號至CES元件終端的寫入驅動器電路(例如,在寫入電路58中)可包括電壓及/或電流供應電路。在重新設定操作中,該電壓及/或電流供應電路可能夠應用足夠電流及電壓以用於點408處的程式訊號。可限制該電壓及/或電流供應電路以在重新設定操作中於Vreset 處產生程式訊號,具有CES元件中小於Jreset-max 的電流密度。如第4圖中所展示,點416處的第三程式訊號賦予電流密度Jcomp 2 > Jreset-max 。據此,一旦藉由應用點416處的程式訊號將CES元件置於低阻抗或傳導性狀態中,獲得的電壓及/或電流供應電路不能夠產生程式賦予電壓Vreset 處的電流Jreset ≥Jcomp 2 (例如,賦予臨界電壓VMI 處的電流IMI ,如上方討論的表示式(2))以在重新設定操作中將CES元件返回高阻抗或絕緣性狀態。在上方討論的第2圖的特定實作中,此可永久地將CES位元202固定至「1」的值及反向器206的輸出終端處的訊號CHIP ENABLE的對應邏輯狀態固定至「0」以防止未來意圖存取安全記憶體204以寫入。
第5圖展示使用一個或更多個CES元件304的用於實作一次性程式的示範設備300的示意圖。在範例的實作中,設備300被配置成積體電路(IC)晶片302。在範例的實作中,可在積體電路(IC)晶片302的矽晶圓上製造一個或更多個CES元件304。可在第一阻抗狀態中製造或「生成」一個或更多個CES元件304。根據一個實施例,第一阻抗狀態可包括傳導性或低阻抗狀態。在一範例中,IC晶片302可包括單一位元CES元件304。
IC晶片302可包括一個或更多個連接接點306。至少一個連接接點306可耦合至一個或更多個CES元件304。連接接點306可提供外部編程電路308對一個或更多個CES元件304的存取,例如,提供程式訊號310至特定CES元件304以將一個或更多個CES元件304編程至特定阻抗狀態。在一實施例中,程式訊號310可藉由實體修改一個或更多個CES元件304而將一個或更多個CES元件304編程至特定阻抗狀態。外部編程電路308可將一個或更多個CES元件304編程至第二阻抗狀態。第二阻抗狀態可包括絕緣性或高阻抗狀態。在一個範例實作中,編程電路308可提供程式訊號310,使得一個或更多個CES元件304的至少其中一者被實體修改至第二阻抗狀態。可存取連接接頭306以用於在IC晶片302封裝之前將一個或更多個CES元件304編程。在使用一個或更多個CES元件304的至少其中一者以用於一次性程式的實施例中,編程電路308可一次性將一個或更多個CES元件304的至少其中一者編程。
根據一實施例,如上方所討論,編程電路308可起始程式訊號應用以將一個或更多個CES元件304的至少其中一者置於具有足夠高的電流的傳導性或低阻抗狀態(例如,第4圖中的點416處),以防止後續操作將一個或更多個CES元件304的至少其中一者置於高阻抗或絕緣性狀態中。在一個特定實作中,其中一個或更多個CES元件304的至少其中一者的阻抗狀態決定影響安全記憶體的可存取性,永久將CES元件304置於傳導性或低阻抗狀態可防止未來對安全記憶體的存取(例如,賦予邏輯值「0」至訊號CHIP ENABLE)。
第6圖為根據實施例的處理的流程圖,以應用操作至具有如第4圖中所描繪的行為的CES元件。特定地,可應用第6圖的處理至具有決定至少一個類型的對安全記憶體裝置的存取的阻抗狀態的CES元件。在區塊502處,可在例如晶圓中形成處於低阻抗或傳導性狀態的CES元件(例如,部分使用CMOS處理及上方所討論自CEM形成裝置的處理而形成)。區塊504可例如藉由在點408處應用程式訊號來重新設定CES元件於絕緣性或高阻抗狀態。此處,如上方連接第2圖所討論,將CES置於絕緣性或高阻抗狀態中可決定一訊號,該訊號致能對安全記憶體的存取類型(例如,寫入存取)。在點408處,在存取安全記憶體之後(例如,寫入安全金鑰等),藉由例如應用程式訊號賦予順從電流超過最大重新設定電流(例如,點416處),可藉由永久將CES元件置於傳導性或低阻抗狀態中來防止後續存取。
在進一步的實施例中,可將複數個CEM裝置(例如,CES裝置)的其中一者或更多者個別放置於積體電路內的第一金屬化層的導電線及第二金屬化層的導電線的一個或更多個交叉處(在一實施例中)。可將一個或更多個存取裝置放置於第一金屬化層的導電線及第二金屬化層的導電線的個別一個或更多個交叉處,其中在一實施例中存取裝置可與個別CEM裝置成對。在進一步的實施例中,CEM裝置可在裝置中與傳導元件組合而形成,如此處所述由相同或不同處理形成。在範例實作中,使用不同及/或互補處理技術(例如,互補式金屬氧化物半導體(CMOS)技術),CEM裝置可與傳導元件組合而形成。
