TWI776155B - 電池系統及其控制方法 - Google Patents

電池系統及其控制方法 Download PDF

Info

Publication number
TWI776155B
TWI776155B TW109116870A TW109116870A TWI776155B TW I776155 B TWI776155 B TW I776155B TW 109116870 A TW109116870 A TW 109116870A TW 109116870 A TW109116870 A TW 109116870A TW I776155 B TWI776155 B TW I776155B
Authority
TW
Taiwan
Prior art keywords
battery
time period
voltage
current
value
Prior art date
Application number
TW109116870A
Other languages
English (en)
Other versions
TW202115421A (zh
Inventor
趙永信
金承一
朴强野
魚允弼
Original Assignee
南韓商三星Sdi股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星Sdi股份有限公司 filed Critical 南韓商三星Sdi股份有限公司
Publication of TW202115421A publication Critical patent/TW202115421A/zh
Application granted granted Critical
Publication of TWI776155B publication Critical patent/TWI776155B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

本發明揭露一種電池系統,所述電池系統包括:電池模組,包括在系統端子之間並聯連接的多個電池子模組;多個開關,分別串聯連接到所述多個電池子模組;測量單元,測量電池模組和/或包括在電池模組中的胞元的電壓值及在電池模組上流動的電流值;檢測單元,通過監測電壓值或電流值來確定所述多個電池子模組中是否發生內部短路;以及控制單元,當在所述多個電池子模組中的至少一個電池子模組中發生內部短路時,控制所述多個開關中與所述至少一個電池子模組對應的至少一個開關處於非導通狀態。也提供一種電池系統的控制方法。

