TWI768043B - N-取代吲哚衍生物 - Google Patents

N-取代吲哚衍生物 Download PDF

Info

Publication number
TWI768043B
TWI768043B TW107116708A TW107116708A TWI768043B TW I768043 B TWI768043 B TW I768043B TW 107116708 A TW107116708 A TW 107116708A TW 107116708 A TW107116708 A TW 107116708A TW I768043 B TWI768043 B TW I768043B
Authority
TW
Taiwan
Prior art keywords
cancer
compound
pharmaceutically acceptable
acceptable salt
indol
Prior art date
Application number
TW107116708A
Other languages
English (en)
Other versions
TW201900637A (zh
Inventor
漢茲 弗瑞茲
伊莎貝 洛席爾
朱利安 波希爾
西爾雅 理查-畢斯蒂恩
賽瑞 席佛林
Original Assignee
瑞士商愛杜西亞製藥有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商愛杜西亞製藥有限公司 filed Critical 瑞士商愛杜西亞製藥有限公司
Publication of TW201900637A publication Critical patent/TW201900637A/zh
Application granted granted Critical
Publication of TWI768043B publication Critical patent/TWI768043B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

本發明係關於式(I)之衍生物,
Figure 107116708-A0101-11-0001-1
式(I) 其中R1 及R2 如本說明書中所描述;其製備;其醫藥學上可接受之鹽;及其作為藥物之用途;含有一或多種式(I)化合物之醫藥組合物;且尤其係關於其作為前列腺素2受體EP2之調節劑之用途。