在前述中,在使用的特定內容中,例如討論具體部件(及/或相似地:具體材料)的情況中,「在…上(on)」及「覆於…上(over)」之間存在分別。例如,「在」基板「上」沉積物質意味涉及直接實體及具體接觸的沉積,而在前例中於所沉積物質及基板之間無中介,例如中介物質(例如,在介入處理操作期間形成的中介物質);然而,沉積「覆於」基板「上」,當理解為潛在地包含「在」基板「上」沉積時(因為「在…上」也可精確地描述成「覆於…上」),應理解為包含一情況,該情況中,在所沉積物質及基板之間呈現一個或更多個中介(例如,一個或更多個中介物質),使得所沉積物質不必直接實體及具體接觸基板。
在使用合適的特定內容中進行相似的分別,例如在「在…下方(beneath)」及「在…下(under)」之間討論具體材料及/或具體部件。當在使用該特定內容「在…下方」時,意圖必要地暗示實體及具體接觸(相似於「在…上」,如剛所描述),「在…下」潛在地包含一情況,該情況中有直接實體及具體接觸,但不必暗示實體及具體接觸,例如在呈現一個或更多個中介時(例如,一個或更多個中介物質)。因此,「在…上」被理解成意指「緊接著覆於…上」且「在…下方」被理解成意指「緊接著在…下」。
相似地,應理解用語如「覆於…上」及「在…下」被以相似方式理解用語「上(up)」、「下(down)」、「頂部(top)」、「底部(down)」等,如前述。可使用該等用語以便於討論,但不意圖必要限制所請標的之範圍。例如,以用語「覆於…上」為例,不意指建議主張範圍受限於僅實施例上下正確的情況,例如相較於實施例上下顛倒的情況。範例包含倒裝晶片,如一個圖示,例如其中多種時間時(例如,製造期間)的傾向可不必要對應至最終產品的傾向。因此,若以在特定傾向中可應用的主張範圍內的物件為例,例如以上下顛倒為例,相似地,意圖也將前述詮釋為包含於另一傾向中可應用的主張範圍內,例如再次以上下正確為例,反之亦同,即便可應用字面主張語言具有相反詮釋的潛力。當然再次如專利申請案的說明書中總有的情況,描述及/或使用的特定內容提供有用的關於所取得的合理推論的指引。
除非指示,在本揭示案的內容中,若使用用語「或」以關聯一清單,例如A、B、或C,意圖意指A、B、及C(此處使用成包含意義)以及A、B、或C(此處使用成排除意義)。藉由此理解,使用「及」成包含意義且意圖意指A、B、及C;而可使用「及/或」以謹慎地釐清所意圖為前述所有意義,雖然該使用不是必需的。此外,使用用語「一個或更多個」及/或相似用語以描述單數的任何特徵、結構、特性、及/或類似物,也使用「及/或」以描述複數及/或特徵、結構、特性、及/或類似物的一些其他組合。進一步地,使用用語「第一」、「第二」、「第三」、及類似物以區分不同態樣,例如不同部件(作為一個範例),而非供應數字限制或建議特定順序,除非明白反向指示。相似地,將用語「基於」及或相似用語理解為不必意圖傳達因子的詳盡清單,而是允許存在不必明白描述的額外因子。
進一步地,意圖以下方方式來理解相關於所請標的的實作及經受關於程度的測試、量測、及/或規格的情況。例如,在給定情況下,假設欲量測實體屬性值。若繼續該範例替代地合理方法以關於程度的測試、量測及/或規格(至少相關於該屬性)係合理可能發生於發明所屬領域具有通常知識者,至少針對實作的目的,所請標的意圖涵蓋該等替代地合理方法,除非明白反向指示。例如,若產生一區域上量測的繪圖且所請標的的實作意味施用該區域上的斜率量測,但存在有多種合理及替代技術以評估該區域上的斜率,所請標的意圖涵蓋該等合理替代技術,即便該等合理替代技術無法提供相同值、相同量測或相同結果,除非明白反向指示。
遍及此說明書對一個實作、一實作、一個實施例、一實施例、及/或相似用語的參考意指與特定實作連接的特定特徵、結構、及/或特性,及/或實施例被包含於所請標的的至少一個實作及/或實施例中。因此,該等用詞的出現(例如,在多個位置遍及本說明書)不必意圖參考相同實作或任何一個特定所述實作。進一步地,應理解所述特定特徵、結構、及/或特性能夠以多種方式在一個或更多個實作中組合,因而例如落於意圖的主張範圍內。一般而言,當然,該等及其他問題隨著內容變化。因此,描述的特定內容及/或使用提供有用的關於所取得推論的指引。
在已圖示及描述現在考量何者為範例特徵時,發明所屬領域具有通常知識者應理解:可進行多種其他修改,且可替換等效物而不遠離所請標的。此外,可進行許多修改以適用特定狀況於所請標的所教示,而不遠離此處所述中心概念。因此,所請標的意圖不限於所揭露的特定範例,且該所請標的也可包含落於所附請求項及其等效物的範圍內的所有態樣。