Description

電池系統及其控制方法
本發明涉及一種電池系統及其控制方法。
隨著電氣技術及電子技術的發展,對小而輕且具有各種功能的可攜式電子產品的使用正急劇增加。電池一般用作用於可攜式電子產品的操作的電源供應裝置,且主要使用的是充電且可重複使用的可再充電電池(rechargeable battery)。
與不可充電的原電池(primary battery)不同,可再充電電池是一種可充電及可放電的電池。可再充電電池用於可攜式小型電子裝置(例如,可攜式電話或筆記型電腦)中,或者廣泛用作驅動電動工具(power tool)、車輛等的馬達(motor)的電源(power source)。可再充電電池的內部部件可由正電極、負電極、隔離膜(separation film)、電解質等形成,且殼體(case)可由金屬板或袋(pouch)形成。
具有高能量密度(energy density)的可再充電電池可能引起安全問題,例如熱散逸(thermal runaway),且具體而言,其中可再充電電池內部的正電極及負電極被短路(short-circuited)因而使可再充電電池過熱(overheated)的情況是代表性實例。內部短路是由隔離膜的功能喪失而引起的,且隔離膜的功能喪失的實例包括由外部衝擊引起變形、製造工藝中包含金屬雜質(metallic foreign substance)以及通過電化學反應形成鋰或銅的枝晶(dendrite)。
在現有技術中,開發了預先檢測可再充電電池的內部短路狀態並防止內部短路的技術。在現有技術的方案中,在可再充電電池的電壓極穩定的狀態下,需要幾十分鐘的檢查時間。因此,具有無法檢測到在可再充電電池連續充電或放電的狀態下產生的內部短路的缺點。
在此背景技術部分中所揭露的以上資訊僅用於增強對本發明的背景的理解,在此背景技術部分中所揭露的以上資訊僅用於增強對本發明的背景的理解,且因此其可包含不形成在本國對於所屬領域中的一般技術人員來說已知的現有技術的資訊。
在此背景技術部分中揭露的以上資訊僅用於增強對本發明的背景的理解,且因此其可包含不形成對於所屬領域中的一般技術人員來說已知的現有技術的資訊。
本發明已努力提供能夠快速地檢測電池模組中的內部短路並保護電池系統免受內部短路影響的一種電池系統及其控制方法。
本發明的示例性實施例提供一種電池系統,所述電池系統包括:電池模組,包括在系統端子之間並聯連接的多個電池子模組;多個開關,分別串聯連接到所述多個電池子模組;測量單元,測量電池模組和/或包括在電池模組中的胞元的電壓值及在電池模組上流動的電流值;檢測單元,通過監測電壓值或電流值來確定所述多個電池子模組中是否發生內部短路;以及控制單元,當在所述多個電池子模組中的至少一個電池子模組中發生內部短路時,控制所述多個開關中的與所述至少一個電池子模組對應的至少一個開關處於非導通狀態。
在根據示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於恒流充電中時,基於由所述測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於所述恒流充電中時,在所述多個電池子模組在所述第一時間段以及所述第二時間段中的電流變化寬度在第一範圍內,且所述胞元在所述第一時間段中的電壓變化寬度在第二範圍內的情況下,實行所述內部短路的檢測。
在根據示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於恒壓充電中時,基於由所述測量單元測量的所述電流值,確定所述多個電池子模組在所述第一時間段中的第一電流值以及在所述第二時間段中的第二電流值中的每一者,且確定所述多個電池子模組中通過從所述第二電流值中減去所述第一電流值而獲得的值等於或大於第三閾值的電池子模組發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的差等於或小於第二閾值的情況下,實行所述內部短路的所述檢測。
在根據示例性實施例的電池系統中,所述檢測單元可在從所述電池模組的充電終止時間點起經過預定時間之後,基於由所述測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據示例性實施例的電池系統中,所述檢測單元可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時,實行所述內部短路的所述檢測。
在根據示例性實施例的電池系統中,所述檢測單元可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的所述第一電流值與在所述第二時間段中的所述第二電流值之間的差等於或小於第五閾值且所述胞元在所述第一時間段中的所述電壓變化寬度在第五範圍內時,實行所述內部短路的所述檢測。
在根據示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於所述恒壓充電中時,比較所述多個電池子模組的所述電流值,且確定所述多個電池子模組中具有比剩餘的所述電池子模組高第八閾值或大於第八閾值的電流值的電池子模組發生所述內部短路。在這種情況下,所述檢測單元可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在所述預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的所述差滿足第七閾值或小於第七閾值的情況下,實行所述內部短路的所述檢測。此處,所述多個電池子模組的電流值可為在第二時間段中的電流值,且所述第二時間段可包括第一時間段之後的時間段。
本發明的另一示例性實施例提供一種電池系統,所述電池系統包括:電池模組,連接在系統端子之間;放電電路,並聯連接到系統端子之間的電池模組,且包括彼此串聯連接的放電開關及放電電阻器;測量單元,測量電池模組和/或包括在電池模組中的胞元的電壓值及在電池模組上流動的電流值;檢測單元,通過監測電壓值或電流值來確定電池模組中是否發生內部短路;以及控制單元,控制放電開關,使得當電池模組中發生內部短路時,電池模組的電壓值下降到預定值或小於預定值。
在根據另一示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於恒流充電中時,基於由所述測量單元測量的所述電壓值,確定包括在所述多個電池模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據另一示例性實施例的電池系統中,所述電池模組可包括彼此並聯連接且各自包括多個胞元的多個電池子模組。
在根據另一示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於所述恒流充電中時,在所述多個電池子模組在所述第一時間段以及所述第二時間段中的電流變化寬度在第一範圍內,且所述多個胞元在所述第一時間段中的電壓變化寬度在第二範圍內的情況下,實行所述內部短路的檢測。
在根據另一示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於恒壓充電中時,基於由所述測量單元測量的所述電流值,確定所述多個電池子模組在所述第一時間段中的第一電流值以及在所述第二時間段中的第二電流值中的每一者,且確定所述多個電池子模組中通過從所述第二電流值中減去所述第一電流值而獲得的值等於或大於第三閾值的電池子模組發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據另一示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的差等於或小於第二閾值的情況下,實行所述內部短路的所述檢測。
在根據另一示例性實施例的電池系統中,所述檢測單元可在從所述電池模組的充電終止時間點起經過預定時間之後,基於由所述測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據另一示例性實施例的電池系統中,所述檢測單元可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時,實行所述內部短路的所述檢測。
在根據另一示例性實施例的電池系統中,所述檢測單元可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的所述第一電流值與在所述第二時間段中的所述第二電流值之間的差等於或小於第五閾值且所述多個胞元在所述第一時間段中的所述電壓變化寬度在第五範圍內時,實行所述內部短路的所述檢測。
在根據另一示例性實施例的電池系統中,所述檢測單元可在所述電池模組處於所述恒壓充電中時,比較所述多個電池子模組的所述電流值,且確定所述多個電池子模組中具有比剩餘的所述電池子模組高第八閾值或大於第八閾值的電流值的電池子模組發生所述內部短路。在這種情況下,所述檢測單元可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在所述預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的所述差滿足第七閾值或小於第七閾值的情況下,實行所述內部短路的所述檢測。此處,所述多個電池子模組的電流值可為在第二時間段中的電流值,且所述第二時間段可包括第一時間段之後的時間段。
本發明的又一示例性實施例提供一種電池系統的控制方法,所述電池系統包括電池模組,所述電池模組包括在系統端子之間並聯連接的多個電池子模組以及分別串聯連接到所述多個電池子模組的多個開關,所述方法包括:測量所述多個電池子模組和/或包括在所述多個電池子模組中的胞元的電壓值以及在電池模組上流動的電流值;通過監測電壓值或電流值來檢測電池模組中內部短路的發生;以及控制所述多個開關,以便當電池模組中發生內部短路時,將所述多個電池子模組中發生內部短路的至少一個電池子模組與系統端子電分離。
在根據示例性實施例的控制方法中,所述檢測可包括:在電池模組處於恒流充電中時,基於由測量單元測量的電壓值,確定包括在所述多個電池子模組中的胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據示例性實施例的控制方法中,所述檢測可在電池模組處於恒流充電中時,在所述多個電池子模組在第一時間段以及第二時間段中的電流變化寬度在第一範圍內,且胞元在第一時間段中的電壓變化寬度在第二範圍內的情況下實行。
在根據示例性實施例的控制方法中,所述檢測可包括:當電池模組處於恒壓充電中時,基於由測量單元測量的電流值,確定所述多個電池子模組在第一時間段中的第一電流值以及在第二時間段中的第二電流值中的每一者,以及確定所述多個電池子模組中通過從第二電流值中減去第一電流值而獲得的值等於或大於第三閾值的電池子模組中發生內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據示例性實施例的控制方法中,所述檢測可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的差等於或小於第二閾值的情況下實行。
在根據示例性實施例的控制方法中,所述檢測可包括:在從電池模組的充電終止時間點起經過預定時間之後,基於由測量單元測量的電壓值,確定包括在所述多個電池子模組中的胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元中發生內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據示例性實施例的控制方法中,所述檢測可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時實行。
在根據示例性實施例的控制方法中,所述檢測可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的所述第一電流值與在所述第二時間段中的所述第二電流值之間的差等於或小於第五閾值且所述胞元在所述第一時間段中的所述電壓變化寬度在第五範圍內時實行。
在根據示例性實施例的控制方法中,所述檢測可包括:在所述電池模組處於所述恒壓充電中時,比較所述多個電池子模組的電流值,以及確定所述多個電池子模組中具有比剩餘的所述電池子模組高第八閾值或大於第八閾值的電流值的電池子模組中發生所述內部短路。在這種情況下,所述檢測可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在所述預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的所述差滿足第七閾值或小於第七閾值的情況下實行。此處,所述多個電池子模組的電流值可為在第二時間段中的電流值,且所述第二時間段可包括第一時間段之後的時間段。
本發明的又一示例性實施例提供一種電池系統的控制方法,所述電池系統包括連接在系統端子之間的電池模組以及在系統端子之間並聯連接到電池模組的放電電路,所述方法包括:測量電池模組和/或包括在電池模組中的胞元的電壓值以及在電池模組上流動的電流值;通過監測電壓值或電流值來檢測電池模組中內部短路的發生;以及操作放電電路,使得當電池模組中發生內部短路時,電池模組的電壓值下降到預定值或小於預定值。
在根據另一示例性實施例的控制方法中,所述檢測可包括:在電池模組處於恒流充電中時,基於由測量單元測量的電壓值,確定包括在所述多個電池子模組中的胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據另一示例性實施例的控制方法中,所述電池模組可包括彼此並聯連接且各自包括多個胞元的多個電池子模組。
