TWI770881B - 電源供應產生器及其操作方法 - Google Patents

電源供應產生器及其操作方法 Download PDF

Info

Publication number
TWI770881B
TWI770881B TW110109812A TW110109812A TWI770881B TW I770881 B TWI770881 B TW I770881B TW 110109812 A TW110109812 A TW 110109812A TW 110109812 A TW110109812 A TW 110109812A TW I770881 B TWI770881 B TW I770881B
Authority
TW
Taiwan
Prior art keywords
voltage
control signal
circuit
output
terminal
Prior art date
Application number
TW110109812A
Other languages
English (en)
Other versions
TW202230069A (zh
Inventor
金永亮
馬亞琪
李維
范迪
Original Assignee
台灣積體電路製造股份有限公司
大陸商台積電(中國)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司, 大陸商台積電(中國)有限公司 filed Critical 台灣積體電路製造股份有限公司
Application granted granted Critical
Publication of TWI770881B publication Critical patent/TWI770881B/zh
Publication of TW202230069A publication Critical patent/TW202230069A/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • G05F1/595Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load semiconductor devices connected in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

本案提供一電源供應產生器,包含電壓調節電路、電源開關電路以及控制電路。電壓調節電路在輸出端點產生輸出電壓。電源開關電路與電壓調節電路耦接。控制電路接收第一控制訊號並產生第二控制訊號。第二控制訊號包含第一部分,第一部分在第一時間與較第一時間晚的第二時間之間逐漸下降。在第一時間,當電壓調節電路關斷且第一控制訊號的邏輯狀態改變時,電源開關電路在第二時間響應於第二導通,以調整該輸出電壓。一種電源供應產生器的操作方法亦在此揭露。

Description

電源供應產生器及其操作方法
本案提供一種電源供應產生器,特別是指一種具有抑制切換時產生之突波的控制電路的電源供應產生器。
在一些雙模系統中,例如SD主機控制器(Secure Digital Card host)、簡化千兆媒體獨立介面(RGMII),輸入/輸出緩衝器(I/O buffer)需兼支援工作在兩種不同電壓的電源模式,例如3.3伏特以及1.8V伏特等。在一些方法中,電壓電源供應(mid-bias supply)被應用於確保電源供應產生器的安全。然而,在雙模切換的過程中,突波電流的出現影響電源供應產生器的可靠度。
根據本案的一實施例,本案提供一電源供應產生器,包含電壓調節電路、電源開關電路以及控制電路。電壓調節電路在輸出端點產生輸出電壓。電源開關電路 與電壓調節電路耦接。控制電路接收第一控制訊號並產生第二控制訊號。第二控制訊號包含第一部分,第一部分在第一時間與較第一時間晚的第二時間之間逐漸下降。在第一時間,當電壓調節電路關斷且第一控制訊號的邏輯狀態改變時,電源開關電路在第二時間響應於第二導通,以調整該輸出電壓。
根據本案的另一實施例,提一種電源供應產生器,包含選擇電路、電壓調節電路、第一開關電路與多個第二開關電路以及偵測電路。選擇電路產生具有不同邏輯值的第一控制訊號和第二控制訊號。電壓調節電路耦接於第一電壓端點與第二電壓端點之間,並用以響應於第一控制訊號在一輸出端點產生一輸出訊號。第一開關電路與第二開關電路在輸出端點與第一電壓端點之間彼此並聯耦接。第一開關電源用以響應於第二控制訊號傳輸由第一電壓端點提供之第一電壓至輸出端點。偵測電路響應於輸出訊號並產生多個第三控制訊號以導通第二開關電路。
根據本案的另一實施例,提供一種電源供應產生器的操作方法,包含以下步驟:響應於輸出訊號具有第一電壓電位,第一控制訊號的邏輯狀態在電源供應產生器的轉態時間由第一邏輯狀態改變至第二邏輯狀態;在電阻單元的第一端點接收與第一控制訊號相關的第二控制訊號,並且在電阻單元的第二端點產生第三控制訊號以根據第三控制訊號下拉至少第一電晶體的閘極電壓, 其中電容單元耦接電阻單元的第二端點;以及藉由至少第一電晶體在至少第一電晶體的一導通時間拉升輸出訊號以具有不同於第一電壓電位的第二電壓電位。
10,40,80:電源供應產生器
100:電壓調節電路
200,200’:電源開關電路
300:控制電路
20:選擇電路
110:放大器
121-124,311:電阻單元
131-132,211-212:電晶體
VSS,VDDIN:供應電壓,供應電壓端點
Vmid:輸出電壓
Vref:參考電壓
Vfb:回饋電壓
Vd:訊號
C1,C2:電容單元
MS,MS1,MS2,MS2’,MS2_0-MS2_n,MS2_0’:控制訊號
T1-T5:時間
Ir:突波電流
VO:輸出訊號
Z:輸出端點
2101-210(n+1):開關電路
400:偵測電路
4101-410n:反相器單元
4201-420n:反相器
Vmid_I:電壓
4201a-420na,4201b-420nb,4201a’-420na’,4201b’-420nb’,4201c’-420nc’,4201d’-420nd’,4201e’-420ne’,4201f’-420nf’:電晶體
W:寬度
L:長度
1000:電源供應產生器的操作方法
1010,1020,1030:步驟
當藉由附圖閱讀時,自以下詳細描述,最佳地理解本案的一實施例的態樣。注意,根據該行業中的標準實務,各種特徵未按比例繪製。事實上,為了論述的清晰起見,可任意地增大或減小各種特徵的尺寸。
第1圖為根據一實施例的電源供應產生器的示意圖。
第2圖為根據一實施例關於如第1圖中之電源供應產生器的詳細示意圖。
第3A圖為根據一實施例關於如第1圖中之電源供應產生器的供應電壓與輸出電壓的波形示意圖。
第3B圖為根據一實施例關於如第1圖中之電源供應產生器的控制訊號的波形示意圖。
第3C圖為根據一實施例關於如第1圖中之電源供應產生器的突波電流的波形示意圖。
第4圖為根據另一實施例關於如第1圖中之電源供應產生器的電源供應產生器之詳細示意圖。
第5A圖為根據一實施例關於如第4圖中之電源供應產生器的供應電壓與輸出電壓的波形示意圖。
第5B圖為根據一實施例關於如第4圖中之電源供應產生器的控制訊號的波形示意圖。
第5C圖為根據一實施例關於如第4圖中之電源供應產生器的突波電流的波形示意圖。
第6圖為根據一實施例關於如第4圖中之偵測電路的詳細示意圖。
第7圖為根據另一實施例關於如第4圖中之偵測電路的詳細示意圖。
第8圖為根據另一實施例關於如第1圖中之電源供應產生器的電源供應產生器之詳細示意圖。
第9A圖為根據一實施例關於如第2圖中之電源開關電路的佈局圖。
第9B圖為根據另一實施例關於如第4圖中之電源開關電路的佈局圖。
第10圖為根據一實施例電源供應產生器的操作方法的流程圖。
以下揭露內容提供許多不同實施例或實例,用於實施提供的標的的不同特徵。以下描述元件及佈置的具體實例以簡化本案的一實施例。當然,這些僅為實例,且並不意欲為限制性。舉例而言,在接下來的描述中,第一特徵在第二特徵上方或上的形成可包括第一與第二特徵直接接觸地形成的實施例,且亦可包括額外特徵可形成於第一與第二特徵之間使得第一與第二特徵可不直接接觸的實施例。此外,在各種實例中,本案的一實施 例可重複參考數字及/或字母。此重複係為了簡單且清晰的目的,且自身並不規定論述的各種實施例及/或組態之間的關係。
在本說明書中使用的術語通常具有其在此項技術中及在使用各術語的具體上下文中的普通意義。在本說明書中的實例(包括本文中論述的任何術語的實例)的使用僅為說明性,且決不限制本案的一實施例或任一舉例說明的術語的範疇及意義。同樣地,本案的一實施例不限於在本說明書中給出的各種實施例。
如本文中使用,術語「包含」、「包括」、「具有」、「含有」、「涉及」及類似者應被理解為開放式的,亦即,意為包括但不限於。
貫穿本說明書對「一個實施例」、「一實施例」或「一些實施例」的參考意謂結合該(等)實施例描述的一特定特徵、結構、實施或特性包括於本案的一實施例的至少一個實施例中。因此,片語「在一個實施例中」或「在一實施例中」或「在一些實施例中」在貫穿本說明書各處中的使用未必皆指同一實施例。此外,在一或多個實施例中,可按任一合適方式來組合特定特徵、結構、實施或特性。
另外,為了易於描述,諸如「在...之下(beneath)」、「在...下方(below)」、「下部(lower)」、「在...上方(above)」、「上部(upper)」及類似者的空間相對術語可在本文中用以描述如在圖中圖示的 一個構件或特徵與另一(另外)構件或特徵的關係。除了圖中描繪的定向之外,該些空間相對術語意欲亦涵蓋在使用或操作中的元件的不同定向。可將設備以其他方式定向(旋轉90度或以其他定向),且同樣地可將本文中使用的空間相對描述詞相應地作出解釋。如本文中所使用,術語「及/或」包括相關聯的列出項目中的一或多者的任何及所有組合。
如本文中所使用,「大約」、「約」、「大致」或「實質上」應大體指一給定值或範圍的任一近似值,其中其取決於其屬於的各種技術而變化,且其範疇應與由熟習其屬於的此項技術者理解的最寬泛解釋一致,以便涵蓋所有這些修改及類似結構。在一些實施例,其應大體意謂在一給定值或範圍的20%內,較佳地10%內,且更佳地5%內。本文中給出的數值量為近似,意謂術語「大約」、「約」、「大致」或「實質上」若未明確地陳述,則可加以推斷,或意謂其他近似值。
請參照第1圖。第1圖為根據一實施例的電源供應產生器10的示意圖。如第1圖所示,電源供應產生器10包含電壓調節電路100、電源開關電路200以及控制電路300。電壓調節電路100與電源開關電路200耦接在輸出端點Z。在一些實施例中,電壓調節電路100與電源開關電路200在輸出端點Z產生輸出訊號VO。電源開關電路200更與控制電路300耦接。在一些實施例中,電源開關電路200響應於來自控制電路300的控 制訊號作動或協同控制電路300作動以產生輸出訊號VO。
請參照第2圖。第2圖為根據一實施例關於如第1圖中之電源供應產生器10的詳細示意圖。相對於第1圖的實施例,為了易於理解,在第2圖中的相似構件用相同參考編號來標示。
在一些實施例中,電源供應產生器10更包含選擇電路20。選擇電路20用以響應於控制訊號MS產生具有不同邏輯值的控制訊號MS1與MS2。例如,當控制訊號MS具有邏輯值1(邏輯狀態為高)時,控制訊號MS1具有邏輯值1以及控制訊號MS2具有邏輯值0(邏輯狀態為低)。相似地,當控制訊號MS具有邏輯值0時,控制訊號MS1具有邏輯值0以及控制訊號MS2具有邏輯值1。
在一些實施例中,電源供應產生器10具以不同工作電壓操作的模式。例如,在第一電壓模式(過壓驅動、overdrive)時,供應電壓VDDIN為,例如,3.3伏特。電壓調節電路100響應具邏輯值0的控制訊號MS1而啟動並輸出輸出訊號VO,同時,電源開關電路200響應具邏輯值1的控制訊號MS2而關斷以保護電路。而在第二電壓模式時,供應電壓VDDIN為,例如,1.8伏特。首先,電壓調節電路100依然響應具邏輯值0的控制訊號MS1而啟動,並且電源開關電路200響應具邏輯值1的控制訊號MS2而關斷。接著,控制訊號 控制訊號MS的邏輯狀態改變,由邏輯值0轉為邏輯值1,而控制訊號MS1與MS2相應地分別具有邏輯值1與邏輯值0。因此,電壓調節電路100關斷並電源開關電路200啟動而輸出輸出訊號VO。電源供應產生器10詳細的操作將於後續段落詳述之。以上供應電壓VDDIN的數值是為了說明性目的而給出,並不用以限制本案的實施例。本領域通常知識者可按實際應用而調整供應電壓VDDIN的數值。
如第2圖所示,電壓調節電路100包含放大器110、電阻單元121-124以及(P型)電晶體131-132。就連接關係而言,電阻單元121-122串聯耦接在供應電壓端點VDDIN與供應電壓端點VSS之間。供應電壓端點VDDIN視為提供供應電壓VDDIN,供應電壓端點VSS視為提供供應電壓VSS。電阻單元123-124串聯耦接在供應電壓端點VSS與輸出端點Z之間。放大器110的一輸入端點(標示為「+」)自電阻單元121-122之間的節點接收參考電壓Vref,以及放大器110的另一輸入端點(標示為「-」)自電阻單元123-124之間的節點接收回饋電壓Vfb。放大器110耦接供應電壓端點VDDIN與供應電壓端點VSS之間在並透過供應電壓VDDIN與VSS驅動。在一些實施例中,放大器110響應於控制訊號MS1輸出訊號Vd至電晶體132的閘極。電晶體131-132串聯耦接在供應電壓端點VDDIN與輸出端點Z之間。電晶體131的閘極端接收具有輸出 電壓Vmid的輸出訊號VO。具體來說,電晶體131的源極耦接供應電壓端點VDDIN,電晶體131的汲極耦接電晶體132的源極,電晶體132的汲極耦接輸出端點Z,其中包含在電源供應產生器10中的電容單元C1耦接於輸出端點Z與供應電壓端點VSS之間。
在一些實施例中,電壓調節電路100以低壓差穩壓器(low dropout regulator)實施,以及放大器110以誤差放大器(error amplifier)實施。
就操作來說,當控制訊號MS1具有邏輯值0且控制訊號MS2具有邏輯值1時,電壓調節電路100啟動以及電源開關電路200關斷。放大器110響應於控制訊號MS1將回饋電壓Vfb與參考電壓Vref相比較。兩者的差值經由放大器110放大並輸出訊號Vd。訊號Vd控制電晶體132的閘極電壓,進而控制並穩定輸出訊號VO及其輸出電壓Vmid。例如,當輸出電壓Vmid降低時,參考電壓Vref與回饋電壓Vfb間的差值增加,放大器110輸出訊號Vd以降低跨於電晶體132的電壓,從而使輸出電壓Vmid升高。相反地,當輸出電壓Vmid超過所需要的設定值,放大器110輸出訊號Vd以增加跨於電晶體132的電壓,從而使輸出電壓Vmid降低。
在一些實施例中,於第一電壓模式(供應電壓VDDIN等於約3.3伏特)中,當電壓調節電路100正啟動(power up)並開始輸出輸出訊號VO時,輸出訊號VO被充電直到輸出電壓Vmid約等於供應電壓 VDDIN的一半(VDDIN/2)。接著,電壓調節電路100持續穩壓。在一些實施例中,供應電壓VDDIN的電壓範圍在約2.7伏特至約3.3伏特時,輸出電壓Vmid的電壓範圍在約1.35伏特至約1.65伏特。
請繼續參照第2圖。電源開關電路200包含電晶體211-212。電晶體211-212彼此串聯耦接在供應電壓端點VDDIN與輸出端點Z之間。具體來說,電晶體211的源極耦接供應電壓端點VDDIN。電晶體211的汲極耦接電晶體212的源極。電晶體212的源極耦接輸出端點Z。電晶體211-212的閘極耦接到控制電路300。
在一些實施例中,電晶體211-212為P型電晶體。在另一些實施例中,電晶體211-212為金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)。
控制電路300包含電阻單元311以及電容單元C2。如第2圖所示,電阻單元311具有第一端點用以接收控制訊號MS2並在其第二端點輸出控制訊號MS2’。電容單元C2耦接在電阻單元311的第二端點與供應電壓端點VSS之間。電晶體211-212的閘極耦接電阻單元311的第二端點。換句話說電源開關電路200在電阻單元311的第二端點與電容單元C2以及電阻單元311耦接。
在一些實施例中,電阻單元311為具有百萬歐 姆(MΩ)量級的電阻單元實施。電容單元C2為具有皮法拉(pF)量級的電容單元實施。相較於電容單元C2,電容單元C1由微法拉(μF)量級的電容單元實施。
電源開關電路200與控制電路300詳細的作動將參照第3A圖至第3C圖說明。第3A圖為根據一實施例關於如第1圖中之電源供應產生器10的供應電壓VDDIN與輸出電壓Vmid的波形示意圖。第3B圖為根據一實施例關於如第1圖中之電源供應產生器10的控制訊號MS2’的波形示意圖。第3C圖為根據一實施例關於如第1圖中之電源供應產生器10的突波電流Ir的波形示意圖。
請同時參照第2圖與第3A圖至第3B圖。在第二電壓模式(供應電壓VDDIN等於約1.8伏特)中,如第3A圖所示,供應電壓VDDIN逐漸升高並在時間T1時達到約1.8伏特,電壓調節電路100啟動並在對輸出端點Z充電。同時,如第3B圖所示,控制訊號MS2’在時間T1時具有約1.8伏特(邏輯值1),因此,電源開關電路200中的電晶體211-212皆為關斷。
在時間T2時,輸出電壓Vmid已達穩定並等於約0.9伏特,如第3A圖所示。換句話說,輸出電壓Vmid約等於供應電壓VDDIN的一半(VDDIN/2)。
接著,在時間T3時,控制訊號MS的邏輯狀態轉為邏輯值1,電壓調節電路100響應相應地轉為1之控制訊號MS1關斷,而控制訊號MS2相應地轉為0。 同時,如第3B圖所示,因控制電路300中的電阻單元311與電容單元C2使控制訊號MS2’的電位開始在時間T3與T4間緩慢下降。換句話說,控制電路300用以引入時間T3與T4的時間差,使控制訊號MS2’的電位在此時間差中緩慢下降。
在時間T4時,由於下降的控制訊號MS2’的電位(電晶體211-212的閘極電壓)與供應電壓VDDIN之間的電壓差已大於電晶體211-212的臨界電壓(threshold voltage),電晶體211-212開始導通並藉由傳輸供應電壓VDDIN至輸出端點Z以為輸出電壓Vmid充電。由於電晶體211-212導通,在輸出端點Z上出現突波電流Ir。此外,因為控制訊號MS2’的電位下降得很緩慢,所以在時間T4時電晶體211-212剛導通並驅動能力不強,輸出電壓Vmid的上升速度不快。