2‧‧‧第二終端51‧‧‧CES元件52‧‧‧第一終端54‧‧‧參考節點56‧‧‧感應電路58‧‧‧寫入電路102‧‧‧讀取窗104‧‧‧部分106‧‧‧部分108‧‧‧點110‧‧‧寫入窗116‧‧‧點124‧‧‧可變阻抗裝置126‧‧‧可變電阻器128‧‧‧可變電容器202‧‧‧CES位元204‧‧‧安全記憶體206‧‧‧反向器300‧‧‧設備302‧‧‧積體電路(IC)晶片304‧‧‧CES元件306‧‧‧連接接點308‧‧‧編程電路310‧‧‧程式訊號406‧‧‧點408‧‧‧點416‧‧‧點502‧‧‧區塊504‧‧‧區塊506‧‧‧區塊
在說明書的結論部分中特定指出且清楚主張所請標的。然而,為了組織及/或操作方法,與其物件、特徵、及/或優勢一併,若與伴隨圖式一起讀取,可最佳藉由參考以下詳細描述來理解,其中:
第1A圖為根據實施例的用於CES裝置的電流密度對電壓的繪圖;
第1B圖為根據實施例的對CES裝置等效的電路的示意圖;
第2圖為根據實施例的系統的示意圖,該系統控制對安全裝置的存取;
第3圖為根據實施例的CES儲存位元單元以及相關聯的感應(讀取)及程式(寫入)電路的示意圖;
第4圖為根據實施例的CES裝置中的電流密度對電壓的繪圖,指示一重新操作緊接著設定操作;
第5圖為根據實施例的使用CES元件的用於實作一次性及多次性程式的設備的示意圖;
第6圖為根據實施例的處理的流程圖,該處理控制對安全裝置的存取。
在以下詳細描述中進行對伴隨圖式的參考,該等圖式形成一部分於此,其中類似的數字可標示處處類似的零件(相同、相似、及/或類比)。應理解圖式不必要依比例繪製,例如為了圖示簡化及/或清晰。例如,一些態樣的尺寸可相對於其他態樣而誇大。進一步地,應理解可使用其他實施例。更進一步地,可進行結構及/或其他改變而不遠離所請標的。遍及本說明書參考「所請標的」意味意圖由一個或更多個請求項(或該等請求項的任何部分)涵蓋的標的,且不必意圖參考一完整請求項組、請求項組的特定組合(例如,方法請求項、設備請求項等)、或特定請求項。也應注意:可使用方向及/或參考(例如,如上、下、頂部、底部等等)以便於討論圖式且不意圖限制所請標的的應用。因此,以下詳細描述不被視為限制所請標的及/或等效物。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
502‧‧‧區塊
504‧‧‧區塊
506‧‧‧區塊

Claims (19)

  1. 一種用於非揮發性記憶體裝置操作的方法,包括以下步驟:將一寫入電路所產生的一第一程式訊號應用至一非揮發性記憶體元件的終端,以提供該非揮發性記憶體元件中的一第一電流,該第一電流足以將該非揮發性記憶體元件置於一高阻抗及/或絕緣性狀態中,該非揮發性記憶體包含一相關電子材料(CEM);及將來自該寫入電路的一第二程式訊號應用至該非揮發性記憶體元件的該等終端,以提供跨該非揮發性記憶體元件的該等終端的一電壓,該電壓足以將該非揮發性記憶體元件置於一低阻抗及/或傳導性狀態中,該第二程式訊號進一步提供該非揮發性記憶體元件中的一第二電流,該第二電流具有大於該第一電流的一強度的一強度;其中該第二電流的該強度高至足以注入一電流密度於該非揮發性記憶體元件的該CEM的一部分中,藉以將該非揮發性記憶體元件永久性地置於該低阻抗及/或傳導狀態中,由該第二程式訊號的應用而注入該非揮發性記憶體元件的該CEM的該部分中的該電流密度係高於由該第一程式訊號的應用而注入該非揮發性記憶體元件的該CEM的該部分中的一電流密度。
  2. 如請求項1所述之方法,其中該第二電流的該強度高至足以注入一足夠載子濃度於形成該非揮發性記憶體元件的該相關電子材料的該部分中,以將該非揮發性記憶體元件從該高阻抗及/或絕緣狀態轉換至該低阻抗及/或傳導狀態。
  3. 如請求項1所述之方法,進一步包括以下步驟:產生一存取致能訊號以致能一第一類型存取至一安全記憶體裝置,該存取致能訊號具有至少部分基於該非揮發性記憶體元件的一阻抗狀態的一值。
  4. 如請求項3所述之方法,其中產生該存取致能訊號以具有一第一值,以准許該第一類型存取至該安全記憶體裝置,以回應於具有一高阻抗或絕緣性狀態的該非揮發性記憶體元件,且其中產生該存取致能訊號以具有一第二值以禁止該第一類型存取至該安全記憶體裝置,以回應於具有一低阻抗或傳導性狀態的該非揮發性記憶體元件。
  5. 如請求項4所述之方法,其中該第一類型存取至該安全記憶體裝置包括在該安全記憶體裝置中存取以寫入或儲存符號、參數或值,或上述之一組合。
  6. 如請求項5所述之方法,進一步包括以下步驟:准許一第二類型存取至該安全記憶體裝置,同時禁止該第一類型存取,該第二類型包括存取以讀取或 恢復在該安全記憶體裝置中所儲存的符號、參數、值,或上述之一組合。
