TWI760060B - 半導體記憶裝置 - Google Patents

半導體記憶裝置 Download PDF

Info

Publication number
TWI760060B
TWI760060B TW110101047A TW110101047A TWI760060B TW I760060 B TWI760060 B TW I760060B TW 110101047 A TW110101047 A TW 110101047A TW 110101047 A TW110101047 A TW 110101047A TW I760060 B TWI760060 B TW I760060B
Authority
TW
Taiwan
Prior art keywords
layer
columnar body
substrate
inner peripheral
semiconductor memory
Prior art date
Application number
TW110101047A
Other languages
English (en)
Other versions
TW202145209A (zh
Inventor
佐藤泰輔
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202145209A publication Critical patent/TW202145209A/zh
Application granted granted Critical
Publication of TWI760060B publication Critical patent/TWI760060B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

實施形態,係提供一種能夠對起因於短路所導致的動作不良作抑制之半導體記憶裝置。 實施形態之半導體記憶裝置,係具備有基板、和層積體、和柱狀體、以及單結晶體。層積體,係被層積於基板上。柱狀體,係於層積體內而在與基板相交叉之第1方向上延伸。單結晶體,係從基板而突出於柱狀體內,並位於柱狀體與基板之間。層積體,係包含使第1絕緣層與導電層被交互作層積的胞陣列區域。柱狀體,係具備有第1柱狀體。第1柱狀體,係包含有半導體胴體、和被設置於複數之導電層與前述半導體胴體之間之電荷積蓄膜,並位於胞陣列區域內。將導電層中之包圍單結晶體之外周並且最為接近基板之層設為第1層,並將導電層中之包圍第1柱狀體之外周並且最為接近基板之層設為第2層。第2層,係以第1柱狀體作為基準而相較於第1層而位置於第1柱狀體之徑方向之更外側處。

Description

半導體記憶裝置
本發明之實施形態,係有關於半導體記憶裝置。
[關連申請案]
本申請案,係享受以日本專利申請2020-94728號(申請日:2020年5月29日)作為基礎申請之優先權。本申請案,係藉由參照此基礎申請案,而包含基礎申請案之所有的內容。
使記憶體胞被3維地作了配列的NAND型快閃記憶體,係為周知。
本發明之實施形態,係提供一種能夠對起因於短路所導致的動作不良作抑制之半導體記憶裝置。
實施形態之半導體記憶裝置,係具備有基板、和層積體、和柱狀體、以及單結晶體。層積體,係被層積於基板上。柱狀體,係於層積體內而在與基板相交叉 之第1方向上延伸。單結晶體,係從基板而突出於柱狀體內,並位於柱狀體與基板之間。層積體,係包含使第1絕緣層與導電層被交互作層積的胞陣列區域。柱狀體,係具備有第1柱狀體。第1柱狀體,係位於胞陣列區域內,並包含有半導體胴體、和被設置於複數之導電層之中之至少一者與前述半導體胴體之間之電荷積蓄膜。將導電層中之包圍單結晶體之外周並且最為接近基板之層設為第1層,並將導電層中之包圍第1柱狀體之外周並且最為接近基板之層設為第2層。第2層,係以第1柱狀體作為基準而相較於第1層而位置於第1柱狀體之徑方向之更外側處。
1:半導體記憶體
2:記憶體控制器
10:記憶體胞陣列
11:行解碼器
12:感測放大器
13:序列器
20:基板
30,31,32:層積體
33,35,36:絕緣層
34:導電層
34a:阻隔絕緣膜
34b:阻障膜
34c:導電部
35a,36a:內周面
40,41,42:柱狀體
41s,42s,50s:外側面
45:芯
46:半導體胴體
47:記憶體膜
48:穿隧絕緣膜
49:電荷積蓄膜
50:單結晶體
51:凸部
CA:胞陣列區域
Ct1,Ct2:接點
cv1,cv2:凹部
H,H2:洞
L1:第1層
L2:第2層
L3:第3層
L4:第4層
L1a,L2a,L3a,L4a:內周面
MH:記憶體洞
p1,p2:突出部
PE:周邊區域
ST:階梯區域
SLT:細縫
Vp,Vp1,Vp2:虛擬面
[圖1]係為對於第1實施形態之半導體記憶裝置的電路構成作展示之區塊圖。
[圖2]係為第1實施形態的半導體記憶裝置之記憶體胞陣列之電路圖。
[圖3]係為第1實施形態的半導體記憶裝置之平面圖。
[圖4]係為第1實施形態的半導體記憶裝置之剖面圖。
[圖5]係為將在第1實施形態的半導體記憶裝置之胞陣列區域處的柱狀體之近旁作了擴大的剖面圖。
[圖6]係為第1實施形態的半導體記憶裝置之胞陣列區域之平面圖。
[圖7]係為將第1實施形態的半導體記憶裝置之柱狀體 之近旁作擴大並沿著導電層而作了切斷的剖面圖。
[圖8]係為將在第1實施形態的半導體記憶裝置之胞陣列區域處的單結晶體之近旁作了擴大的剖面圖。
[圖9]係為將在第1實施形態的半導體記憶裝置之階梯區域處的柱狀體之近旁作了擴大的剖面圖。
[圖10]係為將在第1實施形態的半導體記憶裝置之階梯區域處的單結晶體之近旁作了擴大的剖面圖。
[圖11~圖16]係為用以對於第1實施形態的半導體記憶裝置之製造方法之其中一例作說明的半導體記憶裝置之特徵部分之剖面圖。
[圖17]係為用以對於比較例的半導體記憶裝置之製造方法之其中一例作說明的半導體記憶裝置之特徵部分之剖面圖。
[圖18]係為用以對於比較例的半導體記憶裝置之製造方法之其中一例作說明的半導體記憶裝置之特徵部分之剖面圖。
以下,參考圖面,對實施形態之半導體記憶裝置作說明。在以下之說明中,對於具備有相同或相類似之功能的構成,係附加相同之元件符號。又,係會有將該些構成之相互重複的說明作省略的情形。圖面係為作模式性或概念性展示者,各部分之厚度與寬幅間的關係、各部分間之大小的比例等,係並非絕對會與現實之物相同。在 本說明書中,所謂「連接」,係並不被限定於被物理性連接的情況,而亦包含有被作電性連接的情況。在本說明書中,所謂「在A方向上延伸」,例如,係指相較於後述之X方向、Y方向以及Z方向之各尺寸之中的最小之尺寸而A方向之尺寸係為更大。「A方向」係為任意之方向。
又,首先,針對X方向、Y方向、Z方向作定義。X方向以及Y方向,係身為與後述之基板20之表面略平行之方向(參照圖4)。Y方向,係為後述之細縫SLT所延伸之方向。X方向,係身為與Y方向相交叉(例如略正交)之方向。Z方向,係身為與X方向以及Y方向相交叉(例如略正交)並且從基板20而離開之方向。但是,此些之表現,係僅為為了方便說明,而並非為對於重力方向作規定。在本實施形態中,Z方向,係為「第1方向」之其中一例。
(第1實施形態)
圖1,係為對於半導體記憶體1之系統構成作展示之區塊圖。半導體記憶體1,係身為非揮發性之半導體記憶裝置,例如係為NAND型快閃記憶體。半導體記憶體1,例如,係具備有記憶體胞陣列10、行解碼器11、感測放大器12以及序列器13。
記憶體胞陣列10,係包含有複數之區塊BLK0~BLKn(n為1以上之整數)。區塊BLK,係身為非揮發性之記憶體胞電晶體MT(參照圖2)之集合。在記憶體胞陣列10處,係被設置有複數之位元線以及複數之字元線。各 記憶體胞電晶體MT,係被與1根的位元線和1根的字元線作連接。關於記憶體胞陣列10之詳細之構成,係於後再述。
行解碼器11,係基於從外部之記憶體控制器2所收訊了的位置資訊ADD,而選擇1個的區塊BLK。行解碼器11,係藉由對於複數之字元線之各者而施加所期望之電壓,來對於針對記憶體胞陣列10之資料之寫入動作以及讀出動作作控制。
感測放大器12,係基於從記憶體控制器2所收訊了的寫入資料DAT,來對於各位元線施加所期望之電壓。感測放大器12,係基於位元線之電壓來判定被記憶在記憶體胞電晶體MT中之資料,並將所判定的讀出資料DAT送訊至記憶體控制器2處。
序列器13,係基於從記憶體控制器2所收訊了的指令CMD,來對於半導體記憶體1全體之動作作控制。
以上所說明的半導體記憶體1以及記憶體控制器2,係亦可藉由此些之組合來構成1個的半導體裝置。半導體裝置,例如,係可列舉出如同SD(註冊商標)卡一般之記憶卡或者是固態硬碟(SSD(Solid State Drive))等。
接著,針對記憶體胞陣列10之電性構成作說明。
圖2,係為對於記憶體胞陣列10之等價電路作展示之圖,並抽出1個的區塊BLK來作展示。區塊BLK,係包含 有複數(例如4個)的字串STR0~STR3。
各字串STR0~STR3,係身為複數之NAND字串NS的集合體。各NAND字串NS之其中一端,係被與位元線BL0~BLm(m為1以上之整數)之其中一者作連接。NAND字串NS之另外一端,係被與源極線SL作連接。各NAND字串NS,係包含有複數之記憶體胞電晶體MT0~MTn(n為1以上之整數)、第1選擇電晶體S1以及第2選擇電晶體S2。
複數之記憶體胞電晶體MT0~MTn,係電性地相互被串聯連接。記憶體胞電晶體MT,係包含有控制閘極和電荷積蓄膜,並將資料非揮發性地作記憶。記憶體胞電晶體MT,係因應於被施加於控制閘極處之電壓,而在電荷積蓄膜中積蓄電荷。記憶體胞電晶體MT之控制閘極,係被與所對應的字元線WL0~WLn之其中一者作連接。記憶體胞電晶體MT,係經由字元線WL而被與行解碼器11作電性連接。
在各NAND字串NS處之第1選擇電晶體S1,係被連接於複數之記憶體胞電晶體MT0~MTn與任一者的位元線BL0~BLm之間。第1選擇電晶體S1之汲極,係被與位元線BL0~BLm之其中一者作連接。第1選擇電晶體S1之源極,係被與記憶體胞電晶體MTn作連接。在各NAND字串NS處之第1選擇電晶體S1之控制閘極,係被與選擇閘極線SGD0~SGD3之其中一者作連接。第1選擇電晶體S1,係經由選擇閘極線SGD而被與行解碼器11作電性連接。第1選擇電晶體S1,當特定之電壓被施加於選擇閘極線 SGD0~SGD3之其中一者處的情況時,係將NAND字串NS與位元線BL作連接。
在各NAND字串NS處之第2選擇電晶體S2,係被連接於複數之記憶體胞電晶體MT0~MTn與源極線SL之間。第2選擇電晶體S2之汲極,係被與記憶體胞電晶體MT0作連接。第2選擇電晶體S2之源極,係被與源極線SL作連接。第2選擇電晶體S2之控制閘極,係被與選擇閘極線SGS作連接。第2選擇電晶體S2,係經由選擇閘極線SGS而被與行解碼器11作電性連接。第2選擇電晶體S2,當特定之電壓被施加於選擇閘極線SGS處的情況時,係將NAND字串NS與源極線SL作連接。
接著,針對記憶體胞陣列10之構造作說明。圖3,係為第1實施形態的半導體記憶體1之平面圖。圖4,係為第1實施形態的半導體記憶體1之剖面圖。半導體記憶體1,係具備有基板20和層積體30和複數之柱狀體41、42以及複數之單結晶體50。半導體記憶體1,係被區分為胞陣列區域CA和階梯區域ST以及周邊區域PE。
胞陣列區域CA,係身為使記憶資料的記憶體胞電晶體MT(參照圖2)被3維性地作配列的區域。胞陣列區域CA,係具備有基板20和層積體30和複數之柱狀體41和複數之細縫SLT以及複數之單結晶體50。柱狀體41,係為「第1柱狀體」之其中一例。在胞陣列區域CA處的複數之柱狀體41之各者,係對應於上述之NAND字串NS(參照圖2)。
階梯區域ST,係位於胞陣列區域CA之周圍。階梯區域ST,例如,係位於胞陣列區域CA之X方向或Y方向之外側。階梯區域ST,係具備有基板20和層積體30和複數之柱狀體42以及複數之單結晶體50。柱狀體42,係為「第2柱狀體」之其中一例。層積體30,係在階梯區域ST處,具備有複數之台(terrace)與階(step)。在複數之台之各者處,字元線WL0~WLn之各者係露出。在複數之台之各者處,係被連接有接點Ct1。接點Ct1,係將各個的字元線WL0~WLn(參照圖2)與配線(省略圖示)作連接。階梯區域ST,係身為層積體30之z方向之高度為從胞陣列區域CA而階段性地降低之區域。在階梯區域ST處的複數之柱狀體42之各者,係身為在製造過程中而支持層積體30之支持體。
周邊區域PE,例如係位於胞陣列區域CA以及階梯區域ST之周圍。周邊區域PE,係身為設置有用以對於胞陣列區域CA之記憶體胞電晶體MT作控制的周邊電路之區域。周邊區域PE,係包含有對於胞陣列區域CA作控制的複數之電晶體Tr。電晶體Tr,係經由接點Ct2而被與控制電晶體Tr之配線作連接。周邊區域PE,係亦可被設置在基板20之z方向之下方處。
圖5,係為將在第1實施形態的半導體記憶體1之胞陣列區域CA處的柱狀體41之近旁作了擴大的剖面圖。胞陣列區域CA,係具備有基板20和層積體31和複數之柱狀體41和複數之細縫SLT以及複數之單結晶體50。層 積體31,係身為層積體30中之隸屬於胞陣列區域CA之部分。
基板20,例如係為矽基板。基板20,例如,係涵蓋胞陣列區域CA、階梯區域ST、周邊區域PE地而在x方向以及y方向上擴廣。在基板20上,係被層積有層積體30。
層積體31,係在Z方向上具備有複數之絕緣層33和複數之導電層34。絕緣層33和導電層34,係被交互作層積。絕緣層33,係為「第1絕緣層」之其中一例。
複數之絕緣層33,係分別於X方向以及Y方向上擴廣。絕緣層33,例如係包含矽氧化物。絕緣層33,係位於導電層34與基板20之間以及在Z方向上而相鄰的導電層34之間。絕緣層33,係將相鄰接之導電層34之間絕緣。絕緣層33之數量,係依據導電層34之數量而被決定。
複數之導電層34,係分別於X方向以及Y方向上擴廣。導電層34,例如,係身為摻雜有鎢、雜質之多晶矽。導電層34之數量,係為任意。
導電層34,例如係功能性地被區分為3者。導電層34,係作為選擇閘極線SGS、記憶體胞電晶體MT之閘極電極、選擇閘極線SGD之任一者而起作用。
導電層34中之包圍單結晶體50之外周的導電層34,例如,係作為連接第2選擇電晶體S2之選擇閘極線SGS而起作用。作為選擇閘極線SGS而起作用之導電層34,係可為單層,亦可為複數層。
導電層34中之從層積體31之上起的數層之導電層34,例如,係作為連接第1選擇電晶體S1之選擇閘極線SGD而起作用。作為選擇閘極線SGD而起作用之導電層34,係可為單層,亦可為複數層。
導電層34中之選擇閘極線SGS、SGD以外的導電層34,係作為記憶體胞電晶體MT之閘極電極而起作用。閘極電極,係分別被與字元線WL作連接。此些之導電層34,例如,係包圍柱狀體41之外周。
柱狀體41,係於層積體31處而存在有複數。柱狀體41,係分別在Z方向上延伸。柱狀體41,例如,係分別在Z方向上而貫通層積體31。
圖6,係為將第1實施形態的半導體記憶體1之胞陣列區域CA之一部分作了擴大的平面圖。胞陣列區域CA,係藉由細縫SLT而被區分為複數之區塊BLK。柱狀體41,係在胞陣列區域CA內而分散存在。複數之柱狀體41,例如,係在從Z方向的平面觀察下,於X方向上被配列為鋸齒狀。複數之柱狀體41,在從Z方向的平面觀察下,例如係為圓或橢圓。
圖7,係為將第1實施形態的半導體記憶裝置之柱狀體41之近旁作擴大並沿著導電層34而作了切斷的剖面圖。柱狀體41,係分別具備有芯45、半導體胴體46、記憶體膜47。柱狀體41,係被形成於記憶體洞MH內,並從內側起而依序身為芯45、半導體胴體46、記憶體膜47。
芯45,係在Z方向上延伸,並為柱狀。芯45,例如係 包含矽氧化物。芯45,係位於半導體胴體46之內側。
半導體胴體46,係在Z方向上延伸。半導體胴體46,係在柱狀體41之底部處而被與單結晶體50作連接。半導體胴體46,係將芯45之外側面作被覆。半導體胴體46,例如係包含矽。矽,例如係身為使非晶質矽作了結晶化的多晶矽。半導體胴體46,係身為第1選擇電晶體S1、記憶體胞電晶體MT以及第2選擇電晶體S2之各者之通道。通道,係身為在源極側與汲極側之間的載子之流路。
記憶體膜47,係在Z方向上延伸。記憶體膜47,係將半導體胴體46之外側面作被覆。記憶體膜47,係位於記憶體洞MH之內面與半導體胴體46之外側面之間。記憶體膜47,例如,係包含穿隧絕緣膜48與電荷積蓄膜49。係以穿隧絕緣膜48、電荷積蓄膜49之順序而位於半導體胴體46之近旁。
穿隧絕緣膜48,係位置於電荷積蓄膜49與半導體胴體46之間。穿隧絕緣膜48,例如係包含矽氧化物、或者是包含矽氧化物與矽氮化物。穿隧絕緣膜48,係身為半導體胴體46與電荷積蓄膜49之間之電位障壁。
電荷積蓄膜49,係位置於各個的絕緣層33以及導電層34與穿隧絕緣膜48之間。電荷積蓄膜49,例如係包含矽氮化物。電荷積蓄膜49與複數之導電層34之各者所相交叉之部分,係分別作為電晶體而起作用。依據電荷積蓄膜49與複數之導電層34所相交叉之部分(電荷積蓄部)內的電荷之有無或者是被作了積蓄的電荷量,記憶體胞電晶 體MT係將資料作保持。電荷積蓄部,係位於各個的導電層34與半導體胴體46之間,其周圍係被絕緣材料所包圍。
又,在各個的絕緣層33與導電層34之間、以及在各個的導電層34與記憶體膜47之間,係亦可具備有阻隔絕緣膜34a、阻障膜34b。
阻隔絕緣膜34a,係對於反向穿隧效應(back tunneling)作抑制。反向穿隧效應,係為電荷從導電層34而回到記憶體膜47處之現象。阻隔絕緣膜34a,例如,係為矽氧化膜、金屬氧化物膜、使複數之絕緣膜被作了層積的層積構造膜。金屬氧化物之其中一例,係為鋁氧化物。
阻障膜34b,係使導電部34c與阻隔絕緣膜34a之間的密著性提升。阻障膜34b,例如當導電部34c係身為鎢的情況時,作為其中一例,係身為氮化鈦、氮化鈦與鈦之層積構造膜。
又,在各個的絕緣層33與電荷積蓄膜49之間,係亦可具備有覆蓋絕緣膜。覆蓋絕緣膜,例如係包含矽氧化物。覆蓋絕緣膜,係在加工時保護電荷積蓄膜49免於受到蝕刻。係亦可並不具備有覆蓋絕緣膜,亦可在導電層34與電荷積蓄膜49之間使一部分殘留,並作為阻隔絕緣膜來使用。
圖8,係為將在第1實施形態的半導體記憶體1之胞陣列區域CA處的單結晶體50之近旁作了擴大的剖面圖。單結晶體50,係從基板20起而突出於層積體31內之記憶體洞MH內。單結晶體50,係在記憶體洞MH內,而位於 柱狀體41與基板20之間。單結晶體50,例如係為矽之單結晶。
柱狀體41與單結晶體50,係位於相同之記憶體洞MH內。柱狀體41之外側面41s與單結晶體50之外側面50s係相連續。將沿著柱狀體41之外側面41s與單結晶體50之外側面50s之主要的部份而延伸之面,稱作虛擬面Vp1。虛擬面Vp1,係為「第1虛擬面」之其中一例。柱狀體41,係在與導電層34相對向之位置處,具備有從虛擬面Vp1起而朝向導電層34突出的突出部p1。單結晶體50,係在與導電層34相對向之位置處,具備有從虛擬面Vp1起而朝向從導電層34離開之方向凹陷的凹部cv1。突出部p1以及凹部cv1,係在加工時被形成。
單結晶體50之一部分,係被導電層34所包圍。導電層34,例如,係具備有阻隔絕緣膜34a、阻障膜34b、導電部34c。以下,將導電層34中之包圍單結晶體50之外周並且最為接近基板20之層,稱作第1層L1。又,以下,將導電層34中之包圍柱狀體41之外周並且最為接近基板20之層,稱作第2層L2。
第2層L2,係以柱狀體41作為基準而相較於第1層L1而更位置於柱狀體41之徑方向之外側處。又,包圍柱狀體41之外周的導電層34,係亦可均為以柱狀體41作為基準而相較於第1層L1而更位置在柱狀體41之徑方向之外側處。
虛擬面Vp1與第2層L2之內周面L2a之間之距 離X2,係較虛擬面Vp1與第1層L1之內周面L1a之間之距離X1而更遠。內周面L1a,係為第1層L1之柱狀體41側之面。內周面L1a,係包圍單結晶體50之外側面50s之一部分。內周面L2a,係為第2層L2之柱狀體41側之面。內周面L2a,係包圍柱狀體41之外側面41s之一部分。距離X1、X2,係為從虛擬面Vp1起的徑方向之最短距離。內周面L2a之周圍長度,係較內周面L1a之周圍長度而更長。
距離X2與距離X1之間之差,例如係為11nm以下。若是將距離X2與距離X1之間之差設為11nm以下,則係能夠在相鄰接之細縫SLT之間而配置多數的柱狀體40,而能夠將胞陣列區域CA之積體密度提高。又,距離X2與距離X1之間之差,例如係亦可為5nm以下。若是將距離X2與距離X1之間之差設為5nm以下,則係能夠確保第2層L2之體積,而能夠對於導電層34之配線阻抗變大的情形作抑制。又,距離X2與距離X1之間之差,例如係為1nm以上。
圖9,係為將在第1實施形態的半導體記憶體1之階梯區域ST處的柱狀體42之近旁作了擴大的剖面圖。階梯區域ST,係具備有基板20和層積體32和複數之柱狀體42以及複數之單結晶體50。層積體32,係身為層積體30之隸屬於階梯區域ST之部分。柱狀體42,係為「第2柱狀體」之其中一例。
層積體32,係在Z方向上具備有複數之絕緣層33和複數之絕緣層36。絕緣層33和絕緣層36,係被交互 作層積。絕緣層33,係涵蓋胞陣列區域CA和階梯區域ST地而擴廣。絕緣層36,係為「第2絕緣層」之其中一例。絕緣層33,係在層積體32處,位於絕緣層36與基板20之間以及在Z方向上而相鄰的絕緣層36之間。
複數之絕緣層36,係分別於X方向以及Y方向上擴廣。絕緣層36之z方向之高度位置,例如,係與在層積體31處的導電層34之各者的z方向之高度位置相互一致。絕緣層36,例如係為氮化矽。絕緣層36之層數,係依存於階梯區域ST之位置而有所相異。絕緣層36之層數,係隨著從胞陣列區域CA遠離而變少。
柱狀體42,係於層積體32內而存在有複數。柱狀體42,係分別在Z方向上延伸。柱狀體42,例如,係分別在Z方向上而貫通層積體32。柱狀體42,係身為於加工時而支持層積體30之支持體。柱狀體42,係可為絕緣體,亦可為導電體。柱狀體42,例如,係身為與柱狀體41相同之構造。
圖10,係為將在第1實施形態的半導體記憶體1之階梯區域ST處的單結晶體50之近旁作了擴大的剖面圖。單結晶體50,係從基板20起而突出於層積體32內之洞HR內。單結晶體50,係在洞HR內,而位於柱狀體42與基板20之間。
柱狀體42與單結晶體50,係位於相同之洞HR內。柱狀體42之外側面42s與單結晶體50之外側面50s係相連續。將沿著柱狀體42之外側面42s與單結晶體50之外 側面50s之主要的部份而延伸之面,稱作虛擬面Vp2。柱狀體42,係在與絕緣層36相對向之位置處,具備有從虛擬面Vp2起而朝向絕緣層36突出的突出部p2。單結晶體50,係在與絕緣層36相對向之位置處,具備有從虛擬面Vp2起而朝向從絕緣層36離開之方向凹陷的凹部cv2。突出部p2以及凹部cv2,係在加工時被形成。
單結晶體50之一部分,係被絕緣層36所包圍。以下,將絕緣層36中之包圍單結晶體50之外周並且最為接近基板20之層,稱作第3層L3。又,以下,將絕緣層36中之包圍柱狀體42之外周並且最為接近基板20之層,稱作第4層L4。
第4層L4,係以柱狀體42作為基準而相較於第3層L3而更位置於柱狀體42之徑方向之外側處。又,包圍柱狀體42之外周的絕緣層36,係亦可均為以柱狀體42作為基準而相較於第3層L3而更位置在柱狀體42之徑方向之外側處。
虛擬面Vp2與第4層L4之內周面L4a之間之距離X4,係較虛擬面Vp2與第3層L3之內周面L3a之間之距離X3而更遠。內周面L3a,係為第3層L3之柱狀體42側之面。內周面L3a,係包圍單結晶體50之外側面50s之一部分。內周面L4a,係為第4層L4之柱狀體42側之面。內周面L4a,係包圍柱狀體42之外側面42s之一部分。距離X3、X4,係為從虛擬面Vp2起的徑方向之最短距離。內周面L4a之周圍長度,係較內周面L3a之周圍長度而更長。
距離X4與距離X3之間之差,例如係為11nm以下。又,距離X4與距離X3之間之差,例如係亦可為5nm以下。又,距離X4與距離X3之間之差,例如係亦可為1nm以上。
接著,針對第1實施形態的半導體記憶體1之胞陣列區域CA以及階梯區域ST之製造方法作說明。圖11~圖16,係為用以對於半導體記憶體1的製造方法之其中一例作說明之剖面圖。圖11~圖16,係為將單結晶體50之近旁作了擴大之圖。
首先,在基板20上,將絕緣層33和絕緣層36交互作層積,而製作出層積體。接著,在層積體之上面形成阻劑膜。接著,藉由反覆進行阻劑膜之等向性蝕刻和隔著阻劑膜的層積體之向異性蝕刻,係得到層積體30。被阻劑膜所被覆之部分,係成為胞陣列區域CA,藉由蝕刻而使阻劑膜被作了去除之部分,係成為階梯區域ST。
接著,如同圖11中所示一般,在層積體30處形成洞H。洞H,係藉由蝕刻來製作。例如,藉由從層積體30之上面起直到基板20為止地而進行向異性蝕刻,洞H係被形成。向異性蝕刻,例如,係身為反應性離子蝕刻(RIE)。洞H,在胞陣列區域CA處係成為記憶體洞MH,在階梯區域ST處係成為洞HR。
接著,如同圖12中所示一般,在洞H內,使矽單結晶進行磊晶成長。藉由此,在洞H之下端部處,單結晶體50係被形成。
接著,如同圖13中所示一般,對於在洞H內而露出的絕緣層36進行掘入蝕刻(recess etching)。掘入蝕刻,係使用相較於矽氧化物而能夠將矽氮化物更快地作蝕刻之蝕刻劑來進行。藉由掘入蝕刻,絕緣層36之內周面36a係較在洞H內的絕緣層33之內周面33a而更加凹陷。藉由在形成了單結晶體50之後進行掘入蝕刻,第4層L4係成為較第3層L3而位於洞H之徑方向之更外側。
接著,在洞H內形成記憶體膜47。記憶體膜47,係沿著洞H之內面而被形成。接著,藉由向異性蝕刻而在記憶體膜47之底部處形成開口。之後,於記憶體膜47之內面,形成半導體胴體46和芯45。半導體胴體46,係亦被形成於記憶體膜47之底部之開口內,半導體胴體46與單結晶體50係被作連接。接著,如同圖14中所示一般,在層積體30內形成柱狀體40。
接著,如同圖15中所示一般,在胞陣列區域CA處形成成為細縫SLT之洞H2。接著,經由洞H2,而對於在胞陣列區域CA處的絕緣層36進行等向性蝕刻。在胞陣列區域CA處的絕緣層36,係藉由等向性蝕刻而被去除。於並不在階梯區域ST處形成細縫SLT的情況時,於階梯區域ST處之絕緣層36係殘留。亦即是,在階梯區域ST處之層積體32,係維持為圖14之狀態。
接著,在絕緣層36被作了去除的區域處,依序形成阻隔絕緣膜34a、阻障膜34b、導電部34c。其結果,在胞陣列區域CA處,絕緣層36係被置換為導電層 34。接著,藉由將洞H2內例如以絕緣體來作填埋,而形成細縫SLT。
藉由以上之工程,胞陣列區域CA以及階梯區域ST係被製作出來。於此所示之製造工程,係僅為其中一例,亦可在各工程之間而插入其他之工程。
若依據第1實施形態之半導體記憶體1,則係能夠防止第1層L1與單結晶體50之間之短路,而對於半導體記憶體1之動作不良作抑制。
例如,若是如同圖17中所示一般地,於在層積體30處形成了洞H之後,在進行單結晶體50之結晶成長之前而先進行掘入蝕刻,則位置在最為接近基板20處的絕緣層36之內周面36a係亦會成為較在洞H內的絕緣層33之內周面33a而更加凹陷。如同圖18中所示一般,若是於其後而形成單結晶體50,則在單結晶體50處係被形成有凸部51。凸部51,在結晶成長時,係於XY面內方向成長。單結晶體50之凸部51以外之部分,原則上係會在Z方向上作結晶成長,相對於此,僅有凸部51會在XY方向上作結晶成長。其結果,係成為易於在凸部51之(111)面處發生層積缺陷。就算是在將絕緣層36置換為導電層34之後,此層積缺陷之影響亦仍會殘留。其結果,若是對於包圍單結晶體50之周圍的導電層34施加電壓,則會在受到有層積缺陷之影響的場所處局部性地施加大的電壓,而會有發生短路的情形。
相對於此,第1實施形態的半導體記憶體1, 係如同圖12以及圖13中所示一般,在使單結晶體50作了成長之後,再進行掘入蝕刻。因此,單結晶體50,原則上係在Z方向上作結晶成長,凸部51係並不會被形成。故而,第1實施形態之半導體記憶體,係對於層積缺陷之發生有所抑制。如同上述一般,層積缺陷,係身為第1層L1與單結晶體50之間的短路之原因的其中一者。故而,藉由對於該層積缺陷之發生作抑制,係能夠降低第1層L1與單結晶體50之間的短路。
雖係針對本發明之數種實施形態作了說明,但是,該些實施形態,係僅為作為例子所提示者,而並非為對於本發明之範圍作限定者。此些之實施形態,係可藉由其他之各種形態來實施,在不脫離發明之要旨的範圍內,係可進行各種之省略、置換、變更。此些之實施形態及其變形,係被包含於發明之範圍以及要旨內,並且亦被包含於申請專利範圍中所記載之發明及其均等範圍內。
20:基板 31:層積體 33:絕緣層 34:導電層 34a:阻隔絕緣膜 34b:阻障膜 34c:導電部 41:柱狀體 41s:外側面 45:芯 46:半導體胴體 47:記憶體膜 50:單結晶體 50s:外側面 cv1:凹部 L1:第1層 L2:第2層 L1a,L2a:内周面 MH:記憶體洞 p1:突出部 Vp1:虛擬面

Claims (6)

  1. 一種半導體記憶裝置,係具備有:基板;和層積體,係被設置於前述基板上,並在第1方向上交互層積複數之第1絕緣層與複數之導電層;和第1柱狀體,係於前述複數之導電層之中之1以上之第1層內而於前述第1方向上延伸,並包含有第1半導體胴體、和被設置在前述第1半導體胴體與前述複數之導電層之中之至少其中一者之間之電荷積蓄膜;和第1單結晶體,係被設置於前述基板上,並與前述第1柱狀體之下端相接,並且在前述複數之導電層之中之1以上之第2層內而於前述第1方向上延伸,前述第1柱狀體,係具備有沿著其之外側面而延伸之第1虛擬面,前述1以上之第1層,係包含有該些之中之最為接近前述基板之第3層,前述1以上之第2層,係包含有該些之中之最為接近前述基板之第4層,在前述第1柱狀體之徑方向上,前述第1虛擬面與前述第3層之內周面之間之距離,係較前述第1虛擬面與前述第4層之內周面之間之距離而更大。
  2. 如請求項1所記載之半導體記憶裝置,其中,在前述第1柱狀體之徑方向上,前述第1虛擬面與前述 第4層之內周面之間之距離、和前述第1虛擬面與前述第3層之內周面之間之距離,此兩者之差,係為11nm以下。
  3. 如請求項2所記載之半導體記憶裝置,其中,在前述第1柱狀體之徑方向上,前述第1虛擬面與前述第4層之內周面之間之距離、和前述第1虛擬面與前述第3層之內周面之間之距離,此兩者之差,係為5nm以下。
  4. 如請求項1~3中之任一項所記載之半導體記憶裝置,其中,前述層積體,係具備有包含前述第1柱狀體之胞陣列區域、和包含在前述第1方向上而延伸的第2柱狀體之階梯區域,該半導體記憶裝置,係更進而具備有:第2單結晶體,係被設置在前述基板上,並與前述第2柱狀體之下端相接,並且在前述1以上之第2層內而在前述第1方向上延伸,前述第2柱狀體,係具備有沿著其之外側面而延伸之第2虛擬面,在前述第2柱狀體之徑方向上,前述第2虛擬面與前述第3層之內周面之間之距離,係較前述第2虛擬面與前述第4層之內周面之間之距離而更大。
  5. 如請求項4所記載之半導體記憶裝置,其中,在前述第2柱狀體之徑方向上,前述第2虛擬面與前述 第4層之內周面之間之距離、和前述第2虛擬面與前述第3層之內周面之間之距離,此兩者之差,係為11nm以下。
  6. 如請求項5所記載之半導體記憶裝置,其中,在前述第2柱狀體之徑方向上,前述第2虛擬面與前述第4層之內周面之間之距離、和前述第2虛擬面與前述第3層之內周面之間之距離,此兩者之差,係為5nm以下。
TW110101047A 2020-05-29 2021-01-12 半導體記憶裝置 TWI760060B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020094728A JP2021190566A (ja) 2020-05-29 2020-05-29 半導体記憶装置
JP2020-094728 2020-05-29

Publications (2)

Publication Number Publication Date
TW202145209A TW202145209A (zh) 2021-12-01
TWI760060B true TWI760060B (zh) 2022-04-01

Family

ID=78705290

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101047A TWI760060B (zh) 2020-05-29 2021-01-12 半導體記憶裝置

Country Status (4)

Country Link
US (1) US11869838B2 (zh)
JP (1) JP2021190566A (zh)
CN (1) CN113745234B (zh)
TW (1) TWI760060B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627396B2 (en) * 2014-05-30 2017-04-18 Samsung Electronics Co., Ltd. Semiconductor device including a stack having a sidewall with recessed and protruding portions
US10020364B2 (en) * 2015-03-12 2018-07-10 Toshiba Memory Corporation Nonvolatile semiconductor memory device and method of manufacturing the same
US10128266B2 (en) * 2015-10-13 2018-11-13 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device
US20190088678A1 (en) * 2014-09-08 2019-03-21 Toshiba Memory Corporation Three-dimensional semiconductor memory device
US20200091181A1 (en) * 2018-09-19 2020-03-19 Toshiba Memory Corporation Semiconductor memory device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101825539B1 (ko) 2010-10-05 2018-03-22 삼성전자주식회사 3차원 반도체 장치 및 그 제조 방법
US9768191B2 (en) * 2015-10-19 2017-09-19 Toshiba Memory Corporation Semiconductor device
US10032790B2 (en) * 2015-12-16 2018-07-24 Toshiba Memory Corporation Semiconductor device
US9831180B2 (en) * 2016-03-10 2017-11-28 Toshiba Memory Corporation Semiconductor device and method for manufacturing same
US9812463B2 (en) * 2016-03-25 2017-11-07 Sandisk Technologies Llc Three-dimensional memory device containing vertically isolated charge storage regions and method of making thereof
US9716105B1 (en) * 2016-08-02 2017-07-25 Sandisk Technologies Llc Three-dimensional memory device with different thickness insulating layers and method of making thereof
US9960180B1 (en) * 2017-03-27 2018-05-01 Sandisk Technologies Llc Three-dimensional memory device with partially discrete charge storage regions and method of making thereof
US10475515B2 (en) 2017-12-21 2019-11-12 Micron Technology, Inc. Multi-decks memory device including inter-deck switches
US10615172B2 (en) * 2018-05-11 2020-04-07 Sandisk Technologies Llc Three-dimensional memory device having double-width staircase regions and methods of manufacturing the same
JP2019212691A (ja) * 2018-05-31 2019-12-12 東芝メモリ株式会社 半導体メモリ
JP2020035921A (ja) * 2018-08-30 2020-03-05 キオクシア株式会社 半導体記憶装置
JP2020038909A (ja) * 2018-09-04 2020-03-12 キオクシア株式会社 半導体記憶装置
US10957706B2 (en) * 2018-10-17 2021-03-23 Sandisk Technologies Llc Multi-tier three-dimensional memory device with dielectric support pillars and methods for making the same
EP3711091A4 (en) * 2018-12-17 2021-11-24 SanDisk Technologies LLC THREE-DIMENSIONAL STORAGE DEVICE WITH TENSIONED VERTICAL SEMICONDUCTOR CHANNELS AND PROCESS FOR THEIR PRODUCTION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627396B2 (en) * 2014-05-30 2017-04-18 Samsung Electronics Co., Ltd. Semiconductor device including a stack having a sidewall with recessed and protruding portions
US20190088678A1 (en) * 2014-09-08 2019-03-21 Toshiba Memory Corporation Three-dimensional semiconductor memory device
US10020364B2 (en) * 2015-03-12 2018-07-10 Toshiba Memory Corporation Nonvolatile semiconductor memory device and method of manufacturing the same
US10128266B2 (en) * 2015-10-13 2018-11-13 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device
US20200091181A1 (en) * 2018-09-19 2020-03-19 Toshiba Memory Corporation Semiconductor memory device

Also Published As

Publication number Publication date
JP2021190566A (ja) 2021-12-13
TW202145209A (zh) 2021-12-01
CN113745234A (zh) 2021-12-03
US20210375752A1 (en) 2021-12-02
CN113745234B (zh) 2024-03-12
US11869838B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
TWI670833B (zh) 半導體裝置
TWI716825B (zh) 半導體記憶體及其製造方法
TWI718588B (zh) 半導體記憶裝置及其製造方法
JP2020107673A (ja) 半導体記憶装置
US20170278851A1 (en) Semiconductor memory device
TWI793430B (zh) 半導體記憶裝置
US20170271345A1 (en) Semiconductor memory device and method of manufacturing the same
US10396091B2 (en) Semiconductor memory device
TWI714211B (zh) 半導體記憶裝置
TWI760060B (zh) 半導體記憶裝置
US20220262807A1 (en) Semiconductor storage device and method for manufacturing the same
US11778820B2 (en) Semiconductor storage device and manufacturing method for semiconductor device
TW202213734A (zh) 半導體記憶裝置及其製造方法
TWI820599B (zh) 半導體記憶裝置及半導體記憶裝置之製造方法
TWI812333B (zh) 半導體記憶體裝置
US20230309303A1 (en) Semiconductor memory device and method for manufacturing semiconductor memory device
US20230413567A1 (en) Semiconductor memory device and method for manufacturing semiconductor memory device
US20220254800A1 (en) Semiconductor storage device
US11600629B2 (en) Semiconductor memory device and method of manufacturing semiconductor memory device
US20230079009A1 (en) Memory device
US20230276629A1 (en) Semiconductor device and manufacturing method thereof
JP2023044164A (ja) 半導体記憶装置、および半導体記憶装置の製造方法
TW202412275A (zh) 記憶體裝置