接著,在時間T5時,如第3B圖所示,控制訊號MS2’的電位持續下降至大約0伏特。電晶體211-212的通道已打開,使得驅動能力增強。如第3A圖所示,輸出電壓Vmid被充電到具有供應電壓VDDIN。在一些實施例中,於第二電壓模式中,供應電壓VDDIN範圍在約1.62伏特至約1.98伏特時,輸出電壓Vmid的電壓範圍亦在約1.62伏特至約1.98伏特。
在一些方法中,由於對應於本案的電源開關電路200的元件迅速導通,造成在輸出端點產生巨大的突波 電流,例如大約300毫安培(mA)。相對地,應用本案的配置,如第3C圖所示,由於電源開關電路200響應於控制電路300的控制訊號而緩慢開啟,在輸出端點Z的突波電流減少約33%,例如為大約200毫安培。
第1圖至第3C圖的組態係為了說明性目的而給出。第1圖至第3C圖的各種實施在本案的一實施例的預料範疇內。舉例而言,在一些實施例中,替代包含兩個電晶體,電源開關電路200包含單個電晶體。
請參照第4圖。第4圖為根據另一實施例關於如第1圖中之電源供應產生器10的電源供應產生器40之詳細示意圖。相對於第1A圖至第3C圖的實施例,為了易於理解,在第4圖中的相似構件用相同參考編號來標示。為了簡潔起見,本文中省略已在以上段落中詳細論述的類似構件的具體操作,除非有需要介紹與第4圖中展示的構件的合作關係。
與第2圖相比,替代於具有電源開關電路200,電源供應產生器40包含電源開關電路200’以及偵測電路400。相似地,電源開關電路200’耦接在供應電壓端點VDDIN以及輸出端點Z之間。
如第4圖所示,電源開關電路200’更包含多個開關電路2101-210(n+1)。在一些實施例中,開關電路2101-210(n+1)是關連於,例如電源開關電路200之串聯的電晶體211-212而配置。開關電路2101-210(n+1)在供應電壓端點VDDIN以及輸出端 點Z之間彼此並聯耦接,並且開關電路2101-210(n+1)中的每一者包含彼此串聯的電晶體211-212。
開關電路2101-210(n+1)響應控制訊號MS2_0-MS2_n而導通或關斷。在一些實施例中控制訊號MS2_0是關連於,例如第2圖中的控制訊號MS2配置。因此,開關電路2101中的電晶體211-212響應於控制訊號MS2導通。
接著,如第4圖所示,偵測電路400包含多個反相器單元4101-410n。在一些實施例中,反相器單元4101-410n包含反相器4201-420n。反相器4201-420n配合供應電壓VDDIN與電壓Vmid_I操作。在第4圖的實施例中,電壓Vmid_I具有供應電壓VSS的電位。
為說明而言,反相器4201-420n中的每一者用以基於輸出電壓Vmid產生控制訊號MS2_1-MS2_n中的一者以導通在開關電路2101-210(n+1)中之其他開關電路2102-210(n+1)中的一者內的電晶體211-212。舉例而言,如第4圖所示,反相器4201響應於具有輸出電壓Vmid的輸出訊號VO產生控制訊號MS2_1,以及開關電路2102中的電晶體211-212彼此閘極耦接並響應於控制訊號MS2_1導通或關斷。開關電路2102-210(n+1)的配置關係類似於開關電路2102與控制訊號MS2_1之間的關係。因此,此處省略重複描述。
在一些實施例中,反相器4201-420n的臨界電壓不同於彼此。換句話說,反相器4201-420n在不同的時間點輸出具有可導通電晶體211-212之邏輯值的控制訊號MS2_1-MS2_n。電源供應產生器40的操作將於後續段落配合第5A圖至第5C圖詳述之。
請參照第5A圖至第5C圖。第5A圖為根據一實施例關於如第4圖中之電源供應產生器40的供應電壓VDDIN與輸出電壓Vmid的波形示意圖。第5B圖為根據一實施例關於如第4圖中之電源供應產生器40的控制訊號MS2_0-MS2_3的波形示意圖。第5C圖為根據一實施例關於如第4圖中之電源供應產生器40的突波電流Ir的波形示意圖。為簡潔之故,僅以控制訊號MS2_0-MS2_3說明電源供應產生器40的操作,控制訊號MS2_0-MS2_n的配置關係類似於控制訊號MS2_0-MS2_3之間的關係。因此,此處省略重複描述。
在時間T1前,輸出端點Z已被充電至擁有供應電壓VDDIN之一半的電位,如第5A圖所示。
接著,在時間T1時,控制訊號MS的邏輯狀態轉為邏輯值1,電壓調節電路100響應相應地轉為1之控制訊號MS1關斷,而控制訊號MS2_0轉為0,如第5B圖所示。此時,第4圖中的開關電路2101開始導通並對輸出端點Z充電。由於開關電路2101導通,輸出端點Z亦出現突波電流Ir。
在時間T2時,於一些實施例中,被上拉的輸出電壓Vmid被回饋至偵測電路400中。當輸出電壓Vmid大於反相器4201的臨界電壓(threshold voltage)時,反相器4201用以將具有邏輯值1的輸出訊號VO反相輸出為具有邏輯值0的控制訊號MS2_1。換句話說,控制訊號MS2_1的邏輯狀態由邏輯值1轉變為邏輯值0。因此,第4圖中的開關電路2102開始導通並對輸出端點Z充電。由於開關電路2102導通,突波電流Ir上升,如第5C圖所示。
相同地,在時間T3時,被上拉的輸出電壓Vmid持續被回饋至偵測電路400中。當輸出電壓Vmid大於反相器4202的臨界電壓(threshold voltage)時,反相器4202用以將具有邏輯值1的輸出訊號VO反相輸出為具有邏輯值0的控制訊號MS2_2。換句話說,控制訊號MS2_2的邏輯狀態由邏輯值1轉變為邏輯值0。因此,第4圖中的開關電路2103開始導通並對輸出端點Z充電。由於開關電路2103導通,突波電流Ir上升,如第5C圖所示。如上所述,在一些實施例中,反相器4202的臨界電壓高於反相器4201的臨界電壓。
接著,在時間T4時,被上拉的輸出電壓Vmid持續被回饋至偵測電路400中。當輸出電壓Vmid大於反相器4203的臨界電壓(threshold voltage)時,反相器4203用以將具有邏輯值1的輸出訊號VO反相輸出為具有邏輯值0的控制訊號MS2_3。換句話說,控 制訊號MS2_3的邏輯狀態由邏輯值1轉變為邏輯值0。因此,第4圖中的開關電路2104開始導通並對輸出端點Z充電。由於開關電路2104導通,突波電流Ir上升,如第5C圖所示。如上所述,在一些實施例中,反相器4203的臨界電壓高於反相器4201、4202的臨界電壓。
在一些方法中,如前面所述,在輸出端點產生巨大的突波電流,例如大約300毫安培。相對地,應用本案的配置,如第5C圖所示,由於電源開關電路200響應於偵測電路400的控制訊號而分別逐步開啟,在輸出端點Z的突波電流減少約50%,例如為大約150毫安培。
第4圖至第5C圖的組態係為了說明性目的而給出。第4圖至第5C圖的各種實施在本案的一實施例的預料範疇內。舉例而言,在一些實施例中,電源供應產生器40包含第2圖中的控制電路300,並且控制訊號MS2_1-MS2_n先輸入至控制電路300的電阻單元311後再輸入至開關電路2102-210(n+1)。
在一些實施例中,偵測電路400被視為控制電路,並且響應於輸出訊號VO產生控制訊號MS2_1-MS2_n至開關電路2102-210(n+1)。其中當第4圖中的電壓調節電路100在第5B圖中的時間T1關斷時,偵測電路400藉由控制訊號MS2_1-MS2_n中的一者在不同於時間T1的時間點導通開關電路 2102-210(n+1)中的一者。
舉例而言,偵測電路400中的反相器4202用以接收輸出訊號VO並產生控制訊號MS2_2。接著,開關電路2103中的電晶體211-212響應於控制訊號MS2_2導通以上拉輸出電壓Vmid。
接續上述實施例,偵測電路400中的反相器4202用以接收經上拉的輸出電壓Vmid並產生控制訊號MS2_3。接著,開關電路2104中的電晶體211-212響應於控制訊號MS2_3導通以上拉輸出電壓Vmid。
請參照第6圖。第6圖為根據一實施例關於如第4圖中之偵測電路400的詳細示意圖。相對於第1圖至第5C圖的實施例,為了易於理解,在第6圖中的相似構件用相同參考編號來標示。