  7. 如請求項1所述之方法,其中該寫入電路包括用於控制欲應用至該非揮發性記憶體元件的該等終端的程式訊號的一電壓及電流的電路,且其中該寫入電路不能夠產生一程式訊號以應用足以將該非揮發性記憶體元件轉換至該高阻抗及/或絕緣狀態,同時維持足以注入形成該非揮發性記憶體元件的該CEM的該部分中的一電流密度的該非揮發性記憶體中的一電流高於由該第二程式訊號的應用而注入形成該非揮發性記憶體元件的該CEM的該部分中的該電流密度。
  8. 如請求項1所述之方法,進一步包括以下步驟:在應用該第一程式訊號至該非揮發性記憶體元件的該等終端之後,存取一安全記憶體裝置以寫入一個或更多個符號、參數、值、或上述之一組合,存取至該安全記憶體裝置以寫入一個或更多個符號、參數、值、或上述之一組合,由處於該高阻抗及/或絕緣性狀態中的該非揮發性記憶體元件致能,且其中在該第二程式訊號應用至該非揮發性記憶體元件的該等終端之後禁止後續存取以寫入至該安全記憶體裝置。
  9. 一種用於非揮發性記憶體裝置操作的設備,包括: 一個或更多個非揮發性記憶體元件,該一個或更多個非揮發性記憶體元件之每一者具有一相關電子材料(CEM);及一寫入電路,該寫入電路用以:產生一第一程式訊號以應用至該一個或更多個非揮發性記憶體元件的其中至少一者的終端,以提供一第一電流至該一個或更多個非揮發性記憶體元件的其中該至少一者的該等終端,該第一電流足以將該一個或更多個非揮發性記憶體元件的其中該至少一者置於一高阻抗及/或絕緣性狀態中;及產生一第二程式訊號以應用至該一個或更多個非揮發性記憶體元件的其中該至少一者的該等終端,以提供該一個或更多個非揮發性記憶體元件的其中該至少一者中的一第二電流,該第二電流具有大於該第一電流的一強度的一強度;其中該第二電流的該強度高至足以注入一電流密度於該一個或更多個非揮發性記憶體元件的其中該至少一者的該CEM的一部分中,藉以將該非揮發性記憶體元件的其中該至少一者永久性地置於一低阻抗及/或傳導狀態中,由該第二程式訊號的應用而注入該非揮發性記憶體元件的其中該至少一者的該CEM的該部分中的該電流密度係高於由該第一程 式訊號的應用而注入該非揮發性記憶體元件的該CEM的該部分中的一電流密度。
  10. 如請求項9所述之設備,其中該寫入電路包括用於控制欲應用至該一個或更多個該非揮發性記憶體元件的其中該至少一者的該等終端的程式訊號的一電壓及電流的電路,且其中該寫入電路不能夠產生一程式訊號以應用一電壓至該一個或更多個該非揮發性記憶體元件的其中該至少一者的該等終端,該電壓足以注入一電流密度於形成該非揮發性記憶體元件的其中該至少一者的該CEM的該部分中,該電流密度係高於由該第二程式訊號的應用而注入形成該一個或更多個非揮發性記憶體元件的其中該至少一者的該CEM的該部分中的該電流密度,同時維持該一個或更多個非揮發性記憶體元件的其中該至少一者中的一電流符合或超過該第二電流。
  11. 如請求項9所述之設備,進一步包括一安全記憶體,至少部分基於一存取致能訊號的一值,可選擇性地存取該安全記憶體,該存取致能訊號的該值係至少部分基於該一個或更多個非揮發性記憶體元件的其中該至少一者的一目前阻抗狀態。
  12. 如請求項11所述之設備,進一步包括一感應電路以偵測該一個或更多個非揮發性記憶體元件的 其中該至少一者的該目前阻抗狀態,且其中至少部分基於所偵測的該目前阻抗狀態來產生該存取致能訊號。
  13. 如請求項9所述之設備,其中該第一程式訊號應用至該一個或更多個非揮發性記憶體元件的其中該至少一者的終端准許存取至一安全記憶體裝置以寫入一個或更多個值,存取至該安全記憶體裝置由處於該高阻抗及/或絕緣性狀態中的該一個或更多個非揮發性記憶體元件的其中該至少一者致能。
  14. 如請求項13所述之設備,其中在該第二程式訊號應用至該一個或更多個非揮發性記憶體元件的其中該至少一者的該等終端之後禁止後續存取至該安全記憶體裝置。
  15. 如請求項9所述之設備,其中該第二電流的一強度高至足以注入一足夠載子濃度於形成該一個或更多個非揮發性記憶體元件的其中該至少一者的相關電子材料中,以將該一個或更多個非揮發性記憶體元件的其中該至少一者從該高阻抗及/或絕緣狀態轉換至該低阻抗及/或傳導狀態。
  16. 一種用於非揮發性記憶體裝置操作的方法,包括以下步驟:將一非揮發性記憶體元件重新設定至一高阻抗及/ 或絕緣性狀態,以准許至少一個類型的存取至一安全裝置,重新設定該非揮發性記憶體之步驟包含:注入一第一電流密度於形成該非揮發性記憶體的相關電子材料(CEM)的一部分中;及設定該相關電子材料元件以藉由應用超過一最大重新設定電流的一順從電流來永久將該非揮發性記憶體元件置於一低阻抗及/或傳導性狀態中,該順從電流注入高於該第一電流密度的一第二電流密度於該非揮發性記憶體元件的該CEM的該部分中,因而後續防止該至少一個類型的存取至該安全裝置。