在根據另一示例性實施例的控制方法中,所述檢測可在電池模組處於恒流充電中時,在所述多個電池子模組在第一時間段以及第二時間段中的電流變化寬度在第一範圍內,且胞元在第一時間段中的電壓變化寬度在第二範圍內的情況下實行。
在根據另一示例性實施例的控制方法中,所述檢測可包括:當電池模組處於恒壓充電中時,基於由測量單元測量的電流值,確定所述多個電池子模組在第一時間段中的第一電流值以及在第二時間段中的第二電流值中的每一者,以及確定所述多個電池子模組中通過從第二電流值中減去第一電流值而獲得的值等於或大於第三閾值的電池子模組中發生內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據另一示例性實施例的控制方法中,所述檢測可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的差等於或小於第二閾值的情況下實行。
在根據另一示例性實施例的控制方法中,所述檢測可包括:在從電池模組的充電終止時間點起經過預定時間之後,基於由測量單元測量的電壓值,確定包括在所述多個電池子模組中的胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元中發生內部短路。此處,所述第二時間段可包括所述第一時間段之後的時間段。
在根據另一示例性實施例的控制方法中,所述檢測可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時實行。
在根據另一示例性實施例的控制方法中,所述檢測可在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的所述第一電流值與在所述第二時間段中的所述第二電流值之間的差等於或小於第五閾值且所述胞元在所述第一時間段中的所述電壓變化寬度在第五範圍內時實行。
在根據另一示例性實施例的控制方法中,所述檢測可包括:在所述電池模組處於所述恒壓充電中時,比較所述多個電池子模組的電流值,且確定所述多個電池子模組中具有比剩餘的所述電池子模組高第八閾值或大於第八閾值的電流值的電池子模組中發生所述內部短路。在這種情況下,所述檢測可在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的所述電流變化寬度以及所述電壓變化寬度在所述預定範圍內,且所述多個電池子模組在所述第一時間段中的所述第一電壓值與在所述第二時間段中的所述第二電壓值之間的所述差滿足第七閾值或小於第七閾值的情況下實行。此處,所述多個電池子模組的電流值可為在第二時間段中的電流值,且所述第二時間段可包括第一時間段之後的時間段。
根據本發明的示例性實施例,存在可快速地檢測電池模組中的內部短路的效果。
此外,可安全地保護電池系統免受內部短路影響。
現在將詳細參考實施例,所述實施例的實例被示出於附圖中。將參考附圖闡述示例性實施例的效果及特徵以及其實施方法。在圖式中,相同的參考編號表示相同的元件,且省略冗餘說明。然而,本發明可以各種不同的形式實施,且不應被視為僅限於本文所示的實施例。相反,提供這些實施例作為實例,以使本揭露是透徹及完整的,且將向所屬領域中的技術人員充分傳達本發明的方面以及特徵。
因此,可不闡述被認為對於所屬領域中的一般技術人員來說完全理解本發明的方面及特徵所不需要的工藝、元件以及技術。在圖式中,為清晰起見,元件、層以及區域的相對大小可被誇大。
本文所用用語“和/或”包括相關列出項中的一個或多個項的任意及全部組合。此外,當闡述本發明的實施例時使用“可”是指“本發明的一個或多個實施例”。在本發明的實施例的以下說明中,除非上下文另外清晰地指明,否則單數形式的術語可包括複數形式。
將理解,儘管用語“第一”及“第二”用於闡述各種元件,但這些元件不應被這些術語限制。這些用語僅用於區分各個元件。例如,在不背離本發明的範圍的條件下,可稱第一元件為第二元件,且相似地,可稱第二元件為第一元件。本文所用用語“和/或”包括相關列出項中的一個或多個項的任意及全部組合。在一列表元件之前使用例如“...中的至少一者”等表達時,是修飾整個列表的元件,而非修飾所述列表的各別元件。
在下文中,將參考圖1到圖3詳細闡述根據本發明示例性實施例的電池系統。
圖1是示出根據本發明示例性實施例的電池系統的配置的圖。此外,圖2示出圖1的電池模組的實例。
參考圖1,根據本發明示例性實施例的電池系統1可包括電池模組10以及電池控制設備20。
電池模組10可包括串聯和/或並聯連接的一個或多個二次電池胞元(以下稱為“胞元(cell)”)。
參考圖2作為實例,電池模組10包括在兩個系統端子T+以及T-之間並聯連接的多個電池子模組11。此外,每個電池子模組11包括彼此串聯連接的多個胞元組(cell bank)13,且每個胞元組13包括彼此並聯連接的多個胞元,例如兩個胞元100。圖2示出電池模組10的實例,且電池模組10的配置不限於此。例如,電池模組10可由單個胞元配置。此外,例如,電池模組10可僅由串聯連接的多個胞元構成,且各自由彼此串聯連接的所述多個胞元構成的多個電池子模組可被配置為彼此並聯連接。
電池模組10可通過系統端子T+以及T-連接到外部充電裝置(未示出)或負載,並由充電裝置充電或由負載放電。
電池模組10通過以下中的一種或多種充電方法進行充電:恒流(constant current,CC)充電,其中從充電的初始階段到完成階段以恒定電流進行充電;恒壓(constant voltage,CV)充電,其中從充電的初始階段到完成階段以恒定電壓進行充電;以及CC-CV充電,其中電池模組在充電的初始階段以恒定電流進行充電而在充電的結束階段以恒定電壓進行充電。
圖3示出構成圖2的電池模組的二次電池胞元的等效電路。
參考圖3,構成電池模組10的每個胞元100可包括內部電阻RB ,且內部電阻RB 可具有幾mΩ到幾百mΩ的電阻值。當胞元100中發生內部短路時,產生與胞元100內部的開關S導通的影響相同的影響。當開關S由於胞元100發生內部短路而導通時,短路電流Ishort 在短路電阻RS 上流動,且胞元100放電。在這種情況下,短路電阻RS 可具有幾mΩ到幾kΩ的寬範圍的電阻值。
圖4A到圖4C是闡述電壓及電流依據構成圖2的電池模組的二次電池胞元的內部短路的發生而變化的圖。
參考圖4A,當電池模組10通過CC充電進行充電時,供應給胞元100的充電電流I具有預定值,且胞元100的電壓V逐漸增加。在恒流(CC)充電期間,當胞元100中發生內部短路IS 時,出現胞元100的電壓V急劇降低然後再次增加的現象。參考圖3,出現這種現象是因為胞元100的等效電阻,即胞元100的內部電阻RB 與短路電阻RS 的組合電阻由於胞元100的內部短路而立刻改變。
此外,參考圖4B,當電池模組10通過CV充電進行充電時,胞元100的電壓V具有預定值,且胞元100的充電電流I逐漸減小。在CV充電期間,當胞元100中發生內部短路IS 時,會出現胞元100的充電電流I急劇增大然後再次減小的現象。參考圖3,出現這種現象是因為胞元100的等效電阻,即胞元100的內部電阻RB 與短路電阻RS 的組合電阻由於胞元100的內部短路而立刻改變。
此外,參考圖4C,當電池模組10的電壓處於開路電壓(open voltage)狀態中時,例如,在負載沒有連接到電池模組10或者非常低的負載連接到電池模組10的情況下,胞元100的電壓V持續保持預定時間,然後逐漸降低。在這種情況下,當胞元100中發生內部短路IS 時,出現胞元100的電壓V急劇降低然後逐漸降低的現象。參考圖3,出現這種現象是因為胞元100的等效電阻,即胞元100的內部電阻RB 與短路電阻RS 的組合電阻由於胞元100的內部短路而立刻改變。
如圖4A到圖4C所示,胞元100的內部短路導致胞元100的電壓或電流的變化,所述變化甚至可在如圖2所示由所述多個胞元100構成的電池模組10中測量。例如,當電池模組10進行CC充電或電池模組10處於開路電壓狀態中時,如果在特定胞元100中發生內部短路,則包括對應胞元100的電池子模組11的電壓也可降低。此外,例如,當電池模組10進行CV充電時在特定胞元100中發生內部短路時,在包括對應胞元100的電池子模組11或電池模組10上流動的電流也可增加。因此,在本發明的示例性實施例中,監測電池模組10的電壓以及電流的變化,以檢測發生內部短路的胞元100或電池子模組11。
返回參考圖1,根據本發明實施例的電池控制設備20可檢測電池模組10的內部短路,並執行保護功能以保護電池模組10免遭由內部短路引起的危險情況。為此,電池控制設備20可包括測量單元21、檢測單元22以及控制單元23。
測量單元21連續測量電池模組10的充電開始時間點及充電終止時間點以及電池模組10的電壓V、電流I及溫度T,並將所測量的電壓值、電流值、溫度值、充電開始時間點、充電終止時間點等傳輸到檢測單元22。測量單元21可離散地實行測量。在兩個測量時間點之間可存在預定時間段,且所述時間段的變化可改變。測量單元21可在一個測量時間點處檢測電壓、電流及溫度中的至少一者。
由測量單元21測量的電池模組10的電壓值可包括構成電池模組10的各個胞元100的電壓值。此外由測量單元21測量的電池模組10的電壓值可包括構成電池模組10的各個電池子模組11的電壓值。另外,由測量單元21測量的電池模組10的電壓值可包括整個電池模組10的電壓值,即系統端子T+與系統端子T-之間的電壓值。
圖5示出通過測量單元21測量圖2所示電池模組10的電壓值的實例。
參考圖5,測量單元21可電連接到構成電池模組10的每個胞元100的兩個端部(或每個胞元組13的兩個端部),且因此測量每個胞元100(或每個胞元組13)和/或電池子模組11的兩個端部的電壓值。
由測量單元21測量的電池模組10的電流值可包括通過測量從充電裝置供應到整個電池模組10的充電電流和/或從電池模組10供應到負載的放電電流而獲得的電流值。此外,由測量單元21測量的電池模組10的電流值可包括通過測量從充電裝置為構成電池模組10的每個電池子模組11供應的充電電流和/或供應給每個電池子模組11的外部負載的放電電流而獲得的電流值。
圖6A及圖6B示出通過測量單元21測量圖2所示電池模組10的電流值的實例。
參考圖6A作為實例,根據示例性實施例的電池系統1還可包括串聯連接到電池子模組11中的每一者的分流電阻器31。在每個電池子模組11上流動的充電電流或放電電流甚至也在對應的分流電阻器31上流動。因此,測量單元21可根據由每個分流電阻器31引起的電壓降(voltage drop)來測量在對應的電池子模組11上流動的充電電流或放電電流。
參考圖6B作為實例,根據示例性實施例的電池系統1還可包括串聯連接在系統端子T+以及T-中的任一者與電池模組10之間的分流電阻器31。結果,在整個電池模組10與充電裝置之間或者在整個電池模組10與負載之間流動的電流可在分流電阻器31上流動,且測量單元21可根據由分流電阻器31引起的電壓降來測量在整個電池模組10與充電裝置之間或者在整個電池模組10與負載之間流動的電流。
檢測單元22接收由測量單元21對電池模組10測量的電壓值、電流值、溫度值等,並將所接收的電壓值、電流值、溫度值等儲存在記憶體(未示出)中。
參考圖4A到圖4C,每一胞元100的電壓或電流依據內部短路的改變方面是依據電池模組10是否正在充電以及充電方案(CC充電及CV充電)而變化。因此,電池控制設備20檢查當前電池模組10是否正在充電以及當電池模組10正在充電時的充電方案,以檢測內部短路。也就是說,檢測單元22利用電池模組10的所量測的電壓值及電流值來確定當前電池模組10是否為CC充電狀態、CV充電狀態及開路電壓狀態(無負載或低負載狀態)中的任何一種狀態。
參考圖4A,在CC充電期間,當在CC充電的間隔期間在構成電池模組10的胞元100中發生內部短路IS 時,出現對應胞元100的電壓急劇降低的現象。因此,當電池模組10處於CC充電中時,檢測單元22通過監測構成電池模組10的每個胞元100的電壓變化來檢測每個胞元100的內部短路的發生。
作為實例,檢測單元22可在電池模組10處於CC充電中時從測量單元21測量的每個胞元100的電壓值中確定由在不同時間段中為每個胞元100測量的電壓值構成的第一電壓組以及第二電壓組,且通過比較同一胞元100的第一電壓組與第二電壓組來檢測對應胞元100中內部短路的發生。也就是說,當對於同一胞元100,包括在第一電壓組中的電壓值的平均值與包括在第二電壓組中的電壓值的平均值之間的差大於或等於閾值時,檢測單元22可確定在對應的胞元100中發生內部短路。此處,第一電壓組以及第二電壓組中的每一者可包括在預定時段期間針對對應的胞元100測量的多個電壓值,且包括在第一電壓組中的電壓值可為在包括在第二電壓組中的電壓值之前測量的電壓值。將參考以下將闡述的圖8詳細闡述確定第一電壓組以及第二電壓組的方法。
作為另一實例,檢測單元22可在電池模組10處於CC充電中時從測量單元21測量的每個胞元100的電壓值中分別為每個胞元100選擇在不同時間段期間測量的第一電壓值以及第二電壓值,且通過比較同一胞元100的第一電壓值與第二電壓值來檢測對應胞元100的內部短路。也就是說,當第一電壓值與第二電壓值之間的差大於或等於同一胞元100的閾值時,檢測單元22可確定在對應的胞元100中發生內部短路。此處,第一電壓值以及第二電壓值是暫態電壓值,且第一電壓值可為在第二電壓值之前測量的電壓值。
參考圖4B,當在CV充電的間隔期間在構成電池模組10的胞元100中發生內部短路IS 時,發生內部短路的胞元100的充電電流I瞬間急劇增加。因此,當電池模組10處於CV充電中時,檢測單元22通過監測電池模組10的電流變化來檢測電池模組10的內部短路的發生。
作為實例,檢測單元22可在電池模組10處於CV充電中時從測量單元21為每個電池子模組11測量的電流值(參見圖6A的電流測量方案)中確定由在不同時間段為每個電池子模組11測量的電流值構成的第一電流組以及第二電流組,且通過比較同一電池子模組11的第一電流組與第二電流組來檢測對應電池子模組11的內部短路。也就是說,當對於同一電池子模組11包括在第一電流組中的電流值的平均值與包括在第二電流組中的電流值的平均值之間的差大於或等於閾值時,檢測單元22可確定包括在對應電池子模組11中的胞元100中發生內部短路。此處,第一電流組以及第二電流組中的每一者可包括在預定時段期間為對應的電池子模組11測量的多個電流值,且包括在第一電流組中的電流值可為在包括在第二電流組中的電流值之前測量的電流值。將參考以下將闡述的圖8詳細闡述確定第一電流組以及第二電流組的方法。
作為另一實例,檢測單元22可在電池模組10處於CV充電中時從測量單元21為每個電池子模組11測量的電流值(參見圖6A的電流測量方案)中分別為每個電池子模組11選擇在不同時間段中測量的第一電流值以及第二電流值,且通過比較同一電池子模組11的第一電流值與第二電流值來檢測對應電池子模組11的內部短路。也就是說,當對於同一電池子模組11,第一電流值與第二電流值之間的差大於或等於閾值時,檢測單元22可確定包括在對應電池子模組11中的胞元100中發生內部短路。此處,第一電流值以及第二電流值是暫態電流值,且第一電流值可為在第二電流值之前測量的電流值。
作為另一實例,檢測單元22可在電池模組10處於CV充電中時比較由測量單元21測量的電池子模組11的電流值(參見圖6A的電流測量方案),且確定具有比另一電池子模組11大預定值或大於預定值的電流值的電池子模組11發生內部短路。
作為再一實例,檢測單元22可在電池模組10處於CV充電中時從測量單元21為電池模組10測量的電流值(參見圖6B的電流測量方案)中確定由在不同時間段期間測量的電流值構成的第一電流組以及第二電流組,且通過將第一電流組與第二電流組相互比較來檢測電池模組10中的內部短路。也就是說,當包括在第一電流組中的電流值的平均值與包括在第二電流組中的電流值的平均值之間的差大於或等於閾值時,檢測單元22可確定包括在電池模組10中的胞元100中發生內部短路。此處,第一電流組以及第二電流組中的每一者可包括在預定時段期間為電池模組10測量的多個電流值,且包括在第一電流組中的電流值可為在包括在第二電流組中的電流值之前測量的電流值。將參考以下將闡述的圖8詳細闡述確定第一電流組以及第二電流組的方法。
作為再一實例,檢測單元22可在電池模組10處於CV充電中時從測量單元21為電池模組10測量的電流值(參見圖6B的電流測量方案)中分別為每個電池子模組11選擇在不同時間段期間測量的第一電流值以及第二電流值,且通過將第一電流值與第二電流值相互比較來檢測電池模組10中的內部短路。也就是說,當第一電流值與第二電流值之間的差大於或等於閾值時,檢測單元22可確定包括在電池模組10中的胞元100中發生內部短路。此處,第一電流值以及第二電流值是電池模組10的暫態電流值,且第一電流值可為在第二電流值之前測量的電流值。
一般來說,由於成本以及安裝空間的問題,在通過串聯和/或並聯連接多個胞元100而配置的電池模組10上流動的電流如圖6A所示以電池子模組11為單位進行測量,或者如圖6B所示以電池模組10為單位進行測量。此外,如圖2所示,當包括在每個電池子模組11中的胞元100(或胞元組13)彼此串聯連接時,相同的電流在包括在同一電池子模組11中的胞元100(或胞元組13)上流動,且結果,存在即使測量在每個胞元100(或胞元組13)上流動的電流,仍難以確定在胞元100(或胞元組13)的單元中是否發生內部短路的問題。因此,如上所述,檢測單元22可通過監測在每個電池子模組11上流動的電流或者在電池模組10上流動的電流來確定是否發生內部短路。在前一種情況下,檢測單元22可指定包括發生內部短路的胞元100的電池子模組11。
參考圖4C,當電池模組10的充電終止且電池模組10處於開路電壓狀態(例如,沒有負載連接到電池模組10的狀態或者連接非常低的負載的狀態)中時,每個胞元100的電壓保持恒定達預定時間然後逐漸降低,且當發生內部短路時,對應胞元100的電壓急劇降低。因此,當電池模組10的充電終止且電池模組10處於當前開路電壓狀態中時,檢測單元22通過監測每個胞元100的電壓變化來檢測電池模組10的內部短路的發生。
作為實例,檢測單元22可在電池模組10處於開路電壓狀態中時從測量單元21測量的每個胞元100的電壓值中確定由在不同時間段中為每個胞元100測量的電壓值構成的第一電壓組以及第二電壓組,且通過比較同一胞元100的第一電壓組與第二電壓組來檢測對應胞元100的內部短路。也就是說,當對於同一胞元100,包括在第一電壓組中的電壓值的平均值與包括在第二電壓組中的電壓值的平均值之間的差大於或等於閾值時,檢測單元22可確定在對應胞元100中發生內部短路。此處,第一電壓組以及第二電壓組中的每一者可包括在預定時段期間針對對應的胞元100測量的多個電壓值,且包括在第一電壓組中的電壓值可為在包括在第二電壓組中的電壓值之前測量的電壓值。將參考以下將闡述的圖8闡述確定第一電壓組以及第二電壓組的方法。
作為另一實例,檢測單元22可在電池模組10處於開路電壓狀態中時從測量單元21測量的每個胞元100的電壓值中分別為每個胞元100選擇在不同時間段期間測量的第一電壓值以及第二電壓值,且通過比較同一胞元100的第一電壓值與第二電壓值來檢測對應胞元100的內部短路。也就是說,當對於同一胞元100,第一電壓值與第二電壓值之間的差大於或等於閾值時,檢測單元22可確定在對應的胞元100中發生內部短路。此處,第一電壓值以及第二電壓值是暫態電壓值,且第一電壓值可為在第二電壓值之前測量的電壓值。
同時,當電池模組10處於開路電壓狀態中時,用於確定內部短路的電壓值可為在從電池模組10的充電終止時間點起經過預定時間之後測量的電壓值。此處,預定時間可意謂直到內部短路可在充電終止之後被確定的時間,且當通過使用在預定時間之前測量的電壓值來確定內部短路時,確定精度可降低。
當檢測單元22通過使用上述方案檢測電池模組10發生內部短路時,檢測單元22產生包括電池模組10的狀態以及內部短路是否發生的檢測訊號Ds。將參考以下將闡述的圖9到圖12詳細闡述檢測單元22檢測電池模組10的內部短路的具體過程。
如圖2所示,當通過並聯連接所述多個電池子模組11而配置的電池模組10中發生內部短路時,包括發生內部短路的胞元100的電池子模組11的電壓瞬間降低,且結果,用於補償發生內部短路的電池子模組11中的電壓降的電流可從相鄰的電池子模組11流動。因此,可能出現其中發生內部短路的電池子模組11中的胞元100用流動電流進行充電,而發生內部短路的電池子模組11中的正常胞元100被過度充電的情況。
因此,控制單元23可基於由檢測單元22產生的檢測訊號Ds來執行保護操作,以保護電池模組10免受由內部短路引起的危險情況影響。
在下文中,將參考圖7A以及圖7B闡述根據本發明示例性實施例的電池控制設備20保護電池模組10免受內部短路影響的保護操作。
圖7A及圖7B是闡述電池控制設備20針對內部短路對電池模組的保護操作的圖。
參考圖7A,根據示例性實施例的電池系統1還可包括串聯連接在系統端子T+以及T-中的任一者與電池模組10之間的主開關32。電池系統1還可包括串聯連接到電池子模組11中的每一者的開關33。此處,主開關32以及開關33可採用由電控制訊號驅動的各種類型的開關元件,例如繼電器、接觸件半導體開關(電晶體等)、短路保護(short circuit protection,SCP)等。
當檢測單元22產生指示電池模組10發生內部短路的檢測訊號Ds時,控制單元23可通過將主開關32控制處於非導通狀態中來中斷連接到電池模組10的外部充電裝置(未示出)或負載(未示出)的連接。
此外,當控制單元23可識別電池子模組11中包括發生內部短路的胞元的電池子模組11時,控制單元23可控制連接到對應電池子模組11的開關33而非主開關32處於非導通狀態。在這種情況下,當僅發生內部短路的電池子模組11的連接被中斷時,可使用正常工作的剩餘電池子模組11。
參考圖7B,根據示例性實施例的電池系統1還可包括串聯連接在系統端子T+以及T-中的任一者與電池模組10之間的主開關32,或者並聯連接到系統端子T+與系統端子T-之間的電池模組10的放電電路,即開關34及放電電阻器35。此處,主開關32以及開關34可採用由電控制訊號驅動的各種類型的開關元件,例如繼電器、接觸件半導體開關(電晶體等)等。
當檢測單元22產生指示電池模組10發生內部短路的檢測訊號Ds時,控制單元23可通過將主開關32控制處於導通狀態中來將電池模組10連接到外部負載5。
此外,當檢測單元22產生指示電池模組10中發生內部短路的檢測訊號Ds時,控制單元23可通過將開關34控制處於導通狀態中來控制電池模組10被放電電阻器35放電。
因此,當電池模組10中發生內部短路時,控制單元23通過將電池模組10連接到外部負載5或放電電阻器35來對電池模組10進行放電,以強制降低電池模組10的電壓,即將電池子模組11的電壓降低到預定值或小於預定值。因此,可防止發生內部短路的電池子模組11中的正常胞元100被過度充電。
同時,當檢測單元22產生指示電池模組10發生內部短路的檢測訊號Ds時,控制單元23可將用於通知電池模組10發生內部短路的通知訊號傳輸到更高的系統。
圖8示出根據本發明示例性實施例的由電池控制設備確定用於檢測內部短路的電壓組以及電流組的實例。
參考圖8,檢測單元22從測量單元21接收在多個測量點t-23 到t0 處測量的電壓值及電流值,且將電壓組VG1及VG2以及電流組IG1及IG2設定成包括一些電壓值以及一些電流值。
包括在電壓組VG1及VG2中的電壓值可對應於每個胞元100的電壓。在這種情況下,檢測單元22可為每個胞元100設定電壓組VG1以及VG2。
包括在電壓組VG1及VG2中的電壓值可對應于每個電池子模組11的電壓。在這種情況下,檢測單元22可為每個電池子模組11設定電壓組VG1以及VG2。
包括在電壓組VG1及VG2中的電壓值可對應於電池模組10的電壓。
包括在電流組IG1及IG2中的電流值可對應於在每個電池子模組11上流動的電流。在這種情況下,檢測單元22可為每個電池子模組11設定電流組IG1及IG2。
包括在電流組IG1及IG2中的電流值可對應於在電池模組10與系統端子T+及T-之間流動的電流。
在圖8中,t0 表示當前測量時間點,即最近的測量時間點,且t-23 表示最早測量的測量時間點。具體來說,如圖8所示,檢測單元22在由測量單元21在所述多個測量時間點t-23 到t0 測量的電流值中確定包括在多個測量時間點t-23 到t-14 測量的電流值的第一電流組IG1以及包括在多個測量時間點t-9 到t0 測量的電流值的第二電流組IG2。此外,檢測單元22在由測量單元21在所述多個測量時間點t-23 到t0 測量的電壓值中確定包括在所述多個測量時間點t-23 到t-14 測量的電壓值的第一電壓組VG1以及包括在所述多個測量時間點t-9 到t0 測量的電壓值的第二電壓組VG2。為便於闡述,闡述與電壓組VG1及VG2中的每一者以及電流組IG1及IG2中的每一者對應的測量時間點的數目是10,但本發明的示例性實施例不限於此。電壓組VG1及VG2中的每一者以及電流組IG1及IG2中的每一者的量值,即包括在電壓組VG1及VG2中的每一者以及電流組IG1及IG2中的每一者中的電壓值以及電流值的數目可與分配給電壓組VG1及VG2中的每一者以及電流組IG1及IG2中的每一者的記憶體的大小成比例。
參考圖4A到圖4C,當胞元100中發生內部短路時,電流(或電壓)在預定時段期間是不穩定的。因此,為形成比較兩個時間段的相對穩定的電流(或電壓)與當內部短路發生時由於內部短路的發生而導致電流(或電壓)不穩定的時段的情況,如圖8所示,檢測單元22可確定電流組IG1及IG2(或者電壓組VG1及VG2),使得在對應於第一電流組IG1的時間段t-23 到t-14 與對應於第二電流組IG2的時間段t-9 到t0 之間(或者在對應於第一電壓組VG1的時間段t-23 到t-14 與對應於第二電壓組VG2的時間段t-9 到t0 之間)存在包括至少一個測量時間點t-13 到t-10 的預定間隔。然而,本發明的示例性實施例不限於此,且在對應於電流組IG1及IG2(或者電壓組VG1及VG2)的時間段之間可不存在時間間隙。
也就是說,第一電壓組VG1可包括在第一時間段期間多次測量的電壓值,且第二電壓組VG2可包括在第二時間段期間多次測量的電壓值。類似地,第一電流組IG1包括在第一時間段期間多次測量的電流值,且第二電流組IG2包括在第二時間段期間多次測量的電流值。第一時間段與第二時間段可部分地彼此重疊,所述時間段可存在於兩個時間段之間,或者當第一時間段終止時,第二時間段可開始。此外,第一時間段可在時間上早于第二時間段。第一時間段以及第二時間段的長度可彼此相等或不同。
在圖8中,其示出電流測量時間點與電壓測量時間點彼此相等,但電流測量時間點與電壓測量時間點可彼此不同。此外,在圖8中,作為實例其示出包括在電壓組VG1及VG2中的每一者中的電壓值的數目與包括在電流組IG1及IG2中的每一者中的電流值的數目彼此相等,但包括在電壓組VG1及VG2中的每一者中的電壓值的數目與包括在電流組IG1及IG2中的每一者中的電流值的數目可彼此不同。