如第6圖所示,對應於第4圖中的反相器單元4101包含電晶體4201a-4201b,其中電晶體4201a為P型電晶體,以及電晶體4201b為N型電晶體。電晶體4201a-4201b的閘極彼此耦接並接收輸出電壓Vmid。電晶體4201a的源極耦接供應電壓端點VDDIN,其汲極與電晶體4201b的汲極耦接,以及電晶體4201b的源極耦接電壓端點Vmid_I(提供電壓Vmid_I)。反相器單元4101於電晶體4201a-4201b的汲極處輸出控制訊號MS2_1。反相器單元4102-410n的配置關係類似於反相器單元4101與電晶體4201a-4201b之間的關係。因此,此處省略重複 描述。
在一些實施例中,電晶體4201a-4201b由複數個P型電晶體或N型電晶體實施,藉由不同比例數量或不同製程的P型電晶體及N型電晶體調整反相器4201的臨界電壓。反相器單元4102-410n的配置關係類似於反相器單元4101與電晶體4201a-4201b之間的關係。因此,此處省略重複描述。
請參照第7圖。第7圖為根據另一實施例關於如第4圖中之偵測電路400的詳細示意圖。相對於第1圖至第6圖的實施例,為了易於理解,在第7圖中的相似構件用相同參考編號來標示。
在一些實施例中,對應於第4圖中的反相器單元4101的反相器單元4101’包含一個施密特觸發器反相器(Schmitt trigger inverter)。電晶體4201a’-4201f’,其中電晶體4201a’-4201b’以及4201e’為P型電晶體,以及電晶體4201c’-4201d’以及4201f’為N型電晶體。具體而言,電晶體4201a’-4201d’串聯耦接於供應電壓端點VDDIN與電壓端點Vmid_I之間,並且其閘極彼此耦接並用以接收輸出電壓Vmid。電晶體4201e’的源極耦接於電晶體4201a’-4201b’之間,其汲極耦接電壓端點Vmid_I,以及其閘極與電晶體4201f’的閘極耦接於電晶體4201b’-4201c’之間並輸出控制訊號MS2_1。電晶體4201f’的源極耦接於電晶體4201c’-4201d’之間,其 汲極耦接供應電壓端點VDDIN。反相器單元4101’-410n’的配置關係類似於反相器單元4101’與電晶體4201a’-4201f’之間的關係。因此,此處省略重複描述。
在一些實施例中,反相器單元4101’-410n’中的反相器其臨界電壓不同於彼此。
在一些實施例中,在第一電壓模式(供應電壓VDDIN等於約3.3伏特)時,電壓Vmid_I等於輸出電壓Vmid。因此,控制訊號MS2_1-MS2_n將持續擁有高邏輯值(邏輯值1)並關閉所有的開關電路2102-210(n+1)。相對地,在第二電壓模式(供應電壓VDDIN等於約1.8伏特)時,電壓Vmid_I等於供應電壓VSS或接地電位。
第6圖至第7圖的組態係為了說明性目的而給出。第6圖至第7圖的各種實施在本案的一實施例的預料範疇內。舉例而言,在一些實施例中,藉由具有不同臨界電壓的反相器(非第6圖或第7圖中的實施例)實施偵測電路400。
請參照第8圖。第8圖為根據另一實施例關於如第1圖中之電源供應產生器10的電源供應產生器80之詳細示意圖。相對於第1圖至第7圖的實施例,為了易於理解,在第8圖中的相似構件用相同參考編號來標示。
與第4圖相比,替代開關電路2101中的電晶 體211-212的閘極直接接收控制訊號MS2_0(即第2圖中的控制訊號MS2),開關電路2101中的電晶體211-212的閘極耦接配置如第2圖中的控制電路300。如第8圖所示,控制電路300中的電阻單元311接收控制訊號MS2_0並於其一端輸出控制訊號MS2_0’。如此,開關電路2101中的電晶體211-212將響應於控制訊號MS2_0’而緩步導通。輸出端點Z的突波電流減小。
第8圖的組態係為了說明性目的而給出。第8圖的各種實施在本案的一實施例的預料範疇內。舉例而言,在一些實施例中,開關電路2101-210(n+1)中至少一者對應的控制訊號MS2_1-MS2_n中的一者在輸入至開關電路2101-210(n+1)前,輸入至配置如控制電路300的控制電路中。
請參照第9A圖至第9B圖。第9A圖為根據一實施例關於如第2圖中之電源開關電路200的佈局圖。第9B圖為根據另一實施例關於如第4圖中之電源開關電路200’的佈局圖。
在一些實施例中,第9A圖中的電源開關電路200的佈局圖對應第2圖中的單個開關電路內之電晶體211-212。在一些實施例中,電晶體211-212包含實現其閘極的多晶矽(poly-silicon gate,PO)結構,並且電晶體211-212被擺置於N型離子注入區域(N+implantation regions,NP)。
在一些實施例中,第9B圖中的電源開關電路200’的佈局圖對應第4圖中的其中4個開關電路(例如開關電路2101-2104)內之電晶體211-212。在一些實施例中,4個開關電路中之每一者被擺置在佈局圖上的一個區域,該區域具有長度L以及寬度W。在一些實施例中,寬度W與長度L的比例為大約0.3至大約0.8。
在一些實施例中,對應於單個開關電路之電晶體在佈局圖上所占的面積與對應於多個開關電路之電晶體在佈局圖上所占的面積相差不到1%。
第9A圖至第9B圖的組態係為了說明性目的而給出。第9A圖至第9B圖的各種實施在本案的一實施例的預料範疇內。舉例而言,在一些實施例中,對應第4圖中所有開關電路內的電晶體占在佈局圖上所佔據的面積與對應第2圖中單個開關電路內的電晶體在佈局圖上所佔據的面積相同。
請參照第10圖。第10圖為根據一實施例電源供應產生器的操作方法1000的流程圖。應理解,可在由第10圖展示的過程前、期間及後提供額外操作,且對於該方法的額外實施例,以下描述的操作中的一些可經替換或消除。該些操作/過程的次序可為可互換的。貫穿各種視圖及說明性實施例,使用相似參考編號來標示相似元件。電源供應產生器的操作方法1000包括以下參考第2圖的電源供應產生器10以及第8圖的電源供應產生器80描述的步驟1010至1030。
在步驟1010中,響應於輸出訊號VO具有第一電壓電位,例如供應電壓VDDIN的一半(VDDIN/2),第2圖中的控制訊號MS的邏輯狀態在電源供應產生器10的轉態時間(即第3A圖至第3C圖中的時間T3,指電源供應產生器10從電壓調節電路100開啟轉換為電壓調節電路200關斷的轉態時間)由具有邏輯值0的邏輯狀態改變至具有邏輯值1的邏輯狀態。
在步驟1020中,如第2圖所示,在電阻單元311的第一端點接收與控制訊號MS相關的控制訊號MS2,並且在電阻單元311的第二端點產生控制訊號MS2’以根據控制訊號MS2’下拉電晶體211-212的閘極電壓。電容單元C2耦接電阻單元311的第二端點。
在步驟1030中,如第2圖以及第3A圖所示,藉由電晶體211-212在電晶體211-212的導通時間(即第3A圖至第3C圖中的時間T4)拉升輸出訊號VO以具有不同於第一電壓電位(VDDIN/2)的第二電壓電位(例如,供應電壓VDDIN,如第3A圖所示)。
在一些實施例中,電源供應產生器的操作方法1000更包含,在如第5A圖時間T2時,響應於回饋至偵測電路400之具有第三電壓電位(在如第5A圖時間T2時小於供應電壓VDDIN的輸出電壓Vmid)的輸出訊號VO,藉由偵測電路400產生控制訊號MS2_1以導通與包含在開關電路2101中的電晶體並聯耦接的包含在開關電路2102中的電晶體,如第8圖所示。
此外,在一些實施例中,電源供應產生器的操作方法1000更包含在如第5A圖時間T3時,響應於回饋至偵測電路400之具有第四電壓電位(在如第5A圖時間T3時介於供應電壓VDDIN以及時間T2時的輸出電壓Vmid)的輸出訊號VO,藉由偵測電路400產生控制訊號MS2_2以導通包含在開關電路2103中的電晶體,如第8圖所示。包含在開關電路2103中的電晶體與包含在開關電路2101-2102中的電晶體並聯耦接。在一些實施例中,控制訊號MS2_1-MS2_2具有邏輯值0的邏輯狀態不同於相應輸出電壓Vmid具有邏輯值1的邏輯狀態。
在一些實施例中,電源供應產生器的操作方法1000更包含藉由偵測電路400偵測輸出訊號VO以產生多個控制訊號MS2_1-MS2_n;以及響應於控制訊號MS2_1-MS2_n中的控制訊號MS2_1,導通開關電路2102-210(n+1)中的一個電路,例如開關電路2102,開關電路2102-210(n+1)與包含在開關電路2101中的電晶體211-212並聯耦接。電源供應產生器的操作方法1000更包含響應於控制訊號MS2_1-MS2_n中的其他者(即MS2_2-MS2_n),關斷開關電路2102-210(n+1)中的其他者,即開關電路2103-210(n+1)。
如上所述,本案提供的電源供應產生器包含控制電路,藉由控制電路提供電源供應產生器的轉態時間與 包含在電源供應產生器中之電源開關電路的導通時間的時間差,使得電源開關電路緩慢導通,如此大幅減少在電源開關電路導通時的突波電流。
根據本案的一實施例,提供一種電源供應產生器,包含電壓調節電路、電源開關電路以及控制電路。電壓調節電路在輸出端點產生輸出電壓。電源開關電路與電壓調節電路耦接。控制電路接收第一控制訊號並產生第二控制訊號。第二控制訊號包含第一部分,第一部分在第一時間與較第一時間晚的第二時間之間逐漸下降。在第一時間,當電壓調節電路關斷且第一控制訊號的邏輯狀態改變時,電源開關電路在第二時間響應於第二導通,以調整該輸出電壓。
在一些實施例中,控制電路包含電阻單元以及電容單元。電阻單元具有用以接收第一控制訊號的第一端點和用以輸出第二控制訊號的第二端點。電容單元耦接在電阻單元的第二端點與電壓端點之間,其中電源開關電路在電阻單元的第二端點與電阻單元以及電容單元耦接。
在一些實施例中,電源開關電路包含多個P型電晶體。P型電晶體彼此串聯耦接在輸出端點與第一電壓端點之間。控制電路包含電阻單元以及電容單元。電阻單元響應於第一控制訊號傳輸第二控制訊號至P型電晶體的閘極。電容單元耦接在P型電晶體的閘極以及不同於第一電壓端點的第二電壓端點之間。
在一些實施例中,電源開關電路包含多個開關電路。開關電路中的每一者包含多個電晶體,電晶體串聯耦接。開關電路在輸出端點與電壓端點間彼此並聯耦接。在開關電路中之一者的電晶體用以響應於第二控制訊號導通。
在一些實施例中,電源供應產生器更包含多個反相器。反相器中的每一者基於輸出電壓產生第三控制訊號以導通在開關電路中之其他開關電路中的一者內的電晶體,其中反相器的臨界電壓不同於彼此。
在一些實施例中,電源供應產生器更包含偵測電路。偵測電路根據輸出電壓產生多個第三控制訊號以導通開關電路中之其他開關電路。
在一些實施例中,偵測電路包含第一施密特觸發器反相器以及第二施密特觸發器反相器。第一施密特觸發器反相器響應於具有第一電壓電位的輸出電壓產生第三控制訊號中的第一訊號,以導通開關電路中之其他開關電路中的第一電路。第二施密特觸發器反相器響應於具有不同於第一電壓電位之第二電壓電位的輸出電壓產生第三控制訊號中的第二訊號,以導通開關電路中之其他開關電路中的第二電路。
在一些實施例中,電源開關電路包含第一串電晶體與第二串電晶體。第一串電晶體與第二串電晶體在輸出端點與電壓端點間彼此並聯耦接,其中第一串電晶體響應於第二控制訊號而在第二時間導通以上拉輸出電壓。 其中電源供應產生器更包含偵測電路。偵測電路偵測經上拉之輸出電壓,以及用以產生第三控制訊號以導通第二串電晶體。
在一些實施例中,控制電路包含電阻單元和電容單元。電阻單元具有用以接收第一控制訊號的第一端點和用以輸出第二控制訊號的第二端點。電容單元耦接在電阻單元的第二端點與一電壓端點之間,其中第二串電晶體的閘極耦接在電阻單元的第二端點。
在一些實施例中,電源開關電路耦接於輸出端點和提供供應電壓的電壓。第二控制訊號更包含第二部分,第二部分在第二時間與第三時間之間逐漸下降。在第三時間輸出電壓的電壓位準與供應電壓的電壓位準相等。
在一些實施例中,第二控制訊號在第三時間具有一接地電位。
根據本案的另一實施例,提供一種電源供應產生器,包含選擇電路、電壓調節電路、第一開關電路與多個第二開關電路以及偵測電路。選擇電路產生具有不同邏輯值的第一控制訊號和第二控制訊號。電壓調節電路耦接於第一電壓端點與第二電壓端點之間,並用以響應於第一控制訊號在一輸出端點產生一輸出訊號。第一開關電路與第二開關電路在輸出端點與第一電壓端點之間彼此並聯耦接。第一開關電源用以響應於第二控制訊號傳輸由第一電壓端點提供之第一電壓至輸出端點。偵測電路響應於輸出訊號並產生多個第三控制訊號以導通第 二開關電路。
在一些實施例中,第二開關電路中的至少一者包含多個電晶體彼此串聯耦接,其中電晶體的閘極用以接收第三控制訊號中的一者。
在一些實施例中,偵測電路包含第一反相器以及第二反相器。第一反相器產生第三控制訊號中的第一訊號以在第一時間導通第二開關電路中的第一電路。第二反相器產生第三控制訊號中的第二訊號以在不同於第一時間的第二時間導通第二開關電路中不同於第一電路的第二電路。
在一些實施例中,偵測電路包含多個反相器。反相器中的每一者用以基於輸出訊號產生第三控制訊號中的一者以導通第二開關電路中的一者,其中反相器的臨界電壓不同於彼此。
在一些實施例中,反相器為施密特觸發器反相器,並用以同第一電壓以及第二電壓操作。當第一電壓具有第一電壓電位時,第二電壓由第二電壓端點供應。當第一電壓具有高於第一電壓電位的第二電壓電位時,第二電壓由輸出端點供應。
根據本案的另一實施例,提供一種電源供應產生器的操作方法,包含以下步驟:響應於輸出訊號具有第一電壓電位,第一控制訊號的邏輯狀態在電源供應產生器的轉態時間由第一邏輯狀態改變至第二邏輯狀態;在電阻單元的第一端點接收與第一控制訊號相關的第二控 制訊號,並且在電阻單元的第二端點產生第三控制訊號以根據第三控制訊號下拉至少第一電晶體的閘極電壓,其中電容單元耦接電阻單元的第二端點;以及藉由至少第一電晶體在至少第一電晶體的一導通時間拉升輸出訊號以具有不同於第一電壓電位的第二電壓電位。
在一些實施例中,方法更包含響應於回饋至偵測電路之具有第三電壓電位的輸出訊號,第三電壓電位小於第二電壓電位,藉由偵測電路產生第四控制訊號以導通與至少第一電晶體並聯耦接的至少第二電晶體。
在一些實施例中,方法更包含響應於具有第四電壓電位的輸出訊號,第四電壓電位介於第二電壓電位以及第三電壓電位之間,藉由偵測電路產生第五控制訊號以導通與至少第一電晶體以及至少第二電晶體並聯耦接的至少第三電晶體。其中第四控制訊號與第五控制訊號的邏輯狀態不同於相應輸出電壓的邏輯狀態。
在一些實施例中,方法更包含藉由偵測電路偵測輸出電壓以產生多個第四控制訊號;以及響應於第四控制訊號中的第一訊號,導通多個開關電路中的第一電路,開關電路與至少第一電晶體並聯耦接,以及響應於第四控制訊號中的其他者,關斷開關電路中的其他者。
前文概括了多個實施例的特徵,使得熟習此項技術者可更好地理解本案的一實施例的態樣。熟習此項技術者應瞭解,其可易於將本案的一實施例用作用於設計或修改其他製程及結構以用於實行相同目的及/或達成 本文中介紹的實施例的相同優勢的基礎。熟習此項技術者亦應認識到,這些等效構造不脫離本案的一實施例的精神及範疇,且在不脫離本案的一實施例的精神及範疇的情況下,其可進行各種改變、取代及更改。
10:電源供應產生器
100:電壓調節電路
200:電源開關電路
300:控制電路
20:選擇電路
110:放大器
121-124,311:電阻單元
131-132,211-212:電晶體
VSS,VDDIN:供應電壓,供應電壓端點
Vmid:輸出電壓
Vref:參考電壓
Vfb:回饋電壓
Vd:訊號
MS,MS1,MS2,MS2’:控制訊號
C1,C2:電容單元
VO:輸出訊號
Z:輸出端點

Claims (10)

  1. 一種電源供應產生器,包含:一電壓調節電路,用以在一輸出端點產生一輸出電壓;一電源開關電路與該電壓調節電路耦接;以及一控制電路,用以接收一第一控制訊號並產生一第二控制訊號,其中該第二控制訊號包含一第一部分,該第一部分在一第一時間與較該第一時間晚的一第二時間之間逐漸下降;其中在該第一時間,當該電壓調節電路關斷且該第一控制訊號的一邏輯狀態改變時,該電源開關電路用以在該第二時間響應於該第二控制訊號導通,以調整該輸出電壓。
  2. 如請求項1所述之電源供應產生器,其中該電源開關電路包含:複數個P型電晶體,該些P型電晶體彼此串聯耦接在該輸出端點與一第一電壓端點之間;其中該控制電路包含:一電阻單元,用以響應於第一控制訊號傳輸該第二控制訊號至該些P型電晶體的閘極;以及一電容單元,耦接在該些P型電晶體的閘極以及不同於該第一電壓端點的一第二電壓端點之間。
  3. 如請求項1所述之電源供應產生器,其中電源開關電路包含: 複數個開關電路,該些開關電路中的每一者包含複數個電晶體,該些電晶體串聯耦接,其中該些開關電路在該輸出端點與一電壓端點間彼此並聯耦接,其中在該些開關電路中之一者的該些電晶體用以響應於該第二控制訊號導通。
  4. 如請求項3所述之電源供應產生器,更包含:複數個反相器,該些反相器中的每一者用以基於該輸出電壓產生一第三控制訊號以導通在該些開關電路中之其他開關電路中的一者內的該些電晶體,其中該些反相器的臨界電壓不同於彼此。
  5. 如請求項3所述之電源供應產生器,更包含:一偵測電路,用以根據該輸出電壓產生複數個第三控制訊號以導通該些開關電路中之其他開關電路;其中該偵測電路包含:一第一施密特觸發器反相器,用以響應於具有一第一電壓電位的該輸出電壓產生該些第三控制訊號中的一第一訊號,以導通該些開關電路中之其他開關電路中的一第一電路;以及一第二施密特觸發器反相器,用以響應於具有不同於該第一電壓電位之一第二電壓電位的該輸出電壓產生該 些第三控制訊號中的一第二訊號,以導通該些開關電路中之其他開關電路中的一第二電路。
  6. 如請求項1所述之電源供應產生器,其中該電源開關電路耦接於該輸出端點和提供一供應電壓的一電壓,其中該第二控制訊號更包含一第二部分,該第二部分在該第二時間與一第三時間之間逐漸下降,其中在該第三時間該輸出電壓的一電壓位準與該供應電壓的一電壓位準相等;其中該第二控制訊號在該第三時間具有一接地電位。
  7. 一種電源供應產生器,包含:一選擇電路,用以產生具有不同邏輯值的一第一控制訊號和一第二控制訊號;一電壓調節電路,耦接於一第一電壓端點與一第二電壓端點之間;一第一開關電路與複數個第二開關電路,該第一開關電路與該些第二開關電路在一輸出端點與該第一電壓端點之間彼此並聯耦接,其中當該第一開關電路關斷時,該電壓調節電路用以響應於該第一控制訊號在該輸出端點產生一輸出訊號,以及當該電壓調節電路關斷時,該第一開關電路用以響應於該第二控制訊號導通並傳輸由該第一電壓端點提供之一第 一電壓至該輸出端點;以及一偵測電路,用以響應於該輸出訊號,產生複數個第三控制訊號以導通該些第二開關電路。
  8. 如請求項7所述之電源供應產生器,其中該偵測電路包含:複數個反相器,該些反相器中的每一者用以基於該輸出訊號產生該些第三控制訊號中的一者以導通該些第二開關電路中的一者,其中該些反相器的臨界電壓不同於彼此;其中該些反相器為施密特觸發器反相器,並用以同該第一電壓以及一第二電壓操作;其中當該第一電壓具有一第一電壓電位時,該第二電壓由該第二電壓端點供應,以及當該第一電壓具有高於該第一電壓電位的一第二電壓電位時,該第二電壓由該輸出端點供應。
  9. 一種電源供應產生器的操作方法,包含:響應於一輸出訊號具有一第一電壓電位,一第一控制訊號的一邏輯狀態在一電源供應產生器的一轉態時間由一第一邏輯狀態改變至一第二邏輯狀態;在一電阻單元的一第一端點接收與該第一控制訊號相關的一第二控制訊號,並且在該電阻單元的一第二端點產生一第三控制訊號以根據該第三控制訊號下拉至少一第一電晶體的閘極電壓,其中該電容單元耦接該電阻單元的該第 二端點;以及藉由該至少一第一電晶體在該至少一第一電晶體的一導通時間拉升該輸出訊號以具有不同於該第一電壓電位的一第二電壓電位。
  10. 如請求項9所述之電源供應產生器的操作方法,更包含:響應於回饋至一偵測電路之具有一第三電壓電位的該輸出訊號,該第三電壓電位小於該第二電壓電位,藉由該偵測電路產生一第四控制訊號以導通與該至少一第一電晶體並聯耦接的至少一第二電晶體;響應於具有一第四電壓電位的該輸出訊號,該第四電壓電位介於該第二電壓電位以及該第三電壓電位之間,藉由該偵測電路產生一第五控制訊號以導通與該至少一第一電晶體以及該至少一第二電晶體並聯耦接的至少一第三電晶體,其中該第四控制訊號與該第五控制訊號的邏輯狀態不同於相應該輸出電壓的一邏輯狀態。
TW110109812A 2021-01-06 2021-03-18 電源供應產生器及其操作方法 TWI770881B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110014343.3A CN114489202B (zh) 2021-01-06 2021-01-06 电源供应产生器及其操作方法
CN202110014343.3 2021-01-06