  17. 如請求項16所述之方法,進一步包括以下步驟:在該低阻抗及/或傳導性狀態中形成該非揮發性記憶體元件。
  18. 如請求項16所述之方法,進一步包括以下步驟:在設定該非揮發性記憶體元件之前存取該安全裝置。
  19. 如請求項16所述之方法,其中設定該非揮發性記憶體元件以永久將該非揮發性記憶體元件置於該低阻抗及/或傳導性狀態中的該步驟包括以下步驟:在該非揮發性記憶體元件中應用一電流,該電流足夠高以注入一足夠載子濃度於形成該非揮發性記憶體元件的相關電子材料中,以將該非揮發性記憶體元件轉 換至該低阻抗及/或傳導狀態。
TW107111735A 2017-04-06 2018-04-03 用於相關電子開關(ces)裝置操作的方法、系統及裝置 TWI776877B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/480,879 2017-04-06
US15/480,879 US10115473B1 (en) 2017-04-06 2017-04-06 Method, system and device for correlated electron switch (CES) device operation

Publications (2)

Publication Number Publication Date
TW201842498A TW201842498A (zh) 2018-12-01
TWI776877B true TWI776877B (zh) 2022-09-11

Family

ID=61972555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107111735A TWI776877B (zh) 2017-04-06 2018-04-03 用於相關電子開關(ces)裝置操作的方法、系統及裝置

Country Status (5)

Country Link
US (1) US10115473B1 (zh)
EP (1) EP3607552B1 (zh)
CN (1) CN110520930B (zh)
TW (1) TWI776877B (zh)
WO (1) WO2018185480A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106925A1 (en) * 2006-11-08 2008-05-08 Symetrix Corporation Correlated electron memory
WO2009140305A1 (en) * 2008-05-12 2009-11-19 Symetrix Corporation Correlated electron material and process for making
US20130201748A1 (en) * 2012-02-06 2013-08-08 Shine C. Chung Circuit and System of Protective Mechanisms for Programmable Resistive Memories
US9373410B1 (en) * 2014-07-25 2016-06-21 Crossbar, Inc. MLC OTP operation in A-Si RRAM
TW201626373A (zh) * 2014-10-31 2016-07-16 惠普發展公司有限責任合夥企業 用於電阻式記憶體之感測電路
US20170047115A1 (en) * 2015-08-13 2017-02-16 Arm Ltd. Method, system and device for non-volatile memory device operation
US20170092858A1 (en) * 2015-09-30 2017-03-30 Arm Ltd. Multiple impedance correlated electron switch fabric

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6937054B2 (en) 2003-05-30 2005-08-30 International Business Machines Corporation Programmable peaking receiver and method
JP4427365B2 (ja) * 2004-03-19 2010-03-03 株式会社東芝 半導体記憶装置
US7298640B2 (en) 2004-05-03 2007-11-20 Symetrix Corporation 1T1R resistive memory array with chained structure
US7778063B2 (en) 2006-11-08 2010-08-17 Symetrix Corporation Non-volatile resistance switching memories and methods of making same
US7639523B2 (en) 2006-11-08 2009-12-29 Symetrix Corporation Stabilized resistive switching memory
US20080107801A1 (en) 2006-11-08 2008-05-08 Symetrix Corporation Method of making a variable resistance memory
BRPI0719055A2 (pt) * 2006-11-08 2013-11-26 Symetrix Corp Memória correlacionada de elétrons
WO2010125805A1 (ja) * 2009-04-27 2010-11-04 パナソニック株式会社 抵抗変化型不揮発性記憶素子の書き込み方法及び抵抗変化型不揮発性記憶装置
TWI441185B (zh) * 2010-05-12 2014-06-11 Ind Tech Res Inst 非揮發性靜態隨機存取記憶體及其操作方法
US8779407B2 (en) 2012-02-07 2014-07-15 Intermolecular, Inc. Multifunctional electrode
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US9053789B1 (en) 2012-04-23 2015-06-09 Adesto Technologies Corporation Triggered cell annihilation for resistive switching memory devices
US8816719B2 (en) 2012-04-26 2014-08-26 Symetrix Corporation Re-programmable antifuse FPGA utilizing resistive CeRAM elements
KR101868305B1 (ko) 2014-12-09 2018-06-15 시메트릭스 메모리, 엘엘씨 도핑된 버퍼 영역을 가진 전이 금속 산화물 저항성 스위칭 장치
US9735766B2 (en) 2015-07-31 2017-08-15 Arm Ltd. Correlated electron switch
US9748943B2 (en) 2015-08-13 2017-08-29 Arm Ltd. Programmable current for correlated electron switch
US10096361B2 (en) 2015-08-13 2018-10-09 Arm Ltd. Method, system and device for non-volatile memory device operation
US9851738B2 (en) 2015-08-13 2017-12-26 Arm Ltd. Programmable voltage reference
US9584118B1 (en) 2015-08-26 2017-02-28 Nxp Usa, Inc. Substrate bias circuit and method for biasing a substrate
US10056143B2 (en) 2015-09-08 2018-08-21 Arm Ltd. Correlated electron switch programmable fabric
US9589636B1 (en) 2015-09-22 2017-03-07 Arm Ltd. Method, system and device for complementary non-volatile memory device operation
GB2545264B (en) * 2015-12-11 2020-01-15 Advanced Risc Mach Ltd A storage array
