TWI762756B - 半導體記憶裝置 - Google Patents

半導體記憶裝置 Download PDF

Info

Publication number
TWI762756B
TWI762756B TW108101917A TW108101917A TWI762756B TW I762756 B TWI762756 B TW I762756B TW 108101917 A TW108101917 A TW 108101917A TW 108101917 A TW108101917 A TW 108101917A TW I762756 B TWI762756 B TW I762756B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
memory
wiring
insulating layer
Prior art date
Application number
TW108101917A
Other languages
English (en)
Other versions
TW202011522A (zh
Inventor
藤井光太郎
永嶋賢史
中嶋由美
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202011522A publication Critical patent/TW202011522A/zh
Application granted granted Critical
Publication of TWI762756B publication Critical patent/TWI762756B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本發明之實施形態提供一種可提昇可靠性之半導體記憶裝置。 實施形態之半導體記憶裝置包含第1配線層46、與第1配線層相鄰地配置之第2配線層46、設置於第1配線層與第2配線層之間之第1半導體層31_2、設置於第1配線層與第2配線層之間之第2半導體層31_3、設置於第1半導體層與第2半導體層之間且與第1半導體層及第2半導體層分別相接之第1絕緣層30、設置於第1及第2半導體層以及第1絕緣層上之第3半導體層31B、設置於第1配線層與第2配線層之間且與第1絕緣層相接之第2絕緣層49、設置於第1配線層與第1半導體層之間之第1電荷累積層33以及設置於第2配線層與第2半導體層之間之第2電荷累積層33。

Description

半導體記憶裝置
本發明之實施形態涉及一種半導體記憶裝置。
作為半導體記憶裝置,已知有NAND(Not AND,反及)型快閃記憶體。
實施形態提供一種可提昇可靠性之半導體記憶裝置。
實施形態之半導體記憶裝置包含:半導體基板;第1配線層,設置於半導體基板之上方,且於與半導體基板平行之第1方向上延伸;第2配線層,其於與半導體基板平行且與第1方向交叉之第2方向上,與第1配線層相鄰地配置,且於第1方向上延伸;第1半導體層,其設置於第1配線層與第2配線層之間,於與半導體基板垂直之第3方向上延伸;第2半導體層,其設置於第1配線層與第2配線層之間,於第3方向上延伸;第1絕緣層,其設置於第1半導體層與第2半導體層之間,與第1半導體層及第2半導體層分別相接,且於第3方向上延伸;第3半導體層,其設置於第1及第2半導體層以及第1絕緣層上;第2絕緣層,其設置於第1配線層與第2配線層之間,與第1絕緣層相接,且於第1方向上延伸;第1電荷累積層,其設置於第1配線層與第1半導體層之間;以及第2電荷累積層,其設置於第2配線層與第2半導體層之間。
1:半導體記憶裝置
10:記憶體核心部
11:記憶胞陣列
12:列解碼器
13:感測放大器
20:周邊電路部
21:定序儀
22:電壓產生電路
30:核心層
31:半導體層
31_1:半導體層
31_2:半導體層
31_3:半導體層
31B:蓋層
32:隧道絕緣膜
33:電荷累積層
34:阻擋絕緣膜
40:半導體基板
41:絕緣層
42:配線層
43:絕緣層
44:配線層
45:配線層
46:配線層
47:配線層
48:絕緣層
49:絕緣層
50:絕緣層
51:半導體層
52:絕緣層
53:半導體層
54:絕緣層
55:半導體層
56:絕緣層
57:絕緣層
58:半導體層
59:絕緣層
70:絕緣層
71:絕緣層
72:絕緣層
73:絕緣層
80:絕緣層
81:半導體層
82:半導體層
83:絕緣層
84:半導體層
85:絕緣層
AG:氣隙
AH:空穴
BL:位元線
BL:位元線
BLK:區塊
BLK0:區塊
BLK1:區塊
BLK2:區塊
CH:接觸插塞
GP:空隙
GSG:選擇閘極線
GSG:選擇閘極線
GSG0:選擇閘極線
GSG1:選擇閘極線
JCT:連接部
LAH:下位空穴
LMP:下位記憶體柱
MC:記憶胞電晶體
MCa0~MCa7:記憶胞電晶體
MCb0~MCb7:記憶胞電晶體
MG:記憶體組
MP:記憶體柱
MS:記憶體串
MSa:記憶體串
MSb:記憶體串
MT:記憶體溝槽
SGD:選擇閘極線
SGDa:選擇閘極線
SGDa0:選擇閘極線
SGDa1:選擇閘極線
SGDb:選擇閘極線
SGDb0:選擇閘極線
SGDb1:選擇閘極線
SGS:選擇閘極線
SGSa:選擇閘極線
SGSa0:選擇閘極線
SGSa1:選擇閘極線
SGSb:選擇閘極線
SGSb0:選擇閘極線
SGSb1:選擇閘極線
ST0:選擇電晶體
ST1:選擇電晶體
ST2:選擇電晶體
STa1:選擇電晶體
STa2:選擇電晶體
STb1:選擇電晶體
STb2:選擇電晶體
SU:串單元
SU0:串單元
SU1:串單元
UAH:上位空穴
UMP:上位記憶體柱
VD:孔隙
WL:字元線
WLa:字元線
WLa0~WLa7:字元線
WLb:字元線
WLb0~WLb7:字元線
Wxa:長度
Wxb:長度
Wya:長度
Wyb:長度
X:方向
X1:長度
X2:長度
Y:方向
Y1:長度
Y2:長度
Z:方向
圖1係第1實施形態之半導體記憶裝置之方塊圖。
圖2係第1實施形態之半導體記憶裝置所具備之記憶胞陣列之電路圖。
圖3係第1實施形態之半導體記憶裝置所具備之記憶胞陣列之俯視圖。
圖4係沿圖3中之B1-B2線之剖視圖。
圖5係沿圖3中之A1-A2線之剖視圖。
圖6係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖7係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖8係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖9係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖10係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖11係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖12係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖13係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製 造步驟之圖。
圖14係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖15係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖16係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖17係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖18係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖19係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖20係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖21係表示第1實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖22係第2實施形態之半導體記憶裝置所具備之記憶胞陣列之B1-B2剖視圖。
圖23係第2實施形態之半導體記憶裝置所具備之記憶胞陣列之A1-A2剖視圖。
圖24係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖25係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖26係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖27係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖28係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖29係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖30係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖31係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖32係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖33係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖34係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖35係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖36係表示第2實施形態之半導體記憶裝置所具備之記憶胞陣列之製 造步驟之圖。
圖37係第3實施形態之半導體記憶裝置所具備之記憶胞陣列之B1-B2剖視圖。
圖38係第3實施形態之半導體記憶裝置所具備之記憶胞陣列之A1-A2剖視圖。
圖39係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖40係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖41係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖42係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖43係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖44係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖45係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖46係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖47係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖48係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖49係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖50係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖51係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖52係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖53係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖54係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
圖55係表示第3實施形態之半導體記憶裝置所具備之記憶胞陣列之製造步驟之圖。
以下,參照圖式對實施形態進行說明。再者,於以下之說明中,對具有大致相同功能及構成之構成要素標註同一符號,且僅於有必要時進行重複說明。又,以下所示之各實施形態例示用於將該實施形態之技術思想具體化之裝置及方法,實施形態之技術思想並不將構成零件之材質、形狀、構造、配置等限定於下述實施形態。實施形態之技術思想可於申請專利範圍中施加各種變更。
1.第1實施形態
對第1實施形態之半導體記憶裝置進行說明。以下,作為半導體記憶裝置,以於半導體基板上方三維地積層有記憶胞電晶體之三維積層型NAND型快閃記憶體為例進行說明。
1.1構成
1.1.1半導體記憶裝置之整體構成
首先,使用圖1對半導體記憶裝置之整體構成進行說明。圖1係表示半導體記憶裝置之基本整體構成之方塊圖之一例。再者,於圖1中,以箭頭線表示各區塊之連接之一部分,但區塊間之連接並不限定於該等。
如圖1所示,半導體記憶裝置1大致包含記憶體核心部10及周邊電路部20。
記憶體核心部10包含記憶胞陣列11、列解碼器12及感測放大器13。
記憶胞陣列11具備複數個區塊BLK。於圖1之例中,表示有3個區塊BLK0~BLK2,但其數量並無限定。區塊BLK包含與列及行建立關聯而三維地積層之複數個記憶胞電晶體。
列解碼器12對從未圖示之外部控制器接收之列地址進行解碼。然後,列解碼器12基於解碼結果選擇記憶胞陣列11之列方向。更具體而言,列解碼器12對用以選擇列方向之各種配線賦予電壓。
感測放大器13於讀出資料時,感測自任一區塊BLK讀出之資料。又,感測放大器13於寫入資料時,對記憶胞陣列11賦予與寫入資料 相應之電壓。
周邊電路部20包含定序儀21及電壓產生電路22。
定序儀21控制半導體記憶裝置1整體之動作。更具體而言,定序儀21於寫入動作、讀出動作及刪除動作時,控制電壓產生電路22、列解碼器12及感測放大器13等。
電壓產生電路22產生寫入動作、讀出動作及刪除動作所需之電壓,並供給至列解碼器12及感測放大器13等。
1.1.2記憶胞陣列之電路構成
其次,使用圖2對記憶胞陣列11之電路構成進行說明。圖2表示1個區塊BLK中之記憶胞陣列11之電路圖。
如圖2所示,區塊BLK包含複數個串單元SU(SU0、SU1、…)。又,各個串單元SU包含複數個記憶體組MG。記憶體組MG各者包含兩個記憶體串MSa及MSb以及選擇電晶體ST0。以下,於不分別限定記憶體串MSa及MSb之情形時,表述為記憶體串MS。
記憶體串MSa例如包含8個記憶胞電晶體MCa0~MCa7以及選擇電晶體STa1及STa2。同樣地,記憶體串MSb例如包含8個記憶胞電晶體MCb0~MCb7以及選擇電晶體STb1及STb2。以下,於不分別限定記憶胞電晶體MCa0~MCa7及MCb0~MCb7之情形時,表述為記憶胞電晶體MC。又,於不分別限定選擇電晶體STa1及STb1之情形時,表述為選擇電晶體ST1,於不分別限定選擇電晶體STa2及STb2之情形時,表述為選擇電晶體ST2。
記憶胞電晶體MC具備控制閘極及電荷累積層,非揮發地 保持資料。再者,記憶胞電晶體MC可為將絕緣層用作電荷累積層之MONOS(Metal Oxide Nitride Oxide Silicon,金屬氧氮氧化矽)型,亦可為將導電層用作電荷累積層之FG(Floating Gate,浮動閘極)型。以下,於本實施形態中,以MONOS型為例進行說明。又,記憶體串MS各者所包含之記憶胞電晶體MC之個數可為16個、32個、48個、64個、96個或128個等,其數量並無限定。進而,記憶體串MS各者所包含之選擇電晶體ST1及ST2之個數任意,分別為1個以上即可。
記憶體串MS所包含之記憶胞電晶體MC以及選擇電晶體ST1及ST2分別串聯連接。更具體而言,於記憶體串MSa中,按照選擇電晶體STa2、記憶胞電晶體MCa0~MCa7及選擇電晶體STa1之順序將各者之電流路徑串聯連接。於記憶體串MSb中亦同樣地,按照選擇電晶體STb2、記憶胞電晶體MCb0~MCb7及選擇電晶體STb1之順序將各者之電流路徑串聯連接。而且,1個記憶體組MG所包含之選擇電晶體STa1之汲極與選擇電晶體STb1之汲極共通地連接於複數條位元線BL(BL0、…、BL(N-1),其中(N-1)為2以上之整數)中之任一條。複數條位元線BL係藉由感測放大器13獨立地控制。又,1個記憶體組MG所包含之選擇電晶體STa2之源極與選擇電晶體STb2之源極共通地連接於選擇電晶體ST0之汲極。選擇電晶體ST0之源極連接於源極線SL。
串單元SU內之複數個選擇電晶體STa1之閘極共通地連接於選擇閘極線SGDa,複數個選擇電晶體STb1之閘極共通地連接於選擇閘極線SGDb。複數個選擇電晶體STa2之閘極共通地連接於選擇閘極線SGSa,複數個選擇電晶體STb2之閘極共通地連接於選擇閘極線SGSb。而且,複數個選擇電晶體ST0之閘極共通地連接於選擇閘極線GSG。
更具體而言,串單元SU0內之複數個選擇電晶體STa1之閘極共通地連接於選擇閘極線SGDa0。複數個選擇電晶體STb1之閘極共通地連接於選擇閘極線SGDb0。複數個選擇電晶體STa2之閘極共通地連接於選擇閘極線SGSa0。複數個選擇電晶體STb2之閘極共通地連接於選擇閘極線SGSb0。又,複數個選擇電晶體ST0之閘極共通地連接於選擇閘極線GSG0。
同樣地,串單元SU1內之複數個選擇電晶體STa1之閘極共通地連接於選擇閘極線SGDa1。複數個選擇電晶體STb1之閘極共通地連接於選擇閘極線SGDb1。複數個選擇電晶體STa2之閘極共通地連接於選擇閘極線SGSa1。複數個選擇電晶體STb2之閘極共通地連接於選擇閘極線SGSb1。又,複數個選擇電晶體ST0之閘極共通地連接於選擇閘極線GSG1。
以下,於不分別限定選擇閘極線SGDa(SGDa0、SGDa1、…)及SGDb(SGDb0、SGDb1、…)之情形時,表述為選擇閘極線SGD,於不分別限定選擇閘極線SGSa(SGSa0、SGSa1、…)及SGSb(SGSb0、SGSb1、…)之情形時,表述為選擇閘極線SGS。於不分別限定選擇閘極線GSG0、GSG1、…之情形時,表述為選擇閘極線GSG。再者,選擇閘極線GSG0、GSG1、…亦可共通地連接。各選擇閘極線SGD、SGS及GSG係藉由列解碼器12獨立地控制。
同一區塊BLK內之複數個記憶胞電晶體MCa0~MCa7及MCb0~MCb7之控制閘極分別共通地連接於設置於每個區塊BLK之字元線WLa0~WLa7及WLb0~WLb7。字元線WLa0~WLa7及WLb0~WLb7係藉由列解碼器12獨立地控制。以下,於不分別限定字元線WLa及WLb 之情形時,表述為字元線WL。
區塊BLK例如係資料之刪除單位,同一區塊BLK內所包含之記憶胞電晶體MC所保持之資料被一起刪除。又,寫入動作及讀出動作係對共通地連接於1個串單元SU之1條字元線WL之複數個記憶胞電晶體MC一起進行。
於記憶胞陣列11內,配置於同一行之複數個記憶體組MG共通地連接於任一條位元線BL。即,位元線BL於複數個區塊BLK之複數個串單元SU間將各串單元SU之1個記憶體組MG共通地連接。串單元SU包含連接於不同之位元線BL且連接於同一選擇閘極線SGD之複數個記憶體組MG。又,區塊BLK包含共用字元線WL之複數個串單元SU。而且,記憶胞陣列11包含共用位元線BL之複數個區塊BLK。於記憶胞陣列11內,藉由將選擇閘極線GSG、選擇閘極線SGS、字元線WL及選擇閘極線SGD積層於半導體基板上方而將記憶胞電晶體MC三維地積層。
1.1.3記憶胞陣列之平面構成
其次,使用圖3對記憶胞陣列11之平面構成進行說明。圖3之例表示字元線WLa0及WLb0之平面佈局。
如圖3所示,於與半導體基板平行之Y方向上延伸之複數條字元線WLa0及WLb0係以沿與半導體基板平行且與Y方向正交之X方向鄰接之方式交替地配置。各字元線WL藉由以絕緣材料嵌埋之記憶體溝槽MT而於X方向上相互隔開。又,於字元線WL之間,沿Y方向配置有複數個記憶體柱MP。配置於字元線WLa0及WLb0之間之複數個記憶體柱MP係以相互呈錯位排列之方式配置。於記憶體柱MP之側面之一部分,依序形成 有阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31,記憶體柱MP之內部係以核心層30嵌埋。換言之,阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31藉由記憶體溝槽MT於X方向上分離為兩個。而且,記憶體溝槽MT藉由核心層30於Y方向上分離為複數個。
例如,於設置於字元線WLa0及WLb0之間之記憶體柱MP中,包含字元線WLa0、藉由記憶體溝槽MT分離到字元線WLa0側之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、及半導體層31、以及核心層30之一部分之區域作為記憶胞電晶體MCa0、即1個記憶部發揮功能。同樣地,包含字元線WLb0、藉由記憶體溝槽MT分離到字元線WLb0側之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、及半導體層31、以及核心層30之一部分之區域作為記憶胞電晶體MCb0發揮功能。
其他記憶胞電晶體MC及選擇電晶體ST1及ST2亦然。例如,包含選擇閘極線SGDa0、藉由記憶體溝槽MT分離到SGDa0側之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、及半導體層31、以及核心層30之一部分之區域作為串單元SU0之選擇電晶體STa1發揮功能。同樣地,包含選擇閘極線SGDb0、藉由記憶體溝槽MT分離到SGDb0側之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、及半導體層31、以及核心層30之一部分之區域作為串單元SU0之選擇電晶體STb1發揮功能。
1.1.4記憶胞陣列之截面構成
其次,使用圖4及圖5對記憶胞陣列11之截面構成進行說明。圖4係沿圖3之B1-B2線之記憶胞陣列11之剖視圖。圖5係沿圖3之A1-A2線之記憶胞陣列11之剖視圖。以下,作為一例,對形成8層字元線WL、兩層選擇 閘極線SGS及3層選擇閘極線SGD之情形進行說明。再者,字元線WL之層數並不限定於8層。又,選擇閘極線SGS及SGD之層數並無限定。選擇閘極線SGS及SGD為1層以上即可。
如圖4所示,於半導體基板40上,形成有絕緣層41。絕緣層41例如使用氧化矽膜(SiO2)。於絕緣層41上,形成有作為源極線SL發揮功能之配線層42。配線層42包含導電材料,例如使用添加有雜質之n型半導體或金屬材料。又,例如配線層42亦可為半導體層與金屬層之積層構造。以下,對配線層42使用摻雜有磷(P)等之多晶矽(polysilicon)之情形進行說明。
再者,於形成有絕緣層41之區域、即半導體基板40與配線層42之間,亦可設置有列解碼器12及感測放大器13等電路。
於配線層42上形成有絕緣層43,於絕緣層43上形成有作為選擇閘極線GSG發揮功能之配線層44。絕緣層43例如使用SiO2。配線層44包含導電材料,例如使用摻雜有磷(P)等之多晶矽,配線層44於下述記憶胞陣列之製造方法中,亦作為形成記憶體溝槽MT時之蝕刻終止層發揮功能。於配線層44之上方,介置絕緣層43而積層有作為選擇閘極線SGS發揮功能之例如兩層配線層45。於配線層45之上方,以相互於與半導體基板40垂直之Z方向上隔開之方式介置複數個絕緣層43而依序積層作為字元線WL發揮功能之複數個配線層46與作為選擇閘極線SGD發揮功能之複數個配線層47。即,於配線層44上,交替地積層有複數個絕緣層43與複數個配線層46,於最上層之配線層46上,交替地積層有例如3層絕緣層43與3層配線層47。
配線層45~47包含導電材料,例如使用添加有雜質之n型 半導體或p型半導體、或者金屬材料。以下,對配線層45~47使用鎢(W)及氮化鈦(TiN)之情形進行說明。TiN例如於藉由CVD(Chemical Vapor Deposition,化學氣相沈積)將W成膜時,具有作為用以防止W與SiO2之反應之阻障層或用以提昇W之密接性之密接層之功能。
於最上層之配線層47上積層有絕緣層43及絕緣層50。絕緣層50例如使用SiO2
以貫通配線層45~47及多層絕緣層43且底面與配線層44相接之方式形成有於Y方向上延伸之記憶體溝槽MT。記憶體溝槽MT於X方向上將設置於兩個記憶體柱MP之間之配線層45~47分離。記憶體溝槽MT內以絕緣層49嵌埋。絕緣層49例如使用SiO2。以下,於本實施形態中,對使用嵌埋性優異之SOG(spin on glass,旋塗玻璃)作為用於絕緣層49之SiO2之情形進行說明。再者,作為SOG之塗佈材料,亦可使用包含聚矽氮烷之材料。
複數個記憶體柱MP於X方向上與記憶體溝槽MT交替地配置。1個記憶體柱MP作為1個記憶體組MG發揮功能。記憶體柱MP包含核心層30、半導體層31、蓋層31B、隧道絕緣膜32、電荷累積層33、阻擋絕緣膜34及絕緣層48。
更具體而言,以貫通配線層44~47及多層絕緣層43且底面到達配線層42內部之方式形成與記憶體柱MP對應之空穴AH。於空穴AH之側面之一部分及底面依序積層阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31。半導體層31為形成記憶胞電晶體MC以及選擇電晶體ST0、ST1及ST2之通道之區域。因此,半導體層31作為將選擇電晶體ST0~ST2及記憶胞電晶體MC之電流路徑連接之信號線發揮功能。
進而,半導體層31大致包含半導體層31_1~半導體層31_3這3個部位。半導體層31_1包含半導體層31之底部至配線層44之上表面之高度、即較記憶體溝槽MT之底面更下方之區域。半導體層31_1位於較記憶體溝槽MT之底面更下方,故半導體層31未被記憶體溝槽MT分離。因此,半導體層31_1具有包圍核心層30之筒型形狀。半導體層31_2及半導體層31_3設置於較配線層44之上表面更高之位置、即較記憶體溝槽MT之底部更高之位置。半導體層31_2及半導體層31_3被記憶體溝槽MT於X方向上分離為兩個。於圖4之例中,於記憶體柱MP中,紙面左側之半導體層31相當於半導體層31_2。半導體層31_2係形成記憶體串MSa之通道之區域。又,於記憶體柱MP中,紙面右側之半導體層31相當於半導體層31_3。半導體層31_3係形成記憶體串MSb之通道之區域。
於配線層42之內部,空穴AH側面之阻擋絕緣膜34、電荷累積層33及隧道絕緣膜32之一部分被去除,配線層42與半導體層31之側面之一部分相接。
以將半導體層31內嵌埋之方式設置有核心層30,於核心層30之內部形成有孔隙(或表述為空洞)VD。再者,孔隙VD之形狀根據空穴AH之形狀及核心層30所使用之絕緣材料之階梯覆蓋性等而不同,絕緣材料之階梯覆蓋性取決於核心層30所使用之絕緣材料之成膜方法等。於圖4之例中,於核心層30內形成有於Z方向上延伸之1個孔隙VD,例如亦可沿著Z方向散佈有複數個孔隙VD。進而,亦可不形成孔隙VD。於半導體層31(半導體層31_2及半導體層31_3)及核心層30上,形成有側面與隧道絕緣膜32相接之蓋層31B。於蓋層31B上,形成有側面與隧道絕緣膜32相接之絕緣層48。
核心層30、隧道絕緣膜32及阻擋絕緣膜34例如使用藉由CVD形成之SiO2。電荷累積層33及絕緣層48例如使用氮化矽膜(SiN)。半導體層31及蓋層31B例如使用多晶矽。
於圖4之例中,與記憶體柱MP之紙面左側相接之配線層45作為選擇閘極線SGSa發揮功能,例如8層配線層46自下層起作為字元線WLa0~WLa7發揮功能,配線層47作為選擇閘極線SGDa發揮功能。同樣地,與記憶體柱MP之紙面右側相接之配線層45作為選擇閘極線SGSb發揮功能,例如8層配線層46自下層起作為字元線WLb0~WLb7發揮功能,配線層47作為選擇閘極線SGDb0發揮功能。
因此,藉由記憶體柱MP及設置於記憶體柱MP之紙面左側之作為字元線WLa0~WLa7發揮功能之配線層46,分別構成記憶胞電晶體MCa0~MCa7。同樣地,藉由記憶體柱MP及設置於記憶體柱MP之紙面左側之配線層47,構成選擇電晶體STa1。藉由記憶體柱MP及設置於記憶體柱MP之紙面左側之配線層44及45,構成選擇電晶體STa2。
藉由記憶體柱MP及設置於記憶體柱MP之紙面右側之作為字元線WLb0~WLb7發揮功能之配線層46,分別構成記憶胞電晶體MCb0~MCb7。同樣地,藉由記憶體柱MP及設置於記憶體柱MP之紙面右側之配線層47,構成選擇電晶體STb1。藉由記憶體柱MP及設置於記憶體柱MP之紙面右側之配線層44及45,構成選擇電晶體STb2。
又,藉由記憶體柱MP及作為選擇閘極線GSG發揮功能之配線層44,構成選擇電晶體ST0。於選擇電晶體ST0中,阻擋絕緣膜34、電荷累積層33及隧道絕緣膜32之積層膜作為閘極絕緣膜發揮功能。
如圖5所示,於記憶體溝槽MT內、即自配線層44之上表面 起之上方,阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31被去除,記憶體溝槽MT內以絕緣層49嵌埋。藉此,與配線層45~47相接之空穴AH之側面之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31於X方向上被記憶體溝槽MT分離為兩個。再者,與配線層44相接之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31未被分離為兩個。
1.2記憶胞陣列之製造方法
其次,使用圖6~圖21對記憶胞陣列11之製造方法進行說明。圖6~圖21分別表示製造步驟中之記憶胞陣列之平面、沿A1-A2線之截面(A1-A2截面)及沿B1-B2線之截面(B1-B2截面)。再者,於圖6~圖21之例中,為了簡化說明而省略形成於核心層30內之孔隙VD。又,於本實施形態中,對使用如下方法之情形進行說明:以絕緣層56形成相當於配線層45~47之構造後,將絕緣層56去除,之後嵌埋導電材料而形成配線層45~47(以下稱為「替換」)。以下,對使用SiN作為絕緣層56、且使用W及TiN作為配線層45~47之導電材料之情形進行說明。再者,絕緣層56並不限定於SiN。例如亦可為氮氧化矽膜(SiON),只要為可充分獲得與絕緣層43之蝕刻選擇比之材料即可。
如圖6所示,於半導體基板40上,依序積層絕緣層41、半導體層51、絕緣層52、半導體層53、絕緣層54、半導體層55、絕緣層43及配線層44。半導體層51、53、55例如使用非晶矽。絕緣層52及54例如使用SiO2。然後,於配線層44上,於各個層間介置絕緣層43,形成分別對應於配線層45~47之複數個絕緣層56。進而,於最上層之絕緣層56上 形成絕緣層43。
如圖7所示,加工底面到達配線層44之記憶體溝槽MT。
如圖8所示,於記憶體溝槽MT之側面及底面形成絕緣層57後,藉由半導體層58將絕緣層57內部嵌埋。絕緣層57及半導體層58於記憶胞陣列11之製造步驟中,作為將記憶體溝槽MT暫時嵌埋之犧牲層發揮功能。更具體而言,形成絕緣層57及半導體層58而將記憶體溝槽MT內部嵌埋後,例如藉由CMP(Chemical Mechanical Polishing,化學機械拋光)等去除絕緣層43上之絕緣層57及半導體層58。絕緣層57例如使用SiO2。半導體層58例如使用非晶矽。
如圖9所示,加工底面到達配線層44之空穴AH。此時,選擇半導體層58之蝕刻速率相對於絕緣層43、56及57足夠慢之條件來加工空穴AH。藉此,如B1-B2截面所示,成為空穴AH之半導體層58之一部分未被蝕刻而保留之狀態。結果為,如A1-A2截面所示,空穴AH內之半導體層58之上表面之高度位置變得低於空穴AH外之半導體層58之上表面之高度位置。
如圖10所示,例如藉由利用乾式蝕刻之各向同性蝕刻(例如CDE;chemical dry etching,化學乾式蝕刻)將空穴AH內之半導體層58去除。此時,記憶體溝槽MT內之半導體層58之側面沒有露出,因此幾乎未被蝕刻。然而,當空穴AH內之半導體層58被去除時,於空穴AH與記憶體溝槽MT相接之區域,記憶體溝槽MT內之半導體層58之側面露出,因此半導體層58從露出之側面被蝕刻。因此,兩個空穴AH間之半導體層58之長度變得短於空穴AH間之距離及絕緣層57之長度。
如圖11所示,以底面到達半導體層51之方式進行空穴AH 之追加加工。此時,半導體層58之表面亦被略微蝕刻,因此記憶體溝槽MT內之半導體層58之上表面之高度位置變得低於最上層之絕緣層43及絕緣層57之上表面之高度位置。
如圖12所示,形成絕緣層59,被覆整個面。此時,絕緣層59設為不將記憶體溝槽MT嵌埋之膜厚。絕緣層59例如使用SiO2
如圖13所示,於空穴AH內形成阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31、核心層30及蓋層31B。更具體而言,例如依序積層阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31、核心層30。此時,於核心層30內形成孔隙VD。其次,藉由乾式蝕刻等將絕緣層43上剩餘之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31及核心層30去除。此時,半導體層31及核心層30係以低於絕緣層43之上表面之方式進行加工。然後,形成蓋層31B。
如圖14所示,於蓋層31B上形成絕緣層48。更具體而言,成膜絕緣層48後,藉由CMP等將絕緣層43上剩餘之絕緣層48去除。此時,於記憶體溝槽MT,露出半導體層58之上表面。
如圖15所示,例如藉由濕式蝕刻將記憶體溝槽MT內之半導體層58去除。
如圖16所示,例如藉由利用乾式蝕刻或濕式蝕刻之各向同性蝕刻,將記憶體溝槽MT內之絕緣層57以及於記憶體溝槽MT內露出側面之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31去除。此時,絕緣層48作為用以防止蓋層31B及核心層30自上表面被蝕刻之蝕刻終止層發揮功能。結果為,於記憶體溝槽MT內,核心層30、蓋層31B、絕緣層48之一部分未被蝕刻而保留。而且,於配線層44之上方,阻擋絕 緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31於B1-B2截面方向(X方向)上被分離為兩個。
如圖17所示,於記憶體溝槽MT內形成絕緣層49。例如,於使用SOG作為絕緣層49之情形時,形成SOG後,藉由CMP等去除絕緣層43上剩餘之SOG。
如圖18所示,以被覆記憶體柱MP及記憶體溝槽MT之上表面之方式形成絕緣層43。其次,形成到達半導體層51之狹縫(未圖示)後,藉由濕式蝕刻將絕緣層52、半導體層53及絕緣層54去除,形成空隙GP。此時,藉由濕式蝕刻將在於空隙GP內露出之阻擋絕緣膜34、電荷累積層33及隧道絕緣膜32之一部分亦去除。
如圖19所示,於空隙GP內,例如藉由形成摻雜有P之多晶矽而形成配線層42。此時,P亦擴散至半導體層51及55,包含於配線層42之一部分。更具體而言,以摻雜有P之非晶矽將空隙GP內嵌埋,進行用於結晶化之熱處理,藉此使P亦擴散至半導體層51及55。然後,將狹縫內及絕緣層43上剩餘之多晶矽去除並以絕緣層43將狹縫內嵌埋,藉此,配線層42之形成結束。
如圖20所示,替換絕緣層56,形成配線層45~47。更具體而言,形成貫通複數個絕緣層56之狹縫(未圖示)。其次,藉由濕式蝕刻,自狹縫側將絕緣層56去除。然後,以TiN及W將去除絕緣層56而形成之空隙內嵌埋。將狹縫內及絕緣層43上剩餘之TiN及W去除,並以絕緣層43將狹縫嵌埋,藉此,替換步驟結束。
如圖21所示,於最上層之絕緣層43上形成絕緣層50後,形成接觸插塞CH。更具體而言,形成絕緣層50後,加工底面到達蓋層31B 之接觸插塞CH。然後,依序形成Ti、TiN及W而嵌埋接觸插塞CH後,藉由CMP等將絕緣層50上剩餘之Ti、TiN及W去除。
1.3本實施形態之效果
若為本實施形態之構成,便可提昇可靠性。對本效果進行詳細敍述。
例如,於1個記憶體柱MP中,存在形成於同一平面內之兩個記憶胞電晶體MC之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31未被記憶體溝槽MT分離之情形。即,存在兩個記憶胞電晶體MC共用半導體層31且通道共通之情形。於此種情形時,例如於讀出動作時,即便所選擇之記憶胞電晶體MC為斷開狀態,由於所選擇之記憶胞電晶體MC之區域外之寄生電晶體成為接通狀態,因而仍然存在電流流入通道而導致產生誤讀出之可能性。
與此相對,若為本實施形態之構成,那麼便可於1個記憶體柱MP中,藉由記憶體溝槽MT將阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31分離。即,可使形成於同一平面內之兩個記憶胞電晶體MC之通道分離。藉此,可降低電流流入所選擇之記憶胞電晶體MC之區域外之通道而導致產生誤讀出之可能性。又,可抑制兩個記憶胞電晶體MC相互干擾。因此,可提昇半導體記憶裝置之可靠性。
進而,若為本實施形態之構成,那麼核心層30未被記憶體溝槽MT分離。藉由於記憶體柱MP內保留核心層30,而於記憶胞陣列之製造步驟中,於將記憶體溝槽MT內之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31去除時,可抑制成為空隙之記憶體溝槽MT之變 形。
進而,若為本實施形態之構成,則作為選擇閘極線GSG發揮功能之配線層44未被記憶體溝槽MT分離。即,於配線層44內,以包圍核心層30之方式形成有與選擇閘極線GSG相接之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31。藉此,可抑制選擇閘極線GSG與半導體層31之間之絕緣耐性之劣化。
進而,若為本實施形態之構成,則可於蓋層31B上形成絕緣層48。藉此,於加工絕緣層43而形成接觸插塞時,可將絕緣層48用作蝕刻終止層。藉此,可減少對蓋層31B之加工損傷,從而可降低接觸插塞CH與記憶體柱MP之連接不良。因此,可提昇半導體記憶裝置之可靠性。
2.第2實施形態
其次,對第2實施形態進行說明。於第2實施形態中,對在記憶體溝槽MT內形成氣隙之情形進行說明。以下,以與第1實施形態之不同點為中心進行說明。
2.1 記憶胞陣列之截面構成
首先,使用圖22及圖23對記憶胞陣列11之截面構成進行說明。再者,以下,與第1實施形態同樣地,對形成2層選擇閘極線SGS及3層選擇閘極線SGD之情形進行說明。
如圖22所示,配線層42、44~47之構成與第1實施形態之圖4相同。
本實施形態之記憶體柱MP包含核心層30、半導體層31、 蓋層31B、隧道絕緣膜32、電荷累積層33、阻擋絕緣膜34及絕緣層70。與以第1實施形態之圖3說明之記憶體柱MP不同,捨去形成於蓋層31B上之絕緣層48。又,於隧道絕緣膜32及阻擋絕緣膜34之上部形成有絕緣層70。
記憶體溝槽MT包含絕緣層70、71及73,且形成有氣隙AG。更具體而言,於記憶體溝槽MT之除上部以外之側面及底面,形成有絕緣層71。以與記憶體溝槽MT之上部側面及絕緣層71之上表面、側面及底面相接之方式形成有絕緣層70。進而,以與記憶體溝槽MT內之絕緣層70之側面及底面相接之方式形成有絕緣層73。而且,於絕緣層73內形成有氣隙AG。
絕緣層70例如使用SiN。絕緣層71及73例如使用SiO2
如圖23所示,於記憶體溝槽MT內,於絕緣層73內形成有氣隙AG。又,於記憶體柱MP上部,於蓋層31B之側面形成有絕緣層70、電荷累積層33及絕緣層70之三層構造。
2.2 記憶胞陣列之製造方法
其次,使用圖24~圖36對記憶胞陣列11之製造方法進行說明。圖24~圖36分別表示製造步驟中之記憶胞陣列之平面、A1-A2截面及B1-B2截面。再者,於圖24~圖36之例中,為了簡化說明而省略形成於核心層30內之孔隙VD。
如圖24所示,於半導體基板40上,依序積層絕緣層41、半導體層51、絕緣層52、半導體層53、絕緣層54、半導體層55、絕緣層43及配線層44。然後,於配線層44上,交替地積層複數個絕緣層43及與配 線層45~47對應之複數個絕緣層56。進而,於最上層之絕緣層56上依序形成絕緣層43及絕緣層70。
如圖25所示,加工底面到達配線層44之記憶體溝槽MT,將記憶體溝槽MT內部以絕緣層70~72嵌埋。更具體而言,依序積層絕緣層71、絕緣層70及絕緣層72而將記憶體溝槽MT內部嵌埋後,將剩餘之絕緣層71、絕緣層70及絕緣層72去除。此時,於記憶體溝槽MT內,使B1-B2截面方向(X方向)上之絕緣層72之膜厚大於絕緣層71之膜厚。
絕緣層72於記憶胞陣列11之製造步驟中作為將記憶體溝槽MT暫時嵌埋之犧牲層發揮功能。絕緣層72例如使用SiO2(SOG)。
如圖26所示,加工底面到達半導體層51之空穴AH。
如圖27所示,於空穴AH內形成阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31、核心層30及蓋層31B。更具體而言,首先,積層阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31、核心層30。此時,於核心層30內形成孔隙VD。然後,將絕緣層70上剩餘之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31、核心層30去除。此時,半導體層31及核心層30係以低於絕緣層43之上表面之方式進行加工。然後,形成蓋層31B,將空穴AH內嵌埋。
如圖28所示,例如藉由濕式蝕刻而將記憶體柱MP內之隧道絕緣膜32及阻擋絕緣膜34、以及記憶體溝槽MT內之絕緣層71及72之上部蝕刻去除從而形成槽。例如,以槽之底面之高度位置成為較最上層之絕緣層56之上表面更高之位置之方式調整蝕刻量。
如圖29所示,形成絕緣層70,被覆記憶體柱MP及記憶體溝槽MT之上表面。例如,絕緣層70之膜厚設為如下膜厚:於記憶體柱MP 中,將蝕刻隧道絕緣膜32及阻擋絕緣膜34而形成之槽嵌埋,於記憶體溝槽MT中,將蝕刻絕緣層71而形成之槽嵌埋,蝕刻絕緣層72而形成之槽則不嵌埋。即,絕緣層70之膜厚設為不將記憶體溝槽MT嵌埋之膜厚。
如圖30所示,對絕緣層70進行回蝕直至記憶體柱MP內之蓋層31B及電荷累積層33、以及記憶體溝槽MT內之絕緣層72之上表面露出。此時,以於絕緣層43上保留絕緣層70之方式調整回蝕量。
如圖31所示,藉由濕式蝕刻而將記憶體溝槽MT內之絕緣層72去除。
如圖32所示,例如藉由利用乾式蝕刻或濕式蝕刻之各向同性蝕刻而將於記憶體溝槽MT內露出側面之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31去除。此時,記憶體溝槽MT內之絕緣層70及71未被去除而保留。藉此,於保留記憶體柱MP之核心層30、以及記憶體柱上部之蓋層31B、絕緣層70、電荷累積層33及絕緣層70之構造之狀態下,於配線層44之上方將阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31在B1-B2截面方向(X方向)上分離為兩個。
如圖33所示,以被覆記憶體柱MP及記憶體溝槽MT之上表面之方式形成絕緣層73。此時,記憶體溝槽MT之上部(開口部)被絕緣層73封閉,於記憶體溝槽MT內形成氣隙AG。例如,於使用藉由以TEOS(tetra ethyl ortho silicate,正矽酸四乙酯)或SiH4為原料之電漿CVD所形成之SiO2作為絕緣層73之情形時,存在與記憶體溝槽MT之側面及底面相比,SiO2在開口部形成得更厚之傾向,因此於將記憶體溝槽MT內嵌埋前,將開口部封閉,從而容易形成氣隙AG。再者,亦可於形成絕緣層73後,例如藉由CMP等進行平坦化。
如圖34所示,藉由回蝕或CMP等將絕緣層73去除直至記憶體柱MP及記憶體溝槽MT之上表面露出。
如圖35所示,與第1實施形態之圖18及圖19同樣地形成絕緣層43,被覆記憶體柱MP及記憶體溝槽MT之上表面。然後,形成到達半導體層51之狹縫(未圖示)後,藉由濕式蝕刻將絕緣層52、半導體層53及絕緣層54去除,形成空隙GP。此時,藉由濕式蝕刻將於空隙GP內露出之阻擋絕緣膜34、電荷累積層33及隧道絕緣膜32亦去除。然後,藉由於空隙GP內形成例如摻雜有P之多晶矽,形成配線層42。然後,將狹縫內及絕緣層43上剩餘之多晶矽去除並將狹縫內以絕緣層43嵌埋,藉此,配線層42之形成結束。
如圖36所示,與第1實施形態之圖20及圖21同樣地,替換絕緣層56,形成配線層45~47。然後,於形成絕緣層50後,形成接觸插塞CH。
2.3 本實施形態之效果
若為本實施形態之構成,便可獲得與第1實施形態同樣之效果。
進而,若為本實施形態之構成,則可於記憶體溝槽MT內形成氣隙AG。藉此,例如於1個記憶體柱MP中,可降低形成於同一平面內之兩個記憶胞電晶體MC間之電容,從而抑制因電容耦合產生之干擾。因此,可提昇半導體記憶裝置之可靠性。
進而,若為本實施形態之構成,則藉由形成氣隙AG,可降低通道間之電容,從而可抑制元件動作時之RC(Resistor-Capacitor,電阻-電容)延遲。
進而,若為本實施形態之構成,則藉由形成氣隙AG,可減少從嵌埋記憶體溝槽MT之材料釋出之氣體所導致之元件特性之劣化。
3.第3實施形態
其次,對第3實施形態進行進行說明。於第3實施形態中,對與第1及第2實施形態不同之記憶體柱MP之形狀進行說明。以下,僅對與第1及第2實施形態之不同點進行說明。
3.1 記憶胞陣列之截面構成
首先,使用圖37及圖38對記憶胞陣列11之截面構成進行說明。再者,以下,與第1及第2實施形態同樣地,作為一例,對形成8層字元線WL、2層選擇閘極線SGS及3層選擇閘極線SGD之情形進行說明。再者,字元線WL、選擇閘極線SGS及SGD之層數並無限定。
如圖37所示,配線層42、44~47之構成與第1實施形態之圖4相同。再者,於圖37之例中,作為字元線WL3發揮功能之配線層46與作為字元線WL4發揮功能之配線層46於Z方向上之間隔與其他配線層46之間隔相比配置得較大。
於記憶體溝槽MT之側面及底面形成有絕緣層85,絕緣層85內以絕緣層49嵌埋。絕緣層85例如使用SiO2
於本實施形態中,記憶體柱MP包含下位記憶體柱LMP、連接部JCT及上位記憶體柱UMP。
下位記憶體柱LMP貫通作為字元線WL(例如字元線WL0~WL3)發揮功能之複數個配線層46、作為選擇閘極線SGS發揮功能之複數 個配線層45、作為選擇閘極線GSG發揮功能之配線層44及複數個絕緣層43,底面到達配線層42內部,上表面與連接部JCT之底面相接。
例如,於圖37之例中,連接部JCT於Z方向上設置於作為字元線WL3發揮功能之配線層46與作為字元線WL4發揮功能之配線層46之層間。再者,Z方向上之連接部JCT之配置可任意設計。例如,連接部JCT亦可設置於作為字元線WL4發揮功能之配線層46與作為字元線WL5發揮功能之配線層46之層間。
作為光微影步驟中之下位記憶體柱LMP與上位記憶體柱UMP之錯位對策,連接部JCT於XY平面內形成為大於下位記憶體柱LMP與上位記憶體柱UMP之直徑。因此,連接部JCT具有相對於下位記憶體柱LMP及上位記憶體柱UMP於XY平面內突出之形狀。因此,XY平面內之連接部JCT之面積大於下位記憶體柱LMP及上位記憶體柱UMP之面積。
上位記憶體柱UMP貫通作為選擇閘極線SGD發揮功能之2層配線層47、作為字元線WL(例如WL4~WL7)發揮功能之複數個配線層46及複數個絕緣層43,其底面與連接部JCT之上表面相接。上位記憶體柱UMP之上表面與接觸插塞CH相接。
於下位記憶體柱LMP之側面之一部分及底面、連接部JCT之側面以及上位記憶體柱UMP之側面,與第1實施形態之圖4同樣地,依序積層有阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31。而且,以將半導體層31內嵌埋之方式設置有核心層30,於核心層30之內部形成有孔隙(或表述為空洞)VD。於半導體層31及核心層30上,形成有側面與隧道絕緣膜32相接之蓋層31B。於蓋層31B上,形成有側面與隧道絕緣膜32相接之絕緣層48。
因此,核心層30於下位記憶體柱LMP、連接部JCT及上位記憶體柱UMP未被分離。若將下位記憶體柱LMP及上位記憶體柱UMP區域中之核心層30之X方向之長度(直徑)設為X1,將連接部JCT區域中之核心層30之X方向之長度設為X2,那麼存在X1<X2之關係。
如圖38所示,核心層30、蓋層31B及絕緣層48之側面與絕緣層85相接。
若將下位記憶體柱LMP及上位記憶體柱UMP區域中之核心層30之Y方向之長度(直徑)設為Y1,將連接部JCT區域中之核心層30之X方向之長度設為Y2,那麼存在Y1<Y2之關係。因此,核心層30係包含向XY平面突出之突出部之構造。
3.2 記憶胞陣列之製造方法
其次,使用圖39~圖55對記憶胞陣列11之製造方法進行說明。圖39~圖55分別表示製造步驟中之記憶胞陣列之平面、A1-A2截面及B1-B2截面。再者,於圖39~圖55之例中,為了簡化說明而省略形成於核心層30內之孔隙VD。
如圖39所示,首先,與第1實施形態之圖6同樣地,於半導體基板40上依序積層絕緣層41、半導體層51、絕緣層52、半導體層53、絕緣層54、半導體層55、絕緣層43及配線層44。然後,於配線層44上,交替地積層複數個絕緣層43與分別對應於配線層45及47之複數個絕緣層56。進而,於最上層之絕緣層56上形成絕緣層43。
其次,同時加工底面到達配線層44之下位記憶體溝槽LMT及下位空穴LAH。下位記憶體溝槽LMT係將記憶體溝槽MT於Z方向上分 割為兩個時之下位部。下位空穴LAH對應於下位記憶體柱LMP。其次,形成絕緣層80。絕緣層80之膜厚設為不將下位記憶體溝槽LMT及下位空穴LAH嵌埋之膜厚。絕緣層80例如使用SiN。
如圖40所示,形成半導體層81。半導體層81設為將下位記憶體溝槽LMT嵌埋且不將下位空穴LAH嵌埋之膜厚。半導體層81於記憶胞陣列11之製造步驟中作為將記憶體溝槽MT暫時嵌埋之犧牲層發揮功能。半導體層81例如使用非晶矽。
如圖41所示,例如藉由利用乾式蝕刻或濕式蝕刻之各向同性蝕刻,將下位空穴LAH內之半導體層81去除。此時,記憶體溝槽MT內之半導體層81之側面未露出,因此幾乎未被蝕刻。其次,以底面到達半導體層51之方式進行下位空穴LAH之追加加工。此時,半導體層81之上表面亦被蝕刻,因此於記憶體溝槽MT內,半導體層81之上表面之高度位置變得低於絕緣層80之上表面之高度位置。又,於下位空穴LAH之追加加工時,絕緣層43上之絕緣層80被去除,但於下位空穴LAH側面保留絕緣層80。
如圖42所示,形成絕緣層80後,形成半導體層82,將記憶體溝槽MT之上部及下位空穴LAH內嵌埋。半導體層82於記憶胞陣列11之製造步驟中作為將記憶體溝槽MT暫時嵌埋之犧牲層發揮功能。半導體層82例如使用非晶矽。
如圖43所示,於半導體層82上形成絕緣層83。絕緣層83例如使用SiN。其次,加工絕緣層83及半導體層82,於下位空穴LAH(下位記憶體柱LMP)上形成連接部JCT。此時,亦加工半導體層82下層之絕緣層80,使絕緣層43露出。再者,若將A1-A2截面方向(Y方向)上之下位空 穴LAH之長度(直徑)設為Wya,將連接部JCT之長度設為Wyb,那麼存在Wya<Wyb之關係。又,若將B1-B2方向(X方向)上之下位空穴LAH之長度(直徑)設為Wxa,將連接部JCT之長度設為Wxb,那麼存在Wxa<Wxb之關係。再者,連接部JCT之形狀並不限定於四角柱。例如連接部JCT亦可為圓柱形狀。
如圖44所示,形成絕緣層43,將連接部JCT間嵌埋。其次,藉由CMP對絕緣層43進行研磨、平坦化,直至露出連接部JCT、即絕緣層83。
如圖45所示,例如藉由乾式蝕刻將絕緣層83去除。其次,交替地積層複數個絕緣層43與分別對應於配線層46及47之複數個絕緣層56。進而,於最上層之絕緣層56上形成絕緣層43。
如圖46所示,同時加工底面到達下位記憶體溝槽LMT之上位記憶體溝槽UMT及底面與連接部JCT之半導體層82相接之上位空穴UAH。上位記憶體溝槽UMT係將記憶體溝槽MT於Z方向上分割為兩個時之上位部。上位空穴UAH對應於上位記憶體柱UMP。
如圖47所示,形成絕緣層80及半導體層84。絕緣層80之膜厚設為不將上位記憶體溝槽UMT嵌埋之膜厚。絕緣層80例如使用SiN。半導體層84設為將上位記憶體溝槽UMT嵌埋且不將上位空穴UAH嵌埋之膜厚。半導體層84於記憶胞陣列11之製造步驟中作為將記憶體溝槽MT暫時嵌埋之犧牲層發揮功能。半導體層84例如使用非晶矽。
如圖48所示,例如藉由利用乾式蝕刻或濕式蝕刻之各向同性蝕刻,將上位空穴UAH內之半導體層84去除。此時,以不將上位記憶體溝槽UMT內之半導體層84去除之方式調整蝕刻量。其次,形成絕緣層 80及絕緣層43。此時,絕緣層43之膜厚設為不使上位空穴UAH開口部封閉之膜厚。
如圖49所示,例如藉由乾式蝕刻將上位空穴UAH底部之絕緣層43及絕緣層80去除後,藉由濕式蝕刻,將嵌埋連接部JCT及下位空穴LAH之半導體層82去除。
如圖50所示,例如藉由濕式蝕刻將上表面之絕緣層43及絕緣層80去除。其次,與第1實施形態之圖13同樣地,於空穴AH內形成阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32、半導體層31、核心層30及蓋層31B。
如圖51所示,與第1實施形態之圖14同樣地,於蓋層31B上形成絕緣層48。其次,將記憶體溝槽MT內之半導體層81及84去除。更具體而言,首先,將上位記憶體溝槽UMT內之半導體層84去除。然後,將形成於上位記憶體溝槽UMT之底部之絕緣層80去除後,將下位記憶體溝槽LMT內之半導體層81去除。
如圖52所示,與第1實施形態之圖16同樣地,例如藉由利用乾式蝕刻或濕式蝕刻之各向同性蝕刻,將記憶體溝槽MT內之絕緣層80以及在記憶體溝槽MT內露出側面之阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31去除。結果為,於配線層44之上方,阻擋絕緣膜34、電荷累積層33、隧道絕緣膜32及半導體層31在B1-B2截面方向(X方向)上分離為兩個。
如圖53所示,將記憶體溝槽MT內以絕緣層85及絕緣層49嵌埋後,形成絕緣層43。
如圖54所示,與第1實施形態之圖18及圖19同樣地,形成 配線層42。
如圖55所示,與第1實施形態之圖20同樣地,替換絕緣層56,形成配線層45~47。其次,與第1實施形態之圖21同樣地,於最上層之絕緣層43上形成絕緣層50後,形成接觸插塞CH。
3.3 本實施形態之效果
若為本實施形態之構成,便可獲得與第1實施形態同樣之效果。
進而,若為本實施形態之構成,則可於使複數個記憶體柱MP積層於半導體基板之垂直方向時,於兩個記憶體柱MP間形成連接部JCT。進而,可使連接部JCT之大小(與半導體基板平行之平面內之面積)大於記憶體柱MP之直徑。藉此,於光微影步驟中,即便於產生記憶體柱MP與連接部JCT之對位偏差之情形時,亦可抑制產生記憶體柱MP之加工不良或嵌埋不良等。因此,可提昇半導體記憶裝置之可靠性。
再者,亦可將第2實施形態與第3實施形態組合。即,於第3實施形態中,亦可在記憶體溝槽MT內形成氣隙AG。
進而,若為本實施形態之構成,則可同時加工空穴AH與記憶體溝槽MT。藉此,可抑制製造步驟之增加。
4.變化例等
上述實施形態之半導體記憶裝置包含:半導體基板(40);第1配線層(46;WLa0),其設置於半導體基板之上方,且於與半導體基板平行之第1方向(Y方向)上延伸;第2配線層(46;WLb0),其於與半導體基板平行且與第1方向交叉之第2方向(X方向)上與第1配線層相鄰地配置,且於第1方向上延伸;第1半導體層(31_2),其設置於第1配線層與第2配線層之間, 且於與半導體基板垂直之第3方向(Z方向)上延伸;第2半導體層(31_3),其設置於第1配線層與第2配線層之間,且在第3方向上延伸;第1絕緣層(30;核心層),其設置於第1半導體層與第2半導體層之間,與第1半導體層及第2半導體層分別相接,且於第3方向上延伸;第3半導體層(31B;蓋),其設置於第1及第2半導體層以及第1絕緣層上;第2絕緣層(49(MT)),其設置於第1配線層與第2配線層之間,與第1絕緣層相接,且於第1方向上延伸;第1電荷累積層(33),其設置於第1配線層與第1半導體層之間;以及第2電荷累積層(33),其設置於第2配線層與第2半導體層之間。
藉由應用上述實施形態,可提供一種能提昇可靠性之半導體記憶裝置。
再者,實施形態並不限定於上述說明之形態,可進行各種變化。
又,上述實施形態中之「連接」亦包含在中間介置例如電晶體或電阻等某種其他部件而間接連接之狀態。
對本發明之若干實施形態進行了說明,但該等實施形態係作為例而提出者,並非意在限定發明之範圍。該等新穎之實施形態可以其他各種形態實施,且可於不脫離發明主旨之範圍內進行各種省略、置換、變更。該等實施形態及其等之變化包含於發明之範圍及主旨內,且包含於申請專利範圍所記載之發明及與其均等之範圍內。
[相關申請案]
本申請案享有以日本專利申請案2018-163544號(申請日:2018年8月 31日)作為基礎申請案之優先權。本申請案藉由參照該基礎申請案而包含基礎申請案之所有內容。
30:核心層
31:半導體層
32:隧道絕緣膜
33:電荷累積層
34:阻擋絕緣膜
MCa0:記憶胞電晶體
MCb0:記憶胞電晶體
MP:記憶體柱
MT:記憶體溝槽
WLa0:字元線
WLb0:字元線
X:方向
Y:方向
Z:方向

Claims (6)

  1. 一種半導體記憶裝置,其具備:半導體基板;第1配線層,其設置於上述半導體基板之上方,且於與上述半導體基板平行之第1方向上延伸;第2配線層,其於與上述半導體基板平行且與上述第1方向交叉之第2方向上與上述第1配線層相鄰地配置,且於上述第1方向上延伸;第1半導體層,其設置於上述第1配線層與上述第2配線層之間,且於與上述半導體基板垂直之第3方向上延伸;第2半導體層,其設置於上述第1配線層與上述第2配線層之間,且於上述第3方向上延伸;第1絕緣層,其設置於上述第1半導體層與第2半導體層之間,與上述第1半導體層及第2半導體層分別相接,且於上述第3方向上延伸;第3半導體層,其設置於上述第1及第2半導體層以及上述第1絕緣層上;第2絕緣層,其設置於上述第1配線層與上述第2配線層之間,與上述第1絕緣層相接,且於上述第1方向上延伸;第1電荷累積層,其設置於上述第1配線層與上述第1半導體層之間;及第2電荷累積層,其設置於上述第2配線層與上述第2半導體層之間。
  2. 如請求項1之半導體記憶裝置,其中上述第1電荷累積層於上述第2方 向上與上述第1配線層對向,且上述第2電荷累積層於上述第2方向上與上述第2配線層對向。
  3. 如請求項1或2之半導體記憶裝置,其進而具備:第3配線層,其設置於上述半導體基板之上方且上述第1及第2配線層以及上述第2絕緣層之下方;第4半導體層,其於上述第3配線層內包圍上述第1絕緣層,且上表面與上述第1及第2半導體層相接;以及閘極絕緣膜,其設置於上述第3配線層與上述第4半導體層之間;且上述閘極絕緣膜包含與上述第1及第2電荷累積層相同之材料。
  4. 如請求項1或2之半導體記憶裝置,其中於上述第2絕緣層內設置有氣隙。
  5. 如請求項1或2之半導體記憶裝置,其進而具備:第1記憶胞,其包含上述第1配線層之一部分及上述第1半導體層之一部分;以及第2記憶胞,其包含上述第2配線層之一部分及上述第2半導體層之一部分。
  6. 如請求項1或2之半導體記憶裝置,其進而具備:第4配線層,其設置於上述第1配線層之上方,且於上述第1方向上延伸; 第5配線層,其設置於上述第2配線層之上方,於上述第2方向上與上述第4配線層相鄰地配置,且於上述第1方向上延伸;第3電荷累積層,其設置於上述第4配線層與上述第1半導體層之間;以及第4電荷累積層,其設置於上述第5配線層與上述第2半導體層之間;且上述第1絕緣層於上述第1配線層之上方且上述第4配線層之下方具有向上述第1及第2方向突出之突出部。
TW108101917A 2018-08-31 2019-01-18 半導體記憶裝置 TWI762756B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163544A JP2020035974A (ja) 2018-08-31 2018-08-31 半導体記憶装置
JP2018-163544 2018-08-31

Publications (2)

Publication Number Publication Date
TW202011522A TW202011522A (zh) 2020-03-16
TWI762756B true TWI762756B (zh) 2022-05-01

Family

ID=69641714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108101917A TWI762756B (zh) 2018-08-31 2019-01-18 半導體記憶裝置

Country Status (4)

Country Link
US (1) US11088162B2 (zh)
JP (1) JP2020035974A (zh)
CN (1) CN110875326B (zh)
TW (1) TWI762756B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155450A (ja) * 2019-03-18 2020-09-24 キオクシア株式会社 半導体記憶装置
JP2021145014A (ja) * 2020-03-11 2021-09-24 キオクシア株式会社 半導体記憶装置
JP2021150486A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 半導体記憶装置
JP2021150564A (ja) * 2020-03-23 2021-09-27 キオクシア株式会社 半導体記憶装置
JP2021150573A (ja) * 2020-03-23 2021-09-27 キオクシア株式会社 半導体記憶装置
JP2022047770A (ja) * 2020-09-14 2022-03-25 キオクシア株式会社 半導体記憶装置及び半導体記憶装置の製造方法
JP2022050076A (ja) * 2020-09-17 2022-03-30 キオクシア株式会社 半導体記憶装置及びその製造方法
KR102578390B1 (ko) * 2020-11-17 2023-09-14 한양대학교 산학협력단 에어 갭을 포함하는 3차원 플래시 메모리 및 그 제조 방법
JP2022120425A (ja) * 2021-02-05 2022-08-18 キオクシア株式会社 半導体記憶装置
CN116782660A (zh) * 2021-06-21 2023-09-19 长江存储科技有限责任公司 具有划分的漏极选择栅极线的三维存储器器件及其形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100207194A1 (en) * 2009-02-17 2010-08-19 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and method for manufacturing same
TW201539724A (zh) * 2014-01-10 2015-10-16 東芝股份有限公司 半導體記憶體裝置及其製造方法
TW201633510A (zh) * 2015-03-03 2016-09-16 旺宏電子股份有限公司 U型垂直薄通道記憶體

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094694A (ja) 2010-10-27 2012-05-17 Toshiba Corp 不揮発性半導体記憶装置
US9666594B2 (en) * 2014-09-05 2017-05-30 Sandisk Technologies Llc Multi-charge region memory cells for a vertical NAND device
WO2016139725A1 (ja) * 2015-03-02 2016-09-09 株式会社 東芝 半導体記憶装置及びその製造方法
KR102635349B1 (ko) * 2016-07-13 2024-02-07 에스케이하이닉스 주식회사 비휘발성 메모리 소자 및 이의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100207194A1 (en) * 2009-02-17 2010-08-19 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device and method for manufacturing same
TW201539724A (zh) * 2014-01-10 2015-10-16 東芝股份有限公司 半導體記憶體裝置及其製造方法
TW201633510A (zh) * 2015-03-03 2016-09-16 旺宏電子股份有限公司 U型垂直薄通道記憶體

Also Published As

Publication number Publication date
CN110875326A (zh) 2020-03-10
JP2020035974A (ja) 2020-03-05
US20200075622A1 (en) 2020-03-05
TW202011522A (zh) 2020-03-16
CN110875326B (zh) 2023-11-14
US11088162B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
TWI762756B (zh) 半導體記憶裝置
KR101834930B1 (ko) 수직 구조의 비휘발성 메모리 소자
JP5253875B2 (ja) 不揮発性半導体記憶装置、及びその製造方法
TW202249259A (zh) 半導體記憶裝置
CN110299363B (zh) 半导体存储装置
TWI713994B (zh) 半導體記憶體
CN110911412B (zh) 半导体存储装置
JP2009004517A (ja) 不揮発性半導体記憶装置及びその製造方法
TW201937706A (zh) 半導體儲存裝置及其製造方法
TW201946255A (zh) 半導體記憶裝置
TWI741248B (zh) 半導體記憶裝置及其製造方法
JP2020038930A (ja) 半導体メモリ装置及び半導体メモリ装置の製造方法
CN110838319B (zh) 半导体存储装置
TWI759813B (zh) 半導體記憶裝置
TW202023036A (zh) 半導體記憶裝置
TWI821718B (zh) 半導體記憶裝置
TW202107526A (zh) 半導體記憶裝置及半導體記憶裝置之製造方法
JP2005294392A (ja) 不揮発性半導体記憶装置