Publications (2)

Publication Number Publication Date
TWI770881B true TWI770881B (zh) 2022-07-11
TW202230069A TW202230069A (zh) 2022-08-01

Family

ID=81491782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109812A TWI770881B (zh) 2021-01-06 2021-03-18 電源供應產生器及其操作方法

Country Status (3)

Country Link
US (1) US11561562B2 (zh)
CN (1) CN114489202B (zh)
TW (1) TWI770881B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204090A (ja) * 2005-01-18 2006-08-03 Micrel Inc デュアルモード電圧調整器
TWM313378U (en) * 2006-10-20 2007-06-01 Holtek Semiconductor Inc Digital-to-analog conversion circuit applicable to power soft-switching circuit architecture
US20070216383A1 (en) * 2006-03-15 2007-09-20 Texas Instruments, Incorporated Soft-start circuit and method for low-dropout voltage regulators
US7886173B2 (en) * 2006-06-01 2011-02-08 Exaflop Llc Transitioning computing devices from secondary power to primary power after corresponding, independent delay times
TWI372326B (en) * 2008-08-26 2012-09-11 Leadtrend Tech Corp Control circuit, voltage regulator and related control method
US20150042296A1 (en) * 2013-06-28 2015-02-12 Sk Hynix Memory Solutions Inc. Voltage regulator soft start
EP2477459B1 (en) * 2011-01-17 2016-01-13 Radiant Research Limited Hybrid control system
TW201611490A (zh) * 2014-09-12 2016-03-16 原景科技股份有限公司 電源供應電路及其軟啓動電路
TW201616795A (zh) * 2014-10-23 2016-05-01 智原科技股份有限公司 具軟啓動電路的電壓調整器
TW201739161A (zh) * 2012-06-27 2017-11-01 英特爾股份有限公司 電壓調整器、用於切換式電壓調整器之設備及具有該調整器之系統
US20190079575A1 (en) * 2017-09-12 2019-03-14 Ambiq Micro, Inc. Very Low Power Microcontroller System

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342922A (en) * 1981-02-05 1982-08-03 General Electric Company AC Fail-detect and battery switchover circuit for multi-bus power supply
US4730122A (en) 1986-09-18 1988-03-08 International Business Machines Corporation Power supply adapter systems
JPH05217370A (ja) 1992-01-30 1993-08-27 Nec Corp 内部降圧電源回路
US5426376A (en) * 1993-04-23 1995-06-20 Vlsi Technology, Inc. Noise isolated I/O buffer that uses two separate power supplies
US6806692B2 (en) * 2002-11-22 2004-10-19 Giga Semiconductor, Inc. Voltage down converter
US7212067B2 (en) * 2003-08-01 2007-05-01 Sandisk Corporation Voltage regulator with bypass for multi-voltage storage system
JP4822941B2 (ja) * 2006-06-12 2011-11-24 株式会社東芝 電源電圧制御回路および半導体集積回路
US8072196B1 (en) * 2008-01-15 2011-12-06 National Semiconductor Corporation System and method for providing a dynamically configured low drop out regulator with zero quiescent current and fast transient response
CN101643100B (zh) * 2008-08-06 2011-05-25 兰州万里航空机电有限责任公司 电动拖地车
US9098101B2 (en) 2012-10-16 2015-08-04 Sandisk Technologies Inc. Supply noise current control circuit in bypass mode
KR20140104843A (ko) * 2013-02-21 2014-08-29 삼성전자주식회사 슈미트 트리거 회로를 이용하는 파워 게이팅 회로, 반도체 집적 회로 및 시스템
EP2849020B1 (en) * 2013-09-13 2019-01-23 Dialog Semiconductor GmbH A dual mode low dropout voltage regulator
US9417640B2 (en) * 2014-05-09 2016-08-16 Macronix International Co., Ltd. Input pin control
KR102365143B1 (ko) 2015-09-22 2022-02-18 삼성전자주식회사 멀티-파워와 게인-부스팅 기술을 이용하는 전압 레귤레이터와 이를 포함하는 모바일 장치들
US10601414B2 (en) * 2018-06-07 2020-03-24 Dialog Semiconductor B.V. Bias generator
KR20200067634A (ko) * 2018-12-04 2020-06-12 삼성전자주식회사 가변적인 슈미트 트리거 특성의 정전기 보호 회로
CN109992034B (zh) * 2019-04-18 2021-08-13 豪威科技(上海)有限公司 一种低压差线性稳压器
US10979049B2 (en) * 2019-05-03 2021-04-13 Taiwan Semiconductor Manufacturing Company Ltd. Logic buffer circuit and method
CN111949060A (zh) * 2020-08-14 2020-11-17 电子科技大学 一种缓启动电路

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204090A (ja) * 2005-01-18 2006-08-03 Micrel Inc デュアルモード電圧調整器
US20070216383A1 (en) * 2006-03-15 2007-09-20 Texas Instruments, Incorporated Soft-start circuit and method for low-dropout voltage regulators
US7886173B2 (en) * 2006-06-01 2011-02-08 Exaflop Llc Transitioning computing devices from secondary power to primary power after corresponding, independent delay times
TWM313378U (en) * 2006-10-20 2007-06-01 Holtek Semiconductor Inc Digital-to-analog conversion circuit applicable to power soft-switching circuit architecture
TWI372326B (en) * 2008-08-26 2012-09-11 Leadtrend Tech Corp Control circuit, voltage regulator and related control method
EP2477459B1 (en) * 2011-01-17 2016-01-13 Radiant Research Limited Hybrid control system
TW201739161A (zh) * 2012-06-27 2017-11-01 英特爾股份有限公司 電壓調整器、用於切換式電壓調整器之設備及具有該調整器之系統
US20150042296A1 (en) * 2013-06-28 2015-02-12 Sk Hynix Memory Solutions Inc. Voltage regulator soft start
TW201611490A (zh) * 2014-09-12 2016-03-16 原景科技股份有限公司 電源供應電路及其軟啓動電路
TW201616795A (zh) * 2014-10-23 2016-05-01 智原科技股份有限公司 具軟啓動電路的電壓調整器
US20190079575A1 (en) * 2017-09-12 2019-03-14 Ambiq Micro, Inc. Very Low Power Microcontroller System

Also Published As

Publication number Publication date
US20220216787A1 (en) 2022-07-07
TW202230069A (zh) 2022-08-01
US11561562B2 (en) 2023-01-24
CN114489202B (zh) 2024-03-29
CN114489202A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US11061422B2 (en) Low dropout linear regulator and voltage stabilizing method therefor
KR20190124771A (ko) 로우-드롭아웃 레귤레이터
US9459642B2 (en) Low dropout regulator and related method
US10025334B1 (en) Reduction of output undershoot in low-current voltage regulators
US9459639B2 (en) Power supply circuit with control unit
KR101094383B1 (ko) 내부전압 발생기
KR100818105B1 (ko) 내부 전압 발생 회로
US10855263B2 (en) Miller Clamp driver with feedback bias control
US7135898B2 (en) Power-on reset circuit with supply voltage and temperature immunity, ultra-low DC leakage current, and fast power crash reaction
TWI743555B (zh) 基於GaN之可調電流驅動器電路
JP2014067240A (ja) 半導体装置
US8315111B2 (en) Voltage regulator with pre-charge circuit
TWI770881B (zh) 電源供應產生器及其操作方法
CN110417256B (zh) 用于控制电荷泵电路的设备和方法
TW201735539A (zh) 輸出電路
US9229467B2 (en) Bandgap reference circuit and related method
KR102443825B1 (ko) 전력 공급 생성기 및 그 동작 방법
US10496117B1 (en) Voltage regulator
TW200413894A (en) Regulator and related method capable of performing pre-charging
JP2017126285A (ja) ボルテージレギュレータ
US11711076B2 (en) Power on control circuits and methods of operating the same
US20230396148A1 (en) Switch circuit
CN115980432A (zh) 一种电压检测电路
TW201837639A (zh) 電壓系統及其運作方法