US9627615B1 (en) 2016-01-26 2017-04-18 Arm Ltd. Fabrication of correlated electron material devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106925A1 (en) * 2006-11-08 2008-05-08 Symetrix Corporation Correlated electron memory
WO2009140305A1 (en) * 2008-05-12 2009-11-19 Symetrix Corporation Correlated electron material and process for making
US20130201748A1 (en) * 2012-02-06 2013-08-08 Shine C. Chung Circuit and System of Protective Mechanisms for Programmable Resistive Memories
US9373410B1 (en) * 2014-07-25 2016-06-21 Crossbar, Inc. MLC OTP operation in A-Si RRAM
TW201626373A (zh) * 2014-10-31 2016-07-16 惠普發展公司有限責任合夥企業 用於電阻式記憶體之感測電路
US20170047115A1 (en) * 2015-08-13 2017-02-16 Arm Ltd. Method, system and device for non-volatile memory device operation
US20170092858A1 (en) * 2015-09-30 2017-03-30 Arm Ltd. Multiple impedance correlated electron switch fabric

Also Published As

Publication number Publication date
EP3607552B1 (en) 2023-10-25
CN110520930B (zh) 2023-09-01
WO2018185480A1 (en) 2018-10-11
EP3607552A1 (en) 2020-02-12
TW201842498A (zh) 2018-12-01
CN110520930A (zh) 2019-11-29
US10115473B1 (en) 2018-10-30
US20180294039A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
TWI754748B (zh) 關連電子切換器(ces)裝置作業的方法、系統與裝置
TWI713585B (zh) 用於互補式非揮發性記憶裝置操作的方法、系統及裝置(二)
TWI713586B (zh) 用於互補式非揮發性記憶體裝置操作的方法、系統及裝置(一)
TWI779023B (zh) 由關聯電子材料形成的記憶體裝置
TWI705319B (zh) 用於產生可程式化電壓參考的設備與方法
TWI723230B (zh) 用於非揮發性記憶體裝置操作的方法、系統以及裝置
TWI754686B (zh) 用於非易失性記憶體裝置操作的方法、系統及裝置
US9972388B2 (en) Method, system and device for power-up operation
TWI736698B (zh) 用於非依電性記憶體元件操作的方法、系統及元件
KR102629844B1 (ko) 저항성 크로스-포인트 스토리지 어레이
Li et al. Read challenges in crossbar memories with nanoscale bidirectional diodes and ReRAM devices
TWI776877B (zh) 用於相關電子開關(ces)裝置操作的方法、系統及裝置
TWI822767B (zh) 用於記憶體位元單元之操作的方法、系統和裝置
TWI786125B (zh) 用於記憶體裝置操作的方法、系統、及裝置
TWI772414B (zh) 控制在編程操作期間經過相關電子切換元件的電流
TWI772530B (zh) 用於測試關聯電子開關(ces)設備的方法、系統及設備

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent