TWI774035B - 光電變換元件及固體攝像裝置 - Google Patents

光電變換元件及固體攝像裝置 Download PDF

Info

Publication number
TWI774035B
TWI774035B TW109126300A TW109126300A TWI774035B TW I774035 B TWI774035 B TW I774035B TW 109126300 A TW109126300 A TW 109126300A TW 109126300 A TW109126300 A TW 109126300A TW I774035 B TWI774035 B TW I774035B
Authority
TW
Taiwan
Prior art keywords
organic semiconductor
semiconductor material
photoelectric conversion
group
organic
Prior art date
Application number
TW109126300A
Other languages
English (en)
Other versions
TW202044631A (zh
Inventor
長谷川雄大
松澤伸行
尾花良哲
竹村一郎
中山典一
下川雅美
山口哲司
八木巖
茂木英昭
Original Assignee
日商索尼半導體解決方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼半導體解決方案公司 filed Critical 日商索尼半導體解決方案公司
Publication of TW202044631A publication Critical patent/TW202044631A/zh
Application granted granted Critical
Publication of TWI774035B publication Critical patent/TWI774035B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/20Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising components having an active region that includes an inorganic semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本發明之一實施形態之光電變換元件係具備對向配置之第1電極及第2電極、以及設置於第1電極與第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層者,且第1有機半導體材料係富勒烯或富勒烯衍生物,第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之第1有機半導體材料及第3有機半導體材料之各單層膜,第3有機半導體材料具有第2有機半導體材料之HOMO能階以上之值。

Description

光電變換元件及固體攝像裝置
本發明例如關於一種使用有機半導體之光電變換元件及具備其之固體攝像裝置。
近年來,於CCD(Charge Coupled Device,電荷耦合裝置)影像傳感器、或CMOS(Complementary Metal Oxide Semiconductor,互補性金屬氧化物半導體)影像傳感器等固體攝像裝置中,像素尺寸不斷縮小。藉此,入射至單位像素之光子數減少,故而感度降低,並且產生S/N比之降低。又,於為了實現彩色化而使用將紅、綠、藍之原色濾光片二維排列而成之彩色濾光片之情形時,於紅色像素中,綠色與藍色之光被彩色濾光片吸收,故而導致感度降低。又,於產生各顏色信號時,於像素間進行插值處理,故而產生所謂偽色。 因此,例如於專利文獻1中揭示有使用依序積層有對藍光(B)具有感度之有機光電變換膜、對綠光(G)具有感度之有機光電變換膜、對紅光(R)具有感度之有機光電變換膜之多層構造之有機光電變換膜的影像傳感器。於該影像傳感器中,藉由自1像素中分別擷取B/G/R之信號而實現感度提高。於專利文獻2中揭示有形成1層有機光電變換膜,利用該有機光電變換膜擷取單色信號,並利用矽(Si)批量分光而擷取2色信號之攝像元件。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2003-234460號公報 [專利文獻2]日本專利特開2005-303266號公報
於專利文獻2所揭示之攝像元件中,入射光絕大部分進行光電變換而被讀出,可見光之使用效率接近100%。進而,於各受光部獲得R、G、B之3色之顏色信號,故而可生成高感度且高解析度(偽色不明顯)之圖像。因此,對此種積層型攝像元件要求具有優異之分光形狀,此外謀求伴隨光之亮/暗而使光電流上升或下降所需之急速之響應時間(較高之響應性)及較高之外部量子效率(External Quantum Efficiency:EQE)之提高。然而,存在於使分光形狀、響應性及EQE中之任一特性或兩種特性提高之情形時,其他之特性降低之問題。 較理想為提供一種能夠使優異之分光形狀、較高之響應性及較高之外部量子效率提高之光電變換元件及固體攝像裝置。 本發明之一實施形態之光電變換元件係具備對向配置之第1電極及第2電極、以及設置於第1電極與第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層者,且第1有機半導體材料係富勒烯或富勒烯衍生物,第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之第1有機半導體材料及第3有機半導體材料之各單層膜,第3有機半導體材料具有第2有機半導體材料之HOMO(highest occupied molecular orbital,最高佔據分子軌道)能階以上之值。 本發明之一實施形態之固體攝像裝置係各像素包含1個或複數個有機光電變換部,且具有上述本發明之一實施形態之光電變換元件作為有機光電變換部者。 於本發明之一實施形態之光電變換元件及一實施形態之固體攝像裝置中,藉由使用具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料形成對向配置之第1電極與第2電極之間之光電變換層,而於維持明確之分光形狀之狀態下提高光電變換層內之電洞移動率及電子移動率。又,由光吸收而產生之激子分離為電荷後之電荷傳輸效率提高。 此處,第1有機半導體材料係富勒烯或富勒烯衍生物。第2有機半導體材料係可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之第1有機半導體材料及第3有機半導體材料之各單層膜的有機半導體材料。第3有機半導體材料係具有第2有機半導體材料之HOMO能階以上之值之有機半導體材料。 根據本發明之一實施形態之光電變換元件及一實施形態之固體攝像裝置,設法使用具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料而形成光電變換層。藉此能夠實現於維持明確之分光形狀之狀態下提高光電變換層內之電洞移動率及電子移動率,使響應性提高。又,由光吸收而產生之激子分離為電荷後之電荷傳輸效率提高,故而能夠使外部量子效率提高。即,能夠提供一種分光形狀、響應性及EQE良好之光電變換元件及具備其之固體攝像裝置。 再者,此處所記載之效果並不受限定,亦可為本發明中所記載之任一效果。
以下參照圖式詳細地說明本發明之一實施形態。再者,說明順序如下所示。 1.實施形態(藉由3種材料形成有機光電變換層之例) 1-1.光電變換元件之構成 1-2.光電變換元件之製造方法 1-3.作用、效果 2.應用例 3.實施例 <1.實施形態> 圖1係表示本發明之一實施形態之光電變換元件(光電變換元件10)之剖面構成者。光電變換元件10例如係於CCD影像傳感器或CMOS影像傳感器等固體攝像裝置(固體攝像裝置1、圖10)中構成1個像素(單位像素P)者。光電變換元件10係於半導體基板11之表面(與受光面(面S1)為相反側之面S2)側形成像素電晶體(包含下述傳輸電晶體Tr1~3),並且具有多層配線層(多層配線層51)者。 本實施形態之光電變換元件10具有縱向積層選擇性檢測各不相同之波長區域之光並進行光電變換之1個有機光電變換部11G與2個無機光電變換部11B、11R而成之構造,有機光電變換部11G係包含3種有機半導體材料而構成者。 (1-1.光電變換元件之構成) 光電變換元件10具有1個有機光電變換部11G與2個無機光電變換部11B、11R之積層構造,藉此可於1個元件中獲取紅(R)、綠(G)、藍(B)之各顏色信號。有機光電變換部11G形成於半導體基板11之背面(面S1)上,無機光電變換部11B、11R埋入於半導體基板11內而形成。以下對各部之構成進行說明。 (有機光電變換部11G) 有機光電變換部11G係使用有機半導體吸收選擇性波長區域之光(此處為綠光)而使電子-電洞對產生的有機光電變換元件。有機光電變換部11G具有於用以擷取信號電荷之一對電極(下部電極15a、上部電極18)間夾入有機光電變換層17而成之構成。如下所述,下部電極15a及上部電極18介隔配線層13a、13b、15b或接觸金屬層20,電性連接於埋設於半導體基板11內之導電性插頭120a1、120b1。 具體而言,於有機光電變換部11G中,在半導體基板11之面S1上形成有層間絕緣膜12、14,層間絕緣膜12上分別與下述導電性插頭120a1、120b1對向之區域設置有貫通孔,各貫通孔中埋設有導電性插頭120a2、120b2。於層間絕緣膜14之分別與導電性插頭120a2、120b2對向之區域埋設有配線層13a、13b。於該層間絕緣膜14上設置有下部電極15a,並且設置有藉由該下部電極15a與絕緣膜16而電性分離之配線層15b。該等之中,於下部電極15a上形成有有機光電變換層17,以覆蓋有機光電變換層17之方式形成有上部電極18。詳細內容如下所述,上部電極18上以覆蓋其表面之方式形成有保護層19。於保護層19之特定區域設置有接觸孔H,於保護層19上形成有埋入接觸孔H且延伸至配線層15b之上表面之接觸金屬層20。 導電性插頭120a2與導電性插頭120a1一起作為連接器而發揮功能。又,導電性插頭120a2與導電性插頭120a1及配線層13a一起形成自下部電極15a向下述綠色蓄電層110G傳輸電荷(電子)之傳輸路徑。導電性插頭120b2與導電性插頭120b1一起作為連接器而發揮功能。又,導電性插頭120b2與導電性插頭120b1、配線層13b、配線層15b及接觸金屬層20一起形成自上部電極18排出電荷(電洞)之排出路徑。關於導電性插頭120a2、120b2,為了亦作為遮光膜而發揮功能,例如較理想為藉由鈦(Ti)、氮化鈦(TiN)及鎢等金屬材料之積層膜而構成。又,藉由使用此種積層膜,即便於將導電性插頭120a1、120b1形成為n型或p型之半導體層之情形時亦可確保與矽之接觸,故而較佳。 為了降低與半導體基板11(矽層110)之界面能階,並且抑制自與矽層110之界面之暗電流之產生,層間絕緣膜12較理想為由界面能階較小之絕緣膜構成。作為此種絕緣膜,例如可使用氧化鉿(HfO2 )膜與氧化矽(SiO2 )膜之積層膜。層間絕緣膜14例如由包含氧化矽、氮化矽及氮氧化矽(SiON)等中之1種之單層膜、或包含該等中之2種以上之積層膜所構成。 絕緣膜16例如由包含氧化矽、氮化矽及氮氧化矽(SiON)等中之1種之單層膜、或包含該等中之2種以上之積層膜所構成。絕緣膜16例如其表面平坦化,具有與下部電極15a幾乎無階差之形狀及圖案。該絕緣膜16具有於將光電變換元件10用作固體攝像裝置1之單位像素P之情形時將各像素之下部電極15a間電性分離之功能。 下部電極15a與形成於半導體基板11內之無機光電變換部11B、11R之受光面正對,設置於覆蓋該等之受光面之區域。該下部電極15a係由具有光透過性之導電膜構成,例如包含ITO(Indium Tin Oxide,銦錫氧化物)。其中,作為下部電極15a之構成材料,除該ITO以外亦可使用添加有摻雜劑之氧化錫(SnO2 )系材料、或於鋁鋅氧化物(ZnO)中添加摻雜劑而成之氧化鋅系材料。作為氧化鋅系材料,例如可列舉添加鋁(Al)作為摻雜劑之鋁鋅氧化物(AZO)、添加鎵(Ga)之鎵鋅氧化物(GZO)、添加銦(In)之銦鋅氧化物(IZO)。又,另外亦可使用CuI、InSbO4 、ZnMgO、CuInO2 、MgIN2 O4 、CdO、ZnSnO3 等。再者,於本實施形態中,由於實現自下部電極15a擷取信號電荷(電子),故而於將光電變換元件10用作單位像素P之下述固體攝像裝置1中,該下部電極15a逐像素分離而形成。 有機光電變換層17係包含第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之3種而構成者。有機光電變換層17較佳為包含p型半導體及n型半導體中之一者或兩者構成,上述3種有機半導體材料均為p型半導體或n型半導體。有機光電變換層17對選擇性波長區域之光進行光電變換,另一方面使其他波長區域之光透過,於本實施形態中例如於450 nm以上且650 nm以下之範圍具有極大吸收波長。 作為第1有機半導體材料,較佳為具有較高之電子傳輸性之材料,例如可列舉下述式(1)所表示之C60富勒烯或其衍生物、或下述式(2)所表示之C70富勒烯或其衍生物。再者,於本實施形態中將富勒烯視作有機半導體材料。 [化1]
Figure 02_image001
(R各自獨立為氫原子、鹵素原子、直鏈、分支或環狀之烷基、苯基、具有直鏈或經縮環之芳香族化合物之基、具有鹵化物之基、部分氟烷基、全氟烷基、矽烷基烷基、矽烷基烷氧基、芳基矽烷基、芳基硫基、烷基硫基、芳基磺醯基、烷基磺醯基、芳基硫醚基、烷基硫醚基、胺基、烷基胺基、芳基胺基、羥基、烷氧基、醯胺基、醯氧基、羰基、羧基、羧醯胺基、羧烷氧基、醯基、磺醯基、氰基、硝基、具有硫族元素化物之基、膦基、膦酸基或該等之衍生物。n、m係0或1以上之整數) 作為第1有機半導體材料之具體例,除式(1-1)所表示之C60富勒烯及式(2-1)所表示之C70富勒烯以外,作為其等之衍生物,例如可列舉以下之式(1-2)、(1-3)及式(2-2)等之化合物。 [化2]
Figure 02_image003
表1彙總C60富勒烯(式(1-1))、C70富勒烯(式(2-1))及上述式(1-2)、(1-3)及式(2-2)所表示之富勒烯衍生物之電子移動率。藉由使用具有較高之電子移動率較佳為10-7 cm2 /Vs以上、更佳為10-4 cm2 /Vs以上之有機半導體材料,而改善激子分離為電荷後產生之電子之移動率,提高有機光電變換部11G之響應性。 [表1]
   電子移動率(cm2 /Vs)
C60富勒烯 2×10- 2
C70富勒烯 3×10- 3
[60]PCBM 5×10- 2
[70]PCBM 3×10-4
ICBA 2×10-3
作為第2有機半導體材料,較佳為於形成為單層膜之狀態下其可見光區域之極大吸收波長之線吸收係數高於第1有機半導體材料之單層膜及下述第3有機半導體材料之單層膜。藉此可提高有機光電變換層17之可見光區域之光吸收能,且亦能夠實現使分光形狀明確。再者,此處,可見光區域係設為450 nm以上且800 nm以下之範圍。此處,單層膜意指由1種有機半導體材料構成。以下之第2有機半導體材料及第3有機半導體材料之單層膜亦相同。 作為第3有機半導體材料,較佳為具有第2有機半導體材料之HOMO能階以上之值,並且具有較高之電洞傳輸性之材料。具體而言,較佳為形成為單層膜狀態之電洞移動率高於第2有機半導體材料之單層膜之電洞移動率的材料。 作為第2有機半導體材料之具體材料,可列舉式(6)所表示之亞酞菁及其衍生物。作為第3有機半導體材料之具體材料,例如可列舉下述式(3)所表示之喹吖啶酮及其衍生物、式(4)所表示之三烯丙基胺及其衍生物、式(5)所表示之苯并噻吩并苯并噻吩及其衍生物。 [化3]
Figure 02_image005
(R8~R19各自獨立,選自由氫原子、鹵素原子、直鏈、分支、或環狀烷基、硫代烷基、硫代芳基、芳基磺醯基、烷基磺醯基、胺基、烷基胺基、芳基胺基、羥基、烷氧基、醯胺基、醯氧基、苯基、羧基、羧醯胺基、羧烷氧基、醯基、磺醯基、氰基及硝基所組成之群,並且鄰接之任意之R8~R19亦可為縮合脂肪族環或縮合芳香環之一部分。上述縮合脂肪族環或縮合芳香環亦可包含碳以外之1個或複數個原子。M係硼或二價或三價之金屬。X係陰離子性基) [化4]
Figure 02_image007
(R1、R2各自獨立為氫原子、烷基、芳基、或雜環基。R3、R4可為任意者,並無特別限制,例如各自獨立為烷基鏈、烯基、炔基、芳基、氰基、硝基、矽烷基,2個以上之R3或R4亦可一起形成環。n1、n2係各自獨立之0或1以上整數) [化5]
Figure 02_image009
(R20~R23各自獨立為式(4)'所表示之取代基,R24~R28各自獨立為氫原子、鹵素原子、芳基、芳香族烴環基或具有烷基鏈或取代基之芳香族烴環基、芳香族雜環基或具有烷基鏈或取代基之芳香族雜環基。鄰接之R24~R28亦可為相互鍵結而形成環之飽和或不飽和之二價基) [化6]
Figure 02_image011
(R5、R6各自獨立為氫原子或式(5)'所表示之取代基。R7係芳香環基或具有取代基之芳香環基) 作為式(6)所表示之亞酞菁衍生物之具體例,可列舉以下之式(6-1)~(6-5)等之化合物。 [化7]
Figure 02_image013
Figure 02_image015
Figure 02_image017
作為式(3)所表示之喹吖啶酮衍生物之具體例,可列舉以下之式(3-1)~(3-3)等之化合物。 [化8]
Figure 02_image019
Figure 02_image021
作為式(4)所表示之三烯丙基胺衍生物之具體例,可列舉以下之式(4-1)~(4-13)等之化合物。 [化9]
Figure 02_image023
Figure 02_image025
作為式(5)所表示之苯并噻吩并苯并噻吩衍生物之具體例,可列舉以下之式(5-1)~(5-8)等之化合物。 [化10]
Figure 02_image027
Figure 02_image029
作為第3有機半導體材料,除上述喹吖啶酮及其衍生物、三烯丙基胺及其衍生物、苯并噻吩并苯并噻吩及其衍生物以外,例如可列舉下述式(8)所表示之紅螢烯或上述式(4-2)所表示之N,N'-二(1-萘基-N,N'-二苯基聯苯胺(αNPD)及其衍生物。其中,作為第3有機半導體材料,更佳為其分子內包含碳(C)及氫(H)以外之雜原子。作為雜原子,例如為氮(N)、磷(P)及氧(O)、硫(S)、硒(Se)等硫族元素。 [化11]
Figure 02_image031
表2及表3彙總作為能夠用作第2有機半導體材料之材料之一例的式(6-3)所表示之SubPcOC6 F5 及式(6-2)所表示之F6 SubPcCl及作為能夠用作第3有機半導體材料之材料之一例的式(3-1)所表示之喹吖啶酮(QD)、式(3-2)所表示之丁基喹吖啶酮(BQD)、式(4-2)所表示之αNPD、式(5-1)所表示之[1]苯并噻吩[3,2-b][1]苯并噻吩(BTBT)、式(8)所表示之紅螢烯,另外作為參考之下述式(7)所表示之Du-H之HOMO能階(表2)及電洞移動率(表3)。再者,表2及表3所示之HOMO能階及電洞移動率係使用下述實施例之實驗2-1、2-2中所說明之方法而算出。作為第3有機半導體材料,較佳為具有第2有機半導體材料以上之HOMO能階。又,作為第3有機半導體材料,較佳為其單層膜之電洞移動率高於第2有機半導體材料之單層膜之電洞移動率。第3有機半導體材料之較佳之HOMO能階例如為10-7 cm2 /Vs以上,更佳為10-4 cm2 /Vs以上。藉由使用此種有機半導體材料而改善激子分離為電荷後產生之電洞之移動率。藉此,保持與由第1有機半導體材料承擔之較高電子傳輸性之平衡性,有機光電變換部11G之響應性提高。再者,於QD之HOMO能階-5.5 eV與F6 SubPcOCl之HOMO能階-6.3 eV中QD之HOMO能階高於F6 SubPcOCl。 [表2]
   HOMO(eV)
QD -5.5
αNPD -5.5
BTBT -5.6
SubPcOC6 F5 -5.9
Du-H -6.1
F6 SubPcCl -6.3
BQD -5.6
紅螢烯 -5.5
[表3]
   電洞移動率(cm2 /Vs)
QD 2×10-5
αNPD >10-4
BTBT >10-3
SubPcOC6 F5 1×10-8
Du-H 1×10-10
F6 SubPcCl <10-10
BQD 1×10-6
紅螢烯 3×10-6
再者,於將三烯丙基胺衍生物用作第3有機半導體材料之情形時,不限於上述式(4-1)~(4-13)所表示之化合物,只要為具有第2有機半導體材料以上之HOMO能階者即可。又,只要為單層膜之電洞移動率高於第2有機半導體材料之單層膜之電洞移動率者即可。 根據以上內容,作為第2有機半導體材料及第3有機半導體材料之具體組合,例如,於將第2有機半導體材料用作亞酞菁衍生物之情形時,作為第3有機半導體材料,選擇喹吖啶酮衍生物、三烯丙基胺衍生物、苯并噻吩并苯并噻吩衍生物及紅螢烯中之任一者。 構成有機光電變換層17之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之含有率較佳為以下之範圍。第1有機半導體材料例如較佳為10體積%以上且35體積%以下,第2有機半導體材料例如較佳為30體積%以上且80體積%以下,第3有機半導體材料例如較佳為10體積%以上且60體積%以下。進而,較理想為分別含有含量大致相同之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料。於第1有機半導體材料過少之情形時,因有機光電變換層17之電子傳輸性能降低而導致響應性惡化。於過多之情形時,有分光形狀惡化之虞。於第2有機半導體材料過少之情形時,有可見光區域之光吸收能及分光形狀惡化之虞。於過多之情形時,電子及電洞之傳輸性能降低。於第3有機半導體材料過少之情形時,因電洞傳輸性降低而導致響應性惡化。於過多之情形時,有可見光區域之光吸收能及分光形狀惡化之虞。 於有機光電變換層17與下部電極15a之間、及與上部電極18之間亦可設置未圖示之其他層。例如亦可自下部電極15a側依序積層底塗膜、電洞傳輸層、電子阻斷膜、有機光電變換層17、電洞阻斷膜、緩衝膜、電子傳輸層及功函數調整膜。 上部電極18由具有與下部電極15a相同之光透過性之導電膜構成。於將光電變換元件10用作像素之固體攝像裝置中,該上部電極18可逐像素分離,或亦可於各像素中形成為共通之電極。上部電極18之厚度例如為10 nm~200 nm。 保護層19係由具有光透過性之材料構成,例如係包含氧化矽、氮化矽及氮氧化矽等中之任一者之單層膜、或包含該等中之2種以上之積層膜。該保護層19之厚度例如為100 nm~30000 nm。 接觸金屬層20係由包含例如鈦(Ti)、鎢(W)、氮化鈦(TiN)及鋁(Al)等中之任一者、或該等中之2種以上之積層膜所構成。 上部電極18及保護層19例如以覆蓋有機光電變換層17之方式設置。圖2表示有機光電變換層17、保護層19(上部電極18)及接觸孔H之平面構成。 具體而言,保護層19(上部電極18亦相同)之周緣部e2位於較有機光電變換層17之周緣部e1更靠外側,保護層19及上部電極18係向較有機光電變換層17之更外側伸出而形成。詳細而言,上部電極18以覆蓋有機光電變換層17之上表面及側面,並且延伸至絕緣膜16上之方式而形成。保護層19覆蓋此種上部電極18之上表面,形成為與上部電極18相同之平面形狀。接觸孔H設置於保護層19中之不與有機光電變換層17對向之區域(較周緣部e1更靠外側之區域),使上部電極18之表面之一部分露出。周緣部e1、e2間之距離無特別限定,例如為1 μm~500 μm。再者,於圖2中設置沿有機光電變換層17之端邊之1個矩形狀之接觸孔H,接觸孔H之形狀或個數不限定於此,可為其他形狀(例如圓形、正方形等),或亦可設置有複數個。 於保護層19及接觸金屬層20上以覆蓋整個表面之方式形成有平坦化層21。於平坦化層21上設置有晶載透鏡22(微透鏡)。晶載透鏡22使自其上方入射之光聚集於有機光電變換部11G、無機光電變換部11B、11R之各受光面。於本實施形態中,多層配線層51形成於半導體基板11之面S2側,故而可使有機光電變換部11G、無機光電變換部11B、11R之各受光面相互靠近而配置,可降低依存於晶載透鏡22之F值而產生之各顏色間之感度之偏差。 再者,於本實施形態之光電變換元件10中,自下部電極15a擷取信號電荷(電子),故而於將其用作像素之固體攝像裝置中,亦可將上部電極18設為共通電極。於該情形時,上述包含接觸孔H、接觸金屬層20、配線層15b、13b、導電性插頭120b1、120b2之傳輸路徑只要相對於全部像素形成於至少1處即可。 半導體基板11例如係於n型之矽(Si)層110之特定區域埋入無機光電變換部11B、11R與綠色蓄電層110G而形成。又,於半導體基板11中埋設有成為來自有機光電變換部11G之電荷(電子或電洞)之傳輸路徑之導電性插頭120a1、120b1。於本實施形態中,該半導體基板11之背面(面S1)可認為係受光面。於半導體基板11之表面(面S2)側形成與有機光電變換部11G、無機光電變換部11B、11R之各者對應之複數個像素電晶體(包含傳輸電晶體Tr1~Tr3),並且形成有包含邏輯電路等之周邊電路。 作為像素電晶體,例如可列舉傳輸電晶體、重置電晶體、放大電晶體及選擇電晶體。該等像素電晶體例如均由MOS(Metal Oxide Semiconductor,金屬氧化物半導體)電晶體構成,且形成於面S2側之p型半導體井區域。包含此種像素電晶體之電路分別形成於紅、綠、藍之光電變換部。於各電路中,可具有包含該等像素電晶體中之例如傳輸電晶體、重置電晶體及放大電晶體共計3個電晶體之3電晶體構成,或亦可為加上選擇電晶體而成之4電晶體構成。此處,僅對該等像素電晶體中之傳輸電晶體Tr1~Tr3進行圖示及說明。又,亦可於光電變換部間或像素間共有除傳輸電晶體以外之其他像素電晶體。又,亦可應用共有浮動擴散部之所謂像素共有構造。 傳輸電晶體Tr1~Tr3包含閘極電極(閘極電極TG1~TG3)與浮動擴散部(FD113、114、116)而構成。傳輸電晶體Tr1係將於有機光電變換部11G中產生並累積於綠色蓄電層110G中之對應綠色之信號電荷(於本實施形態中為電子)向下述垂直信號線Lsig傳輸。傳輸電晶體Tr2係將於無機光電變換部11B中產生並累積之對應藍色之信號電荷(於本實施形態中為電子)向下述垂直信號線Lsig傳輸。同樣地,傳輸電晶體Tr3係將於無機光電變換部11R中產生並累積之對應紅色之信號電荷(於本實施形態中為電子)向下述垂直信號線Lsig傳輸。 無機光電變換部11B、11R分別為具有pn接面之光電二極體(Photo Diode),於半導體基板11內之光路上自面S1側依序形成有無機光電變換部11B、11R。該等之中,無機光電變換部11B選擇性檢測藍光並累積對應藍色之信號電荷,例如自沿半導體基板11之面S1之選擇性區域向與多層配線層51之界面附近之區域延伸而形成。無機光電變換部11R選擇性檢測紅光並累積對應紅色之信號電荷,例如形成於較無機光電變換部11B更靠下層(面S2側)之整個區域。再者,藍(B)係對應例如450 nm~495 nm之波長區域之顏色,紅(R)係對應例如620 nm~750 nm之波長區域之顏色,無機光電變換部11B、11R只要分別能夠檢測各波長區域中之一部分或全部之波長區域之光即可。 圖3A表示無機光電變換部11B、11R之詳細構成例。圖3B相當於圖3A之另一剖面之構成。再者,於本實施形態中,對將由光電變換產生之電子及電洞對之中之電子作為信號電荷讀出之情形(將n型半導體區域設為光電變換層之情形)進行說明。又,圖中「p」「n」以上標所標記之「+(加)」表示p型或n型之雜質濃度較高。又,亦揭示像素電晶體中之傳輸電晶體Tr2、Tr3之閘極電極TG2、TG3。 無機光電變換部11B例如包含成為電洞累積層之p型半導體區域(以下簡稱為p型區域,n型之情形亦相同)111p與成為電子累積層之n型光電變換層(n型區域)111n而構成。p型區域111p及n型光電變換層111n分別形成於面S1附近之選擇性區域,並且其一部分彎曲,延伸至與面S2之界面而形成。p型區域111p於面S1側連接於未圖示之p型半導體井區域。n型光電變換層111n連接於藍色用傳輸電晶體Tr2之FD113(n型區域)。再者,於p型區域111p及n型光電變換層111n之面S2側之各端部與面S2之界面附近形成有p型區域113p(電洞累積層)。 無機光電變換部11R例如於p型區域112p1、112p2(電洞累積層)間夾入n型光電變換層112n(電子累積層)而形成(具有p-n-p之積層構造)。n型光電變換層112n其一部分彎曲,延伸至與面S2之界面而形成。n型光電變換層112n連接於紅色用傳輸電晶體Tr3之FD114(n型區域)。再者,至少於n型光電變換層111n之面S2側之端部與面S2之界面附近形成有p型區域113p(電洞累積層)。 圖4表示綠色蓄電層110G之詳細構成例。再者,此處,對將由有機光電變換部11G產生之電子及電洞對之中之電子作為信號電荷自下部電極15a側讀出之情形進行說明。又,圖4中亦揭示像素電晶體中之傳輸電晶體Tr1之閘極電極TG1。 綠色蓄電層110G包含成為電子累積層之n型區域115n而構成。n型區域115n之一部分連接於導電性插頭120a1,累積自下部電極15a側經由導電性插頭120a1而傳送之電子。又,該n型區域115n連接於綠色用傳輸電晶體Tr1之FD116(n型區域)。再者,於n型區域115n與面S2之界面附近形成有p型區域115p(電洞累積層)。 導電性插頭120a1、120b1與下述導電性插頭120a2、120b2一起作為有機光電變換部11G與半導體基板11之連接器而發揮功能,並且成為於有機光電變換部11G產生之電子或電洞之傳輸路徑。於本實施形態中,導電性插頭120a1與有機光電變換部11G之下部電極15a導通,且與綠色蓄電層110G連接。導電性插頭120b1與有機光電變換部11G之上部電極18導通,成為用於排出電洞之配線。 該等導電性插頭120a1、120b1例如分別由導電型半導體層構成,且埋入於半導體基板11而形成。於該情形時,只要將導電性插頭120a1設為n型(旨在成為電子之傳輸路徑)、將導電性插頭120b1設為p型(旨在成為電洞之傳輸路徑)即可。或導電性插頭120a1、120b1例如亦可為於貫通孔中埋設有鎢(W)等之導電膜材料者。於該情形時,例如為了抑制與矽(Si)之短路,較理想為利用氧化矽(SiO2 )或氮化矽(SiN)等之絕緣膜覆蓋通孔側面。 於半導體基板11之面S2上形成有多層配線層51。於多層配線層51中介隔層間絕緣膜52配設有複數個配線51a。如此,於光電變換元件10中,多層配線層51形成於與受光面相反之側,能夠實現所謂背面照射型固體攝像裝置。於該多層配線層51上例如貼合有包含矽(Si)之支持基板53。 (1-2.光電變換元件之製造方法) 光電變換元件10例如可以如下方式製造。圖5A~圖7C按照步驟順序表示光電變換元件10之製造方法。再者,於圖7A~圖7C中僅顯示光電變換元件10之要部構成。 首先,形成半導體基板11。具體而言,準備於矽基體1101上介隔氧化矽膜1102形成有矽層110之所謂SOI(Silicon On Insulator,絕緣層上矽)基板。再者,矽層110之氧化矽膜1102側之面成為半導體基板11之背面(面S1)。於圖5A、圖5B中以與圖1所示之構造上下反轉之狀態加以圖示。繼而,如圖5A所示,於矽層110上形成導電性插頭120a1、120b1。此時,導電性插頭120a1、120b1例如可藉由於矽層110上形成貫通孔後,於該貫通孔內埋入上述氮化矽等障壁金屬及鎢而形成。或例如亦可藉由向矽層110注入離子而形成導電型雜質半導體層。於該情形時,將導電性插頭120a1形成為n型半導體層,將導電性插頭120b1形成為p型半導體層。其後,於矽層110內之深度不同之區域(以相互重疊之方式),藉由離子注入而形成例如分別具有圖3A所示之p型區域及n型區域之無機光電變換部11B、11R。又,於與導電性插頭120a1鄰接之區域,藉由離子注入而形成綠色蓄電層110G。如此形成半導體基板11。 其次,於半導體基板11之面S2側形成包含傳輸電晶體Tr1~Tr3之像素電晶體及邏輯電路等周邊電路後,如圖5B所示,於半導體基板11之面S2上介隔層間絕緣膜52形成複數層之配線51a,藉此形成多層配線層51。繼而,於多層配線層51上貼附包含矽之支持基板53後,自半導體基板11之面S1側剝離矽基體1101及氧化矽膜1102,而使半導體基板11之面S1露出。 其次,於半導體基板11之面S1上形成有機光電變換部11G。具體而言,首先如圖6A所示,於半導體基板11之面S1上形成包含上述氧化鉿膜與氧化矽膜之積層膜的層間絕緣膜12。例如藉由ALD(原子層堆積)法使氧化鉿膜成膜後,例如藉由電漿CVD(Chemical Vapor Deposition:化學氣相沈積)法使氧化矽膜成膜。其後,於層間絕緣膜12之與導電性插頭120a1、120b1對向之位置形成接觸孔H1a、H1b,以分別埋入該等接觸孔H1a、H1b之方式形成包含上述材料之導電性插頭120a2、120b2。此時,可將導電性插頭120a2、120b2拉伸至欲遮光之區域(以覆蓋欲遮光之區域之方式)而形成,或亦可於與導電性插頭120a2、120b2分離之區域形成遮光層。 繼而,如圖6B所示,例如藉由電漿CVD法使包含上述材料之層間絕緣膜14成膜。再者,較理想為成膜後例如藉由CMP(Chemical Mechanical Polishing:化學機械研磨)法使層間絕緣膜14之表面平坦化。其次,於層間絕緣膜14之與導電性插頭120a2、120b2對向之位置分別使接觸孔開口,並埋入上述材料,藉此形成配線層13a、13b。再者,較理想為其後例如使用CMP法等去除層間絕緣膜14上之剩餘之配線層材料(鎢等)。其次,於層間絕緣膜14上形成下部電極15a。具體而言,首先例如藉由濺鍍法使上述透明導電膜成膜於層間絕緣膜14上之整個表面。其後,使用光微影法(進行光阻膜之曝光、顯影、後烘烤等),例如使用乾式蝕刻或濕式蝕刻去除選擇性部分,藉此形成下部電極15a。此時,於與配線層13a對向之區域形成下部電極15a。又,藉由於透明導電膜之加工時亦使透明導電膜殘存於配線層13b對向之區域,而使構成電洞之傳輸路徑之一部分之配線層15b與下部電極15a一起形成。 繼而,形成絕緣膜16。此時,首先例如藉由電漿CVD法,以覆蓋層間絕緣膜14、下部電極15a及配線層15b之方式使包含上述材料之絕緣膜16於半導體基板11上之整個表面成膜。其後,如圖7A所示,例如藉由CMP法對成膜之絕緣膜16進行研磨,藉此使下部電極15a及配線層15b自絕緣膜16露出,並且減小下部電極15a及絕緣膜16間之階差(較理想為進行平坦化)。 其次,如圖7B所示,於下部電極15a上形成有機光電變換層17。此時,例如藉由真空蒸鍍法使包含上述材料之3種有機半導體材料形成圖案。再者,如上所述於有機光電變換層17之上層或下層形成其他有機層(電子阻斷層等)時,較佳為於真空步驟中連續(利用真空連貫製程)形成。又,作為有機光電變換層17之成膜方法,未必限定於使用上述之真空蒸鍍法之方法,亦可使用其他方法、例如印刷技術等。 繼而,如圖7C所示,形成上部電極18及保護層19。首先,例如藉由真空蒸鍍法或濺鍍法,以覆蓋有機光電變換層17之上表面及側面之方式使包含上述透明導電膜之上部電極18於基板整個表面成膜。再者,由於有機光電變換層17易受水分、氧、氫等之影響而特性發生變動,故而較理想為上部電極18與有機光電變換層17藉由真空連貫製程而成膜。其後(對上部電極18進行圖案化之前),例如藉由電漿CVD法,以覆蓋上部電極18之上表面之方式使包含上述材料之保護層19成膜。其次,於上部電極18上形成保護層19後,對上部電極18進行加工。 其後,藉由使用光微影法之蝕刻而一次去除上部電極18及保護層19之選擇性部分。繼而,例如藉由使用光微影法之蝕刻而於保護層19形成接觸孔H。此時,接觸孔H較理想為形成於不與有機光電變換層17對向之區域。於該接觸孔H之形成後亦與上述同樣地剝離光阻,並使用藥液進行洗淨,故而於與接觸孔H對向之區域,上部電極18自保護層19露出。因此,若考慮如上述般之針孔之產生,則較理想為避開有機光電變換層17之形成區域設置接觸孔H。繼而,例如使用濺鍍法等形成包含上述材料之接觸金屬層20。此時,接觸金屬層20以埋入接觸孔H且延伸至配線層15b之上表面之方式形成於保護層19上。最後,於半導體基板11上之整個表面形成平坦化層21後,於該平坦化層21上形成晶載透鏡22,藉此完成圖1所示之光電變換元件10。 於上述之光電變換元件10中,例如以如下之方式獲取信號電荷作為固體攝像裝置1之單位像素P。即,如圖8所示,若光L經由晶載透鏡22(圖8中未圖示)入射至光電變換元件10,則光L依序通過有機光電變換部11G、無機光電變換部11B、11R,於其通過過程中紅光、綠光、藍光分別進行光電變換。圖9中模式性地表示基於入射光之信號電荷(電子)獲取之流向。以下對各光電變換部之具體之信號獲取動作進行說明。 (基於有機光電變換部11G之綠色信號之獲取) 入射至光電變換元件10之光L之中,首先綠光Lg於有機光電變換部11G中被選擇性檢測出(吸收)而進行光電變換。藉此自下部電極15a側擷取所產生之電子-電洞對之中之電子Eg後,經由傳輸路徑A(配線層13a及導電性插頭120a1、120a2)累積至綠色蓄電層110G。於進行讀出動作時,所累積之電子Eg被傳輸至FD116。再者,電洞Hg自上部電極18側經由傳輸路徑B(接觸金屬層20、配線層13b、15b及導電性插頭120b1、120b2)排出。 具體而言,以如下之方式累積信號電荷。即,於本實施形態中,對下部電極15a施加例如特定之負電位VL(<0 V),對上部電極18施加較電位VL低之電位VU(<VL)。再者,電位VL例如自多層配線層51內之配線51a,經由傳輸路徑A而賦予至下部電極15a。電位VL例如自多層配線層51內之配線51a,經由傳輸路徑B而賦予至上部電極18。藉此於電荷累積狀態(未圖示之重置電晶體及傳輸電晶體Tr1之關閉狀態),將於有機光電變換層17產生之電子-電洞對之中之電子引導至成為相對高電位之下部電極15a側(將電洞引導至上部電極18側)。如此,自下部電極15a擷取電子Eg,經由傳輸路徑A累積於綠色蓄電層110G(詳細而言為n型區域115n)。又,因該電子Eg之累積,與綠色蓄電層110G導通之下部電極15a之電位VL亦發生變動。該電位VL之變化量相當於信號電位(此處為綠色信號之電位)。 並且,於進行讀出動作時傳輸電晶體Tr1成為開啟狀態,累積於綠色蓄電層110G之電子Eg傳輸至FD116。藉此基於綠光Lg之受光量之綠色信號通過未圖示之其他像素電晶體讀出至下述垂直信號線Lsig。其後,未圖示之重置電晶體及傳輸電晶體Tr1成為開啟狀態,作為n型區域之FD116與綠色蓄電層110G之蓄電區域(n型區域115n)例如由電源電壓VDD重設。 (基於無機光電變換部11B、11R之藍色信號、紅色信號之獲取) 繼而,於透過有機光電變換部11G之光中,藍光於無機光電變換部11B、紅光於無機光電變換部11R依序被吸收而進行光電變換。於無機光電變換部11B,與入射之藍光對應之電子Eb累積於n型區域(n型光電變換層111n),所累積之電子Ed於進行讀出動作時向FD113傳輸。再者,電洞累積於未圖示之p型區域。同樣地,於無機光電變換部11R,與入射之紅光對應之電子Er累積於n型區域(n型光電變換層112n),所累積之電子Er於進行讀出動作時向FD114傳輸。再者,電洞累積於未圖示之p型區域。 就於電荷累積狀態下,如上述般對有機光電變換部11G之下部電極15a施加負電位VL之方面而言,存在無機光電變換部11B之作為電洞累積層之p型區域(圖2之p型區域111p)之電洞濃度增加之傾向。因此,可抑制p型區域111p與層間絕緣膜12之界面處之暗電流之產生。 於進行讀出動作時,與上述有機光電變換部11G相同,傳輸電晶體Tr2、Tr3成為開啟狀態,分別存儲於n型光電變換層111n、112n中之電子Eb、Er被傳輸至FD113、114。藉此,基於藍光Lb之受光量之藍色信號與基於紅光Lr之受光量之紅色信號分別通過未圖示之其他像素電晶體讀出至下述垂直信號線Lsig。其後,未圖示之重置電晶體及傳輸電晶體Tr2、3成為開啟狀態,作為n型區域之FD113、114例如由電源電壓VDD重設。 如此,藉由縱向積層有機光電變換部11G、無機光電變換部11B、11R,可於不設置彩色濾光片之情況下分離並檢測紅光、綠光、藍光,獲得各顏色之信號電荷。藉此可抑制因彩色濾光片之色光吸收所致之光損耗(感度降低)或伴隨像素插值處理所產生之偽色。 (1-3.作用、效果) 如上所述,近年來於CCD影像傳感器、或CMOS影像傳感器等固體攝像裝置中要求較高之顏色再現性、高幀頻及高感度。為了實現該等,要求優異之分光形狀、較高之響應性及較高之外部量子效率(EQE)。於積層由有機材料構成之光電變換部(有機光電變換部)與由Si等無機材料構成之光電變換部(無機光電變換部)而成且於有機光電變換部擷取1色信號,於無機光電變換部擷取2色信號之固體攝像裝置中,於有機光電變換部使用能夠藉由將p型有機半導體材料與n型有機半導體材料共蒸鍍而增加電荷分離界面從而提高變換效率之本體異質構造。因此,於一般之固體攝像裝置中,使用2種材料而實現有機光電變換部之分光形狀、響應性及EQE之提高。包含2種材料(二元系)之有機光電變換部例如使用富勒烯類與喹吖啶酮類或亞酞菁類、喹吖啶酮類與亞酞菁類等。 然而,一般而言於固體膜具有明確之分光形狀之材料存在不具有較高之電荷傳輸特性之傾向。為了使用分子性材料表現較高之電荷傳輸特性,要求各分子彼此所構成之軌道於固體狀態下具有重疊,於表現出該軌道間之相互作用之情形時,固體狀態下之吸收光譜之形狀會寬幅化。例如,二茚并苝類於其固體膜具有最大10-2 cm2 /Vs左右之較高之電洞移動率。尤其是將基板溫度提昇至90℃而成膜之二茚并苝類之固體膜具有較高之電洞移動率。其原因在於:二茚并苝類之結晶性及配向性發生變化,且於基板溫度90℃下進行成膜之情形時,使供作為分子間相互作用之1種之π-堆疊形成之方向上電流容易流動之固體膜成膜。如此,於固體膜中具有更強之分子間之相互作用之材料易於表現出更高之電荷移動率。 另一方面,獲得如下知識見解:二茚并苝類之吸收光譜雖於溶解於二氯甲烷等有機溶劑中之情形時具有明確形狀之吸收光譜,但固體膜會顯示較寬之吸收光譜。推測其原因在於:於溶液中二茚并苝類因被二氯甲烷稀釋而為單分子狀態,但固體膜表現出分子間相互作用。如此,可知具有明確之分光形狀且具有較高之電荷傳輸特性之固體膜於原理上難以獲實現。 又,於具有二元系之本體異質構造之有機光電變換部,關於固體膜內之P/N界面處所產生之電荷(電洞及電子),電洞由p型有機半導體材料傳輸,電子由n型有機半導體材料傳輸。因此,為了實現較高之響應性,p型有機半導體材料及n型有機半導體材料兩者必須具有較高之電荷傳輸特性。因此,為了同時實現優異之分光形狀與較高之響應性,p型有機半導體材料及n型有機半導體材料之任一者必須具有明確之分光特性及較高之電荷移動率兩者。然而,由上述原因可知難以準備具有明確之分光形狀、且具有較高之電荷傳輸特性之材料,難以藉由2種材料實現優異之分光形狀、較高之響應性及較高之EQE。 相對於此,於本實施形態中,使用具有互不相同之母骨架之3種有機半導體材料,具體而言使用富勒烯或富勒烯衍生物(第1有機半導體材料)、於單層膜狀態下可見光區域之極大光吸收波長之線吸收係數高於第1有機半導體材料及第3有機半導體材料之各單層膜的有機半導體材料(第2有機半導體材料)及具有第2有機半導體材料之HOMO能階以上之值之有機半導體材料(第3有機半導體材料)而形成有機光電變換層17。藉此能夠實現於二元系中對p型半導體及n型半導體之至少一者所要求之明確之分光形狀及較高之電荷移動率中之一者委任於其他材料。如此,藉由使3種材料分別承擔優異之分光特性、電洞移動率及電子移動率之3個特性、即功能分離,而能夠實現明確之分光形狀、較高之響應性及較高之外部量子效率。即,藉由第1有機半導體材料獲得較高之電子移動率,藉由第2有機半導體材料獲得較高之光吸收能力及明確之分光形狀,藉由第3有機半導體材料獲得較高之電洞移動率。 以上,於本實施形態中,設法使用上述第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之3種而形成有機光電變換層17。藉此獲得以下之效果。由於藉由第1有機半導體材料及第3有機半導體材料而獲得較高之電荷移動率,故而能夠使響應性提高。由於藉由將第1有機半導體材料、第2有機半導體材料及第3有機半導體材料混合使用而形成之界面處之激子之分離而產生之電荷之傳輸效率提高,故而外部量子效率提高。藉由第2有機半導體材料能夠獲得較高之光吸收能與明確之分光形狀。即,能夠提供一種實現優異之分光形狀、較高之響應性及高EQE之光電變換元件及具備其之固體攝像裝置。 再者,可期待即便於無需明確之分光形狀之情形時,因第2有機半導體材料具有較高之光吸收能力,故而藉由與第1有機半導體材料及第3有機半導體材料一起使用,亦可獲得具有良好之EQE與響應性之有機光電變換層17。 又,於本實施形態中,有機光電變換層17使用上述3種有機半導體材料(1有機半導體材料、第2有機半導體材料及第3有機半導體材料)而構成,但亦可包含該等以外之材料。例如,作為第4有機半導體材料,亦可使用具有與上述第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之任一者相同之母骨架,並且具備不同之取代基之有機半導體材料。 <2.應用例> (應用例1) 圖10表示將於上述實施形態中所說明之光電變換元件10用作單位像素P之固體攝像裝置(固體攝像裝置1)之整體構成。該固體攝像裝置1係CMOS影像傳感器,且於半導體基板11上具有作為攝像區域之像素部1a,並且於該像素部1a之周邊區域例如具有包含列掃描部131、水平選擇部133、行掃描部134及系統控制部132之周邊電路部130。 像素部1a例如具有呈矩陣狀二維配置之複數個單位像素P(相當於光電變換元件10)。該單位像素P中,例如每一像素列配置有像素驅動線Lread(具體而言為列選擇線及重設控制線),每一像素行配置有垂直信號線Lsig。像素驅動線Lread傳送用於讀出來自像素之信號之驅動信號。像素驅動線Lread之一端連接於與列掃描部131之各列對應之輸出端。 列掃描部131包含移位暫存器或位址解碼器等,係例如以列為單位驅動像素部1a之各像素P之像素驅動部。自藉由列掃描部131選擇性掃描之像素列之各像素P輸出之信號通過各垂直信號線Lsig供給至水平選擇部133。水平選擇部133係由逐垂直信號線Lsig分別設置之放大器或水平選擇開關等構成。 行掃描部134包含移位暫存器或位址解碼器等,對水平選擇部133之各水平選擇開關進行掃描之同時依序將其驅動。藉由基於該行掃描部134之選擇性掃描,通過各垂直信號線Lsig而傳送之各像素之信號依序被輸出至水平信號線135,並通過該水平信號線135向半導體基板11之外部傳送。 包含列掃描部131、水平選擇部133、行掃描部134及水平信號線135之電路部分可直接形成於半導體基板11上,或亦可配設於外部控制IC(Integrated Circuit,集成電路)上。又,該等電路部分亦可形成於由電纜等連接之其他基板上。 系統控制部132接收自半導體基板11之外部賦予之時脈或指示運作模式之資料等,又,輸出固體攝像裝置1之內部資訊等資料。系統控制部132進而具有產生各種時序信號之時序發生器,並基於該時序發生器所產生之各種時序信號而進行列掃描部131、水平選擇部133及行掃描部134等周邊電路之驅動控制。 (應用例2) 上述固體攝像裝置1例如可應用於數位靜態相機或攝錄影機等相機系統或具有攝像功能之行動電話等具備攝像功能之所有類型之電子機器。作為其一例,圖11中顯示電子機器2(相機)之概略構成。該電子機器2係能夠拍攝例如靜止圖像或活動圖像之攝錄影機,具有固體攝像裝置1、光學系統(光學透鏡)310、快門裝置311、驅動固體攝像裝置1及快門裝置311之驅動部313、及信號處理部312。 光學系統310將來自被攝體之像光(入射光)導向固體攝像裝置1之像素部1a。該光學系統310亦可由複數個光學透鏡構成。快門裝置311控制向固體攝像裝置1照射光之時間及遮光時間。驅動部313控制固體攝像裝置1之傳輸動作及快門裝置311之快門動作。信號處理部312對自固體攝像裝置1輸出之信號進行各種信號處理。進行信號處理後之影像信號Dout記憶於記憶體等記憶媒體中,或輸出至顯示器等中。 <3.實施例> 以下製作本發明之實施形態及變化例之實施例及比較例之各種樣品,並評價分光特性、HOMO能階、電洞移動率、外部量子效率(EQE)及響應性。 (實驗1:分光特性之評價) 於藉由UV(ultraviolet,紫外線)/臭氧處理而洗淨之該玻璃基板上使用有機蒸鍍裝置,於1×10-5 Pa以下之真空下一面旋轉基板架一面藉由電阻加熱法蒸鍍喹吖啶酮(QD,式(3-1))。蒸鍍速度設為0.1 nm/秒,成膜共計50 nm,設為樣品1。另外,分別製作代替QD而使用SubPcCl(式(6-1))之樣品2、使用C60(式(1-1))之樣品3、使用αNPD(式(4-2))之樣品4、使用BTBT(式(5-1))之樣品5、使用BQD(式(3-2))之樣品59及使用紅螢烯(式(8))之樣品60,並評價各樣品之分光特性。 關於分光特性,使用紫外可見分光光度計測定每一波長之透過率與反射率,求出各單層膜所吸收之光吸收率(%)。以該光吸收率及單層膜之膜厚為參數,並根據朗泊-比爾定律評價各單層膜之每一波長之線吸收係數α(cm-1 )。 圖12表示樣品1~5及樣品59、60之可見光區域(此處為450 nm以上且700 nm以下之範圍)與線吸收係數之關係。自圖12可知,作為第2有機半導體材料之SubPcCl與其他之第1、第3有機半導體材料相比,其可見光區域之極大光吸收波長之線吸收係數較高。再者,只要各有機半導體材料係母骨架相同之化合物,則一般而言圖12所示之吸收係數之傾向得以保持。 (實驗2-1:HOMO能階之評價) 上述表2中彙總之有機半導體材料之HOMO能階分別根據使用與實驗1相同之方法而製作之QD(式(3-1))、αNPD(式(4-2))、BTBT(式(5-1))、SubPcOC6 F5 (式(6-3))、Du-H(下述式(7))、F6 SubPcCl(式(6-2))、BQD(式(3-2))及紅螢烯(式(8))之單層膜而算出。再者,將包含各有機半導體材料之單層膜之膜厚設為20 nm。 [化12]
Figure 02_image033
HOMO能階係對各樣品照射21.2 eV之紫外線光,獲取自樣品表面釋出之電子之運動能量分佈,並自所照射之紫外線光之能量值減去其光譜之能量寬度而得之值。 (實驗2-2:電洞移動率之評價) 上述表3中所彙總之有機半導體材料之電洞移動率根據使用以下之方法而製作之樣品算出。首先,藉由UV/臭氧處理洗淨厚度50 nm之設置有Pt電極之玻璃基板後,於該玻璃基板上使LiF成膜共計0.5 nm之厚度。繼而,使用有機蒸鍍裝置,於1×10-5 Pa以下之真空下一面旋轉基板架一面藉由電阻加熱法蒸鍍QD(式(3-1))。蒸鍍速度設為0.1 nm/秒,成膜共計100 nm。其次,於玻璃基板上使LiF成膜共計0.5 nm之厚度後,以覆蓋QD之單層膜之方式藉由蒸鍍法使Au成膜為膜厚100 nm,而製作具有1 mm×1 mm之光電變換區域之光電變換元件。作為其他樣品,製作具備代替QD而使用αNPD(式(4-2))、BTBT(式(5-1))、SubPcOC6 F5 (式(6-3))、Du-H(式(7))、F6 SubPcCl(式(6-2))、BQD(式(3-2))及紅螢烯(式(8))之單層膜之光電變換元件,並算出各自之電洞移動率。 電洞移動率之算出係使用半導體參數分析器進行。具體而言,自0 V至-5 V使施加於電極間之偏壓電壓變化而進行掃描,從而獲得電流-電壓曲線。藉由根據空間電荷限制電流模型擬合該曲線,而求出移動率與電壓之關係式,獲得-1 V時之電洞移動率之值。 (實驗3:分光特性、外部量子效率及響應性之評價) (實驗例3-1) 首先,作為實施例(樣品6),藉由UV/臭氧處理洗淨設置有膜厚50 nm之ITO電極之玻璃基板後,使用有機蒸鍍裝置,於1×10-5 Pa以下之真空下一面使基板架旋轉一面藉由電阻加熱法同時蒸鍍作為第1有機半導體材料(第1種)之C60(式(1-1))、作為第2有機半導體材料(第2種)之SubPcOC6 F5 (式(6-3))、作為第3有機半導體材料(第3種)之BQD(式(3-2))而使有機光電變換層成膜。對於C60、SubPcOC6 F5 及BQD,蒸鍍速度分別為0.075 nm/秒、0.075 nm/秒、0.05 nm/秒,成膜共計100 nm之厚度。進而,於該有機光電變換層上製作藉由濺鍍法使ITO成膜為膜厚50 nm而成之分光特性評價用樣品。又,於有機光電變換層上製作藉由蒸鍍法使AlSiCu成膜為膜厚100 nm,並將其作為上部電極之具有1 mm×1 mm之光電變換區域之光電變換元件。進而,作為比較例,使用與樣品6相同之方法,製作由SubPcOC6 F5 及BQD使有機光電變換層成膜之樣品7、由C60及BQD使有機光電變換層成膜之樣品8及由C60及SubPcOC6 F5 使有機光電變換層成膜之樣品9,並以如下之方式評價其分光特性、光電變換效率及響應性。 (分光特性之評價方法) 分光特性之評價係使用紫外可見分光光度計進行。測定每一波長之透過率及反射率,求出有機光電變換層所吸收之光吸收率(%),以該光吸收率與有機光電變換層之膜厚為參數,並根據朗泊-比爾定律算出有機光電變換層之每一波長之線吸收係數α(cm-1 )。根據該每一波長之線吸收係數α(cm-1 )製作表示分光形狀之分光特性圖,求出可見光區域可見之吸收帶之相對強度成為峰值之1/3之2點之波長,並計算該2點間之間距。作為分光形狀是否合格之標準,將2點間之間距為115 nm以下之情形判定為窄(Narrow),將大於其之情形判定為寬(Broad)。 (外部量子效率之評價方法) 外部量子效率之評價係使用半導體參數分析器進行。具體而言,根據將經由濾光器自光源照射至光電變換元件之光之光量設為1.62 μW/cm2 ,將施加於電極間之偏壓電壓設為-1 V之情形時之明電流值及暗電流值,算出外部量子效率。 (響應性之評價方法) 響應性之評價係使用半導體參數分析器並基於光照射時所觀察之明電流值自停止光照射後下降之速度進行。具體而言,將經由濾光器自光源照射至光電變換元件之光之光量設為1.62 μW/cm2 ,將施加於電極間之偏壓電壓設為-1 V。於該狀態下觀察恆定電流後,停止光照射,觀察電流不斷衰減之情況。繼而,自所獲得之電流-時間曲線去除暗電流值。使用藉此而獲得之電流-時間曲線,將自停止光照射後之電流值於恆定狀態下所觀察之電流值衰減至3%所需之時間作為響應性之指標。 進而,作為實驗例3-2~3-12,以與上述實驗例3-1相同之方式製作具有其他材料及構成之成為實施例及比較例之樣品10~39、樣品44~55,並分別評價該等之分光特性、光電變換效率及響應性。表4~6彙總樣品6~39、樣品44~55之有機光電變換層之構成及分光形狀(分光特性)、光電變換效率及響應性。再者,樣品36係由包含上述第4有機半導體材料在內之4種有機半導體材料構成之光電變換層之例。此處,第4有機半導體材料係自第1有機半導體材料中進而選擇1種。又,表4~6之比較例中所記載之數值係將各材料構成之實施例之值設為1.0之情形之相對值。 [表4]
   有機光電變換層 分光形狀 EQE 響應性 對於實施例尤其差之特性
第1種 第2種 第3種
實驗例3-1 樣品6 式(1-1) 式(6-3) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品7 式(6_ 3) 式(3-2) 0.45 3.0 響應速度
50% 50%
樣品8 式(1-1) 式(3_ 2) 0.62 1.0 分光形狀
75% 25%
樣品9 式(1-1) 式(6-3) 0.37 2.0 EQE
25% 75%
實驗例3-2 樣品10 式(1-1) 式(6-1) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品11 式(6-1) 式(3-2) 0.37 4.0 響應速度
50% 50%
樣品12 式(1-1) 式(3-2) 0.70 1.0 分光形狀
75% 25%
樣品13 式(1-1) 式(6-1) 0.61 10.0 EQE
25% 75%
實驗例3-3 樣品14 式(1-1) 式(6-4) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品15 式(6-4) 式(3-2) 0.84 2.0 響應速度
50% 50%
樣品16 式(1-1) 式(3-2) 0.64 2.5 分光形狀
75% 25%
樣品17 式(1-1) 式(6-4) 0.00 無法檢測 EQE
25% 75%
實驗例3-4 樣品18 式(1-1) 式(6-2) 式(3_ 2) 1.00 1.0
25% 37.5% 37.5%
樣品19 式(6-2) 式(3_ 2) 0.92 2.0 響應速度
50% 50%
樣品20 式(1-1) 式(3-2) 0.64 3.0 分光形狀
75% 25%
樣品21 式(1-1) 式(6-2) - 0.00 無法檢測 EQE
25% 75%
[表5]
   有機光電變換層 分光形狀 EQE 響應性 對於實施例尤其差之特性
第1種 第2種 第3種
實驗例3-5 樣品22 式(1-1) 式(6-2) 式(3-1) 1.00 1.0 -
25% 37.5% 37.5%
樣品23 - 式(6-2) 式(3-1) 0.85 4.0 響應速度
- 50% 50%
樣品24 式(1-1) - 式(3-1) 0.87 5.0 分光形狀
25% - 75%
樣品25 式(1_ 1) 式(6-2) - 0.00 無法檢測 EQE
25% 75% -
實驗例3-6 樣品26 式(1_ 1) 式(6-2) 式(4-2) 1.00 1.0 -
25% 37.5% 37.5%
樣品27 - 式(6-2) 式(4-2) 0.73 10.0 響應速度
- 50% 50%
樣品28 式(1-1) 式(6-2) - 0.00 無法檢測 EQE
25% 75% -
實驗例3-7 樣品29 式(1-1) 式(6-2) 式(5-1) 1.00 1.0
25% 37.5% 37.5%
樣品30 - 式(6-2) 式(5-1) 0.37 10.0 響應速度
- 50% 50%
樣品31 式(1_ 1) 式(6-2) - 0.00 無法檢測 EQE
25% 75% -
實驗例3-8 樣品32 式(2-1) 式(6-3) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品33 - 式(6-3) 式(3-2) 0.40 5.0 響應速度
- 50% 50%
樣品34 式(2-1) - 式(3-2) 0.65 4.0 分光形狀
25% - 75%
樣品35 式(2-1) 式(6-3) - 0.37 8.0 EQE
25% 75% -
實驗例3-9 樣品36 式(1-1)+式(2-1) 式(6-3) 式(3-2) 1.00 1.0 -
25% 37.5% 37.5%
樣品37 - 式(6-3) 式(3-2) 0.43 6.0 響應速度
- 50% 50%
樣品38 式(1-1)+式(2-1) - 式(3-2) 0.62 4.0 分光形狀
25% - 75%
樣品39 式(1-1)+式(2-1) 式(6-3) - 0.33 6.0 EQE
25% 75% -
[表6]
   有機光電變換層 分光形狀 EQE 響應性 對於實施例尤其差之特性
第1種 第2種 第3種
實驗例3-10 樣品44 式(1-1) 式(6-2) 式(3-3) 1.00 1.0 -
25% 37.5% 37.5%
樣品45 - 式(6-2) 式(3-3) 0.64 10.0 響應速度
- 50% 50%
樣品46 式(1-1) - 式(3-3) 0.43 20.0 分光形狀
25% - 75%
樣品47 式(1-1) 式(6-2) - 0.00 無法檢測 外部量子效率
25% 75% -
實驗例3-11 樣品48 式(1-1) 式(6-5) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品49 - 式(6-5) 式(3-2) 0.84 1.8 響應速度
- 50% 50%
樣品50 式(1-1) - 式(3-2) 0.67 2.5 分光形狀
25% - 75%
樣品51 式(1-1) 式(6-5) - 0.00 無法檢測 外部量子效率
25% 75% -
實驗例3-12 樣品52 式(1-1) 式(6-5) - 0.00 無法檢測 外部量子效率
25% 75% -
樣品53 式(1-1) 式(6-2) 式(8) 1.00 1
25% 37.5% 37.5%
樣品54 式(1-1) - 式(8) 1.60 3 分光形狀
25% - 75%
樣品55 式(1-1) 式(6-2) - 0.00 無法檢測 外部量子效率
25% 75% -
自表4~6可知,與具有上述實施形態之光電變換元件之構成之樣品(實施例,例如樣品6)相比,包含樣品6所使用之3種有機半導體材料中之任2種有機半導體材料之樣品(比較例,例如樣品7~9)之分光形狀、響應速度或EQ中之任一特性尤其差。即,可知藉由使用3種有機半導體材料構成有機光電變換層,可實現優異之分光形狀、較高之響應速度及較高之EQE。 (實驗4:關於組成比及有機半導體材料之組合) (實驗例4-1~實驗例4-3) 於實驗例4-1中,製作使第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之組成比變化之樣品61、40、41,並評價分光特性、光電變換效率及響應性。於實驗例4-2中,製作具有使用於形成為單層膜之狀態下可見光區域之極大吸收波長之線吸收係數低於第1有機半導體材料之單層膜及下述第3有機半導體材料之單層膜的材料(式(4-2))作為第2有機半導體材料之有機光電變換層之光電變換元件(樣品42),以樣品6為基準評價其分光特性、光電變換效率及響應性。於實驗例4-3中,製作具有使用具有較第2有機半導體材料低之HOMO能階之材料(式(7))作為第3有機半導體材料之有機光電變換層之光電變換元件(樣品43),以樣品6為基準評價其分光特性、光電變換效率及響應性。將各實驗例之各樣品之組成及評價彙總於表7。 [表7]
   有機光電變換層 分光形狀 EQE 響應性 對於實施例尤其差之特性
第1種 第2種 第3種
實驗例4-1 樣品61 式(1-1) 式(6-3) 式(3-2) 1.00 1.0
20% 40% 40%
樣品40 式(1-1) 式(6-3) 式(3-2) 1.00 0.9
35% 32.5% 32.5%
樣品41 式(1_ 1) 式(6-3) 式(3-2) 1.00 0.9 分光形狀
40% 30% 30%
實驗例4-2 樣品6 式(1-1) 式(6-3) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品42 式(1-1) 式(4-2) 式(5-1) 0.10 2.0 分光形狀、EQE
25% 37.5% 37.5%
實驗例4-3 樣品6 式(1-1) 式(6-3) 式(3-2) 1.00 1.0
25% 37.5% 37.5%
樣品43 式(1-1) 式(6-3) 式(7) 0.60 10.0 響應速度
25% 37.5% 37.5%
自實驗例4-1之結果可知,為了保持明確之分光形狀,較理想為第1有機半導體材料之組成比未達40%。自實驗例4-2之結果可知,為了獲得明確之分光形狀及較高之EQE,較理想為第2有機半導體材料於單層膜狀態下可見光區域之極大光吸收波長之線吸收係數高於第1有機半導體材料及第3有機半導體材料之各單層膜。自實驗例4-3之結果可知,為了獲得較高之響應速度,較理想為第3有機半導體材料選擇具有第2有機半導體材料以上之HOMO能階之材料。 (實驗5:關於第3有機半導體材料) 於實驗例5中,使用C60(式(1-1))作為第1有機半導體材料(第1種),使用SubPcOCl(式(6-2))作為第2有機半導體材料(第2種),使用QD(式(3-1))作為第3有機半導體材料(第3種),並使用與上述實驗3相同之方法製作具有1 mm×1 mm之光電變換區域之光電變換元件(樣品56)。又,作為樣品57、58,製作除分別使用αNPD(式(4-2)、樣品57)及紅螢烯(式(8)、樣品58)代替QD以外,亦具有與樣品56相同之構成之光電變換元件。關於該等樣品56~58,評價其分光特性、光電變換光率及響應性,並將其結果彙總於表8。 [表8]
   有機光電變換層 分光形狀 EQE 響應性
第1種 第2種 第3種
樣品56 式(1-1) 式(6-2) 式(3-1) 1.00 1.0
25% 37.5% 37.5%
樣品57 式(1-1) 式(6-2) 式(9) 0.30 5.0
25% 37.5% 37.5%
樣品58 式(1-1) 式(6_ 2) 式(8) 0.13 30.0
25% 37.5% 37.5%
於本實驗中,使用QD作為第3有機半導體材料之樣品56之響應性及EQE均顯示極良好之值。其次,使用αNPD作為第3有機半導體材料之樣品57之響應性及EQE均顯示良好之值。使用紅螢烯之樣品58之響應性及EQE之值低於樣品56、57。關於響應性,推測其原因在於包含雜原子之有機半導體材料(此處為QD及αNPD)具有易於保持較包含碳及氫之有機半導體材料(此處為紅螢烯)高之電荷(尤其是電洞)之移動率之性質。關於EQE,推測其原因在於與藉由包含碳及氫之有機半導體材料與其他有機半導體材料形成之界面相比,由光吸收而產生之激子於藉由包含雜原子之有機半導體材料與其他有機半導體材料形成之界面處被高效率地分離為電荷。就該方面而言,認為作為第3有機半導體材料,較佳為使用分子內包含雜原子之有機半導體材料。進而,認為更佳為分子內包含硫族元素之有機半導體材料。又,認為更佳為環內包含雜原子之有機半導體材料。 以上列舉實施形態、變化例及實施例進行說明,但本發明內容並不限定於上述實施形態等,能夠進行各種變形。例如,於上述實施形態中,將光電變換元件(固體攝像裝置)設為使檢測綠光之有機光電變換部11G、分別檢測藍光、紅光之無機光電變換部11B、11R積層而成之構成,但本發明內容並不限定於此種構造。即,可於有機光電變換部檢測紅光或藍光,或亦可於無機光電變換部檢測綠光。 又,該等有機光電變換部及無機光電變換部之數量或其比率亦無限定,可設置2個以上之有機光電變換部,或亦可僅於有機光電變換部獲得複數種顏色之顏色信號。進而,不僅限於使有機光電變換部及無機光電變換部縱向積層之構造,亦可使其沿基板面並列排設。 進而又,於上述實施形態中,例示背面照射型固體攝像裝置之構成,本發明內容亦能夠應用於表面照射型固體攝像裝置。又,本發明之固體攝像裝置(光電變換元件)無需具備所有之上述實施形態中所說明之各構成元件,又,反之亦可具備其他層。 再者,本說明書中所記載之效果僅為例示,並非限定,又,亦可具有其他效果。 再者,本發明亦可為以下之構成。 [1]一種光電變換元件,其具備: 對向配置之第1電極及第2電極、以及 設置於上述第1電極與上述第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層,且 上述第1有機半導體材料係富勒烯或富勒烯衍生物, 上述第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之上述第1有機半導體材料及上述第3有機半導體材料之各單層膜, 上述第3有機半導體材料具有上述第2有機半導體材料之HOMO能階以上之值。 [2]如上述[1]之光電變換元件,其中上述第3有機半導體材料之單層膜之電洞移動率高於上述第2有機半導體材料之單層膜之電洞移動率。 [3]如上述[1]或[2]之光電變換元件,其中於上述光電變換層中由上述第2有機半導體材料之光吸收而產生之激子於選自上述第1有機半導體材料、上述第2有機半導體材料及上述第3有機半導體材料中之兩種有機半導體材料之界面處進行激子分離。 [4]如上述[1]至[3]中任一項之光電變換元件,其中上述光電變換層於450 nm以上且650 nm以下之範圍具有極大吸收波長。 [5]如上述[1]至[4]中任一項之光電變換元件,其中上述第3有機半導體材料於分子內含有碳(C)及氫(H)以外之雜原子。 [6]如上述[1]至[5]中任一項之光電變換元件,其中上述光電變換層於10體積%以上且35體積%以下之範圍包含上述第1有機半導體材料。 [7]如上述[1]至[6]中任一項之光電變換元件,其中上述光電變換層於30體積%以上且80體積%以下之範圍包含上述第2有機半導體材料。 [8]如上述[1]至[7]中任一項之光電變換元件,其中上述光電變換層於10體積%以上且60體積%以下之範圍包含上述第3有機半導體材料。 [9]如上述[1]至[8]中任一項之光電變換元件,其中上述第2有機半導體材料及上述第3有機半導體材料之一者係下述式(1)所表示之喹吖啶酮衍生物, [化1]
Figure 02_image035
(R1、R2各自獨立為氫原子、烷基、芳基、或雜環基;R3、R4各自獨立為烷基鏈、烯基、炔基、芳基、氰基、硝基、矽烷基,2個以上之R3或R4亦可共同形成環;n1、n2係各自獨立之0或1以上整數)。 [10]如上述[1]至[8]中任一項之光電變換元件,其中上述第2有機半導體材料及上述第3有機半導體材料之一者係下述式(2)所表示之三烯丙基胺衍生物或下述式(3)所表示之苯并噻吩并苯并噻吩衍生物, [化2]
Figure 02_image037
(R20~R23各自獨立為式(2)'所表示之取代基;R24~R28各自獨立為氫原子、鹵素原子、芳基、芳香族烴環基或具有烷基鏈或取代基之芳香族烴環基、芳香族雜環基或具有烷基鏈或取代基之芳香族雜環基;鄰接之R24~R28亦可為相互鍵結形成環之飽和或不飽和之二價基) [化3]
Figure 02_image039
(R5、R6各自獨立為氫原子或式(3)'所表示之取代基;R7係芳香環基或具有取代基之芳香環基)。 [11]如上述[1]至[8]中任一項之光電變換元件,其中上述第2有機半導體材料及上述第3有機半導體材料之一者係下述式(4)所表示之亞酞菁衍生物, [化4]
Figure 02_image041
(R8~R19各自獨立,選自由氫原子、鹵素原子、直鏈、分支、或環狀烷基、硫代烷基、硫代芳基、芳基磺醯基、烷基磺醯基、胺基、烷基胺基、芳基胺基、羥基、烷氧基、醯胺基、醯氧基、苯基、羧基、羧醯胺基、羧烷氧基、醯基、磺醯基、氰基及硝基所組成之群,且鄰接之任意之R8~R19亦可為縮合脂肪族環或縮合芳香環之一部分;上述縮合脂肪族環或縮合芳香環亦可包含碳以外之1個或複數個原子;M係硼或二價或三價之金屬;X係陰離子性基)。 [12]如上述[1]至[9]或上述[11]中任一項之光電變換元件,其中上述第2有機半導體材料係亞酞菁衍生物,上述第3有機半導體材料係喹吖啶酮衍生物。 [13]如上述[1]至[8]或上述[10]或上述[11]中任一項之光電變換元件,其中上述第2有機半導體材料係亞酞菁衍生物,上述第3有機半導體材料係三烯丙基胺衍生物或苯并噻吩并苯并噻吩衍生物。 [14]如上述[1]至[13]中任一項之光電變換元件,其中上述富勒烯及上述富勒烯衍生物由下述式(5)或式(6)所表示, [化5]
Figure 02_image043
(R各自獨立為氫原子、鹵素原子、直鏈、分支或環狀之烷基、苯基、具有直鏈或經縮環之芳香族化合物之基、具有鹵化物之基、部分氟烷基、全氟烷基、矽烷基烷基、矽烷基烷氧基、芳基矽烷基、芳基硫基、烷基硫基、芳基磺醯基、烷基磺醯基、芳基硫醚基、烷基硫醚基、胺基、烷基胺基、芳基胺基、羥基、烷氧基、醯胺基、醯氧基、羰基、羧基、羧醯胺基、羧烷氧基、醯基、磺醯基、氰基、硝基、具有硫族元素化物之基、膦基、膦酸基或該等之衍生物;n、m係0或1以上之整數)。 [15]如上述[1]至[14]中任一項之光電變換元件,其中上述光電變換層包含第4有機半導體材料,該第4有機半導體材料具有與上述第1有機半導體材料、上述第2有機半導體材料及上述第3有機半導體材料之任一者相同之母骨架,並且具備不同之取代基。 [16]如上述[1]至[15]中任一項之光電變換元件,其中上述可見光區域為450 nm以上且800 nm以下。 [17]一種固體攝像裝置,其各像素包含1個或複數個有機光電變換部,且 上述有機光電變換部具備: 對向配置之第1電極及第2電極、以及 設置於上述第1電極與上述第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層,且 上述第1有機半導體材料係富勒烯或富勒烯衍生物, 上述第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之上述第1有機半導體材料及上述第3有機半導體材料之各單層膜, 上述第3有機半導體材料具有上述第2有機半導體材料之HOMO能階以上之值。 [18]如上述[17]之固體攝像裝置,其中各像素中積層有1個或複數個上述有機光電變換部、及進行與上述有機光電變換部不同之波長區域之光電變換之1個或複數個無機光電變換部。 [19]如上述[18]之固體攝像裝置,其中上述無機光電變換部埋入於半導體基板內而形成,且 上述有機光電變換部形成於上述半導體基板之第1面側。 [20]如上述[19]之固體攝像裝置,其中上述有機光電變換部進行綠光之光電變換,且 於上述半導體基板內積層有進行藍光之光電變換之無機光電變換部、與進行紅光之光電變換之無機光電變換部。 本申請案係以日本專利廳2015年5月29日提出申請之日本專利申請編號2015-110900號及2016年3月31日提出申請之日本專利申請編號2016-072197號為基礎而主張優先權,該申請案之全部內容係作為參照而援用至本申請案中。 作為從業者,可根據設計方面之必要條件或其他因素想到各種修正、組合、次組合、及變更,並理解該等係包含於隨附之申請專利範圍或其均等物之範圍內者。
1:固體攝像裝置 1a:像素部 2:電子機器 10:光電變換元件 11:半導體基板 11B:無機光電變換部 11G:有機光電變換部 11R:無機光電變換部 12:層間絕緣膜 13a:配線層 13b:配線層 14:層間絕緣膜 15a:下部電極 15b:配線層 16:絕緣膜 17:有機光電變換層 18:上部電極 19:保護層 20:接觸金屬層 21:平坦化層 22:晶載透鏡 51:多層配線層 51a:配線 52:層間絕緣膜 53:支持基板 110:矽層 110G:綠色蓄電層 111n:n型光電變換層 111p:p型區域 112n:n型光電變換層(電子累積層) 112p1,112p2:p型區域(電洞累積層) 113:浮動擴散部 113p:p型區域(電洞累積層) 114:浮動擴散部 115n:n型區域 115p:p型區域(電洞累積層) 116:浮動擴散部 120a1:導電性插頭 120a2:導電性插頭 120b1:導電性插頭 120b2:導電性插頭 130:周邊電路部 131:列掃描部 132:系統控制部 133:水平選擇部 134:行掃描部 135:水平信號線 310:光學系統 311:快門裝置 312:信號處理部 313:驅動部 1101:矽基體 1102:氧化矽膜 A:傳輸路徑 B:傳輸路徑 e1:周緣部 e2:周緣部 Eg:電子 Er:電子 H:接觸孔 H1a,H1b:接觸孔 Hg:電洞 L:光 Lb:藍光 Lg:綠光 Lr:紅光 Lread:像素驅動線 Lsig:垂直信號線 P:單位像素 S1:半導體基板之面 S2:半導體基板之面 TG1:閘極電極 TG2:閘極電極 TG3:閘極電極 Tr1:傳輸電晶體 Tr2:傳輸電晶體 Tr3:傳輸電晶體 Vout:輸出電壓
圖1係表示本發明之一實施形態之光電變換元件之概略構成之剖視圖。 圖2係表示有機光電變換層、保護膜(上部電極)及接觸孔之形成位置關係之俯視圖。 圖3A係表示無機光電變換部之一構成例之剖視圖。 圖3B係圖3A所示之無機光電變換部之另一剖視圖。 圖4係表示有機光電變換部之電荷(電子)累積層之構成(下側電子擷取)之剖視圖。 圖5A係用以說明圖1所示之光電變換元件之製造方法之剖視圖。 圖5B係表示繼圖5A之後之步驟之剖視圖。 圖6A係表示繼圖5B之後之步驟之剖視圖。 圖6B係表示繼圖6A之後之步驟之剖視圖。 圖7A係表示繼圖6B之後之步驟之剖視圖。 圖7B係表示繼圖7A之後之步驟之剖視圖。 圖7C係表示繼圖7B之後之步驟之剖視圖。 圖8係說明圖1所示之光電變換元件之作用之要部剖視圖。 圖9係用以說明圖1所示之光電變換元件之作用之模式圖。 圖10係將圖1所示之光電變換元件用作像素之固體攝像裝置之功能方塊圖。 圖11係表示使用圖10所示之固體攝像裝置之電子機器之概略構成之方塊圖。 圖12係表示可見光區域之各波長與線吸收係數之關係之特性圖。
10:光電變換元件
11:半導體基板
11B:無機光電變換部
11G:有機光電變換部
11R:無機光電變換部
12:層間絕緣膜
13a:配線層
13b:配線層
14:層間絕緣膜
15a:下部電極
15b:配線層
16:絕緣膜
17:有機光電變換層
18:上部電極
19:保護層
20:接觸金屬層
21:平坦化層
22:晶載透鏡
51:多層配線層
51a:配線
52:層間絕緣膜
53:支持基板
110:矽層
110G:綠色蓄電層
120a1:導電性插頭
120a2:導電性插頭
120b1:導電性插頭
120b2:導電性插頭
H:接觸孔
S1:半導體基板之面
S2:半導體基板之面
TG1:閘極電極
TG2:閘極電極
TG3:閘極電極

Claims (28)

  1. 一種光電變換元件,其具備:對向配置之第1電極及第2電極、以及設置於上述第1電極與上述第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層,且上述第1有機半導體材料係富勒烯或富勒烯衍生物,單層膜狀態下之上述第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之上述第1有機半導體材料及上述第3有機半導體材料之各單層膜,上述第3有機半導體材料之單層膜之電洞移動率高於上述第2有機半導體材料之單層膜之電洞移動率。
  2. 如請求項1之光電變換元件,其中於上述光電變換層中由上述第2有機半導體材料之光吸收而產生之激子於選自上述第1有機半導體材料、上述第2有機半導體材料及上述第3有機半導體材料中之兩種有機半導體材料之界面處進行激子分離。
  3. 如請求項1之光電變換元件,其中上述光電變換層於450nm以上且650nm以下之範圍具有極大吸收波長。
  4. 如請求項1之光電變換元件,其中上述第3有機半導體材料於分子內 含有碳(C)及氫(H)以外之雜原子。
  5. 如請求項1之光電變換元件,其中上述光電變換層於10體積%以上且35體積%以下之範圍包含上述第1有機半導體材料。
  6. 如請求項1之光電變換元件,其中上述光電變換層於30體積%以上且80體積%以下之範圍包含上述第2有機半導體材料。
  7. 如請求項1之光電變換元件,其中上述光電變換層於10體積%以上且60體積%以下之範圍包含上述第3有機半導體材料。
  8. 如請求項1之光電變換元件,其中上述第2有機半導體材料及上述第3有機半導體材料之一者係下述式(1)所表示之喹吖啶酮衍生物,
    Figure 109126300-A0305-02-0059-1
    R1、R2各自獨立為氫原子、烷基、芳基、或雜環基;R3、R4各自獨立為烷基鏈、烯基、炔基、芳基、氰基、硝基、矽烷基,2個以上之R3或R4亦可共同形成環;n1、n2係各自獨立之0或1以上整數。
  9. 如請求項1之光電變換元件,其中上述第2有機半導體材料及上述第3有機半導體材料之一者係下述式(2)所表示之三烯丙基胺衍生物或下述式 (3)所表示之苯并噻吩并苯并噻吩衍生物,
    Figure 109126300-A0305-02-0060-2
    R20~R23各自獨立為式(2)'所表示之取代基,R24~R28各自獨立為氫原子、鹵素原子、芳基、芳香族烴環基或具有烷基鏈或取代基之芳香族烴環基、芳香族雜環基或具有烷基鏈或取代基之芳香族雜環基;鄰接之R24~R28亦可為相互鍵結形成環之飽和或不飽和之二價基;
    Figure 109126300-A0305-02-0060-3
    R5、R6各自獨立為氫原子或式(3)'所表示之取代基;R7係芳香環基或具有取代基之芳香環基。
  10. 如請求項1之光電變換元件,其中上述第2有機半導體材料及上述第3有機半導體材料之一者係下述式(4)所表示之亞酞菁衍生物,[化4]
    Figure 109126300-A0305-02-0061-4
    R8~R19各自獨立,選自由氫原子、鹵素原子、直鏈、分支、或環狀烷基、硫代烷基、硫代芳基、芳基磺醯基、烷基磺醯基、胺基、烷基胺基、芳基胺基、羥基、烷氧基、醯胺基、醯氧基、苯基、羧基、羧醯胺基、羧烷氧基、醯基、磺醯基、氰基及硝基所組成之群,且鄰接之任意之R8~R19亦可為縮合脂肪族環或縮合芳香環之一部分;上述縮合脂肪族環或縮合芳香環亦可包含碳以外之1個或複數個原子;M係硼或二價或三價之金屬;X係陰離子性基。
  11. 如請求項1之光電變換元件,其中上述第2有機半導體材料係亞酞菁衍生物,上述第3有機半導體材料係喹吖啶酮衍生物。
  12. 如請求項1之光電變換元件,其中上述第2有機半導體材料係亞酞菁衍生物,且上述第3有機半導體材料係三烯丙基胺衍生物或苯并噻吩并苯并噻吩衍生物。
  13. 如請求項1之光電變換元件,其中上述富勒烯及上述富勒烯衍生物係由下述式(5)或式(6)所表示,[化5]
    Figure 109126300-A0305-02-0062-5
    R各自獨立為氫原子、鹵素原子、直鏈、分支或環狀之烷基、苯基、具有直鏈或經縮環之芳香族化合物之基、具有鹵化物之基、部分氟烷基、全氟烷基、矽烷基烷基、矽烷基烷氧基、芳基矽烷基、芳基硫基、烷基硫基、芳基磺醯基、烷基磺醯基、芳基硫醚基、烷基硫醚基、胺基、烷基胺基、芳基胺基、羥基、烷氧基、醯胺基、醯氧基、羰基、羧基、羧醯胺基、羧烷氧基、醯基、磺醯基、氰基、硝基、具有硫族元素化物之基、膦基、膦酸基或該等之衍生物;n、m係0或1以上之整數。
  14. 如請求項1之光電變換元件,其中上述光電變換層包含第4有機半導體材料,該第4有機半導體材料具有與上述第1有機半導體材料、上述第2有機半導體材料及上述第3有機半導體材料之任一者相同之母骨架,並且具備不同之取代基。
  15. 如請求項1之光電變換元件,其中上述可見光區域為450nm以上且800nm以下。
  16. 一種固體攝像裝置,其中各像素包含1個或複數個有機光電變換部,且上述有機光電變換部具備: 對向配置之第1電極及第2電極、以及設置於上述第1電極與上述第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層,上述第1有機半導體材料係富勒烯或富勒烯衍生物,單層膜狀態下之上述第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之上述第1有機半導體材料及上述第3有機半導體材料之各單層膜,上述第3有機半導體材料之單層膜之電洞移動率高於上述第2有機半導體材料之單層膜之電洞移動率。
  17. 如請求項16之固體攝像裝置,其中各像素中積層有1個或複數個上述有機光電變換部、及進行與上述有機光電變換部不同之波長區域之光電變換之1個或複數個無機光電變換部。
  18. 如請求項17之固體攝像裝置,其中上述無機光電變換部埋入於半導體基板內而形成,上述有機光電變換部形成於上述半導體基板之第1面側。
  19. 如請求項18之固體攝像裝置,其中上述有機光電變換部進行綠光之光電變換,且於上述半導體基板內積層有進行藍光之光電變換之無機光電變換部、與進行紅光之光電變換之無機光電變換部。
  20. 一種電子機器,其具備:將入射光導向固體攝像裝置之光學透鏡;對自上述固體攝像裝置輸出之信號進行處理之信號處理部;及上述固體攝像裝置;上述固體攝像裝置中之各像素包含1個或複數個有機光電變換部,且上述有機光電變換部具備:對向配置之第1電極及第2電極、以及設置於上述第1電極與上述第2電極之間並且包含具有互不相同之母骨架之第1有機半導體材料、第2有機半導體材料及第3有機半導體材料之光電變換層,上述第1有機半導體材料係富勒烯或富勒烯衍生物,單層膜狀態下之上述第2有機半導體材料之可見光區域之極大光吸收波長之線吸收係數高於單層膜狀態下之上述第1有機半導體材料及上述第3有機半導體材料之各單層膜,上述第3有機半導體材料之單層膜之電洞移動率高於上述第2有機半導體材料之單層膜之電洞移動率。
  21. 如請求項1至15中任一項之光電變換元件,其中上述第1有機半導體材料係富勒烯。
  22. 如請求項16至19中任一項之固體攝像裝置,其中上述第1有機半導體 材料係富勒烯。
  23. 如請求項21之光電變換元件,其中上述第1有機半導體材料係C60富勒烯。
  24. 如請求項22之固體攝像裝置,其中上述第1有機半導體材料係C60富勒烯。
  25. 如請求項21之光電變換元件,其中上述第1有機半導體材料係C70富勒烯。
  26. 如請求項22之固體攝像裝置,其中上述第1有機半導體材料係C70富勒烯。
  27. 如請求項21之光電變換元件,其中上述第1有機半導體材料包含C60富勒烯及C70富勒烯。
  28. 如請求項22之固體攝像裝置,其中上述第1有機半導體材料包含C60富勒烯及C70富勒烯。
TW109126300A 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置 TWI774035B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-110900 2015-05-29
JP2015110900 2015-05-29
JP2016-072197 2016-03-31
JP2016072197 2016-03-31

Publications (2)

Publication Number Publication Date
TW202044631A TW202044631A (zh) 2020-12-01
TWI774035B true TWI774035B (zh) 2022-08-11

Family

ID=57441167

Family Applications (4)

Application Number Title Priority Date Filing Date
TW112127280A TW202345384A (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置
TW109126300A TWI774035B (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置
TW105115848A TWI773644B (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置
TW110138321A TWI813040B (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW112127280A TW202345384A (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW105115848A TWI773644B (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置
TW110138321A TWI813040B (zh) 2015-05-29 2016-05-20 光電變換元件及固體攝像裝置

Country Status (7)

Country Link
US (4) US10374015B2 (zh)
EP (1) EP3306689A4 (zh)
JP (3) JP7014601B2 (zh)
KR (3) KR20230109778A (zh)
CN (6) CN112002807B (zh)
TW (4) TW202345384A (zh)
WO (1) WO2016194630A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147890B2 (en) * 2014-05-23 2018-12-04 Sony Corporation Photoelectric conversion element, solid-state imaging device, organic light-absorbing material, and organic light-absorbing material intermediate
KR20230109778A (ko) * 2015-05-29 2023-07-20 소니 세미컨덕터 솔루션즈 가부시키가이샤 광전변환 소자 및 고체 촬상 장치
KR102557864B1 (ko) 2016-04-06 2023-07-19 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
KR102605375B1 (ko) 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
JP2018014396A (ja) * 2016-07-20 2018-01-25 ソニーセミコンダクタソリューションズ株式会社 光電変換素子および固体撮像装置
KR102589215B1 (ko) * 2016-08-29 2023-10-12 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
JP7013805B2 (ja) * 2016-11-30 2022-02-01 ソニーグループ株式会社 光電変換素子および固体撮像装置
KR20240097973A (ko) * 2016-11-30 2024-06-27 소니그룹주식회사 광전변환소자 및 고체촬상장치
EP3582275B1 (en) * 2017-02-07 2023-09-06 Canon Kabushiki Kaisha Photoelectric conversion element, optical area sensor using same, imaging element, and imaging device
JP7086573B2 (ja) * 2017-11-17 2022-06-20 キヤノン株式会社 光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置
WO2018147202A1 (ja) * 2017-02-07 2018-08-16 キヤノン株式会社 光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置
JP7039285B2 (ja) * 2017-02-07 2022-03-22 キヤノン株式会社 光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
JP7006798B2 (ja) 2017-10-23 2022-01-24 ソニーグループ株式会社 有機フォトダイオードにおける有機光電変換層のためのp活性材料
KR102694607B1 (ko) 2017-11-20 2024-08-14 소니그룹주식회사 광전변환 소자 및 고체 촬상 장치
CN111868951A (zh) 2018-03-28 2020-10-30 富士胶片株式会社 光电转换元件、成像元件、光传感器、化合物
KR102718277B1 (ko) * 2018-04-13 2024-10-15 삼성전자주식회사 이미지 센서 및 전자 장치
JP7011056B2 (ja) 2018-05-31 2022-01-26 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
US11856802B2 (en) 2018-05-31 2023-12-26 Sony Corporation Photoelectric conversion element and method of manufacturing photoelectric conversion element
EP4306526A3 (en) 2018-07-13 2024-03-20 FUJIFILM Corporation Compound for photoelectric conversion element
TWI821341B (zh) * 2018-07-26 2023-11-11 日商索尼股份有限公司 光電轉換元件
TWI728504B (zh) * 2018-11-13 2021-05-21 日商索尼半導體解決方案公司 固體攝像元件、固體攝像裝置及電子機器
EP3660935A1 (en) * 2018-11-14 2020-06-03 Samsung Electronics Co., Ltd. Photoelectric conversion devices and organic sensors and electronic devices
US11557741B2 (en) 2018-11-14 2023-01-17 Samsung Electronics Co., Ltd. Photoelectric conversion devices and organic sensors and electronic devices
CN110677605B (zh) * 2019-09-12 2022-04-12 Oppo广东移动通信有限公司 一种叠层cis、图像处理方法及存储介质和终端设备
CN110691207A (zh) * 2019-09-18 2020-01-14 Oppo广东移动通信有限公司 一种图像传感器及图像处理方法、存储介质
CN110691208B (zh) * 2019-09-24 2022-05-27 Oppo广东移动通信有限公司 图像传感器、图像处理方法和装置、及存储介质
CN114902438A (zh) 2020-01-10 2022-08-12 富士胶片株式会社 光电转换元件、摄像元件、光传感器
EP4145548B1 (en) 2020-04-30 2024-10-09 FUJIFILM Corporation Photoelectric conversion element, imaging element, optical sensor, and compound
JP7366841B2 (ja) * 2020-05-29 2023-10-23 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
CN116194444A (zh) 2020-07-17 2023-05-30 富士胶片株式会社 光电转换元件、成像元件、光传感器及化合物
DE112021004003T5 (de) 2020-07-31 2023-06-01 Sony Group Corporation Fotoelektrisches umwandlungselement und bildgebungsvorrichtung
CN112322115A (zh) * 2020-11-19 2021-02-05 湖南哲龙科技有限公司 一种含富勒烯的光电半导体涂料配方
US11843022B2 (en) * 2020-12-03 2023-12-12 Sharp Kabushiki Kaisha X-ray imaging panel and method of manufacturing X-ray imaging panel
WO2022124273A1 (ja) * 2020-12-09 2022-06-16 昭和電工株式会社 フラーレン誘導体およびその製造方法
WO2022138833A1 (ja) 2020-12-24 2022-06-30 富士フイルム株式会社 光電変換素子、撮像素子、光センサ、化合物
JPWO2022168856A1 (zh) 2021-02-05 2022-08-11
CN113066810B (zh) * 2021-03-25 2022-09-06 中国科学院半导体研究所 像素器件
US11728362B2 (en) * 2021-04-22 2023-08-15 Taiwan Semiconductor Manufacturing Company Ltd Image sensor pixel and metal shielding of charge storage device of image sensor pixel formed by one step process
US11916094B2 (en) * 2021-08-02 2024-02-27 Sharp Display Technology Corporation Photoelectric conversion panel and method for manufacturing photoelectric conversion panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067642A (ja) * 2008-09-08 2010-03-25 Kyoto Univ 光電変換素子、その製造方法、及び太陽電池
TW201105633A (en) * 2009-06-03 2011-02-16 Fujifilm Corp Photoelectric convering device and fabricating method thereof, photosensor and image sensing device and driving method thereof
TW201113265A (en) * 2009-09-29 2011-04-16 Fujifilm Corp Photoelectric conversion device, photoelectric conversion device material, photosensor and imaging device
TW201229087A (en) * 2010-11-26 2012-07-16 Sumitomo Chemical Co Photoelectric conversion element
TW201421718A (zh) * 2012-11-09 2014-06-01 Sony Corp 光電變換元件、固體攝像裝置及電子機器
TW201424023A (zh) * 2012-11-06 2014-06-16 Sony Corp 光電變換元件、固體攝像裝置及電子機器

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308146A (ja) * 1992-05-01 1993-11-19 Ricoh Co Ltd 有機光起電力素子
JPH06177410A (ja) * 1992-12-07 1994-06-24 Ricoh Co Ltd 光起電力素子およびその製造方法
JP2003234460A (ja) 2002-02-12 2003-08-22 Nippon Hoso Kyokai <Nhk> 積層型光導電膜および固体撮像装置
US7511217B1 (en) 2003-04-19 2009-03-31 Nanosolar, Inc. Inter facial architecture for nanostructured optoelectronic devices
JP2005303266A (ja) 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd 撮像素子、その電場印加方法および印加した素子
EP1912267A4 (en) * 2005-08-02 2011-07-27 Adeka Corp PHOTOELECTRIC CONVERSION ELEMENT
JP2007180190A (ja) 2005-12-27 2007-07-12 Toyota Central Res & Dev Lab Inc 有機太陽電池
US20070272918A1 (en) 2006-05-25 2007-11-29 Barry Rand Organic photosensitive devices using subphthalocyanine compounds
JP5480510B2 (ja) * 2008-03-31 2014-04-23 住友化学株式会社 有機半導体組成物、並びに有機薄膜及びこれを備える有機薄膜素子
JP2009252768A (ja) 2008-04-01 2009-10-29 Fuji Electric Holdings Co Ltd 有機太陽電池、およびその製造方法
JP5460118B2 (ja) * 2008-05-14 2014-04-02 富士フイルム株式会社 光電変換素子、及び撮像素子
KR101622303B1 (ko) * 2008-07-09 2016-05-19 재단법인서울대학교산학협력재단 2,7―비스―(비닐)[1]벤조티에노[3,2―b]벤조티오펜 뼈대에 기초한 고성능 유기 반도체 화합물 및이를 이용한 유기 반도체 박막 및 유기 박막 트랜지스터
JP5580976B2 (ja) 2008-10-30 2014-08-27 出光興産株式会社 有機薄膜太陽電池
KR101022651B1 (ko) * 2009-02-11 2011-03-22 삼성모바일디스플레이주식회사 광센서, 광센서를 포함하는 광센서 장치, 및 이를 포함하는디스플레이 장치
JP5476580B2 (ja) * 2009-03-27 2014-04-23 国立大学法人 千葉大学 縦型有機半導体デバイス
US9536633B2 (en) * 2009-04-10 2017-01-03 Sumitomo Chemical Company, Limited Metallic composite and composition thereof
WO2011052341A1 (ja) * 2009-11-02 2011-05-05 コニカミノルタホールディングス株式会社 有機光電変換素子、太陽電池及び光センサアレイ
JP5270642B2 (ja) * 2010-03-24 2013-08-21 富士フイルム株式会社 光電変換素子及び撮像素子
JP5581116B2 (ja) 2010-05-31 2014-08-27 富士フイルム株式会社 光電変換素子、撮像素子及び光電変換素子の駆動方法
CN104934535B (zh) * 2010-10-04 2017-09-15 株式会社半导体能源研究所 复合材料、发光元件、发光装置、电子装置以及照明装置
CN103380506A (zh) * 2011-01-28 2013-10-30 三菱化学株式会社 光电转换元件、太阳能电池和太阳能电池模块
US20130333759A1 (en) 2011-03-03 2013-12-19 Japan Science And Technology Agency Thin film solar cell
JP5321630B2 (ja) 2011-03-30 2013-10-23 Tdk株式会社 積層コンデンサ
JP5704563B2 (ja) * 2011-03-30 2015-04-22 独立行政法人産業技術総合研究所 光電変換素子及び太陽電池
AU2012333149A1 (en) * 2011-08-02 2014-02-13 The Regents Of The University Of Michigan Compounds capable of undergoing symmetry breaking intramolecular charge transfer in a polarizing medium and organic photovoltaic devices comprising the same
JP5780402B2 (ja) * 2011-12-27 2015-09-16 ソニー株式会社 半導体素子、半導体素子の製造方法、固体撮像装置および電子機器
WO2013102985A1 (ja) * 2012-01-06 2013-07-11 出光興産株式会社 有機光電変換素子及び有機薄膜太陽電池モジュール
US9276043B2 (en) * 2012-01-25 2016-03-01 Sony Corporation Photoelectric conversion device, method of manufacturing photoelectric conversion device, solid-state imaging unit, and electronic apparatus
US9431621B2 (en) * 2012-03-13 2016-08-30 The Regents Of The University Of Michigan Metal oxide charge transport material doped with organic molecules
US9508945B2 (en) * 2012-06-27 2016-11-29 Regents Of The University Of Minnesota Spectrally tunable broadband organic photodetectors
TWI709265B (zh) * 2012-10-05 2020-11-01 美國南加州大學 在有機光伏打裝置中之受體與施體的能量敏感化作用
KR102195813B1 (ko) 2013-05-27 2020-12-29 삼성전자주식회사 유기 광전 소자 및 이미지 센서
JP2015015462A (ja) * 2013-06-07 2015-01-22 株式会社Adeka 光電変換素子及びこれを用いてなる有機薄膜型太陽電池
JP6010514B2 (ja) * 2013-09-27 2016-10-19 富士フイルム株式会社 光電変換素子および撮像素子
WO2015045806A1 (ja) * 2013-09-30 2015-04-02 富士フイルム株式会社 光電変換素子および撮像素子
WO2015063692A1 (en) 2013-10-31 2015-05-07 Sabic Global Technologies B.V. Process for making axially fluorinated-phthalocyanines and their use in photovoltaic applications
KR20230109778A (ko) * 2015-05-29 2023-07-20 소니 세미컨덕터 솔루션즈 가부시키가이샤 광전변환 소자 및 고체 촬상 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067642A (ja) * 2008-09-08 2010-03-25 Kyoto Univ 光電変換素子、その製造方法、及び太陽電池
TW201105633A (en) * 2009-06-03 2011-02-16 Fujifilm Corp Photoelectric convering device and fabricating method thereof, photosensor and image sensing device and driving method thereof
TW201446738A (zh) * 2009-06-03 2014-12-16 Fujifilm Corp 化合物
TW201113265A (en) * 2009-09-29 2011-04-16 Fujifilm Corp Photoelectric conversion device, photoelectric conversion device material, photosensor and imaging device
TW201229087A (en) * 2010-11-26 2012-07-16 Sumitomo Chemical Co Photoelectric conversion element
TW201424023A (zh) * 2012-11-06 2014-06-16 Sony Corp 光電變換元件、固體攝像裝置及電子機器
TW201421718A (zh) * 2012-11-09 2014-06-01 Sony Corp 光電變換元件、固體攝像裝置及電子機器

Also Published As

Publication number Publication date
WO2016194630A1 (ja) 2016-12-08
US20230309331A1 (en) 2023-09-28
JPWO2016194630A1 (ja) 2018-03-22
US20210320149A1 (en) 2021-10-14
TW202044631A (zh) 2020-12-01
CN112002806A (zh) 2020-11-27
TW202205657A (zh) 2022-02-01
JP2021073689A (ja) 2021-05-13
JP2022173270A (ja) 2022-11-18
JP7014601B2 (ja) 2022-02-01
CN112002810A (zh) 2020-11-27
KR20240141847A (ko) 2024-09-27
JP7543355B2 (ja) 2024-09-02
CN112002807B (zh) 2024-06-18
EP3306689A1 (en) 2018-04-11
KR102564073B1 (ko) 2023-08-07
CN107615504A (zh) 2018-01-19
US11700733B2 (en) 2023-07-11
CN107615504B (zh) 2020-07-21
US20180151624A1 (en) 2018-05-31
US10374015B2 (en) 2019-08-06
TWI773644B (zh) 2022-08-11
CN112002807A (zh) 2020-11-27
CN112002809A (zh) 2020-11-27
CN112002810B (zh) 2024-03-22
US11056539B2 (en) 2021-07-06
EP3306689A4 (en) 2019-01-16
TW201711241A (zh) 2017-03-16
KR20180013864A (ko) 2018-02-07
TW202345384A (zh) 2023-11-16
JP7550642B2 (ja) 2024-09-13
TWI813040B (zh) 2023-08-21
US20200006435A1 (en) 2020-01-02
CN112002809B (zh) 2024-06-18
KR20230109778A (ko) 2023-07-20
CN112002808A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
TWI774035B (zh) 光電變換元件及固體攝像裝置
US11107849B2 (en) Photoelectric conversion element, imaging device, and electronic apparatus to improve photoresponse while maintaining superior wavelenght selectivity of a subphthalocyanine and a subphthalocyanine derivative
JP6772171B2 (ja) 光電変換素子および固体撮像装置
WO2017033736A1 (ja) 光電変換素子および撮像素子ならびに電子機器
WO2016190217A1 (ja) 光電変換素子および固体撮像装置ならびに電子機器
WO2016203925A1 (ja) 光電変換素子