Description

N-取代吲哚衍生物
本發明係關於式(I)之新穎N 取代吲哚衍生物及其作為藥物之用途。本發明亦關於相關態樣,該等態樣包括製備化合物之方法、含有一或多種式(I)化合物之醫藥組合物,及其作為PGE2受體EP2 (別名PTGER2,別名PGE2受體EP2亞型)之調節劑之用途。式(I)化合物可尤其用作單一試劑或與一或多種治療劑(尤其諸如PGE2受體EP4 (別名PTGER4,別名EP4R,別名PGE2受體EP4亞型)之調節劑)及/或化學療法及/或放射療法及/或免疫療法組合,用於預防/防治或治療癌症;尤其預防/防治或治療黑素瘤;肺癌;膀胱癌;腎癌;胃腸癌;子宮內膜癌;卵巢癌;子宮頸癌;及神經母細胞瘤。
前列腺素E2 (PGE2)係可引發與炎症及癌症相關之廣泛範圍之生物作用的生物活性脂質。PGE2屬於脂質之前列腺素家族。環加氧酶(COX)係稱為前列腺素之生物介體之合成中的速率限制酶,前列腺素由前列腺素PGD2、PGE2、PGF2α、前列環素PGI2及凝血脂素TXA2組成。前列腺素經由七種跨膜G蛋白偶合受體(GPCR)之活化來發揮作用,詳言之,EP1、EP2、EP3及EP4為PGE2之受體。由PGE2進行之EP2及EP4兩者之活化刺激腺苷酸環化酶,引起細胞質cAMP含量升高,從而經由其原型效應子蛋白質激酶A起始多個下游事件。此外,PGE2亦能夠經由PI3K/AKT及Ras-MAPK/ERK信號傳導來進行信號傳導。
癌症為全世界死亡之主要原因。腫瘤由異常增殖惡性癌細胞構成,亦由功能支持微環境構成。此腫瘤微環境由細胞、細胞外基質組分及信號傳導分子之複合陣列構成且藉由基質與腫瘤細胞之間的改變之通信建立。隨著腫瘤尺寸擴大,其引發不同因子產生,該等因子可幫助腫瘤生長,諸如血管生成因子(促進血管向內生長),或可幫助避開宿主免疫反應襲擊。PGE2係腫瘤中產生之此類免疫調節因子。
確定COX2主要經由PGE2促進腫瘤整體生長且上調且與高百分比之常見癌症,尤其結腸直腸癌、胃癌、食道癌、胰臟癌、乳癌及卵巢癌中之臨床結果相關。高COX-2及PGE2表現量與贅生性轉型、細胞生長、血管生成、侵襲性、癌轉移及免疫逃避相關。
有關COX2經過表現且在胃腸道(GI)癌症(尤其包括食道癌、胃癌及結腸直腸癌)中之癌發生中起重要作用之發現結果產生以下實情:COX抑制劑(昔布(Coxibs))(包括塞內昔布(Celecoxib))及其他非類固醇消炎藥(NSAID)(包括阿司匹林(aspirin))屬於當今研發過程中研究最多的癌症化學預防劑(關於綜述,參見例如Wang R等人, Curr Pharm Des. 2013;19(1):115-25;Garcia Rodriguez LA等人, Recent Results Cancer Res. 2013;191:67-93,Sahin IH等人, Cancer Lett. 2014年4月10日;345(2):249-57;Drew DA等人, Nat Rev Cancer 2016, 16:173;Brotons C等人, Am J Cardiovasc Drugs. 2015年4月; 15(2):113)。
除COX2及PGE2以外,EP受體,尤其EP2及EP4亦在多種類型之癌症,尤其胃腸道(GI)癌及胰臟癌中異常過表現。此外,PGE2及/或EP2及/或EP4之過表現與一些癌症類型之疾病進展相關,諸如食道鱗狀細胞癌(Kuo KT等人, Ann Surg Onc 2009; 16(2), 352-60);肺鱗狀細胞癌(Alaa M等人, Int J Oncol 2009, 34(3); 805-12);前列腺癌(Miyata Y等人, Urology 2013, 81(1):136-42;Badawi AF and Badr MZ Int J Cancer. 2003, 103(1):84-90);頭頸鱗狀細胞癌(Gallo O等人, Hum Pathol. 2002, 33(7):708-14)。
根據用昔布進行之研究,在小鼠中,COX1、COX2、微粒體前列腺素E合成酶1 (mPTGES1)、EP2或EP4之基因敲除引起不同腫瘤模型中腫瘤發生率降低及進展減少。相反,轉殖基因小鼠中COX2或mPTGES1之過表現引起增加之腫瘤發生率及腫瘤負荷(關於綜述,參見Nakanishi M.及Rosenberg D.W., Seminars in Immunopathology 2013, 35: 123-137;Fischer SM等人 Cancer Prev Res (Phila) 2011年11月;4(11):1728-35;Fulton AM等人 Cancer Res 2006; 66(20); 9794-97)。
已在小鼠中進行在不同腫瘤模型中使用EP受體拮抗劑或COX2抑制劑抑制腫瘤生長及進程之若干藥理學研究。EP拮抗劑及/或COX2抑制劑尤其減少以下實驗模型中之腫瘤生長及轉移:結腸直腸癌(例如Yang L等人 Cancer Res 2006, 66(19), 9665-9672;Pozzi A.等人 JBC 279(28); 29797-29804)、肺癌(Sharma S等人 Cancer Res 2005 65(12), 5211-5220)、胃腸道癌症(Oshima H等人 Gastroenterology 2011, 140(2); 596-607;Fu SL等人 world J Gastroenterol 2004, 10(13); 1971-1974)、乳癌(Kundu N等人, Breast Cancer Res Treat 117, 2009; 235-242;Ma X等人, OncoImmunology 2013;Xin X等人 Lab Investigation 2012, 1-14;Markosyan N等人; Breast Cancer Res 2013, 15:R75)、前列腺癌(Xu S等人, Cell Biochem Biophys 2014,Terada等人 Cancer Res 70(4) 2010; 1606-1615)、胰臟癌(Al-Wadei HA等人, PLOS One 2012, 7(8):e43376;Funahashi H等人, Cancer Res 2007, 67(15):7068-71)。COX2抑制劑批准用於治療家族性腺瘤性息肉病(familial adenomatous polyposis;FAP),其為結腸直腸癌之一種遺傳傾向性症候群,但後來因心臟血管副作用而收回。
在機理上,PGE2信號傳導主要與腫瘤與基質細胞之間的串擾有關,從而產生有利於腫瘤生長之微環境。詳言之,經由EP2及EP4進行之PGE2信號傳導可例如(i)抑制自然殺手細胞之細胞毒性及細胞激素產生,(ii)使腫瘤相關巨噬細胞朝向促腫瘤M2巨噬細胞之極化偏移(參見例如Nakanishi Y等人 Carcinogenesis 2011, 32:1333-39),(iii)調節Treg (調節性T細胞)及MDSC (骨髓衍生之抑制細胞)之活化、擴增及效應功能,該兩種細胞為在患者及實驗動物模型中之腫瘤中積聚之強效免疫抑制細胞(參見例如Sharma S等人, Cancer Res 2005, 5(12):5211-20;Sinha P等人 Cancer Res 2007, 67(9), 4507-4513;Obermajer N等人, Blood 2011, 118(20):5498-5505);(iv)下調免疫細胞中之IFN-γ、TNF-α IL-12及IL-2表現,該等免疫細胞諸如自然殺手細胞、T細胞、樹突狀細胞及巨噬細胞,破壞此等免疫細胞誘導腫瘤細胞凋亡及限制腫瘤形成之能力(參見例如Bao YS等人, Int Immunopharmacol. 2011;11(10):1599-605;Kim JG及Hahn YS, Immunol Invest. 2000;29(3):257-69;Demeuere CE等人, Eur J Immunol. 1997;27(12):3526-31;Mitsuhashi M等人, J Leukoc Biol. 2004;76(2):322-32;Pockaj BA等人, Ann Surg Oncol. 2004;11(3):328-39);(v)抑制T細胞之活化、IL-2易反應性、擴增及細胞毒性,藉此促進局部免疫抑制(參見例如Specht C等人, Int J Cancer 200191:705-712);(vi)抑制樹突狀細胞之成熟、其呈現抗原及產生IL-12之能力,引起細胞毒性T細胞之頓挫性活化(參見例如Ahmadi M等人, Cancer Res 2008, 68(18):7250-9;Stolina M等人, J Immunol 2000, 164:361-70);(vii)藉由增強內皮細胞活動性及存活率以及藉由增加VEGF (血管內皮生長因子)之表現來調節腫瘤血管生成(形成用於營養物及氧供應之新血管)(參見例如Zhang Y及Daaka Y, Blood 2011;118(19):5355-64:Jain S等人, Cancer Res. 2008; 68(19):7750-9;Wang及Klein, Molecular Carcinogenesis 2007, 46:912-923);(viii)增強腫瘤細胞存活(經由PI3K/AKT及MAPK信號傳導)。關於綜述,參見例如Kalinski P, J Immunol 2012, 188(1), 21-28;Obermajer N等人, Oncoimmunology 1(5), 762-4;Greenhough A等人, carcinogenesis 2009, 30(3), 377-86;Wang D及Dubois RN, Gut 2006, 55, 115-122;Harris SG等人 Trends Immunol 2002, 22, 144-150。
已證實昔布可使腫瘤細胞對輻射及化學療法敏感且已進行或正在進行組合昔布與輻射及/或化學療法之若干臨床試驗(關於綜述,參見例如Ghosh N等人, Pharmacol Rep. 2010 3月-4月;62(2):233-44;Davis TW等人, Am J Clin Oncol. 2003, 26(4):S58-61;亦參見Higgins JP等人, Cancer Biol Ther 2009, 8:1440-49)。
此外,存在一些證據表明昔布與以下之間的加成作用及/或協同作用:表皮成長因子受體(EGFR)抑制劑(參見例如Zhang X等人, Clin Cancer Res. 2005, 11(17):6261-9;Yamaguchi NH等人, J Gastrointest Oncol. 2014, 5(1):57-66);及芳香酶抑制劑(參見例如Generali D等人, Br J Cancer. 2014;111(1):46-54;Lustberg MB 等人, Clin Breast Cancer. 2011年8月;11(4):221-7;Falandry C等人, Breast Cancer Res Treat. 2009年8月;116(3):501-8;Chow LW等人, J Steroid Biochem Mol Biol. 2008, 111(1-2):13-7)。
此外,當組合阿司匹林(COX1/2抑制劑)與抗VEGF抗體時,在不同小鼠腫瘤模型中發現加成/協同作用(Motz GT等人; Nat Med 2014 20(6):607)且此組合當前正處於臨床試驗研究(NCT02659384)中。
最近,已證實若組合不同免疫治療方法,則可具有增強之抗腫瘤功效。歸因於PGE2之免疫調節特性,因此昔布亦與不同免疫治療方法組合使用。詳言之,可在以下情況下觀測到加成或甚至協同作用:在大鼠神經膠質瘤模型及小鼠間皮瘤或黑素瘤模型中組合昔布與樹突狀細胞疫苗接種(Zhang H等人, Oncol Res. 2013;20(10):447-55;Veltman JD等人, BMC Cancer. 2010;10:464;Toomey D等人, Vaccine. 2008年6月25日;26(27-28):3540-9);在小鼠腦瘤中組合昔布與顆粒球-巨噬細胞群落刺激因子(GM-CSF)(Eberstål S等人, Int J Cancer. 2014年6月1日;134(11):2748-53);在腦瘤中組合昔布與干擾素γ (IFN-γ)(Eberstål S等人, Cancer Immunol Immunother. 2012, 61(8):1191-9);在小鼠乳癌模型中組合昔布與樹突狀細胞疫苗接種或GM-CSF (Hahn T等人, Int J Cancer. 2006,118(9):2220-31);及在小鼠間皮瘤模型中組合昔布與腺病毒干擾素β (IFN-β)療法(DeLong P等人, Cancer Res. 2003年11月15日;63(22):7845-52)。由此,亦可設想昔布及/或EP2及/或EP4拮抗劑與以下之加成或甚至協同作用:作用於細胞毒性T淋巴細胞相關蛋白質4 (CTLA-4)之試劑,諸如抗CTLA-4抗體;抗TIM-3抗體、抗Lag-3抗體;抗TIGIT抗體;或詳言之,作用於計劃性細胞死亡蛋白質1 (PD1)之試劑,諸如抗PD1或抗PDL1 (計劃性細胞死亡配位體1)抗體(Yongkui Li等人 Oncoimmunology 2016, 5(2):e1074374;Zelenay S等人, Cell 2015, 162; 1-14;WO2013/090552,其指示雙重EP2及EP4阻斷與作用於PD1之試劑之組合之協同作用)。
腺苷為另一種具有消炎特性之內源性因子,其經由表現於各種細胞型(包括調節性T細胞(Treg))上之胞外核苷酸酶(CD39及CD73)之活性產生(Mandapathil M等人, J Biol Chem. 2010; 285(10):7176-86)。免疫細胞亦對腺苷起反應,因為其攜帶ADO之受體,該等受體主要為A2a/A2b類型(Hoskin DW等人, Int J Oncol 2008, 32:527-535)。經由腺苷受體及EP2/EP4受體進行之信號傳導會聚在細胞質腺苷酸環化酶上,引起cAMP上調。證實腺苷及PGE2在抑制由調節性T細胞介導之免疫反應方面協作(Mandapathil M等人, J Biol Chem. 2010; 285(36):27571-80;Caiazzo E等人, Biochem Pharmacol. 2016; 112:72-81)。
因此,本發明EP2及/或EP4拮抗劑可單獨或與一或多種治療劑及/或化學療法及/或放射療法及/或免疫療法組合,尤其與化學療法、放射療法、EGFR抑制劑、芳香酶抑制劑、抗血管生成藥物、腺苷抑制劑、免疫療法(尤其諸如PD1及/或PDL1阻斷)或其他靶向療法組合用於預防/防治或治療癌症,特別用於預防/防治或治療皮膚癌,包括黑素瘤,包括轉移性黑素瘤;肺癌,包括非小細胞肺癌;膀胱癌(bladder cancer),包括膀胱癌(urinary bladder cancer)、尿道上皮細胞癌;腎癌,包括腎細胞癌、轉移性腎細胞癌、轉移性腎透明細胞癌;胃腸癌,包括結腸直腸癌、轉移性結腸直腸癌、家族性腺瘤性息肉病(FAP)、食道癌、胃癌、膽囊癌、膽管癌、肝細胞癌及胰臟癌,諸如胰腺癌或胰管癌;子宮內膜癌;卵巢癌;子宮頸癌;神經母細胞瘤;前列腺癌,包括去勢抗性前列腺癌;腦瘤,包括腦轉移瘤、惡性神經膠質瘤、多形性膠質母細胞瘤、神經管胚細胞瘤、脊膜瘤;乳癌,包括三陰性乳癌;口腔腫瘤;鼻咽腫瘤;胸腺癌;頭頸癌;白血病,包括急性骨髓白血病、成人T細胞白血病;癌瘤;腺癌;甲狀腺癌,包括乳頭狀甲狀腺癌;絨膜癌;尤文氏肉瘤(Ewing's sarcoma);骨肉瘤;橫紋肌肉瘤;卡堡氏肉瘤(Kaposi's sarcoma);淋巴瘤,包括伯基特氏淋巴瘤(Burkitt's lymphoma)、霍奇金氏淋巴瘤(Hodgkin's lymphoma)、MALT淋巴瘤;多發性骨髓瘤;以及病毒誘發之腫瘤。
此外,選擇性或雙重EP2及/或EP4拮抗劑可適用於若干其他例如對用COX2抑制劑進行之治療起反應的疾病或病症,其優勢在於EP2及/或EP4拮抗劑不應具有在COX2抑制劑情況下發現之潛在心臟血管副作用,該等副作用主要歸因於PGI2及TXA2合成之干擾(參見例如Boyd MJ等人, bioorganic and medicinal chemistry letters 21, 484, 2011)。舉例而言,藉由COX抑制劑阻斷前列腺素產生為選擇用於尤其包括發炎性疼痛及痛經之疼痛之治療。因此,EP2及/或EP4及/或雙重EP2/EP4拮抗劑可用於治療疼痛,尤其發炎性疼痛。來自EP2基因剔除小鼠之證據表明EP2拮抗劑可用於治療發炎性痛覺過敏(Reinold H等人, J Clin Invest 2005, 115(3):673-9)。此外,EP4拮抗劑在發炎性疼痛模型中具有有利的活體內作用(例如Murase A, Eur J Pharmacol 2008;Clark P, J Pharmacol Exp Ther. 2008;Maubach KA Br J Pharmacol. 2009;Colucci J Bioorg Med Chem Lett. 2010,Boyd MJ等人, Bioorg Med Chem Lett 2011,Chn Q等人 Br J Phramacol 2010,Nakao K等人, J Pharmacol Exp Ther. 2007年8月;322(2):686-94)。EP2與EP4拮抗劑之組合投藥在小鼠膠原蛋白誘導之關節炎模型中展示關節炎之顯著,但部分抑制(Honda T等人 J Exp Med 2006, 203(2):325-35)。
EP2及/或雙重EP2/EP4拮抗劑可用於降低女性生育力,亦即證實其在短尾猿中用作避孕藥時可防止懷孕(Peluffo MC等人 Hum Reprod 2014)。EP2基因剔除小鼠具有降低之生育力、較小每窩產仔數及減小之卵丘擴增(Matsumoto等人, Biology of reproduction 2001, 64; 1557-65;Hitzaki等人, PNAS 1999, 96(18), 10501-10506;Tilley SL J Clin Inves 1999, 103(11):1539-45;Kennedy CR等人, Nat Med 1999 5(2):217-20)。
亦存在EP2及/或EP4拮抗劑可用於預防或治療子宮內膜異位之基本原理:例如EP2、EP3及EP4以及COX2在子宮內膜異位細胞株及組織中過表現(例如Santulli P等人 J Clin Endocrinol Metab 2014, 99(3):881-90);證實拮抗劑治療可活體外抑制子宮內膜細胞之黏著(Lee J等人 Biol Reprod 2013, 88(3):77;Lee J等人 Fertil Steril 201, 93(8):2498-506);已證實COX2抑制劑可經由EP2降低小鼠中之子宮內膜子宮內膜(Chuang PC等人, Am J Pathol 2010, 176(2):850-60);及已證實拮抗劑治療可活體外誘導子宮內膜細胞之凋亡(Banu SK等人, MOl endocrinol 2009, 23(8) 1291-305)。
雙重EP2/EP4拮抗劑或選擇性EP2拮抗劑與選擇性EP4拮抗劑之組合可具有用於自體免疫性病症之潛在用途;例如已證實其在多發性硬化(MS)之小鼠模型中有效(Esaki Y等人 PNAS 2010, 107(27):12233-8;Schiffmann S等人, Biochem Pharmacol. 2014, 87(4): 625-35;亦參見Kofler DM等人 J Clin Invest 2014, 124(6):2513-22)。活體外細胞中EP2/EP 4信號傳導之活化(Kojima F等人 Prostaglandins Other Lipid Mediat 2009, 89:26-33)將雙重或選擇性EP2及/或EP4拮抗劑與類風濕性關節炎治療相關聯。又,已在來自骨關節炎(OA)患者之滑液及軟骨中報導PGE(2)之含量升高且已證實PGE2經由EP4受體刺激骨關節炎軟骨細胞中之基質降解(Attur M等人, J Immunol. 2008;181(7):5082-8)。
EP4過表現與患者之動脈粥樣硬化斑中增強之發炎反應相關(Cipollone F等人, Artherioscler Thromb Vasc Biol 2005, 25(9); 1925-31),因此指示EP4及/或雙重EP2/EP4拮抗劑可用於斑塊穩定化作用及預防/防治急性局部缺血症候群。此外,EP4不足藉由損害巨噬細胞存活率來抑制早期動脈粥樣硬化(Babaev VR等人, Cell Metab. 2008年12月;8(6):492-501)。
EP2及/或雙重EP2/EP4拮抗劑亦適用於治療肺炎:凋亡細胞之肺內投藥顯示PGE(2)經由EP2引起白血球之肺募集之後續損傷及肺炎鏈球菌之清除,以及增強之活體內IL-10之產生(Medeiros AI等人 J Exp Med 2009 206(1):61-8)。
此外,EP2及/或雙重EP2/EP4拮抗劑可另外適用於治療神經退化性疾病(關於綜述,參見Cimino PJ等人, Curr Med Chem. 2008;15(19):1863-9)。EP2受體促進肌肉萎縮性側索硬化(ALS)之小鼠模型中之炎症進程(Liang X等人, Ann Neurol 2008, 64(3):304-14);已證實COX2抑制劑在中風、帕金森病(Parkinson disease)及ALS之嚙齒動物模型中具有神經保護性(關於綜述,參見Liang X等人 J Mol Neurosci 2007, 33(1):94-9),在用帕金森病毒劑處理之EP2基因剔除小鼠中觀測到降低之神經毒性(Jin J等人, J Neuroinflammation 2007, 4:2),PGE2經由EP2使培養之大鼠細胞中之神經退化惡化(Takadera T等人, Life Sci 2006, 78(16): 1878-83);若與EP2基因剔除小鼠雜交,則在阿茲海默氏病小鼠模型中觀測到降低之澱粉樣蛋白負荷(Liang X等人 J Neurosci 2005, 25(44):10180-7;Keene CD等人, Am J Pathol. 2010, 177(1):346-54)。EP2剔除小鼠避免神經退化性疾病中CD14依賴性/先天性免疫性介導之神經元損壞(Shie FS等人 Glia 2005, 52(1):70-7);PGE2經由EP2增加培養之大鼠小神經膠質細胞中之澱粉樣蛋白前驅蛋白(APP)表現(Pooler AM等人 Neurosci. Lett. 2004, 362(2):127-30)。EP2拮抗劑限制大腦中由先天性免疫性之活化(LPS之顱內注射)引起之氧化損壞且可用於阿茲海默症或HIV相關癡呆(Montine TJ等人, J Neurochem 2002, 83(2):463-70)。在阿茲海默氏病小鼠模型中,可藉由EP4之遺傳及藥理學抑制來改良認知功能(Hoshino T等人, J Neurochem 2012, 120(5):795-805)。
EP2及/或雙重EP2/EP4拮抗劑亦可適用於治療體染色體顯性多囊性腎病(ADPKD):PGE2經由EP2誘導人類腎上皮細胞之囊腫生成;及發現EP2在患者樣品中過表現(Elberg G等人, Am J Physiol Renal Physiol 2007, 293(5):F1622-32)。
EP4及/或雙重EP2/EP4拮抗劑亦可適用於治療骨質疏鬆:PGE2主要經由EP4且部分經由EP2刺激骨骼再吸收(Suzawa T等人, Endocrinology. 2000年4月;141(4):1554-9),EP4基因剔除小鼠展示減弱之骨骼再吸收(Miyaura C等人, J Biol Chem 2000, 275(26): 19819-23)且EP4拮抗劑展示PGE(2)刺激之破骨細胞生成及破骨細胞骨骼再吸收之部分抑制(Tomita M等人, Bone. 2002年1月;30(1):159-63)。
WO2008/152093揭示選擇性EP2受體調節劑,其包含在位置3連接於分子其餘部分之吲哚環及無論如何不經直接連接之芳族取代基取代的嘧啶部分。WO2006/044732揭示作為PGD2調節劑之嘧啶化合物,主張其適用於例如治療過敏性疾病。WO2008/006583揭示作為ALK-5抑制劑之嘧啶衍生物。WO2006/044732及WO2008/039882揭示作為前列腺素D2受體拮抗劑之某些嘧啶衍生物。嘧啶-2-基衍生物揭示於WO2013/020945、WO2012/127032、WO2011/144742、Bioorg. Med. Chem 2011, 21(13) 4108-4114及Bioorg. Med. Chem 2011, 21(1) 66-75中。某些吲哚-1-乙醯胺化合物稱為程式庫化合物,例如CAS 1448123-30-5及CAS 1448075-88-4。所主張之其他具有作為抗癌劑之活性之化合物揭示於WO2006/128129、WO2008/008059及Bioorg. Med. Chem 2013, 21(2), 540-546中。WO2013/163190及WO2015/058031揭示與DNA修復過程相互作用之某些DNA-PK抑制劑。認為所揭示之化合物適用於使癌細胞敏感,及增強癌症化學療法及放射療法之功效。
本發明提供作為前列腺素2受體EP2之調節劑的式(I)之新穎N 取代吲哚衍生物。因此,本發明化合物可作為單一試劑或尤其與一或多種治療劑(尤其諸如PGE2受體EP4之調節劑)組合,用於預防/防治或治療對EP2受體之阻斷起反應(或若使用與PGE2受體EP4之調節劑組合,對EP2及EP4受體兩者之阻斷起反應)的疾病,尤其諸如癌症;以及疼痛,尤其包括發炎性疼痛及痛經;子宮內膜異位;動脈粥樣硬化患者中之急性局部缺血症候群;肺炎;神經退化性疾病,包括肌肉萎縮性側索硬化、中風;帕金森病、阿茲海默氏病及HIV相關癡呆;體染色體顯性多囊性腎病;及控制女性生育力。
1)本發明之第一態樣係關於式(I)化合物
Figure 02_image005
式(I) 其中R1 表示氫或甲基;R2 表示甲基、溴、氯或氰基。
本發明亦包括同位素標記、尤其2 H (氘)標記之根據實施例1)至7)之式(I)化合物,除了一或多個原子各經具有相同原子數但原子質量不同於在自然界中通常發現之原子質量的原子置換以外,該等化合物與式(I)化合物一致。同位素標記、尤其2 H (氘)標記之式(I)化合物及其鹽在本發明範疇之內。用較重同位素2 H (氘)取代氫可產生較大代謝穩定性,使得例如活體內半衰期增加或劑量需求降低,或可導致對細胞色素P450酶之抑制降低,產生例如改良之安全型態。在本發明之一個實施例中,式(I)化合物未經同位素標記或其僅用一或多個氘原子標記。在一子實施例中,式(I)化合物完全未經同位素標記。同位素標記之式(I)化合物可類似於下文所述之方法來製備,但使用適合試劑或起始物質之適當同位素變體。
在本專利申請案中,標繪為點線之鍵展示所標繪之基團之連接點。舉例而言,以下標繪之基團
Figure 02_image007
係2-甲基-1H -吲哚-1-基。
在化合物、鹽、醫藥組合物、疾病及其類似物使用複數形式的情況下,此複數形式亦意欲意謂單一化合物、鹽或其類似物。
適當及方便時,對根據實施例1)至7)之式(I)化合物的任何提及應理解為亦提及此類化合物之鹽(及尤其醫藥學上可接受之鹽)。
術語「醫藥學上可接受之鹽」係指保持本發明化合物之所需生物活性且展現極小非所需毒理學效應之鹽。視本發明化合物中鹼基及/或酸基之存在而定,此類鹽包括無機酸或有機酸及/或鹼加成鹽。作為參考,參見例如「Handbook of Phramaceutical Salts. Properties, Selection and Use.」, P. Heinrich Stahl, Camille G. Wermuth (編), Wiley-VCH, 2008;及「Pharmaceutical Salts and Co-crystals」, Johan Wouters及Luc Quéré(編), RSC Publishing,2012。
本文所提供之定義意欲統一應用於根據實施例1)至6)中之任一者所定義之式(I)化合物,且細節上做必要修改後,在整個說明書及申請專利範圍中除非另外明確地陳述,否則定義提供較寬或較窄定義。應充分理解,術語之定義或較佳定義界定且可替換各別術語,獨立於(及組合)如本文所定義之任何或所有其他術語之任何定義或較佳定義。
每當取代基表示為視情況選用時,應瞭解此類取代基可不存在,在此情況下具有游離價數之所有位置(此類視情況選用之取代基可附接之位置;諸如在芳環中,具有游離價數之環碳原子及/或環氮原子)在適當時經氫取代。同樣地,倘若術語「視情況」用於(環)雜原子之情形下,則該術語意謂各別視情況選用之雜原子或類似物不存在(亦即某一部分不含有雜原子/係碳環/或類似物),或各別視情況選用之雜原子或類似物如所明確定義存在。
術語「鹵素」意謂氟、氯、溴或碘;尤其氟、氯或溴;較佳氟或氯。
單獨或組合使用之術語「烷基」係指含有一至六個碳原子之飽和直鏈或分支鏈烴基。術語「(Cx-y )烷基」(x及y各自為整數)係指含有x至y個碳原子之如先前所定義之烷基。舉例而言,(C1-6 )烷基含有一至六個碳原子。烷基之實例係甲基、乙基、丙基、異丙基、丁基、異丁基、第三丁基、3-甲基-丁基、2,2-二甲基-丙基及3,3-二甲基-丁基。為避免任何疑義,若基團稱為例如丙基或丁基,其分別意謂正丙基、正丁基。較佳為甲基及乙基。最佳為甲基。
單獨或組合使用之術語「烷氧基」係指烷基-O-基團,其中烷基如先前所定義。術語「(Cx-y )烷氧基」(x及y各自為整數)係指含有x至y個碳原子之如先前所定義之烷氧基。舉例而言,(C1-4 )烷氧基意謂式(C1-4 )烷基-O-之基團,其中術語「(C1-4 )烷基」具有此前給出之意義。烷氧基之實例係甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、異丁氧基、第二丁氧基及第三丁氧基。較佳為乙氧基及尤其甲氧基。
單獨或組合使用之術語「氟烷基」係指含有一至三個碳原子之如先前所定義之烷基,其中一或多個(及可能所有)氫原子已由氟置換。術語「(Cx-y )氟烷基」(x及y各自為整數)係指含有x至y個碳原子之如先前所定義之氟烷基。舉例而言,(C1-3 )氟烷基含有一至三個碳原子,其中一至七個氫原子已由氟置換。氟烷基之代表性實例包括三氟甲基、2-氟乙基、2,2-二氟乙基及2,2,2-三氟乙基。較佳為(C1 )氟烷基,諸如三氟甲基。
單獨或組合使用之術語「氟烷氧基」係指含有一至三個碳原子之如先前所定義之烷氧基,其中一或多個(及可能所有)氫原子已由氟置換。術語「(Cx-y )氟烷氧基」(x及y各自為整數)係指含有x至y個碳原子之如先前所定義之氟烷氧基。舉例而言,(C1-3 )氟烷氧基含有一至三個碳原子,其中一至七個氫原子已由氟置換。氟烷氧基之代表性實例包括三氟甲氧基、二氟甲氧基、2-氟乙氧基、2,2-二氟乙氧基及2,2,2-三氟乙氧基。較佳為(C1 )氟烷氧基,諸如三氟甲氧基及二氟甲氧基,以及2,2,2-三氟乙氧基。
單獨或組合使用之術語「環烷基」係指含有三個至六個碳原子之飽和單環烴環。術語「(Cx-y )環烷基」(x及y各自為整數)係指含有x至y個碳原子之如先前所定義之環烷基。舉例而言,(C3-6 )環烷基含有三至六個碳原子。環烷基之實例係環丙基、環丁基、環戊基、環己基及環庚基。較佳為環丙基、環丁基及環戊基;尤其環丙基。
術語「氰基」係指基團-CN。
式(I)化合物經羧酸基團-COOH取代;應理解此類羧酸基團可呈前藥基團形式存在。此類前藥涵蓋於本發明之範疇中。在某些情況下,包含此類羧酸前藥基團之化合物因此可呈現對EP2受體之生物活性,而在其他情況下,包含此類羧酸前藥基團之此類化合物需要(例如酶)裂解前藥以呈現對EP2受體之生物活性。羧酸官能基之前藥為此項技術中熟知的(參見例如J. Rautio (編) Prodrugs and Targeted Delivery: Towards Better ADME Properties, 第47卷, Wiley 2010, ISBN: 978-3-527-32603-7;H. Maag in Stella, V., Borchardt, R., Hageman, M., Oliyai, R., Maag, H., Tilley, J. (編) Prodrugs: Challenges and Rewards, Springer 2007, ISBN 978-0-387-49785-3)。
例如適合於此類-COOH基團之前藥之特定實例係: · 酯基團-CO-O-P1 ,其中P1 係例如(C1-4 )烷基;(C3-6 )環烷基,其中(C3-6 )環烷基視情況含有環氧原子;(C3-6 )環烷基-(C1-3 )烷基,其中(C3-6 )環烷基視情況含有環氧原子;(C1-3 )氟烷基;羥基-(C2-4 )烷基;或(C1-4 )烷氧基-(C2-4 )烷基(尤其P1 係(C1-4 )烷基,詳言之甲基或乙基); · 基團-CO-NH-SO2 -RS3 ,其中RS3 表示(C1-4 )烷基、(C3-6 )環烷基,其中(C3-6 )環烷基視情況含有環氧原子;(C3-6 )環烷基-(C1-3 )烷基,其中(C3-6 )環烷基視情況含有環氧原子;(C1-3 )氟烷基、-NH2 ;(尤其RS3 係(C1-4 )烷基、(C3-6 )環烷基或苯基;尤其甲基); · 基團-CO-RO1 ,其中RO1 表示-O-CH2 -CO-RO4 ,其中RO4 表示羥基,或(C1-4 )烷氧基,或-N[(C1-4 )烷基]2 (尤其-CO-O-CH2 -COOH、-CO-O-CH2 -CO-N(CH3 )2 ); · 基團-CO-RO1 ,其中RO1 表示-O-CH2 -O-CO-RO5 ,其中RO5 表示(C1-4 )烷基或(C1-4 )烷氧基(尤其-CO-O-CH2 -O-CO-O-乙基、-CO-O-CH2 -O-CO-丙基); · 基團-CO-RO1 ,其中RO1 表示-O-CH2 -CH2 -N[(C1-4 )烷基]2 (尤其-CO-O-CH2 -CH2 -N(CH3 )2 );及 · 基團-CO-RO1 ,其中RO1 表示5-甲基-2-側氧基-[1,3]二氧雜環戊烯-4-基)-甲氧基-。
當使用詞語「在……之間」描述數值範圍時,應理解,所指示範圍之端點明確包括於該範圍中。舉例而言:若溫度範圍描述為在40℃與80℃之間,則此意謂在該範圍內包括端點40℃及80℃;或若定義變量為1與4之間的一整數,則此意謂該變量為整數1、2、3或4。
除非關於溫度使用,否則位於數值「X」之前的術語「約」在本申請案中係指自X減10% X延伸至X加10% X的區間且較佳指自X減5% X延伸至X加5% X的區間。在溫度之特定情況下,位於溫度「Y」之前的術語「約」係指在本申請案中自溫度Y減10℃延伸至Y加10℃的區間,且較佳指自Y減5℃延伸至Y加5℃的區間。此外,如本文所用之術語「室溫」係指約25℃之溫度。
本發明之其他實施例呈現於下文: 2)第二實施例係指根據實施例1)之化合物,其中R1 表示氫。 3)另一實施例係關於根據實施例1)之化合物,其中R1 表示甲基。 4)另一實施例係指根據實施例1)至3)中任一項之化合物,其中R2 表示甲基。 5)另一實施例係指根據實施例1)至3)中任一項之化合物,其中R2 表示氯或溴(尤其氯)。 6)另一實施例係指根據實施例1)至3)中任一項之化合物,其中R2 表示氰基。 7) 另一實施例係關於根據實施例1)之最佳化合物,其係選自以下化合物: 4-{6-[2-(2-甲基-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸; 4-{6-[2-(2-氰基-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸; 4-{6-[2-(2,7-二甲基-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸; 4-{6-[2-(2-氯-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸;及 4-{6-[2-(2-溴-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸。
根據實施例1)至7)之式(I)化合物及其醫藥學上可接受之鹽可用作藥劑,例如呈醫藥組合物形式以用於經腸(尤其如口服,例如呈錠劑或膠囊形式)或非經腸投藥(包括局部施用或吸入)。
可以任何熟習此項技術者所熟悉之方式(參見例如Remington,The Science and Practice of Pharmacy , 第21版(2005), 第5部分, 「Pharmaceutical Manufacturing」[由Lippincott Williams & Wilkins出版]),藉由將所描述之式(I)化合物或其醫藥學上可接受之鹽(視情況與其他有治療價值之物質組合)與適合之無毒惰性治療相容性固體或液體載劑材料及(必要時)常用醫藥佐劑一起製成蓋倫投藥劑型(galenical administration form)來產生醫藥組合物。
本發明亦關於一種預防/防治或治療本文所提及之疾病或病症之方法,其包含向個體投與醫藥活性量之根據實施例1)至7)之式(I)化合物。
在本發明之一較佳實施例中,投與量包含於每天1 mg與2000 mg之間,尤其每天5 mg與1000 mg之間,更尤其每天25 mg與500 mg之間,尤其每天50 mg與200 mg之間。
當使用詞語「在……之間」描述數值範圍時,應理解,所指示範圍之端點明確包括於該範圍中。舉例而言:若溫度範圍描述為在40℃與80℃之間,則此意謂在該範圍內包括端點40℃及80℃;或若定義變量為1與4之間的一整數,則此意謂該變量為整數1、2、3或4。
除非關於溫度使用,否則位於數值「X」之前的術語「約」在本申請案中係指自X減10% X延伸至X加10% X的區間且較佳指自X減5% X延伸至X加5% X的區間。在溫度之特定情況下,位於溫度「Y」之前的術語「約」係指在本申請案中自溫度Y減10℃延伸至Y加10℃的區間,且較佳指自Y減5℃延伸至Y加5℃的區間。
為了避免任何疑義,若化合物描述為可用於預防/防治或治療某些疾病,則此類化合物同樣適用於製備供預防/防治或治療該等疾病用之藥劑。同樣,此類化合物亦適於預防/防治或治療此類疾病之方法,其包含向有需要之個體(哺乳動物,尤其人類)投與有效量之此類化合物。
根據實施例1)至7)之式(I)化合物適用於預防/防治或治療與EP2及/或(若與PGE2受體EP4之調節劑組合)EP2及EP4受體兩者相關之病症。
抑制EP4受體之化合物詳言之係化合物4-[[4-(5-甲氧基-2-吡啶基)苯氧基]甲基]-5-甲基-N-[(2-甲基苯基)磺醯基]-2-呋喃甲醯胺(BGC-20-1531、BGC20-1531;WO2004/067524);N-[[2,4-(2-乙基-4,6-二甲基-1H-咪唑并[4,5-c]吡啶-1-基)苯乙基胺基]羰基]-4-甲基-苯磺醯胺(Grapiprant、AAT-007、CJ-023423、MR-10A7、RQ-00000007、RQ-07、RQ-7-;WO2002/032900); 4-[(1S)-1-[[[3-(二氟甲基)-1-甲基-5-[3-(三氟甲基)苯氧基]-1H-吡唑-4-基]羰基]胺基]乙基]-苯甲酸(E-7046、ER-886046-00;WO2012/039972);CR-6086 (WO2012/076063);ONO-4578 (WO2016/111347);及4-[1(S)-[5-氯-2-(3-氟苯氧基)吡啶-3-基甲醯胺基]乙基]苯甲酸(AAT-008、RQ-08、RQ-00000008;WO2005/021508);以及以下各者中所揭示之化合物:WO2017/066633;WO2017/014323;WO2016/111347;WO2016/021742;WO2015/179615;WO2015/147020;WO2015/091475;WO2015/094912;WO2015/094902;WO2014/200075;WO2014/186218;WO2014/126746;WO2014/122267;WO2014/086739;WO2014/004230;WO2014/004229;WO2013/004290;WO2012/103071;WO2012/076063;WO2012/043634;WO2012/039972;WO2010/034110;WO2010/032123;WO2010/019796;WO2009/139373;WO2009/005076;WO2008/123207;WO2008/116304;WO2008/104055;WO2008/017164;WO2007/143825;WO2007/121578;WO2006/122403;WO2005/105733;WO2005/105732;WO2005/037812;WO2005/021508;WO2004/067524;WO2003/099857;WO2003/086390;WO2003/087061;WO2002/064564;WO2002/050032;WO2002/050033;WO2002/032422;WO2001/072302。
根據實施例1)至7)之某些式(I)化合物展現其在生物環境中(亦即在一或多種能夠使連接於羰基之共價鍵斷裂之酶,諸如醯胺酶、酯酶或能夠自羧酸基移除前藥基團之其任何適合之同等物存在下)作為前列腺素2受體EP2之調節劑的生物活性。
與EP2及/或(若此類化合物與PGE2受體EP4之調節劑組合使用)EP2及EP4受體兩者相關之疾病或病症尤其係 · 癌症(特別為黑素瘤,包括轉移性黑素瘤;肺癌,包括非小細胞肺癌;膀胱癌,包括膀胱癌、尿道上皮細胞癌;腎癌,包括腎細胞癌、轉移性腎細胞癌、轉移性腎透明細胞癌;胃腸癌,包括結腸直腸癌、轉移性結腸直腸癌、家族性腺瘤性息肉病(FAP)、食道癌、胃癌、膽囊癌、膽管癌、肝細胞癌及胰臟癌,諸如胰腺癌或胰管癌;子宮內膜癌;卵巢癌;子宮頸癌;神經母細胞瘤;前列腺癌,包括去勢抗性前列腺癌;腦瘤,包括腦轉移瘤、惡性神經膠質瘤、多形性膠質母細胞瘤、神經管胚細胞瘤、脊膜瘤;乳癌,包括三陰性乳癌;口腔腫瘤;鼻咽腫瘤;胸腺癌;頭頸癌;白血病,包括急性骨髓白血病、成人T細胞白血病;癌瘤;腺癌;甲狀腺癌,包括乳頭狀甲狀腺癌;絨膜癌;尤文氏肉瘤(Ewing's sarcoma);骨肉瘤;橫紋肌肉瘤;卡堡氏肉瘤(Kaposi's sarcoma);淋巴瘤,包括伯基特氏淋巴瘤(Burkitt's lymphoma)、霍奇金氏淋巴瘤(Hodgkin's lymphoma)、MALT淋巴瘤;多發性骨髓瘤;以及病毒誘發性腫瘤;尤其黑素瘤;肺癌;膀胱癌;腎癌;胃腸癌;子宮內膜癌;卵巢癌;子宮頸癌;以及神經母細胞瘤); 以及與EP2及/或EP4受體相關之其他疾病或病症,諸如: · 疼痛(尤其發炎性疼痛及痛經); · 子宮內膜異位; · 體染色體顯性多囊性腎病; · 動脈粥樣硬化患者中之急性缺血症候群;· 肺炎;及 · 神經退化性疾病,包括肌肉萎縮性側索硬化、中風;帕金森氏病(Parkinson disease)、阿茲海默氏病(Alzheimer's disease)及HIV相關癡呆症; · 且EP2及/或EP4拮抗劑可進一步用於控制女性生育力。
與EP2及/或EP4受體相關之其他疾病或病症係自體免疫病症,尤其諸如多發性硬化症、類風濕性關節炎及骨關節炎;以及骨質疏鬆。
根據實施例1)至7)中任一者之式(I)化合物尤其可作為預防/防治或治療癌症之治療劑。其可用作單一治療劑,其中為預防/防治或治療癌症,該等化合物較佳地與PGE2受體EP4之調節劑組合使用;且另外視情況與一或多種化學療法藥劑及/或放射療法及/或靶向療法組合使用。此類組合治療可同時、分開或在一段時間內進行。
因此,本發明亦關於包含醫藥學上可接受之載劑材料及以下的醫藥組合物: · 根據實施例1)至7)中任一者之式(I)化合物;及/或 · PGE2受體EP4之調節劑;及/或 · 及一或多種細胞毒性化學療法藥劑。
因此,本發明亦係關於一種套組,其包含 · 醫藥組合物,該組合物包含醫藥學上可接受之載劑材料及: Ø 根據實施例1)至7)中任一者之式(I)化合物; · 及如何使用該醫藥組合物與化學療法及/或放射療法及/或靶向療法組合來預防/防治或治療癌症之說明書。
術語「放射療法」或「放射線療法」或「放射線腫瘤學」係指電離放射線預防/防治(輔助療法)及/或治療癌症之醫療用途;包括外部及內部放射療法。
術語「靶向療法」係指用一或多種抗腫瘤劑,諸如對特定類型之癌細胞或基質細胞起作用之小分子或抗體,預防/防治(輔助療法)及/或治療癌症。一些靶向療法阻斷某些酶、蛋白質或與癌細胞之生長及擴散有關之其他分子的活動。其他類型之靶向療法幫助免疫系統殺死癌細胞(免疫療法);或抑制腫瘤中新血管之血管生成、生長及形成;或直接傳遞有毒物質至癌細胞且將其殺死。尤其適於與本發明化合物組合之靶向療法之實例為免疫療法,尤其靶向計劃性細胞死亡受體1 (PD-1受體)或其配位體PD-L1之免疫療法(Zelenay等人,2015 , Cell162 , 1-14;Yongkui Li等人, Oncoimmunology 2016, 5(2):e1074374)。
當與式(I)化合物組合使用時,術語「靶向療法」尤其係指諸如以下之試劑: a) 表皮生長因子受體(EGFR)抑制劑或阻斷抗體(例如吉非替尼(Gefitinib)、埃羅替尼(Erlotinib)、阿法替尼(Afatinib)、埃克替尼(Icotinib)、拉帕替尼(Lapatinib)、帕尼單抗(Panitumumab)、紮魯姆單抗(Zalutumumab)、尼妥珠單抗(Nimotuzumab)、馬妥珠單抗(Matuzumab)及西妥昔單抗(Cetuximab)); b) RAS/RAF/MEK路徑抑制劑(例如維羅非尼(Vemurafenib)、索拉非尼(Sorafenib)、達拉菲尼(Dabrafenib)、GDC-0879、PLX-4720、LGX818、RG7304、曲美替尼(Trametinib) (GSK1120212)、考比替尼(Cobimetinib) (GDC-0973/XL518)、畢尼替尼(Binimetinib) (MEK162、ARRY-162)、司美替尼(Selumetinib) (AZD6244)); c) 芳香酶抑制劑(例如依西美坦(Exemestane)、來曲唑(Letrozole)、阿那曲唑(Anastrozole)、伏羅唑(Vorozole)、福美司坦(Formestane)、法屈唑(Fadrozole)); d) 血管生成抑制劑,尤其VEGF信號傳導抑制劑,諸如貝伐單抗(Bevacuzimab)(阿瓦斯汀(Avastin))、雷莫蘆單抗(Ramucirumab)、索拉非尼(Sorafenib)或阿西替尼(Axitinib); e) 免疫檢查點抑制劑(例如:抗PD1抗體,諸如派立珠單抗(Pembrolizumab)(拉立珠單抗(Lambrolizumab)、MK-3475)、納武單抗(Nivolumab)、皮立珠單抗(Pidilizumab)(CT-011)、AMP-514/MED10680、PDR001、SHR-1210;REGN2810、BGBA317;靶向PD-1之融合蛋白,諸如AMP-224;小分子抗PD1劑,諸如WO2015/033299、WO2015/044900及WO2015/034820中揭示之化合物;抗PD1L抗體,諸如BMS-936559、阿特唑單抗(atezolizumab) (MPDL3280A、RG7446)、MEDI4736、艾維路單抗(avelumab) (MSB0010718C)、德瓦魯單抗(durvalumab) (MEDI4736);抗PDL2抗體,諸如AMP224;抗CTLA-4抗體,諸如伊派利單抗(ipilimumab)、曲米木單抗(tremilmumab);抗淋巴細胞活化基因3 (LAG-3)抗體,諸如BMS-986016、IMP701、MK-4280、ImmuFact IMP321;抗T細胞免疫球蛋白黏蛋白-3 (TIM-3)抗體,諸如MBG453;抗CD137/4-1BB抗體,諸如BMS-663513/優瑞路單抗(urelumab)、PF-05082566;具有Ig及ITIM結構域(TIGIT)抗體之抗T細胞免疫受體,諸如RG6058 (抗TIGIT、MTIG7192A); f) 疫苗接種方法(例如樹突狀細胞疫苗接種、肽或蛋白質疫苗接種(例如用gp100肽或MAGE-A3肽); g) 再次引入經遺傳修飾以分泌免疫調節因子,諸如顆粒球單核球群落刺激因子(GMCSF)基因轉染之腫瘤細胞疫苗(GVAX)或Fms相關之酪胺酸激酶3 (Flt-3)配位體基因轉染之腫瘤細胞疫苗(FVAX)或基於Toll樣受體增強之GM-CSF腫瘤之疫苗(TEGVAX)的患者來源或同種異體(非自身)癌細胞; h) 基於T細胞之過繼性免疫療法,包括嵌合抗原受體(CAR)工程改造之T細胞(例如CTL019); i) 基於細胞介素或免疫細胞介素之療法(例如干擾素α、干擾素β、干擾素γ、介白素2、介白素15); j) Toll樣受體(TLR)促效劑(例如雷西莫特(resiquimod)、咪喹莫特(imiquimod)、葡萄哌喃糖基脂質A、CpG寡脫氧核苷酸); k) 沙力度胺(Thalidomide)類似物(例如來那度胺(Lenalidomide)、泊利度胺(Pomalidomide)); l) 吲哚胺-2,3-雙加氧酶(IDO)及/或色胺酸-2,3-雙加氧酶(TDO)抑制劑(例如RG6078/NLG919/GDC-0919;因多莫得(Indoximod)/1MT (1-甲基色胺酸)、INCB024360/艾帕斯塔(Epacadostat)、PF-06840003 (EOS200271)、F001287); m) T細胞共刺激受體之活化劑(例如抗OX40/CD134 (腫瘤壞死因子受體超家族,成員4,諸如RG7888 (MOXR0916)、9B12;MEDI6469、GSK3174998、MEDI0562)、抗OX40-配位體/CD252;抗糖皮質激素誘導之TNFR家族相關基因(GITR) (諸如TRX518、MEDI1873、MK-4166、BMS-986156)、抗-CD40 (TNF受體超家族成員5)抗體(諸如達西珠單抗(Dacetuzumab) (SGN-40)、HCD122、CP-870,893、RG7876、ADC-1013、APX005M、SEA-CD40);抗CD40-配位體抗體(諸如BG9588);抗CD27抗體,諸如瓦里木單抗(Varlilumab)); n) 結合腫瘤特異性抗原以及T細胞表面標記物之分子,諸如雙特異性抗體(例如靶向CEA及CD3之RG7802)或抗體片段、抗體模擬蛋白(諸如經設計之錨蛋白重複蛋白,DARPINS)、雙特異性T細胞接合分子(BITE,例如AMG103、AMG330); o) 靶向群落刺激因子-1受體(CSF-1R)之抗體或小分子量抑制劑(例如艾瑪圖單抗(Emactuzumab)(RG7155)、卡比拉單抗(Cabiralizumab)(FPA-008)、PLX3397); p) 靶向自然殺手細胞上免疫細胞檢查點之試劑,諸如針對殺手細胞免疫球蛋白樣受體(KIR)之抗體,例如利瑞路單抗(Lirilumab)(IPH2102/BMS-986015); q) 靶向腺苷受體或將ATP轉變成腺苷之核酸外切酶CD39及CD73之試劑,諸如MEDI9447 (抗CD73抗體)、PBF-509;CPI-444 (腺苷A2a受體拮抗劑)。
當與式(I)化合物組合使用時,諸如d)下列出之免疫檢查點抑制劑及尤其靶向計劃性細胞死亡受體1 (PD-1受體)或其配位體PD-L1之免疫檢查點抑制劑的免疫檢查點抑制劑為較佳。
術語「化學療法」係指用一或多種細胞毒性抗腫瘤劑(「細胞毒性化學療法藥劑」)治療癌症。化學療法常常結合諸如放射線療法或手術之其他癌症治療使用。該術語尤其係指藉由殺死迅速分裂(大部分癌細胞之主要特性之一)之細胞來起作用的習知細胞毒性化學治療劑。化學療法可每次使用一種藥物(單劑化學療法)或一次使用若干藥物(組合化學療法或多化學療法)。使用僅在曝光時方轉變成細胞毒活性之藥物的化學療法稱為光化學療法或光動力療法。
如本文所用,術語「細胞毒性化學療法藥劑」或「化學療法藥劑」係指誘導細胞凋亡或壞死性細胞死亡之活性抗腫瘤劑。當與式(I)化合物組合使用時,該術語尤其係指習知細胞毒性化學療法藥劑,諸如: a) 烷基化劑(例如甲氮芥、氯芥苯丁酸、環磷醯胺、異環磷醯胺、鏈脲菌素、卡莫司汀(carmustine)、洛莫司汀(lomustine)、美法侖(melphalan)、達卡巴嗪(dacarbazine)、替莫唑胺(temozolomide)、福莫司汀(fotemustine)、噻替派(thiotepa)或六甲蜜胺(altretamine);尤其環磷醯胺、卡莫司汀、美法侖、達卡巴嗪或替莫唑胺); b) 鉑藥物(尤其順鉑(cisplatin)、卡鉑(carboplatin)或奧沙利鉑(oxaliplatin)); c) 抗代謝藥物(例如5-氟尿嘧啶、葉酸/甲醯四氫葉酸、卡培他濱(capecitabine)、6-巰基嘌呤、甲胺喋呤、吉西他濱(gemcitabine)、阿糖胞苷、氟達拉賓(fludarabine)或培美曲塞 (pemetrexed);尤其5-氟尿嘧啶、葉酸/甲醯四氫葉酸、卡培他濱、甲胺喋呤、吉西他濱或培美曲塞); d) 抗腫瘤抗生素(例如道諾比星(daunorubicin)、小紅莓(doxorubicin)、表柔比星(epirubicin)、艾達黴素(idarubicin)、放射菌素-D、博萊黴素(bleomycin)、絲裂黴素-C或米托蒽醌(mitoxantrone);尤其小紅莓); e) 有絲分裂抑制劑(例如太平洋紫杉醇(paclitaxel)、多烯紫杉醇(docetaxel)、伊沙匹隆(ixabepilone)、長春鹼(vinblastine)、長春新鹼(vincristine)、長春瑞賓(vinorelbine)、長春地辛(vindesine)或雌氮芥(estramustine);尤其太平洋紫杉醇、多烯紫杉醇、伊沙匹隆或長春新鹼);或 f) 拓樸異構酶抑制劑(例如依託泊苷(etoposide)、替尼泊苷(teniposide)、拓朴替康(topotecan)、伊立替康(irinotecan)、二氟替康(diflomotecan)或依洛替康(elomotecan);尤其依託泊苷或伊立替康)。
當與式(I)之化合物組合使用時,較佳之細胞毒性化學療法藥劑為以上提及之烷基化劑(尤其福莫司汀、環磷醯胺、異環磷醯胺、卡莫司汀、達卡巴嗪及其前藥,諸如尤其替莫唑胺或此等化合物之醫藥學上可接受之鹽;尤其替莫唑胺);有絲分裂抑制劑(尤其太平洋紫杉醇、多西他賽、伊沙匹隆;或此等化合物之醫藥學上可接受之鹽;尤其太平洋紫杉醇);鉑藥物(尤其順鉑、奧沙利鉑及卡鉑);以及依託泊苷及吉西他濱。
化學療法可在治癒意圖下給與或其可旨在延長生命或減輕症狀。 · 組合形式化學療法為使用藥物與其他癌症治療,諸如放射線療法或手術。 · 誘導化學療法為使用化學治療藥物之第一線癌症治療。此類型化學療法用於治癒意圖。 · 鞏固化學療法在緩解後提供,以延長整體無疾病時間且提高整體存活率。投與之藥物與實現緩解之藥物相同。 · 加強化學療法與鞏固化學療法一致,但使用與誘導化學療法不同之藥物。 · 組合化學療法涉及同時用許多不同藥物治療患者。該等藥物之機制及副作用不同。最大優點為對任一藥劑形成抗性之幾率降至最低。此外,藥物可常以較低劑量使用,降低毒性。 · 新輔助化學療法在諸如手術之局部治療前給與,且經設計以縮小原發性腫瘤。其亦用於具有高風險微轉移疾病之癌症。 · 輔助化學療法在局部治療(放射療法或手術)後給與。其可在幾乎無癌症存在之證據但存在復發風險時使用。其亦可用於殺死已擴散至其他身體部分之任何癌細胞。此等微小轉移灶可用輔助化學療法治療且可降低由此等散播性細胞引起之復發速率。 · 維持化學療法為重複低劑量治療以延長緩解。 · 補救性化學療法或緩解性化學療法在無治癒意圖下提供,但僅降低腫瘤負荷及延長預期壽命。對於此等方案,通常預期更佳之毒性概況。
在提及投藥類型時,「同時」在本申請案中意謂相關投藥類型在於在大致相同時間投與兩種或更多種活性成分及/或治療;其中應理解,同時投與將使個體同時暴露於兩種或更多種活性成分及/或治療。當同時投與時,該兩種或更多種活性成分可呈固定劑量組合或呈同等的非固定劑量組合(例如藉助於藉由相同投藥途徑在大致相同時間使用兩種或更多種待投與之不同醫藥組合物),或藉由非固定劑量組合,使用兩種或更多種不同投藥途徑來投與;其中該投藥使得個體基本上同時暴露於兩種或更多種活性成分及/或治療。舉例而言,當與化學療法及/或適合靶向療法組合使用時,本發明之EP2/EP4拮抗劑將可能「同時」使用。
當提及投藥類型時,「固定劑量組合」在本申請案中意謂相關投藥類型在於投與包含兩種或更多種活性成分之一種單個醫藥組合物。
當提及投藥類型時,「分開」在本申請案中意謂相關投藥類型在於在不同時間點投與兩種或更多種活性成分及/或治療;其中應理解分開投藥將產生其中個體同時暴露於兩種或更多種活性成分及/或治療之治療階段(例如至少1小時,尤其至少6小時,尤其至少12小時);但分開投藥亦可產生其中歷經某一時間段(例如至少12小時,尤其至少一天)個體僅暴露於兩種或更多種活性成分及/或治療中之一者。分開投藥尤其指代以下情況:以顯著不同於每日(諸如每天一次或兩次)投藥之週期性給與活性成分及/或治療中之至少一者(例如其中例如一天一次或兩次給與一種活性成分及/或治療,且另一種例如隔日、或一週一次或以甚至更長間隔給與)。舉例而言,當與放射療法組合使用時,本發明EP2/EP4拮抗劑將可能「分開」使用。
「在一段時間內」投與在本申請案中意謂在不同時間相繼投與兩種或更多種活性成分及/或治療。該術語尤其係指其中活性成分及/或治療中之一者之整個投藥在另一/其他活性成分及/或治療之投藥開始前完成的投藥方法。以此方式,可投與活性成分及/或治療中之一者達若干個月,接著投與其他活性成分及/或治療。
「在一段時間內」投與亦涵蓋其中在初始化學治療劑(例如誘導化學療法)及/或放射性治療及/或靶向療法治療終止後開始的治療中將使用式(I)化合物的情形,其中視情況該治療將與其他/持續化學治療劑及/或放射性治療及/或靶向療法治療組合(例如與鞏固化學療法、加強化學療法、輔助化學療法或維持化學療法或其放射性治療同等物組合);其中此類其他/持續化學治療及/或放射性治療及/或靶向療法治療將在「不以相同週期給與」的意義上同時、分開或在一段時間內。
如實施例1)至7)中所定義之式(I)化合物(尤其與PGE2受體EP4之調節劑組合)亦可用於調節具有腫瘤之個體中免疫反應之方法,其包含投與有效量之式(I)化合物;其中該有效量重新活化該個體之腫瘤中的免疫系統;其中尤其該有效量: · 對抗腫瘤相關巨噬細胞極化成促腫瘤M2巨噬細胞;及/或 · 下調腫瘤中累積之免疫抑制細胞(尤其調節T細胞(Tregs)及/或骨髓衍生抑制細胞(MDSC))之活化、擴增及/或效應功能;及/或 · 上調諸如自然殺手細胞、T細胞、樹突狀細胞及巨噬細胞之免疫細胞中IFN-γ及/或TNF-α及/或IL-12及/或IL-2表現(誘導腫瘤細胞細胞凋亡及/或限制腫瘤形成);及/或 · 直接或間接對抗細胞毒性T細胞之遏制活化、IL-2反應及擴增(從而減少局部免疫抑制)。
如實施例1)至7)中所定義之式(I)化合物(尤其與PGE2受體EP4之調節劑組合)亦可用於減少具有腫瘤之個體中之腫瘤生長及/或降低該個體中之腫瘤尺寸,其包含投與有效量之式(I)化合物;其中該有效量下調腫瘤血管生成(尤其藉由降低內皮細胞活動性及/或存活率,且/或藉由降低血管內皮生長因子(vascular endothelial growth factor;VEGF)之表現);且/或其中該有效量減小腫瘤細胞存活率且/或誘導腫瘤細胞細胞凋亡(尤其經由PI3K/AKT及MAPK信號傳導之抑制)。
如實施例1)至7)中所定義之式(I)化合物(尤其與PGE2受體EP4之調節劑組合)亦可用於調節具有腫瘤之個體中之免疫反應,其包含投藥有效量之式(I)化合物;其中該有效量重新活化該個體之腫瘤中之免疫系統;其中該有效量活化自然殺手細胞及/或細胞毒性T細胞之細胞毒性及細胞激素產生。
實驗部分 I. 化學物質 所有溫度係以℃形式進行陳述。市售起始物質未經進一步純化即按原樣使用。除非另外說明,否則所有反應皆在烘乾玻璃器皿中,在氮氣氛圍下進行。化合物藉由矽膠急驟管柱層析或藉由製備型HPLC來純化。描述於本發明中之化合物藉由使用列於以下之條件的LC-MS資料(以min給定滯留時間tR ;獲自質譜之分子量以g/mol給定)表徵。在本發明化合物呈現為構形異構體之混合物的情況下,尤其在其LC-MS譜圖中可見,給出最大量構像之滯留時間。
分析型 LC-MS 裝備 HPLC泵:二元梯度泵,Agilent G4220A或等效物 自動取樣器:Gilson LH215 (具有Gilson 845z注射器)或等效物 管柱隔室:Dionex TCC-3000RS或等效物 脫氣器:Dionex SRD-3200或等效物 補給泵:Dionex HPG-3200SD或等效物 DAD偵測器:Agilent G4212A或等效物 MS偵測器:單四極質量分析器,Thermo Finnigan MSQPlus或等效物 ELS偵測器:Sedere SEDEX 90或等效物
LC-MS 方法 A 管柱:Zorbax SB-aq (3.5 μm, 4.6 × 50 mm)。條件:MeCN [溶離劑A];水 + 0.04% TFA [溶離劑B]。梯度:95% B→5% B,歷經1.5 min (流速:4.5 mL/min)。偵測:UV/Vis + MS,tR 以min給出。
製備型 HPLC 裝備 配備有Gilson LH215之Gilson 333/334 HPLC泵、Dionex SRD-3200脫氣器、Dionex ISO-3100A補給泵、Dionex DAD-3000 DAD偵測器、單四極質量分析器MS偵測器、Thermo Finnigan MSQ Plus、MRA100-000分流器、Polymer Laboratories PL-ELS1000 ELS偵測器。
具有鹼性條件之製備型 HPLC 管柱:Waters XBridge (10 μm,75 × 30 mm)。條件:MeCN [溶離劑A];水+ 0.5% NH4 OH (25% aq.) [溶離劑B];梯度參見 1 (流速:75 mL/min),視待純化之化合物之極性決定溶離劑A之起始百分比(x)。偵測:UV/Vis + MS 1
Figure 107116708-A0304-0001
具有酸性條件之製備型 HPLC 管柱:Waters Atlantis T3 (10 μm,75×30 mm)。條件:MeCN[溶離劑A];水+0.5% HCO2 H [溶離劑B];梯度參見 2 (流動速率:75 mL/min),視待純化之化合物之極性來決定溶離劑A之起始百分比(x)。偵測:UV/Vis + MS 2
Figure 107116708-A0304-0002
縮寫 ( 如上文或下文中使用 ) aq. 水溶液 atm 氛圍 boc 第三丁氧基羰基 d 天 DCM 二氯甲烷 DIPEA 二異丙基-乙胺,惠尼格氏鹼 DMF 二甲基甲醯胺 DMSO 二甲亞碸 Et2 O 二乙醚 EtOAc 乙酸乙酯 EtOH 乙醇 Ex. 實例 FC 矽膠急驟層析 h 小時 hept 庚烷 HPLC 高效液相層析 LC-MS 液相層析質法 Lit. 文獻 MeCN 乙腈 MeOH 甲醇 mL 毫升 min 分鐘 MW 微波 Ph 苯基 PPh3 三苯基膦 prep. 製備型 RM 反應混合物 RT 室溫 s 秒 sat. 飽和(若未以其他方式指示:飽和水溶液) tBu 第三丁基(tert-butyl)=第三丁基(tertiary butyl) TEA 三乙胺 TFA 三氟乙酸 THF 四氫呋喃 TLC 薄層層析法 tR 反應時間 triflate三氟甲磺酸酯
A- 製備式 (III) 之嘧啶鹵化物衍生物 A.1. 6- -N-(2-(2- 甲基 -1H- 吲哚 -1- ) 乙基 ) 嘧啶 -4- 在室溫下向4,6-二氯嘧啶(3.00 g,20.1 mmol)於2-丙醇(50 mL)中之溶液添加2-(2-甲基-1H-吲哚-1-基)乙-1-胺(3.68 g,21.1 mmol)及TEA (3.08 mL,22.2 mmol)。使所得混合物回流2 h,隨後使其冷卻至室溫且在減壓下濃縮。將殘餘物分配於飽和NaHCO3 水溶液與EtOAc之間。分離各層,且用EtOAc再次萃取水層。合併之有機層用水、鹽水洗滌,經MgSO4 乾燥,過濾且溶劑在真空中移除,獲得呈黃色粉末狀之所需產物(5.45 g,94%)。LC-MS A:tR = 0.87 min;[M+H]+ = 287.13。
A.1.1. 2-(2- 甲基 -1H- 吲哚 -1- ) -1- 向2-甲基吲哚(10.04 g, 75 mmol)於甲苯(200 mL)中之溶液添加2-氯乙胺鹽酸鹽(17.4 g,150 mmol)、新鮮粉末狀NaOH (21.00 g,525 mmol)及硫酸氫四丁基銨(2.037 g,6 mmol)。將所得混合物加熱至回流且攪拌17 h。隨後冷卻至室溫,且經由濾紙過濾。殘餘物用甲苯濕磨兩次,且過濾。濾液在減壓下濃縮,且殘餘物藉由FC純化使用100:0至95:5之DCM/MeOH梯度。在濃縮含有產物之溶離份之後,獲得呈黃色樹脂狀之標題化合物(13.2 g,99%):LC-MS A:tR = 0.54 min;[M+H]+ = 175.31。
A.2. 1-(2-((6- 氯嘧啶 -4- ) 胺基 ) 乙基 )-1H- 吲哚 -2- 甲腈 標題化合物係根據上文所述之A.1.之合成使用2,2,2-三氟乙酸2-(2-氰基-1H-吲哚-1-基)乙-1-銨製備;LC-MS A:tR = 0.85 min;[M+H]+ = 298.05。
A.2.1. 2,2,2- 三氟乙酸 2-(2- 氰基 -1H- 吲哚 -1- ) -1- (2-(2-氰基-1H-吲哚-1-基)乙基)胺基甲酸第三丁酯(2.08 g,6.56 mmol)於DCM (20 mL)中之溶液用TFA (20 mL)處理且RM在室溫下攪拌1 h。在真空下移除溶劑。殘餘物在Et2 O中濕磨三次,得到呈米色粉末狀之標題化合物(1.56 g,81%)。LC-MS A:tR = 0.82 min;[M+H]+ = 186.25。
A.2.2. (2-(2- 氰基 -1H- 吲哚 -1- ) 乙基 ) 胺基甲酸第三丁酯 向1H-吲哚-2-甲腈(0.80 g,5.63 mmol)於DMF (25 mL)中之溶液逐份添加NaH (0.27 g,6.75 mmol)且在室溫下將RM攪拌15 min。逐滴添加N-第三丁氧羰基-2-溴乙基-胺(1.30 g,5.63 mmol)於DMF (10 mL)中之溶液,且將RM加熱達至85℃且在此溫度下攪拌17 h,隨後在室溫下冷卻且分配於Et2 O與Et2 O之間。水層用Et2 O再次萃取(3次)。合併之有機層經MgSO4 乾燥,過濾且在減壓下濃縮,得到呈褐色油狀物之標題化合物。LC-MS A:tR = 0.90 min;[M+H-Boc]+ = 186.27。
A.3. 6- -N-(2-(2,7- 二甲基 -1H- 吲哚 -1- ) 乙基 ) 嘧啶 -4- 標題化合物係根據上文所述之A.1.之合成,使用2-(2-甲基-1H-吲哚-1-基)乙-1-胺製備;LC-MS A:tR = 0.91 min;[M+H]+ = 301.19。
A.3.1. 2-(2- 甲基 -1H- 吲哚 -1- ) -1- 標題化合物係根據上文所述之A.1.1.之合成,使用2,7-二甲基吲哚製備;LC-MS A:tR = 0.58 min;[M+H]+ = 189.26。
B- 製備實例 一般程序 A Pd(PPh3 )4 之鈴木偶合 用氬氣吹掃各別嘧啶鹵化物衍生物(II) (0.15 mmol)、各別4-羧基苯基硼酸(0.18 mmol)及K2 CO3 2 M (0.3 mL,0.6 mmol)於乙醇(3 mL)中之混合物,添加四-(三苯基膦)-鈀(0.0075 mmol),且在90℃下RM過夜。可替代地,反應可在120℃下於微波設備中進行,持續10-30 min。RM經0.45 μm Glass MicroFiber過濾器過濾,用EtOH/MeCN及DMF洗滌。藉由製備型HPLC或FC純化濾液。可替代地,用水稀釋,視需要調節pH值且用EtOAc萃取(3次)。將合併之有機萃取物乾燥(MgSO4 )且在減壓下濃縮。藉由製備型HPLC或FC純化殘餘物。
實例 1 4-{6-[2-(2- 甲基 - 吲哚 -1- )- 乙胺基 ]- 嘧啶 -4- }- 苯甲酸 標題化合物係根據上文所述之一般程序A,使用6-氯-N-(2-(2-甲基-1H-吲哚-1-基)乙基)嘧啶-4-胺(A.1.)製備且獲得呈灰白色固體狀;LC-MS A:tR = 0.67 min;[M+H]+ = 373.09。
實例 2 4-{6-[2-(2- 氰基 - 吲哚 -1- )- 乙胺基 ]- 嘧啶 -4- }- 苯甲酸 標題化合物係根據上文所述之一般程序A,使用1-(2-((6-氯嘧啶-4-基)胺基)乙基)-1H-吲哚-2-甲腈(A.2.)製備且獲得呈灰白色固體狀;LC-MS A:tR = 0.56 min;[M+H]+ = 384.16。
實例 3 4-{6-[2-(2,7- 二甲基 - 吲哚 -1- )- 乙胺基 ]- 嘧啶 -4- }- 苯甲酸 標題化合物係根據上文所述之一般程序A,使用6-氯-N-(2-(2,7-二甲基-1H-吲哚-1-基)乙基)嘧啶-4-胺(A.3.)製備且獲得呈淡黃色固體狀;LC-MS A:tR = 0.69 min;[M+H]+ = 386.92。
實例 4 4-{6-[2-(2- - 吲哚 -1- )- 乙胺基 ]- 嘧啶 -4- }- 苯甲酸 向MW小瓶裝入4-(6-((2-(2-側氧基吲哚啉-1-基)乙基)胺基)嘧啶-4-基)苯甲酸第三丁酯(200 mg,0.465 mmol)、DCM (3 mL)及POCl3 (0.0848 mL,0.929 mmol),其經密封且在回流下攪拌6 h。將RM冷卻至0℃且用NaOH 32%謹慎驟冷直至鹼性pH值,隨後謹慎地添加額外的水。水層用DCM萃取(3次)。有機層用鹽水洗滌,經MgSO4 乾燥。過濾且在減壓下濃縮。添加MeOH且在減壓下移除溶劑。將殘餘物溶解於乙醇(2 mL)及H2O (1 mL)中,添加單水合氫氧化鋰(101 mg,2.38 mmol)且在105℃下將混合物加熱1 h。反應混合物經由0.45 μm Glass MicroFiber過濾器過濾且藉由鹼性製備型HPLC純化以得到呈白色固體狀之粗標題化合物(16 mg,9%)。LC-MS A:tR = 0.69 min;[M+H]+ = 393.13。
a) 4-(6-((2-(2- 側氧基吲哚啉 -1- ) 乙基 ) 胺基 ) 嘧啶 -4- ) 苯甲酸第三丁酯 標題化合物係根據上文所述之一般程序A,使用1-(2-((6-氯嘧啶-4-基)胺基)乙基)吲哚啉-2-酮及4-第三丁氧基羰基苯基硼酸製備;LC-MS A:tR = 0.75 min;[M+H]+ = 431.07。
b) 1-(2-((6- 氯嘧啶 -4- ) 胺基 ) 乙基 ) 吲哚啉 -2- 標題化合物係根據上文所述之一般程序A.1.,使用1-(2-胺基乙基)吲哚啉-2-酮製備;LC-MS A:tR = 0.70 min;[M+H]+ = 289.13。
實例 5 4-{6-[2-(2- - 吲哚 -1- )- 乙胺基 ]- 嘧啶 -4- }- 苯甲酸 向MW小瓶裝入4-(6-((2-(2-側氧基吲哚啉-1-基)乙基)胺基)嘧啶-4-基)苯甲酸乙酯(60 mg,0.149 mmol)、DCM (2 mL)及POBr3 (64 mg,0.224 mmol),其經密封且在回流下攪拌1 h。將RM冷卻至室溫,添加咪唑(12.3 mg,0.179 mmol),且使RM回流48 h。RM經冷卻且用飽和NaHCO3水溶液謹慎驟冷且用DCM萃取(3次)。用鹽水洗滌有機層,經MgSO4 乾燥,過濾,且在減壓下濃縮。使殘餘物溶解於乙醇(2 mL)及H2O (1 mL)中,添加單水合氫氧化鋰(35 mg,0.83 mmol)且使混合物回流過夜。反應混合物經由0.45 μm Glass MicroFiber過濾器過濾且藉由鹼性製備型HPLC純化以得到呈黃色固體狀之粗標題化合物(1 mg,1%)。LC-MS A:tR = 0.69 min;[M+H]+ = 438.85。
a) 4-(6-((2-(2- 側氧基吲哚啉 -1- ) 乙基 ) 胺基 ) 嘧啶 -4- ) 苯甲酸乙酯 標題化合物係根據上文所述之一般程序A,使用1-(2-((6-氯嘧啶-4-基)胺基)乙基)吲哚啉-2-酮(實例 4-b)及4-乙氧基羰基苯基硼酸製備;LC-MS A:tR = 0.69 min;[M+H]+ = 402.94。
活體外生物分析
根據以下實驗方法測定式(I)化合物對EP2及EP4受體之拮抗活性。
該分析係使用來自DiscoverX之PathHunterTM HEK 293 PTGER2及PTGER4 b-抑制蛋白細胞株。該系統係基於酶片段互補技術。b-半乳糖酶之兩個互補片段在穩定轉染之細胞內表現。b-gal之較大部分(稱為酶受體之EA)與b-抑制蛋白2之C端融合。較小片段(稱為ProLinkTM標籤)在C端與PTGER2 (EP2)或PTRGER4 (EP4)。在活化時,募集b-抑制蛋白,其迫使ProLink與EA相互作用,允許b-gal之兩個片段互補且形成能夠水解受質且產生化學發光信號之功能性酶。
hEP2 b-抑制蛋白分析: 用細胞解離緩衝液(Invitrogen, 13151-014)使HEK 293 PTGER2 b-抑制蛋白細胞(DiscoverX 93-021-4C1)與培養皿分離,且收集在生長培養基(GM: DMEM + 格魯塔瑪(Glutamax)-I (Invitrogen 32430)/10% FCS,1%青黴素(Penicilin)/鏈黴素(streptomycin))中。將384孔板(白色,具有白底,Greiner 781080)中每孔5000個細胞接種在每孔20 μl GM中。板在37℃、5% CO2下培育24小時。
在DMSO中製成測試化合物之儲備溶液,濃度為10 mM,且在DMSO中連續稀釋至抑制劑量反應曲線所需之濃度(測試濃度範圍10 μM-2 nM或1 μM-0.2 nM)。
在5 μM最終濃度下PGE2 (Cayman 14010,儲備溶液:10 mM於DMSO中)用作促效劑,對應於EC80。
將五微升經稀釋之化合物轉移至分析板中。將板在37℃下預培育15分鐘。接著將五微升PGE2 (最終濃度5 μM)轉移至分析板中。將板在37℃下培育120分鐘。
使PathHunter Glo偵測套組組分解凍且根據製造商說明書分別混合:1份Galacton Star受質與5份Emerald IITM溶液,及19份PathHunter細胞分析緩衝液。將十二微升試劑轉移至分析板且在室溫下在黑暗中培育1小時。發光計數在BMG Fluostar Optima讀數器上根據製造商之說明書讀取。
對於各化合物濃度,與DMSO對照值相比活性百分比計算為平均值±STDEV。(各濃度一式兩份量測)
IC50值及曲線用XLfit軟體(IDBS)使用劑量反應一定點模型203 (Dose-Response One Site model 203)產生。當多次量測化合物時,給出平均值。
hEP4 b-抑制蛋白分析: 用細胞解離緩衝液(Invitrogen, 13151-014)使HEK 293 PTGER4 b-抑制蛋白細胞(DiscoverX 93-030-4C1)與培養皿分離,且收集在生長培養基(GM: DMEM + 格魯塔瑪-I (Invitrogen 32430)/10% FCS,1%青黴素/鏈黴素)中。將384孔板(白色,具有白底,Greiner 781080)中每孔5000個細胞接種在每孔20 μl GM中。板在37℃、5% CO2下培育24小時。
在DMSO中製成測試化合物之儲備溶液,濃度為10 mM,且在DMSO中連續稀釋至抑制劑量反應曲線所需之濃度(測試濃度範圍10 μM-2 nM或1 μM-0.2 nM)。
在20 nM最終濃度下PGE2 (Cayman 14010,儲備溶液:100 μM於DMSO中)用作促效劑,對應於EC80。
將五微升經稀釋之化合物轉移至分析板中。將板在37℃下預培育15分鐘。接著五微升PGE2 (最終濃度20 nM)轉移至分析盤中。將板在37℃下培育120分鐘。
使PathHunter Glo偵測套組組分解凍且根據製造商說明書分別混合:1份Galacton Star受質與5份Emerald IITM溶液,及19份PathHunter細胞分析緩衝液。將十二微升試劑轉移至分析板且在室溫下在黑暗中培育1小時。發光計數在BMG Fluostar Optima讀數器上根據製造商之說明書讀取。
對於各化合物濃度,與DMSO對照值相比活性百分比計算為平均值±STDEV。(各濃度一式兩份量測)
IC50值及曲線用XLfit軟體(IDBS)使用劑量反應一定點模型203產生。當多次量測化合物時,給出平均值。
亦根據以下實驗方法測定式(I)化合物對EP2及EP4受體之拮抗活性。
使用內源性表現EP4或EP2之人類腫瘤細胞株且監測在PGE2刺激時細胞中之cAMP累積。SF295神經膠母細胞瘤細胞表現高內源性EP2且未表現EP4,而BT549乳癌細胞表現高內源性EP4含量及極低EP2含量。
作為cAMP之偵測方法,使用HTRF (均相時間分辨螢光) Cisbio套組(HTRF cAMP動態2套組20'000測試Cisbio目錄號62AM4PEC),其係基於使用穴狀化合物標記之抗cAMP抗體及d2標記之cAMP的競爭性免疫分析。藉由細胞產生之原生cAMP或未標記之cAMP (用於標準曲線)與以外源方式添加之d2標記之cAMP (受體)競爭結合於單株抗cAMP-Eu3+穴狀化合物(供體)。僅在標記之抗cAMP抗體結合d2標記之cAMP時才獲得FRET信號(螢光共振能量轉移),因此特定信號(亦即能量轉移)與標準或樣品中cAMP之濃度成反比。
hEP2 cAMP分析: 用細胞解離緩衝液(Invitrogen, 13151-014)使SF295細胞(NCI/第0503170號)與培養皿分離,且收集在生長培養基(GM: RPMI1640 (Invitrogen 21875)/10% FCS, 1%青黴素/鏈黴素)中。將細胞計數,洗滌且再懸浮於分析緩衝液(AB;HBSS、20 mM HEPES、0.2% BSA;2 mM IBMX)中。將含4'000個細胞之5 μl AB接種於小體積384孔板(黑色,具有平坦底部,Greiner 784076)之每個孔中。
在DMSO中製成測試化合物之儲備溶液,濃度為10 mM,且在DMSO中連續稀釋至抑制劑量反應曲線所需之濃度(測試濃度範圍30 μM至0.4 nM;30 μM至0.015 nM或1 μM至0.01 nM)。
在75 nM最終濃度下使用PGE2 (Cayman 14010,儲備溶液:75 μM於DMSO中)作為促效劑,對應於EC80。
將2.5 µL經稀釋之化合物轉移至分析板中。將板在室溫下預培育45分鐘。隨後,將2.5 mL PGE2 (最終濃度75nM)轉移至分析板中。將板在室溫下培育30分鐘。添加五微升各供體(抗cAMP穴狀化合物)及受體(cAMP-d2)且板在暗處,在室溫下再培育一小時,且接著使用BMG LABTECH PHERAstar讀取器(激發:337 nm,發射:620及665 nm)讀取。
使用套組中提供之cAMP校正器之量測結果將所得ΔF(螢光)值(665 nm/620 nM)轉換成cAMP百分比值。對於各化合物濃度,與DMSO對照值相比,cAMP之百分比計算為平均值±STDEV (一式兩份地量測各濃度)。
IC50值及曲線用XLfit軟體(IDBS)使用劑量反應一定點模型203產生。當多次量測化合物時,給出平均值。
hEP4 cAMP分析: 用細胞解離緩衝液(Invitrogen, 13151-014)使BT549細胞(NCI/第0507282號)與培養皿分離,且收集在生長培養基(GM: RPMI1640 (Invitrogen 21875)/10% FCS, 1%青黴素/鏈黴素)中。將細胞計數,洗滌且再懸浮於分析緩衝液(AB;HBSS、20 mM HEPES、0.2% BSA;2 mM IBMX)中。將含4'000個細胞之5 μl AB接種於小體積384孔板(黑色,具有平坦底部,Greiner 784076)之每個孔中。
在DMSO中製成測試化合物之儲備溶液,濃度為10 mM,且在DMSO中連續稀釋至抑制劑量反應曲線所需之濃度(測試濃度範圍30 μM至0.4 nM;30 μM至0.015 nM或1 μM至0.01 nM)。
在6 nM最終濃度下使用PGE2 (Cayman 14010,儲備溶液:6 μM於DMSO中)作為促效劑,對應於EC80。
將2.5 µL經稀釋之化合物轉移至分析板中。將板在室溫下預培育45分鐘。接著,將2.5 mL PGE2 (最終濃度6 nM)轉移至分析板中。將板在室溫下培育30分鐘。添加五微升各供體(抗cAMP穴狀化合物)及受體(cAMP-d2)且板在暗處,在室溫下再培育一小時,且接著使用BMG LABTECH PHERAstar讀取器(激發:337 nm,發射:620及665 nm)讀取。
使用套組中提供之cAMP校正器之量測結果將所得ΔF(螢光)值(665 nm/620 nM)轉換成cAMP百分比值。對於各化合物濃度,與DMSO對照值相比,cAMP之百分比計算為平均值±STDEV (一式兩份地量測各濃度)。
IC50值及曲線用XLfit軟體(IDBS)使用劑量反應一定點模型203產生。當多次量測化合物時,給出平均值。
例示化合物之拮抗活性顯示於 3 中: 3
Figure 107116708-A0304-0003
Figure 107116708-A0101-11-0002-3

Claims (13)

  1. 一種式(I)化合物,
    Figure 107116708-A0305-02-0050-1
    其中R 1 表示氫或甲基;R 2 表示甲基、溴、氯或氰基;或其醫藥學上可接受之鹽。
  2. 如請求項1之化合物,其中R 1 表示氫;或其醫藥學上可接受之鹽。
  3. 如請求項1之化合物,其中R 1 表示甲基;或其醫藥學上可接受之鹽。
  4. 如請求項1至3中任一項之化合物,其中R 2 表示甲基;或其醫藥學上可接受之鹽。
  5. 如請求項1至3中任一項之化合物,其中R 2 表示氯;或其醫藥學上可接受之鹽。
  6. 如請求項1至3中任一項之化合物,其中R 2 表示氰基;或其醫藥學上可接受之鹽。
  7. 如請求項1之化合物,其選自由以下組成之群:4-{6-[2-(2-甲基-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸;4-{6-[2-(2-氰基-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸;4-{6-[2-(2,7-二甲基-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸;4-{6-[2-(2-氯-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸;及4-{6-[2-(2-溴-吲哚-1-基)-乙胺基]-嘧啶-4-基}-苯甲酸;或其醫藥學上可接受之鹽。
  8. 一種醫藥組合物,其包含作為活性成分之如請求項1至7中任一項之化合物或其醫藥學上可接受之鹽,以及至少一種治療惰性賦形劑。
  9. 一種如請求項1至7中任一項之化合物或其醫藥學上可接受之鹽之用途,其用於製備藥劑。
  10. 一種如請求項1至7中任一項之化合物或其醫藥學上可接受之鹽之用途,其用於製備預防或治療選自由以下組成之群的疾病之藥劑:癌症;疼痛;子宮內膜異位;體染色體顯性多囊性腎病;動脈粥樣硬化患者中急性缺血症候群;肺炎;以及神經退化性疾病;或用於控制女性生育力。
  11. 一種如請求項1至7中任一項之化合物或其醫藥學上可接受之鹽之用途,其用於製備預防或治療選自黑素瘤、肺癌、膀胱癌、腎癌、胃腸癌、子宮內膜癌、卵巢癌、子宮頸癌以及神經母細胞瘤之癌症之藥劑。
  12. 一種如請求項1至7中任一項之化合物或其醫藥學上可接受之鹽之用途,其用於製備治療癌症之藥劑,其中該藥劑係調節具有腫瘤之個體中免疫反應;其中該藥劑重新活化該個體之該腫瘤中的免疫系統。
  13. 一種如請求項1至7中任一項之化合物或其醫藥學上可接受之鹽之用途,其用於製備預防或治療癌症之藥劑;其中該化合物與PGE2受體EP4之調節劑組合使用;及另外視情況與一或多種化學療法藥劑及/或放射療法及/或靶向療法組合使用。
TW107116708A 2017-05-18 2018-05-17 N-取代吲哚衍生物 TWI768043B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??PCT/EP2017/062008 2017-05-18
EP2017062008 2017-05-18
WOPCT/EP2017/062008 2017-05-18

Publications (2)

Publication Number Publication Date
TW201900637A TW201900637A (zh) 2019-01-01
TWI768043B true TWI768043B (zh) 2022-06-21

Family

ID=62186481

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107116708A TWI768043B (zh) 2017-05-18 2018-05-17 N-取代吲哚衍生物

Country Status (32)

Country Link
US (2) US20200069686A1 (zh)
EP (1) EP3625224B1 (zh)
JP (1) JP7065117B2 (zh)
KR (1) KR102650756B1 (zh)
CN (1) CN110621666A (zh)
AR (1) AR111806A1 (zh)
AU (1) AU2018269667B2 (zh)
BR (1) BR112019024114A2 (zh)
CA (1) CA3063637A1 (zh)
CL (1) CL2019003257A1 (zh)
CO (1) CO2019010804A2 (zh)
CR (1) CR20190567A (zh)
CY (1) CY1124528T1 (zh)
DK (1) DK3625224T3 (zh)
EA (1) EA039630B1 (zh)
ES (1) ES2894124T3 (zh)
HR (1) HRP20211532T1 (zh)
HU (1) HUE056406T2 (zh)
IL (1) IL270616B (zh)
LT (1) LT3625224T (zh)
MA (1) MA49127B1 (zh)
MX (1) MX2019013639A (zh)
PE (1) PE20191787A1 (zh)
PH (1) PH12019502562A1 (zh)
PL (1) PL3625224T3 (zh)
PT (1) PT3625224T (zh)
RS (1) RS62441B1 (zh)
SG (1) SG11201908660RA (zh)
SI (1) SI3625224T1 (zh)
TW (1) TWI768043B (zh)
UA (1) UA124748C2 (zh)
WO (1) WO2018210995A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CR20180323A (es) 2015-11-20 2018-08-06 Idorsia Pharmaceuticals Ltd Derivados de indol n-sustituídos como moduladores de los receptores de pge2
AU2018268311B2 (en) 2017-05-18 2022-02-10 Idorsia Pharmaceuticals Ltd Pyrimidine derivatives as PGE2 receptor modulators
US11446298B2 (en) 2017-05-18 2022-09-20 Idorsia Pharmaceuticals Ltd Pyrimidine derivatives
US11325899B2 (en) 2017-05-18 2022-05-10 Idorsia Pharmaceuticals Ltd Benzofurane and benzothiophene derivatives as PGE2 receptor modulators
AR111941A1 (es) 2017-05-18 2019-09-04 Idorsia Pharmaceuticals Ltd Derivados de pirimidina como moduladores del receptor de pge2
WO2021060281A1 (ja) * 2019-09-24 2021-04-01 Agc株式会社 プロスタグランジンe2レセプターep2/ep4デュアルアンタゴニスト
CN115697317A (zh) * 2020-04-08 2023-02-03 株式会社AskAt Ep4受体拮抗剂用于治疗肝癌、黑色素瘤、淋巴瘤和白血病的应用
KR20230107228A (ko) 2020-11-13 2023-07-14 오노 야꾸힝 고교 가부시키가이샤 Ep4 길항약과 면역 체크포인트 저해 물질의 병용에 의한 암 치료

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661896A1 (en) * 2003-08-26 2006-05-31 Teijin Pharma Limited Pyrrolopyrimidinethione derivative
EP2014657A1 (de) * 2007-06-21 2009-01-14 Bayer Schering Pharma Aktiengesellschaft Diaminopyrimidine als Modulatoren des EP2-Rezeptors
WO2012127032A1 (en) * 2011-03-24 2012-09-27 Chemilia Ab Novel pyrimidine derivatives

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1267867T3 (da) 2000-03-24 2008-08-25 Asterand Uk Ltd Anvendelse af prostanoid-EP4-receptorantagonister til behandling af hovedpine og assays til sådanne antagonister
HN2001000224A (es) 2000-10-19 2002-06-13 Pfizer Compuestos de imidazol condensado con arilo o heteroarilo como agentes anti - inflamatorios y analgesicos.
GB0031302D0 (en) 2000-12-21 2001-01-31 Glaxo Group Ltd Napthalene derivatives
GB0031295D0 (en) 2000-12-21 2001-01-31 Glaxo Group Ltd Naphthalene derivatives
GB0103269D0 (en) 2001-02-09 2001-03-28 Glaxo Group Ltd Napthalene derivatives
EP1494667A1 (en) 2002-04-12 2005-01-12 Pfizer Japan Inc. Imidazole compounds as anti-inflammatory and analgesic agents
CA2482382A1 (en) 2002-04-12 2003-10-23 Pfizer Inc. Pyrazole compounds as anti-inflammatory and analgesic agents
BR0311247A (pt) 2002-05-23 2005-03-15 Theratechnologies Inc Peptìdeos antagonistas do receptor subtipo ep4 da prostaglandina e2
ATE396182T1 (de) 2003-01-29 2008-06-15 Asterand Uk Ltd Hemmstoffe des ep4-rezeptors
ES2441206T3 (es) 2003-09-03 2014-02-03 Raqualia Pharma Inc. Compuestos de fenil o piridilamida como antagonistas de la prostaglandina E2
GB0324269D0 (en) 2003-10-16 2003-11-19 Pharmagene Lab Ltd EP4 receptor antagonists
EA200601830A1 (ru) 2004-05-04 2007-04-27 Пфайзер Инк. Ортозамещённые арильные или гетероарильные амидные соединения
KR20070006891A (ko) 2004-05-04 2007-01-11 화이자 인코포레이티드 치환된 메틸 아릴 또는 헤테로아릴 아미드 화합물
HN2005000795A (es) 2004-10-15 2010-08-19 Aventis Pharma Inc Pirimidinas como antagonistas del receptor de prostaglandina d2
EP1885722B1 (en) 2005-05-19 2011-11-16 Merck Canada Inc. Quinoline derivatives as ep4 antagonists
WO2006128129A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating cancer
EP2013169B1 (en) 2006-04-24 2012-08-22 Merck Canada Inc. Indole amide derivatives as ep4 receptor antagonists
EP2035376B1 (en) 2006-06-12 2014-08-27 Merck Canada Inc. Indoline amide derivatives as ep4 receptor ligands
WO2008008059A1 (en) 2006-07-12 2008-01-17 Locus Pharmaceuticals, Inc. Anti-cancer agents ans uses thereof
WO2008006583A1 (en) 2006-07-14 2008-01-17 Novartis Ag Pyrimidine derivatives as alk-5 inhibitors
JP5259592B2 (ja) 2006-08-11 2013-08-07 メルク カナダ インコーポレイテッド Ep4受容体リガンドとしてのチオフェンカルボキサミド誘導体
WO2008039882A1 (en) 2006-09-30 2008-04-03 Sanofi-Aventis U.S. Llc A combination of niacin and a prostaglandin d2 receptor antagonist
AU2008221194B2 (en) 2007-02-26 2013-06-27 Merck Canada Inc. Indole and indoline cyclopropyl amide derivatives as EP4 receptor antagonists
US8003661B2 (en) 2007-03-26 2011-08-23 Merck Canada Inc. Naphthalene and quinoline sulfonylurea derivatives as EP4 receptor antagonists
US8030489B2 (en) 2007-03-26 2011-10-04 Astellas Pharma Inc. Ornithine derivative
EP2460787A1 (en) 2007-07-03 2012-06-06 Astellas Pharma Inc. Amide compounds and their use as PGE2 antagonists.
CA2724077C (en) 2008-05-14 2016-04-26 Astellas Pharma Inc. Amide compound
JP5536773B2 (ja) 2008-08-14 2014-07-02 ベータ・ファーマ・カナダ・インコーポレイテッド Ep4受容体アンタゴニストとしてのヘテロ環式アミド誘導体
GB2474813B (en) 2008-09-19 2014-05-28 Biotechnology Res Corp Ltd Triterpenoid compounds and methods of use thereof
EP2346866B1 (en) 2008-09-25 2013-11-27 Merck Canada Inc. Beta-carboline sulphonylurea derivatives as ep4 receptor antagonists
US8927547B2 (en) 2010-05-21 2015-01-06 Noviga Research Ab Pyrimidine derivatives
EP3061751A1 (en) 2010-09-21 2016-08-31 Eisai R&D Management Co., Ltd. Pharmaceutical composition
KR101857310B1 (ko) 2010-09-29 2018-05-11 가부시키가이샤 에누비 켄코우겡큐쇼 인간 프로스타글란딘 e2 수용체 ep4 에 대한 항체
US8828987B2 (en) 2010-12-10 2014-09-09 Rottapharm Biotech S.R.L. Pyridine amide derivatives as EP4 receptor antagonists
WO2012103071A2 (en) 2011-01-25 2012-08-02 Eisai R&D Management Co., Ltd. Compounds and compositions
ES2559513T3 (es) 2011-07-04 2016-02-12 Rottapharm Biotech S.R.L. Derivados de amina cíclica como antagonistas del receptor EP4
EP2554662A1 (en) 2011-08-05 2013-02-06 M Maria Pia Cosma Methods of treatment of retinal degeneration diseases
WO2013090552A1 (en) 2011-12-13 2013-06-20 Yale University Compositions and methods for reducing ctl exhaustion
RU2638540C1 (ru) 2012-04-24 2017-12-14 Вертекс Фармасьютикалз Инкорпорейтед Ингибиторы днк-пк
AR091429A1 (es) 2012-06-29 2015-02-04 Lilly Co Eli Compuestos de fenoxietil piperidina
TWI572597B (zh) 2012-06-29 2017-03-01 美國禮來大藥廠 二甲基-苯甲酸化合物
UA115576C2 (uk) 2012-12-06 2017-11-27 Байєр Фарма Акцієнгезелльшафт Похідні бензимідазолу як антагоністи ер4
EP2765128A1 (en) 2013-02-07 2014-08-13 Almirall, S.A. Substituted benzamides with activity towards EP4 receptors
TW201443004A (zh) 2013-02-15 2014-11-16 Lilly Co Eli 苯氧基乙氧基化合物
TWI636046B (zh) 2013-05-17 2018-09-21 美國禮來大藥廠 苯氧基乙基二氫-1h-異喹啉化合物
US9593081B2 (en) 2013-06-12 2017-03-14 Kaken Pharmaceutical Co., Ltd. 4-alkynyl imidazole derivative and medicine comprising same as active ingredient
KR102276644B1 (ko) 2013-09-04 2021-07-13 브리스톨-마이어스 스큅 컴퍼니 면역조절제로서 유용한 화합물
SG11201601682RA (en) 2013-09-06 2016-04-28 Aurigene Discovery Tech Ltd 1,2,4-oxadiazole derivatives as immunomodulators
WO2015044900A1 (en) 2013-09-27 2015-04-02 Aurigene Discovery Technologies Limited Therapeutic immunomodulating compounds
CA2927392C (en) 2013-10-17 2021-11-09 Vertex Pharmaceuticals Incorporated Dna-pk inhibitors
WO2015094912A1 (en) 2013-12-17 2015-06-25 Eli Lilly And Company Dimethylbenzoic acid compounds
HUE035698T2 (en) 2013-12-17 2018-05-28 Lilly Co Eli Phenoxyethyl ring amine derivatives and their activity as EP4 receptor modulator
TW201607943A (zh) 2013-12-19 2016-03-01 拜耳製藥公司 作為ep4配體之新穎苯并咪唑衍生物
TW201623277A (zh) 2014-03-26 2016-07-01 安斯泰來製藥股份有限公司 醯胺化合物
CN106572993B (zh) 2014-05-23 2019-07-16 卫材R&D管理有限公司 Ep4拮抗剂在制备治疗癌症的药物中的应用
WO2016021742A1 (en) 2014-08-07 2016-02-11 Takeda Pharmaceutical Company Limited Heterocyclic compounds as ep4 receptor antagonists
WO2016054807A1 (en) 2014-10-10 2016-04-14 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS, COMPOSITIONS AND METHODS THEREOF
KR102559499B1 (ko) 2015-01-09 2023-07-25 오노 야꾸힝 고교 가부시키가이샤 삼환성 스피로 화합물
CA2993312A1 (en) 2015-07-23 2017-01-26 Takeda Pharmaceutical Company Limited 1-substituted 1,2,3,4-tetrahydro-1,7-naphthyridin-8-amine derivatives and their use as ep4 receptor antagonists
JP6860559B2 (ja) 2015-10-16 2021-04-14 エーザイ・アール・アンド・ディー・マネジメント株式会社 Ep4アンタゴニスト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661896A1 (en) * 2003-08-26 2006-05-31 Teijin Pharma Limited Pyrrolopyrimidinethione derivative
EP2014657A1 (de) * 2007-06-21 2009-01-14 Bayer Schering Pharma Aktiengesellschaft Diaminopyrimidine als Modulatoren des EP2-Rezeptors
WO2012127032A1 (en) * 2011-03-24 2012-09-27 Chemilia Ab Novel pyrimidine derivatives

Also Published As

Publication number Publication date
IL270616B (en) 2022-01-01
WO2018210995A1 (en) 2018-11-22
PH12019502562A1 (en) 2020-07-20
SG11201908660RA (en) 2019-10-30
PE20191787A1 (es) 2019-12-24
MA49127A (fr) 2021-05-26
KR102650756B1 (ko) 2024-03-22
AU2018269667A1 (en) 2019-10-24
US20200069686A1 (en) 2020-03-05
DK3625224T3 (da) 2021-11-08
EP3625224A1 (en) 2020-03-25
MX2019013639A (es) 2020-01-21
HRP20211532T1 (hr) 2022-01-07
LT3625224T (lt) 2021-10-25
UA124748C2 (uk) 2021-11-10
CA3063637A1 (en) 2018-11-22
CN110621666A (zh) 2019-12-27
JP7065117B2 (ja) 2022-05-11
US20230165859A1 (en) 2023-06-01
SI3625224T1 (sl) 2021-11-30
KR20200006589A (ko) 2020-01-20
TW201900637A (zh) 2019-01-01
ES2894124T3 (es) 2022-02-11
EA039630B1 (ru) 2022-02-18
BR112019024114A2 (pt) 2020-06-02
JP2020520359A (ja) 2020-07-09
EP3625224B1 (en) 2021-08-04
HUE056406T2 (hu) 2022-02-28
AU2018269667B2 (en) 2022-02-03
CY1124528T1 (el) 2022-07-22
CO2019010804A2 (es) 2019-10-09
EA201992679A1 (ru) 2020-05-06
PT3625224T (pt) 2021-10-06
AR111806A1 (es) 2019-08-21
RS62441B1 (sr) 2021-11-30
CL2019003257A1 (es) 2020-03-27
PL3625224T3 (pl) 2022-01-10
CR20190567A (es) 2020-02-10
MA49127B1 (fr) 2022-05-31

Similar Documents

Publication Publication Date Title
TWI768043B (zh) N-取代吲哚衍生物
JP7228618B2 (ja) Pge2レセプター調節剤としてのn-置換インドール誘導体
JP2022553859A (ja) Ras阻害剤
JP7159214B2 (ja) Pge2レセプター調節剤としてのフェニル誘導体
US11325899B2 (en) Benzofurane and benzothiophene derivatives as PGE2 receptor modulators
JP7253500B2 (ja) ピリミジン誘導体
EA043145B1 (ru) Фенильные производные в качестве модуляторов pge2 рецепторов