在圖8中,包括在第一電流組IG1及第二電流組IG2中的電流值以及包括在第一電壓組VG1及第二電壓組VG2中的電壓值可隨時間不同地選擇。也就是說,每當測量到新的電流值或新的電壓值時,檢測單元22可使分別與第一電流組IG1及第二電流組IG2對應的時間段以及分別與第一電壓組VG1及第二電壓組VG2對應的時間段移位,使得第二電流組IG2及第二電壓組VG2分別包括當前時間點處的電流值及電壓值(最近測量到的電流值及電壓值)。使時間段移位會使與電流組IG1及IG2中的每一者或電壓組VG1及VG2中的每一者對應的測量時間點至少一個接一個地移位,且結果,包括在電流組IG1及IG2中的每一者中的電流值或包括在電壓組VG1及VG2中的每一者中的電壓值被改變。例如,在時間t-1 ,對應於第二電壓組VG2的時間段是t-10 到t-1 ,且在時間t0 ,對應於第二電壓組VG2的時間段是t-9 到t0
在上述電池控制設備20中,測量單元21、檢測單元22或控制單元23可由一個或多個中央處理器(central processing unit,CPU)或由其他晶片組、微處理器等實施的處理器來實行。
在下文中,將參考圖9到圖12闡述根據本發明示例性實施例的檢測電池模組10的內部短路的方法。在以下闡述中,第一電流組IG1及第二電流組IG2以及第一電壓組VG1及第二電壓組VG2對應於參考圖8闡述的第一電流組IG1及第二電流組IG2以及第一電壓組VG1及第二電壓組VG2。
圖9是示出根據本發明示例性實施例的檢測內部短路的方法的流程圖。圖9中檢測內部短路的方法可由上述電池控制設備20來實行。
同時,圖9的檢測內部短路的方法示出檢測構成電池模組10的所述多個胞元100中的一者的內部短路的方法,且檢測內部短路的相同方法甚至可應用於剩餘的胞元100。在圖9中,包括在第一電壓組VG1以及第二電壓組VG2中的電壓值可對應于作為內部短路檢測目標的胞元100的胞元電壓。另外,包括在第一電流組IG1以及第二電流組IG2中的電流值可對應於在包括對應胞元100的電池子模組11上流動的電流。另外,包括在第一電流組IG1以及第二電流組IG2中的電流值可對應於在電池模組10與系統端子T+及T-之間流動的電流。
參考圖9,檢測單元22通過使用由測量單元21測量的電池模組10的電壓值以及電流值來確定電池模組10的狀態是否為恒流(CC)充電(S10)。具體來說,當從充電裝置(未示出)施加到電池模組10的充電電流保持預定值且電池模組10(或電池子模組11)的電壓被測量為逐漸增加時,檢測單元22確定電池模組10的狀態處於恒流(CC)充電中。
當確定電池模組10處於恒流(CC)充電中時,檢測單元22確定與作為內部短路檢測目標的胞元100對應的第一電流組IG1以及第二電流組IG2是否穩定(S11)。例如,檢測單元22在包括在第一電流組IG1中的電流值的變化寬度(包括在第一電流組IG1中的電流值的最大值與最小值之間的差)在預定的第一範圍內時,確定第一電流組IG1是穩定的,且在包括在第二電流組IG2中的電流值的變化寬度(包括在第二電流組IG2中的電流值的最大值與最小值之間的差)在預定的第一範圍內時,確定第一電流組IG1以及第二電流組IG2是穩定的。
當通過步驟S11確定第一電流組IG1及第二電流組IG2是穩定的時,檢測單元22確定作為內部短路檢測目標的胞元100的第一電壓組VG1是否穩定(S12)。例如,當包括在第一電壓組VG1中的電壓值的變化寬度(包括在第一電壓組VG1中的電壓值的最大值與最小值之間的差)在預定的第二範圍內時,檢測單元22確定第一電壓組VG1是穩定的。
當通過步驟S12確定第一電壓組VG1是穩定的時,檢測單元22確定作為內部短路檢測目標的胞元100的第一電壓組VG1的電壓平均值與第二電壓組VG2的電壓平均值之間的差,即通過從包括在第一電壓組VG1中的電壓值的平均值中減去包括在第二電壓組VG2中的電壓值的平均值而獲得的值,是否等於或大於第一閾值Th1(S13)。
當第二電壓組VG2的電壓平均值與第一電壓組VG1的電壓平均值之間的差等於或大於第一閾值Th1時,檢測單元22確定在對應的胞元100中發生內部短路(S14)。
可能發生在電池模組10處於恒流(CC)充電中時電池模組10的電流或電壓由於除內部短路之外的各種因素(在充電期間使用所述設備等)而擺動的情況,且當在這種情況下檢測到內部短路時,可能發生檢測錯誤。因此,檢測單元22確認電池模組10處於穩定恒流(CC)充電狀態中,然後實行上述步驟S11以及S12,以便基於電壓變化檢測內部短路。
在步驟S13中,第一閾值Th1可為正數。參考圖4A,當發生內部短路時,胞元100的電壓瞬間降低,且結果,即使胞元100的電壓隨後再次增加,胞元100的電壓低於內部短路發生之前的電壓的狀態在預定時間段期間仍保持不變。也就是說,當發生內部短路時,在內部短路發生之後測量的第二電壓組VG2的電壓平均值看起來低於在內部短路發生之前測量的第一電壓組VG1的電壓平均值,且結果,通過從包括在第一電壓組VG1中的電壓值的平均值中減去包括在第二電壓組VG2中的電壓值的平均值而獲得的值可為大於0的實數。
同時,在圖9中,作為實例,其示出在恒流(CC)充電期間對於對應的胞元100,將對應于不同時間段的第一電壓組VG1以及第二電壓組VG2的電壓平均值相互比較,以便檢測內部短路,但示例性實施例不限於此。例如,檢測單元22將在恒流(CC)充電期間的不同時間段期間測量的第一電壓值與第二電壓值相互比較,以檢測內部短路。此處,第一電壓值可為包括在第一電壓組VG1中的電壓值中的一者,且第二電壓值可為包括在第二電壓組VG2中的電壓值中的一者,並且當通過從第一電壓值中減去第二電壓值而獲得的值等於或大於第一閾值Th1時,檢測單元22可確定發生內部短路。
圖10是示出根據本發明另一示例性實施例的檢測內部短路的方法的流程圖。圖10中檢測內部短路的方法可由上述電池控制設備20來實行。
同時,作為圖10的檢測內部短路的方法,示出檢測構成電池模組10的所述多個電池子模組11中的一者的內部短路的方法,且檢測內部短路的相同方法甚至可應用於剩餘的電池子模組11。在圖10中,包括在第一電流組IG1以及第二電流組IG2中的電流值可對應于在作為內部短路檢測目標的電池子模組11上流動的電流。此外,包括在第一電壓組VG1以及第二電壓組VG2中的電壓值可對應于作為內部短路檢測目標的電池子模組11的兩端的電壓。此外,包括在第一電壓組VG1以及第二電壓組VG2中的電壓值可對應於電池模組10的兩端的電壓。
參考圖10,檢測單元22通過使用由測量單元21測量的電池模組10的電壓值以及電流值來確定電池模組10的狀態是否為恒壓(CV)充電(S20)。具體來說,當電池模組10的充電電壓被測量為恒定值且充電電流被測量為逐漸減小時,檢測單元22確定電池模組10的狀態是恒壓(CV)充電。此處,確定電池模組10是否處於CV充電中的充電電流可為如圖6A所示以電池子模組11為單位測量的充電電流以及如圖6B所示為整個電池模組10測量的充電電流。
當電池模組10處於恒壓(CV)充電中時,檢測單元22確定作為內部短路檢測目標的電池子模組11的第一電流組IG1是否穩定(S21)。例如,檢測單元22確定包括在第一電流組IG1中的電流值的變化寬度(包括在第一電流組IG1中的電流值的最大值與最小值之間的差)是否在預定的第三範圍內,且當包括在第一電流組IG1中的電流值的變化寬度在預定的第三範圍內時,確定第一電流組IG1是穩定的。
當通過步驟S21確定第一電流組IG1是穩定的時,檢測單元22確定與作為內部短路檢測目標的電池子模組11對應的第一電壓組VG1是否穩定(S22)。例如,檢測單元22確定包括在第一電壓組VG1中的電壓值的變化寬度(包括在第一電壓組VG1中的電壓值的最大值與最小值之間的差)是否在預定的第四範圍內,且當包括在第一電壓組VG1中的電壓值的變化寬度在預定的第四範圍內時,確定第一電壓組VG1是穩定的。
當通過步驟S22確定第一電壓組VG1是穩定的時,檢測單元22確定對應于作為內部短路檢測目標的電池子模組11的第二電壓組VG2的電壓平均值與第一電壓組VG1的電壓平均值之間的差,即通過從包括在第二電壓組VG2中的電壓值的平均值中減去包括在第一電壓組VG1中的電壓值的平均值而獲得的值,是否等於或小於第二閾值Th2(S23)。
當第二電壓組VG2的電壓平均值與第一電壓組VG1的電壓平均值之間的差等於或小於第二閾值Th2時,檢測單元22確定作為內部短路檢測目標的電池子模組11的第二電流組IG2的電流平均值與第一電流組IG1的電流平均值之間的差,即通過從包括在第二電流組IG2中的電流值的平均值中減去包括在第一電流組IG1中的電流值的平均值而獲得的值,是否等於或大於第三閾值Th3(S24)。
當第二電流組IG2的電流平均值與第一電流組IG1的電流平均值之間的差等於或大於第三閾值Th3時,檢測單元22確定在對應的電池子模組11中發生內部短路(S25)。
可能發生在電池模組10處於恒壓(CV)充電中時電池模組10的電流或電壓由於除內部短路之外的各種因素(在充電期間使用所述設備等)而擺動的情況,且當在這種情況下檢測到內部短路時,可能發生檢測錯誤。因此,檢測單元22確認電池模組10處於穩定恒壓(CV)充電狀態中,然後實行上述步驟S21以及S23,以便基於電流變化檢測內部短路。特別地,步驟S23是為了區分電池模組10的充電電流由於除內部短路之外的充電電壓的波動而波動的情況。
同時,在步驟S23中,作為實例,其示出將對應于不同時間段的第一電壓組以及第二電壓組的電壓平均值相互比較,以便檢測充電電壓的波動,但示例性實施例不限於此。例如,檢測單元22比較在不同時間段期間測量的第一電壓值與第二電壓值,以檢查充電電壓的波動。此處,第一電壓值以及第二電壓值是暫態電壓值,且第一電壓值是包括在第一電壓組VG1中的電壓值中的一者,並且第二電壓值是包括在第二電壓組VG2中的電壓值中的一者。在這種情況下,步驟S23可改變為確定通過從第二電壓值中減去第一電壓值而獲得的值是否等於或小於第二閾值Th2的步驟。
在步驟S24中,第三閾值Th3可為大於0的實數。參考圖4B,當發生內部短路時,胞元100的充電電流立即急劇增加,且結果,包括對應胞元100的電池子模組11的充電電流也瞬間增加。結果,即使對應電池子模組11的充電電流然後再次減小,對應電池子模組11在預定時間段期間仍保持充電電流高於發生內部短路之前的充電電流的狀態。也就是說,當發生內部短路時,在內部短路發生之後測量的第二電流組IG2的電流平均值看起來高於在內部短路發生之前測量的第一電流組IG1的電流平均值,且結果,通過從包括在第二電流組IG2中的電流值的平均值中減去包括在第一電流組IG1中的電流值的平均值而獲得的值可為大於0的實數。
在圖10中,作為實例,其示出在恒壓(CV)充電期間將對應于不同時間段的第一電流組IG1以及第二電流組IG2的電流平均值相互比較,以便檢測內部短路,但示例性實施例不限於此。例如,檢測單元22將在恒壓(CV)充電期間的不同時間段期間測量的第一電流值與第二電流值相互比較,以檢測內部短路。此處,第一電流值可為包括在第一電流組IG1中的電流值中的一者,且第二電流值可為包括在第二電流組IG2中的電流值中的一者,並且當通過從第二電流值中減去第一電流值而獲得的值等於或大於第三閾值Th3時,檢測單元22可確定發生內部短路。
圖11是示出根據本發明又一示例性實施例的檢測內部短路的方法的流程圖。圖11中檢測內部短路的方法可由上述電池控制設備20來實行。
同時,作為圖11的檢測內部短路的方法,示出檢測構成電池模組10的所述多個胞元100中的一者的內部短路的方法,且檢測相同內部短路的相同方法甚至可應用於剩餘的胞元100。在圖11中,包括在第一電壓組VG1以及第二電壓組VG2中的電壓值可對應于作為內部短路檢測目標的胞元100的胞元電壓。此外,包括在第一電流組IG1以及第二電流組IG2中的電流值可對應于在包括作為內部短路檢測目標的胞元100的電池子模組11上流動的電流。另外,包括在第一電流組IG1以及第二電流組IG2中的電流值可對應於在電池模組10與系統端子T+及T-之間流動的電流。
參考圖11,檢測單元22確定從最後充電終止時間點起是否經過了預定時間(S30)。具體來說,檢測單元22確定從參考圖9闡述的恒壓(CV)充電終止的時間點或參考圖10闡述的恒流(CC)充電終止的時間點起是否經過了預定時間。
當從最後充電終止時間點起經過預定時間時,檢測單元22確定是否存在供應給電池模組10的充電電流(S31)。具體來說,在從電池模組10的最後充電終止時間點起經過預定時間之後,檢測單元22可基於在電池模組10與系統端子T+及T-之間測量的電流值來確定是否存在充電電流。
當通過步驟S31確定沒有充電電流供應給電池模組10時,檢測單元22確定電池模組10的放電電流是否等於或小於第四閾值Th4(S32)。具體來說,在從電池模組10的最後充電終止時間點起經過預定時間之後,檢測單元22可確定在電池模組10與系統端子T+及T-之間測量的電流值是否等於或小於第四閾值Th4。也就是說,通過步驟S32,檢測單元22檢測電池模組10是否處於當前開路電壓狀態,即負載沒有連接到電池模組10的狀態或者非常低的負載連接到電池模組10的狀態中。
當通過步驟S32確定放電電流值等於或小於第四閾值時,檢測單元22確定對應于作為內部短路檢測目標的胞元100的第一電流組IG1的電流平均值與第二電流組IG2的電流平均值之間的差的絕對值,即第一電流組IG1與第二電流組IG2之間的電流平均值的差是否等於或小於第五閾值Th5(S33)。
當第一電流組IG1的電流平均值與第二電流組IG2的電流平均值之間的差等於或小於第五閾值Th5時,檢測單元22確定作為內部短路檢測目標的胞元100的第一電壓組VG1是否穩定(S34)。例如,當包括在第一電壓組VG1中的電壓值的變化寬度(最大值與最小值之間的差)在預定的第五範圍內時,檢測單元22確定第一電壓組VG1是穩定的。
當在步驟S34中確定第一電壓組VG1是穩定的時,檢測單元22確定作為內部短路檢測目標的胞元100的第一電壓組VG1的電壓平均值與第二電壓組VG2的電壓平均值之間的差,即通過從包括在第一電壓組VG1中的電壓值的平均值中減去包括在第二電壓組VG2中的電壓值的平均值而獲得的值,是否等於或大於第六閾值Th6(S35)。
另外,當第一電壓組VG1的電壓平均值與第二電壓組VG2的電壓平均值之間的差等於或大於第六閾值Th6時,檢測單元22確定電池模組10中發生內部短路(S36)。
可能發生當電池模組10處於開路電壓狀態中時電池模組10的電流或電壓由於除內部短路之外的各種因素(負載連接等)而擺動的情況,且當在這種情況下檢測到內部短路時,可能發生檢測錯誤。因此,檢測單元22實行上述步驟S33以及S34,以便在不產生改變電池模組10的電流或電壓的另一因素的同時基於電壓變化檢測內部短路。特別地,步驟S33是為了區分電池模組10的電壓在開路電壓狀態中由於除內部短路之外的電池模組10的電流變化而波動的情況。
同時,在步驟S33中,作為實例其示出將對應于不同時間段的第一電流組IG1及第二電流組IG2的電流平均值相互比較,以便檢查電池模組10的電流波動,但示例性實施例不限於此。例如,檢測單元22比較在不同時間段期間測量的第一電流值與第二電流值,以檢查電流的波動。此處,第一電流值以及第二電流值是暫態電流值,且第一電流值是包括在第一電流組IG1中的電流值中的一者,並且第二電流值是包括在第二電流組IG2中的電流值中的一者。在這種情況下,步驟S33可改變為確定第一電流與第二電流之間的差是否等於或小於第五閾值Th5的步驟。
同時,在圖11中,作為實例,其示出將對應于不同時間段的第一電壓組以及第二電壓組的電壓平均值相互比較,以便檢測電池模組10的內部短路,但示例性實施例不限於此。例如,檢測單元22將在不同時間段期間測量的第一電壓值與第二電壓值相互比較,以檢測內部短路。此處,第一電壓值可為包括在第一電壓組VG1中的電壓值中的一者,且第二電壓值可為包括在第二電壓組VG2中的電壓值中的一者,並且當通過從第一電壓值中減去第二電壓值而獲得的值等於或大於第六閾值Th6時,檢測單元22可確定發生內部短路。
圖12是示出根據本發明又一示例性實施例的檢測內部短路的方法的流程圖。
圖12中檢測內部短路的方法可由上述電池控制設備20來實行。
圖12中檢測內部短路的方法涉及檢測在構成電池模組10的所述多個電池子模組11中發生內部短路的電池子模組11的方法。在圖12中,包括在第一電流組IG1以及第二電流組IG2中的電流值可對應於在對應的電池子模組11上流動的電流。另外,包括在第一電壓組VG1以及第二電壓組VG2中的電壓值可對應于對應電池子模組11的電壓。此外,包括在第一電壓組VG1以及第二電壓組VG2中的電壓值可對應於電池模組10的電壓。
參考圖12,檢測單元22通過使用由測量單元21測量的電池模組10的電壓值以及電流值來確定電池模組10的狀態是否為恒壓(CV)充電(S40)。具體來說,當電池模組10的充電電壓被測量為恒定值且充電電流被測量為逐漸減小時,檢測單元22確定電池模組10的狀態處於恒壓(CV)充電中。此處,用於確定電池模組10是否處於CV充電中的充電電流可為如圖6A所示以電池子模組11為單位測量的充電電流以及如圖6B所示為整個電池模組10測量的充電電流。
當電池模組10處於恒壓(CV)充電中時,檢測單元22確定電池子模組11的第一電流組IG1是否穩定(S41)。例如,檢測單元22確定包括在電池子模組11的第一電流組IG1中的電流值的變化寬度(包括在第一電流組IG1中的電流值的最大值與最小值之間的差)是否在預定的第六範圍內,且當包括在電池子模組11的第一電流組IG1中的電流值的變化寬度在預定的第六範圍內時,確定第一電流組IG1是穩定的。
當電池子模組11的第一電流組IG1是穩定的時,檢測單元22確定電池子模組11的第一電壓組VG1是否穩定(S42)。例如,檢測單元22確定包括在電池子模組11的第一電壓組VG1中的電壓值的變化寬度(包括在第一電壓組VG1中的電壓值的最大值與最小值之間的差)是否在預定的第七範圍內,且當包括在電池子模組11的第一電壓組VG1中的電壓值的變化寬度在預定的第七範圍內時,確定第一電壓組VG1是穩定的。
當通過步驟S42確定電池子模組11的第一電壓組VG1是穩定的時,檢測單元22確定作為內部短路檢測目標的電池子模組11的第二電壓組VG2的電壓平均值與第一電壓組VG1的電壓平均值之間的差,即通過從包括在第二電壓組VG2中的電壓值的平均值中減去包括在第一電壓組VG1中的電壓值的平均值而獲得的值,是否等於或小於第七閾值Th7(S43)。
當電池子模組11的第二電壓組VG2的電壓平均值與第一電壓組VG1的電壓平均值之間的差等於或小於第七閾值Th7時,檢測單元22比較電池子模組11的第二電流組IG2中的電流平均值。此外,檢測單元22檢查是否檢測到具有比剩餘電池子模組11高第八閾值Th8或大於第八閾值Th8的第二電流組IG2中的電流平均值的電池子模組11(S44)。
當通過步驟S44檢測到第二電流組IG2中的電流平均值比剩餘的電池子模組11高第八閾值Th8或大於第八閾值Th8的電池子模組11時,檢測單元22確定在對應的電池子模組11中發生內部短路(S45)。
可能發生在電池模組10處於恒壓(CV)充電中時電池模組10的電流或電壓由於除內部短路之外的各種因素(在充電期間使用所述設備等)而擺動的情況,且當在這種情況下檢測到內部短路時,可能發生檢測錯誤。因此,檢測單元22確認電池模組10處於穩定恒壓(CV)充電狀態中,然後實行上述步驟S41以及S43,以便基於電流變化檢測內部短路。特別地,步驟S43是為了區分電池模組10的充電電流由於除內部短路之外的充電電壓的波動而波動的情況。
同時,在步驟S43中,作為實例,其示出在步驟S43中將對應于不同時間段的第一電壓組VG1以及第二電壓組VG2的電壓平均值相互比較,以便檢測充電電壓的波動,但示例性實施例不限於此。例如,檢測單元22比較在不同時間段期間測量的第一電壓值與第二電壓值,以檢查充電電壓的波動。此處,第一電壓值以及第二電壓值是暫態電壓值,且第一電壓值是包括在第一電壓組VG1中的電壓值中的一者,並且第二電壓值是包括在第二電壓組VG2中的電壓值中的一者。在這種情況下,步驟S43可改變為確定通過從第二電壓值中減去第一電壓值而獲得的值是否等於或小於第七閾值Th7的步驟。
在步驟S44中,每個電池子模組11的電流值可採用通過圖6A所示方案為每個電池子模組11測量的電流值。此外,在步驟S44中,相互比較的各個電池子模組11的電流值可採用第二電流組IG2的電流平均值,或者可為包括在第二電流組IG2中的電流值中的一者。
在上述圖9到圖12中,作為實例,闡述檢測單元22使用包括在電流組中的電流值中的最大值與最小值之間的差或者包括在電壓組中的電壓值中的最大值與最小值之間的差來確定電流組或電壓組是否穩定,但示例性實施例不限於此。例如,檢測單元22可通過使用例如包括在每個電流組中的電流值或包括在每個電壓組中的電壓值的標準差等統計參數,來檢查每一電流組或每一電壓組的變化寬度,且基於所檢查的變化寬度來確定每個電流組或每個電壓組是否穩定。
圖9到12中闡述的閾值也可為大於0的所有實數,但示例性實施例不限於此。
當通過使用圖9到圖12所示方法檢測到內部短路時,電池控制設備20可執行保護功能以保護電池模組10免受內部短路影響。
在下文中,將參考圖13及圖14闡述根據本發明示例性實施例的控制電池的方法。
圖13是示出根據本發明示例性實施例的控制電池的方法的流程圖。圖13中控制電池的方法可由上述電池控制設備20來實行。
參考圖13,檢測單元22通過使用上述圖9到圖12所示方法中的任一種來實行電池模組10的內部短路的檢測操作(S50)。
當檢測單元22通過步驟S50在至少一個電池子模組11中檢測到內部短路時(S51),控制單元23將發生內部短路的電池子模組11與系統端子T+及T-電分離(S52)。參考圖7A,控制單元23控制串聯連接到確定發生內部短路的電池子模組11的開關33處於非導通狀態,以將確定發生內部短路的電池子模組11與系統端子T+及T-電分離。
因此,通過僅中斷發生內部短路的電池子模組11的連接,控制單元23可使用正常工作的剩餘電池子模組11。
圖14是示出根據本發明另一示例性實施例的控制電池的方法的流程圖。圖14中控制電池的方法可由上述電池控制設備20來實行。
參考圖14,檢測單元22通過使用上述圖9到圖12所示方法中的任一種來實行電池模組10的內部短路的檢測操作(S60)。
當檢測單元22通過步驟S60在至少一個電池子模組11中檢測到內部短路時(S61),控制單元23通過對電池模組10放電將電池模組10的電壓降低到預定值或小於預定值(S62)。參考圖7B,當檢測單元22檢測到電池模組10中出現內部短路時,控制單元23可通過將主開關32控制在導通狀態、通過將電池模組10連接到外部負載5來強制對電池模組10進行放電。此外,當檢測單元22檢測到電池模組10中出現內部短路時,控制單元23可通過將放電電路的開關34控制在導通狀態,由放電電阻器35強制對電池模組10進行放電。
因此,當電池模組10中發生內部短路時,控制單元23通過將電池模組10連接到外部負載5或放電電阻器35來對電池模組10進行放電,以強制降低電池模組10的電壓,即,將電池子模組11的電壓降低到預定值或小於預定值。因此,可防止發生內部短路的電池子模組11中的正常胞元100被過度充電。
根據本文闡述的本發明實施例的電子或電氣裝置和/或任何其他相關裝置或元件可利用任何合適的硬體、韌體(例如應用專用積體電路)、軟體或軟體、韌體以及硬體的組合來實現。例如,這些裝置的各種元件可形成在一個積體電路(integrated circuit,IC)晶片上或單獨的IC晶片上。此外,這些裝置的各種元件可在柔性印刷電路膜、帶載體封裝(tape carrier package,TCP)、印刷電路板(printed circuit board,PCB)上實現,或者形成在一個基板上。本文闡述的電連接或互連可通過導線或導電元件實現,例如在印刷電路板或另一種電路載體上。導電元件可包括敷金屬(例如表面敷金屬和/或引腳),和/或可包含導電聚合物或陶瓷。進一步的電能可通過無線連接傳送,例如使用電磁輻射和/或光。
此外,這些裝置的各種元件可為在一個或多個處理器上、在一個或多個計算裝置中運行、執行電腦程式指令並與其他系統元件交互以實行本文闡述的各種功能的進程或執行緒。電腦程式指令儲存在記憶體中,所述記憶體可使用例如(舉例來說)隨機存取記憶體(random access memory,RAM)等標準記憶體裝置在計算裝置中實施。電腦程式指令也可儲存在其他非暫時性電腦可讀媒體中,例如(舉例來說)光碟-唯讀記憶體(Compact Disc Read - Only Memory,CD-ROM)、快閃記憶體驅動器等。
此外,所屬領域中的技術人員應認識到,在不背離本發明的示例性實施例的範圍的情況下,各種計算裝置的功能可被組合或集成到單個計算裝置中,或者特定計算裝置的功能可分佈在一個或多個其他計算裝置中。
儘管已結合目前被認為是實用的示例性實施例闡述了本發明,但應理解,本發明不限於所揭露的實施例。相反,旨在涵蓋包括在所附權利要求書的精神及範圍內的各種修改以及等效佈置。
1:電池系統 5:外部負載 10:電池模組 11:電池子模組 13:胞元組 20:電池控制設備 21:測量單元 22:檢測單元 23:控制單元 31:分流電阻器 32:主開關 33、34、S:開關 35:放電電阻器 100:胞元 Ds:檢測訊號 I:充電電流/電流 IG1:電流組/第一電流組 IG2:電流組/第二電流組 IS :內部短路 Ishort :短路電流 RB :內部電阻 RS :短路電阻 S10、S11、S12、S13、S14、S20、S21、S22、S23、S24、S25、S30、S31、S32、S33、S34、S35、S36、S40、S41、S42、S43、S44、S45、S50、S51、S52、S60、S61、S62:操作 T:溫度 T+、T-:系統端子 t-23 -t0 :測量點 Th1:第一閾值 Th2:第二閾值 Th3:第三閾值 Th4:第四閾值 Th5:第五閾值 Th6:第六閾值 Th7:第七閾值 V:電壓 VG1:電壓組/第一電壓組 VG2:電壓組/第二電壓組
圖1是示出根據本發明示例性實施例的電池系統的配置的方框圖。 圖2示出圖1的電池模組的實例。 圖3示出構成圖2的電池模組的二次電池胞元(secondary battery cell)的等效電路。 圖4A到圖4C是闡述電壓及電流依據構成圖2的電池模組的二次電池胞元的內部短路的發生而變化的圖。 圖5示出根據本發明示例性實施例的通過電池控制設備測量圖2所示電池模組的電壓值的實例。 圖6A及圖6B示出根據本發明示例性實施例的通過電池控制設備測量圖2所示電池模組的電流值的實例。 圖7A及圖7B是闡述根據本發明示例性實施例的電池控制設備中針對內部短路對電池模組的保護操作的圖。 圖8示出根據本發明示例性實施例的由電池控制設備確定檢測內部短路的電壓組以及電流組的實例。 圖9是示出根據本發明示例性實施例的檢測內部短路的方法的流程圖。 圖10是示出根據本發明另一示例性實施例的檢測內部短路的方法的流程圖。 圖11是示出根據本發明又一示例性實施例的檢測內部短路的方法的流程圖。 圖12是示出根據本發明又一示例性實施例的檢測內部短路的方法的流程圖。 圖13是示出根據本發明示例性實施例的保護電池的方法的流程圖。 圖14是示出根據本發明另一示例性實施例的保護電池的方法的流程圖。
1:電池系統
10:電池模組
11:電池子模組
13:胞元組
20:電池控制設備
23:控制單元
32:主開關
33:開關
100:胞元
T+、T-:系統端子

Claims (38)

  1. 一種電池系統,包括:電池模組,包括在系統端子之間並聯連接的多個電池子模組;多個開關,分別串聯連接到所述多個電池子模組;測量單元,測量所述電池模組和/或包括在所述電池模組中的胞元的電壓值以及在所述電池模組上流動的電流值;檢測單元,通過監測所述電壓值或所述電流值來確定所述多個電池子模組中是否發生內部短路;以及控制單元,當所述多個電池子模組中的至少一個電池子模組中發生所述內部短路時,控制所述多個開關中與所述至少一個電池子模組對應的至少一個開關處於非導通狀態,其中所述檢測單元在所述電池模組處於恒流充電中時,基於由所述測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  2. 如請求項1所述的電池系統,其中:所述檢測單元在所述電池模組處於所述恒流充電中時,在所述多個電池子模組在所述第一時間段以及所述第二時間段中的電流變化寬度在 第一範圍內,且所述胞元在所述第一時間段中的電壓變化寬度在第二範圍內的情況下,實行所述內部短路的檢測。
  3. 如請求項1所述的電池系統,其中:所述檢測單元在所述電池模組處於恒壓充電中時,基於由所述測量單元測量的所述電流值,確定所述多個電池子模組在第一時間段中的所述第一電流值以及在所述第二時間段中的第二電流值中的每一者,且確定所述多個電池子模組中通過從所述第二電流值中減去所述第一電流值而獲得的值等於或大於第三閾值的電池子模組發生所述內部短路。
  4. 如請求項3所述的電池系統,其中:所述檢測單元在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差等於或小於第二閾值的情況下,實行所述內部短路的檢測。
  5. 如請求項1所述的電池系統,其中所述檢測單元在從所述電池模組的充電終止時間點起經過預定時間之後,基於由所述測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在所述第一時間段中的第一電壓值以及在所述第二時間段中的第二電壓值中的每一者,且確定所述胞元中 通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元發生所述內部短路。
  6. 如請求項5所述的電池系統,其中:所述檢測單元在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時,實行所述內部短路的檢測。
  7. 如請求項6所述的電池系統,其中:所述檢測單元在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的第一電流值與在所述第二時間段中的第二電流值之間的差等於或小於第五閾值且所述胞元在所述第一時間段中的電壓變化寬度在第五範圍內時,實行所述內部短路的檢測。
  8. 如請求項1所述的電池系統,其中:所述檢測單元在所述電池模組處於恒壓充電中時,比較所述多個電池子模組的所述電流值,且確定所述多個電池子模組中具有比剩餘的電池子模組高第八閾值或大於所述第八閾值的電流值的電池子模組發生所述內部短路。
  9. 如請求項8所述的電池系統,其中: 所述檢測單元在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差滿足第七閾值或小於第七閾值的情況下,實行所述內部短路的檢測,所述多個電池子模組的所述電流值是所述第二時間段中的電流值。
  10. 一種電池系統,包括:電池模組,連接在系統端子之間;放電電路,並聯連接到所述系統端子之間的所述電池模組,且包括彼此串聯連接的放電開關及放電電阻器;測量單元,測量所述電池模組和/或包括在所述電池模組中的胞元的電壓值以及在所述電池模組上流動的電流值;檢測單元,通過監測所述電壓值或所述電流值來確定所述電池模組中是否發生內部短路;以及控制單元,控制所述放電開關,以使當在所述電池模組中發生所述內部短路時,所述電池模組的所述電壓值下降到預定值或小於所述預定值。
  11. 如請求項10所述的電池系統,其中:所述檢測單元在所述電池模組處於恒流充電中時,基於由所述測量單元測量的所述電壓值,確定包括在所述電池模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每 一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  12. 如請求項10所述的電池系統,其中所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測單元在所述電池模組處於恒流充電中時,在所述多個電池子模組在第一時間段以及第二時間段中的電流變化寬度在第一範圍內,且所述多個胞元在所述第一時間段中的電壓變化寬度在第二範圍內的情況下,實行所述內部短路的檢測。
  13. 如請求項10所述的電池系統,其中:所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,所述檢測單元在所述電池模組處於恒壓充電中時,基於由所述測量單元測量的所述電流值,確定所述多個電池子模組在第一時間段中的第一電流值以及在第二時間段中的第二電流值中的每一者,且確定所述多個電池子模組中通過從所述第二電流值中減去所述第一電流值而獲得的值等於或大於第三閾值的電池子模組發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  14. 如請求項13所述的電池系統,其中: 所述檢測單元在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差等於或小於第二閾值的情況下,實行所述內部短路的檢測。
  15. 如請求項10所述的電池系統,其中所述檢測單元在從所述電池模組的充電終止時間點起經過預定時間之後,基於由所述測量單元測量的所述電壓值,確定包括在所述電池模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,且確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  16. 如請求項15所述的電池系統,其中:所述檢測單元在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時,實行所述內部短路的檢測。
  17. 如請求項16所述的電池系統,其中: 所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測單元在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的第一電流值與在所述第二時間段中的第二電流值之間的差等於或小於第五閾值且所述多個胞元在所述第一時間段中的電壓變化寬度在第五範圍內時,實行所述內部短路的檢測。
  18. 如請求項10所述的電池系統,其中:所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測單元在所述電池模組處於恒壓充電中時,比較所述多個電池子模組的所述電流值,且確定所述多個電池子模組中具有比剩餘的電池子模組高第八閾值或大於所述第八閾值的電流值的電池子模組發生所述內部短路。
  19. 如請求項18所述的電池系統,其中:在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差滿足第七閾值或小於所述第七閾值的情況下,實行所述內部短路的檢測,所述多個電池子模組的所述電流值是所述第二時間段中的電流值,且 所述第二時間段包括所述第一時間段之後的時間段。
  20. 一種電池系統的控制方法,所述電池系統包括電池模組,所述電池模組包括在系統端子之間並聯連接的多個電池子模組,所述控制方法包括:測量所述多個電池子模組和/或包括在所述多個電池子模組中的胞元的電壓值以及在所述電池模組上流動的電流值;通過監測所述電壓值或所述電流值來檢測所述電池模組中內部短路的發生;以及在所述電池模組中發生所述內部短路時,將所述多個電池子模組中發生所述內部短路的至少一個電池子模組與所述系統端子電分離,其中所述檢測包括在所述電池模組處於恒流充電中時,基於由測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  21. 如請求項20所述的控制方法,其中:所述檢測是在所述電池模組處於所述恒流充電中時,在所述多個電池子模組在所述第一時間段以及所述第二時間段中的電流變化寬度 在第一範圍內,且所述胞元在所述第一時間段中的電壓變化寬度在第二範圍內的情況下實行。
  22. 如請求項20所述的控制方法,其中:所述檢測包括在所述電池模組處於恒壓充電中時,基於由測量單元測量的所述電流值,確定所述多個電池子模組在所述第一時間段中的第一電流值以及在所述第二時間段中的第二電流值中的每一者,以及確定所述多個電池子模組中通過從所述第二電流值中減去所述第一電流值而獲得的值等於或大於第三閾值的電池子模組中發生所述內部短路。
  23. 如請求項22所述的控制方法,其中:所述檢測是在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差等於或小於第二閾值的情況下實行。
  24. 如請求項20所述的控制方法,其中:所述檢測包括在從所述電池模組的充電終止時間點起經過預定時間後,基於由測量單元測量的所述電壓值,確定包括在所述多個電池子模組中的所述胞元在所述第一時間段中的第一電壓值以及在所述第 二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元發生所述內部短路。
  25. 如請求項24所述的控制方法,其中:所述檢測是在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時實行。
  26. 如請求項25所述的控制方法,其中:所述檢測是在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述多個電池子模組在所述第一時間段中的第一電流值與在所述第二時間段中的第二電流值之間的差等於或小於第五閾值且所述胞元在所述第一時間段中的電壓變化寬度在第五範圍內時實行。
  27. 如請求項20所述的控制方法,其中:所述檢測包括當所述電池模組處於恒壓充電中時,比較所述多個電池子模組的電流值,以及確定所述多個電池子模組中具有比剩餘的電池子模組高第八閾值或大於所述第八閾值的電流值的電池子模組中發生所述內部短路。
  28. 如請求項27所述的控制方法,其中: 所述檢測是在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差滿足第七閾值或小於所述第七閾值的情況下實行,所述多個電池子模組的所述電流值是所述第二時間段中的電流值。
  29. 一種電池系統的控制方法,所述電池系統包括連接在系統端子之間的電池模組,所述控制方法包括:測量所述電池模組和/或包括在所述電池模組中的胞元的電壓值以及在所述電池模組上流動的電流值;通過監測所述電壓值或所述電流值來檢測所述電池模組中內部短路的發生;以及當在所述電池模組中發生所述內部短路時,操作並聯連接到所述電池模組的放電電路,以使所述電池模組的所述電壓值下降到預定值或小於所述預定值。
  30. 如請求項29所述的控制方法,其中:所述檢測包括在所述電池模組處於恒流充電中時,基於由測量單元測量的所述電壓值,確定包括在所述電池模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及 確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第一閾值的胞元發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  31. 如請求項30所述的控制方法,其中:所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測是在所述電池模組處於所述恒流充電中時,在所述多個電池子模組在所述第一時間段以及所述第二時間段中的電流變化寬度在第一範圍內,且所述胞元在所述第一時間段中的電壓變化寬度在第二範圍內的情況下實行。
  32. 如請求項29所述的控制方法,其中:所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測包括在所述電池模組處於恒壓充電中時,基於由測量單元測量的所述電流值,確定所述多個電池子模組在第一時間段中的第一電流值以及在第二時間段中的第二電流值中的每一者,以及確定所述多個電池子模組中通過從所述第二電流值中減去所述第一電流值而獲得的值等於或大於第三閾值的電池子模組中發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  33. 如請求項32所述的控制方法,其中 所述檢測是在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在所述第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在所述第二時間段中的第二電壓值之間的差等於或小於第二閾值的情況下實行。
  34. 如請求項29所述的控制方法,其中:所述檢測包括在從所述電池模組的充電終止時間點起經過預定時間之後,基於由測量單元測量的所述電壓值,確定包括在所述電池模組中的所述胞元在第一時間段中的第一電壓值以及在第二時間段中的第二電壓值中的每一者,以及確定所述胞元中通過從所述第一電壓值中減去所述第二電壓值而獲得的值等於或大於第六閾值的胞元發生所述內部短路,且所述第二時間段包括所述第一時間段之後的時間段。
  35. 如請求項34所述的控制方法,其中:所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測是在從所述電池模組的所述充電終止時間點起經過所述預定時間之後,在所述第一時間段以及所述第二時間段期間沒有充電電流供應給所述電池模組,且在所述第一時間段以及所述第二時間段期間所述電池模組的放電電流等於或小於第四閾值時實行。
  36. 如請求項35所述的控制方法,其中: 所述檢測是在從所述電池模組的充電終止時間點起經過預定時間之後,在所述多個電池子模組在所述第一時間段中的第一電流值與在所述第二時間段中的第二電流值之間的差等於或小於第五閾值且所述胞元在所述第一時間段中的電壓變化寬度在第五範圍內時實行。
  37. 如請求項29所述的控制方法,其中所述電池模組包括彼此並聯連接且各自包括多個胞元的多個電池子模組,且所述檢測包括在所述電池模組處於恒壓充電中時,比較所述多個電池子模組的電流值,以及確定所述多個電池子模組中具有比剩餘的電池子模組高第八閾值或大於所述第八閾值的電流值的電池子模組中發生所述內部短路。
  38. 如請求項37所述的控制方法,其中所述檢測是在所述電池模組處於所述恒壓充電中時,在所述多個電池子模組在第一時間段中的電流變化寬度以及電壓變化寬度在預定範圍內,且所述多個電池子模組在所述第一時間段中的第一電壓值與在第二時間段中的第二電壓值之間的差滿足第七閾值或小於所述第七閾值的情況下實行,所述多個電池子模組的所述電流值是所述第二時間段中的電流值,且 所述第二時間段包括所述第一時間段之後的時間段。
TW109116870A 2019-10-10 2020-05-21 電池系統及其控制方法 TWI776155B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0125524 2019-10-10
KR1020190125524A KR102267785B1 (ko) 2019-10-10 2019-10-10 배터리 시스템 및 배터리 시스템의 제어 방법

Publications (2)

Publication Number Publication Date
TW202115421A TW202115421A (zh) 2021-04-16
TWI776155B true TWI776155B (zh) 2022-09-01

Family

ID=69953906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109116870A TWI776155B (zh) 2019-10-10 2020-05-21 電池系統及其控制方法

Country Status (5)

Country Link
US (1) US11289925B2 (zh)
EP (2) EP3937293A1 (zh)
KR (1) KR102267785B1 (zh)
CN (1) CN112653204A (zh)
TW (1) TWI776155B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001700B2 (ja) * 2017-10-04 2022-01-20 株式会社エンビジョンAescジャパン バッテリパックの検査方法および検査装置
KR20200101754A (ko) * 2019-02-20 2020-08-28 삼성에스디아이 주식회사 배터리 제어 장치 및 배터리 제어 방법
DE102019214343A1 (de) * 2019-09-20 2021-03-25 Robert Bosch Gmbh Verfahren zum Ausgleichen von Ladezuständen eines elektrischen Energiespeichers
JP7317777B2 (ja) * 2020-09-08 2023-07-31 株式会社東芝 管理方法、管理装置及び管理システム
JP7483922B2 (ja) * 2020-11-27 2024-05-15 エルジー エナジー ソリューション リミテッド バッテリ診断装置、バッテリ診断方法、バッテリパック及び自動車
CN112599931A (zh) * 2020-12-16 2021-04-02 阳光电源股份有限公司 一种电池簇及储能系统
CN113085558A (zh) * 2021-05-20 2021-07-09 宝能(广州)汽车研究院有限公司 一种电池电连接状态确定方法、装置、新能源汽车及介质
KR20230052763A (ko) * 2021-10-13 2023-04-20 주식회사 엘지에너지솔루션 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
US11777334B2 (en) * 2021-11-11 2023-10-03 Beta Air, Llc System for charging multiple power sources and monitoring diode currents for faults
CN114137417B (zh) * 2021-11-19 2023-01-17 北京理工大学 一种基于充电数据特征的电池内短路检测方法
GB2613207B (en) * 2021-11-29 2024-05-22 Cirrus Logic Int Semiconductor Ltd Charging cells in a battery pack
WO2023193268A1 (zh) * 2022-04-08 2023-10-12 宁德时代新能源科技股份有限公司 电芯短路识别方法、装置、bms、电池包、设备及介质
CN115061049B (zh) * 2022-08-08 2022-11-01 山东卓朗检测股份有限公司 一种数据中心ups电池故障快速检测方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203509A1 (ja) * 2017-05-01 2018-11-08 株式会社Gsユアサ 蓄電システム及び微小短絡の検査方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102185A (ja) 1998-09-21 2000-04-07 Mitsubishi Cable Ind Ltd 二次電池パック
JP2003142162A (ja) * 2001-10-31 2003-05-16 Sanyo Electric Co Ltd 電池パック
JP2009032506A (ja) * 2007-07-26 2009-02-12 Panasonic Corp 非水系電解質二次電池の内部短絡検知方法および装置
JP5439800B2 (ja) 2008-12-04 2014-03-12 ミツミ電機株式会社 二次電池保護用集積回路装置及びこれを用いた二次電池保護モジュール並びに電池パック
JP5439000B2 (ja) * 2009-03-19 2014-03-12 株式会社東芝 組電池システム及び組電池の保護装置
JP5422810B2 (ja) * 2009-03-26 2014-02-19 株式会社Nttファシリティーズ 予備電源システム及び予備電源システム保護方法
JP2010231948A (ja) * 2009-03-26 2010-10-14 Primearth Ev Energy Co Ltd 電池の内部短絡検査方法
US8866444B2 (en) * 2010-06-08 2014-10-21 Tesla Motors, Inc. Methodology for charging batteries safely
JP5533535B2 (ja) 2010-10-08 2014-06-25 トヨタ自動車株式会社 電源システムおよびその制御方法
JP5773609B2 (ja) * 2010-10-18 2015-09-02 株式会社Nttファシリティーズ 組電池管理装置および組電池管理方法ならびに組電池システム
JP2013037829A (ja) * 2011-08-05 2013-02-21 Panasonic Corp 鉛蓄電池の内部短絡検出方法および電源システム
US8618775B2 (en) 2012-01-05 2013-12-31 Tesla Motors, Inc. Detection of over-current shorts in a battery pack using pattern recognition
CN103944355B (zh) * 2014-03-26 2016-03-02 辉芒微电子(深圳)有限公司 一种基于cs短路保护电路的恒流开关电源
TW201823760A (zh) 2016-12-26 2018-07-01 英業達股份有限公司 電池的放電檢測方法、裝置及電子設備
TWI649573B (zh) 2017-12-04 2019-02-01 財團法人工業技術研究院 電池內短路阻抗之偵測方法和系統
KR102011736B1 (ko) 2018-05-03 2019-08-19 한국단자공업 주식회사 배터리팩 퓨즈의 단락 평가 시스템 및 방법
CN108964179A (zh) 2018-07-02 2018-12-07 湖南红太阳新能源科技有限公司 电池均衡系统及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203509A1 (ja) * 2017-05-01 2018-11-08 株式会社Gsユアサ 蓄電システム及び微小短絡の検査方法

Also Published As

Publication number Publication date
US20210111568A1 (en) 2021-04-15
TW202115421A (zh) 2021-04-16
EP3937293A1 (en) 2022-01-12
KR102267785B1 (ko) 2021-06-21
KR20210042679A (ko) 2021-04-20
CN112653204A (zh) 2021-04-13
US11289925B2 (en) 2022-03-29
EP3806228A1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
TWI776155B (zh) 電池系統及其控制方法
TWI747009B (zh) 電池控制裝置及用於檢測電池的內部短路的方法
KR102362208B1 (ko) 이상 셀 검출 장치, 배터리 시스템 및 배터리 시스템의 이상 셀 검출 방법
EP3843195A1 (en) Thermal runaway detecting device, battery system, and thermal runaway detecting method of battery system
CN108808759A (zh) 电池装置及电池保护方法
US11316210B2 (en) Control unit for a battery module or system
TW202009508A (zh) 電池控制裝置及用於檢測電池的內部短路的方法
EP3675303A1 (en) Power source protection apparatus and terminal using same
EP3579006B1 (en) Validation of a temperature sensor of a battery cell
KR102266591B1 (ko) 배터리 제어 장치 및 배터리의 내부단락 검출 방법
KR102515605B1 (ko) 배터리 셀의 내부 단락 진단 방법, 내부 단락 진단 장치 및 배터리 시스템
KR102556993B1 (ko) 배터리 셀의 내부 단락 진단 방법, 내부 단락 진단 장치 및 배터리 시스템
US11041914B2 (en) Battery control apparatus and method for detection internal short of battery
EP4376252A1 (en) Abnormal cell detection method, abnormal cell detection device, and battery pack
US20240159834A1 (en) Battery diagnosis method, battery diagnosis device, and battery pack having the battery diagnosis device
EP4398443A1 (en) Battery management method, battery management device and battery pack performing the same
US20240204537A1 (en) Battery management method, battery management device and battery pack performing the same
US11075411B2 (en) Protection circuit module, battery pack, and method of manufacturing the battery pack
JP2024088578A (ja) バッテリー管理方法、およびこれを行うバッテリー管理装置およびバッテリーパック
KR20240072022A (ko) 배터리 진단 방법, 그리고 이를 수행하는 배터리 진단 장치 및 배터리 팩
CN118050657A (zh) 电池诊断方法、电池诊断装置和电池组
KR20240097530A (ko) 배터리 관리 방법, 및 이를 수행하는 배터리 관리 장치 및 배터리 팩

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent