TWI746713B - 半導體裝置及功率轉換裝置 - Google Patents

半導體裝置及功率轉換裝置 Download PDF

Info

Publication number
TWI746713B
TWI746713B TW106141747A TW106141747A TWI746713B TW I746713 B TWI746713 B TW I746713B TW 106141747 A TW106141747 A TW 106141747A TW 106141747 A TW106141747 A TW 106141747A TW I746713 B TWI746713 B TW I746713B
Authority
TW
Taiwan
Prior art keywords
circuit
drive
current
igbt
aforementioned
Prior art date
Application number
TW106141747A
Other languages
English (en)
Other versions
TW201834397A (zh
Inventor
鶴丸誠
Original Assignee
日商瑞薩電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商瑞薩電子股份有限公司 filed Critical 日商瑞薩電子股份有限公司
Publication of TW201834397A publication Critical patent/TW201834397A/zh
Application granted granted Critical
Publication of TWI746713B publication Critical patent/TWI746713B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Electronic Switches (AREA)

Abstract

本發明之課題為由於功率半導體元件的特性之不一致,使得功率半導體元件的切換動作之過渡時的動作相異。解決手段為:半導體裝置具備驅動IGBT的閘極端子之驅動控制電路。前述驅動控制電路具備:狀態機控制電路、基底資料記憶體、及基於儲存在前述基底資料記憶體的驅動電流資訊而驅動前述IGBT的電流驅動電路。前述狀態機控制電路在PWM訊號上升時,將儲存在前述基底資料記憶體的上升用之驅動電流資訊在預定期間內讀取複數次,然後驅動前述電流驅動電路,並且在前述PWM訊號下降時,將儲存在前述基底資料記憶體的下降用之驅動電流資訊在預定期間內讀取複數次,然後驅動前述電流驅動電路。

Description

半導體裝置及功率轉換裝置
本申請案係關於半導體裝置,例如可應用於控制並聯連接的絕緣閘極雙極電晶體(IGBT)之閘極的半導體裝置。
在將IGBT或MOS-FET等功率半導體元件或功率半導體模組切換驅動而進行功率轉換的功率轉換裝置,例如將複數個IGBT並聯設置,並且將這些IGBT同時切換驅動,藉此使該輸出電流電容(轉換功率電容)增加(例如日本特開2014-230 307號公報)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2014-230307號公報 [專利文獻2]日本特開2014-150701號公報
[發明所欲解決的課題]
由於功率半導體元件(功率用半導體裝置)的特性不一致,導致功率半導體元件在切換動作的過渡時之動作會相異。 其他課題及新穎特徵由本說明書的記載及附加圖式予以闡明。 [用於解決課題的手段]
在本申請案中,如下所示簡單說明主要內容的概要。 也就是說,半導體裝置具備驅動功率用半導體裝置的驅動控制電路。在前述驅動控制電路具備波形生成電路,其可任意生成與連接的功率用半導體裝置之特性對應的閘極訊號。 [發明效果]
依照上述半導體裝置,可任意設定功率用半導體裝置在切換動作的過渡時之狀態。
以下,針對實施形態及實施例,使用圖式予以説明。然而,在以下的説明中,有時候對於同一構成要素會附加同一符號而省略重複的説明。
電動機(馬達)作為與內燃機關(汽油引擎)組合的油電混合車(HEV)或電動車(EV)等的動力源。驅動電動機時,為了得到預定的力矩及電源頻率而使用進行直流-交流轉換的功率轉換裝置(反相器電路)。 在反相器電路內,除了IGBT等功率用半導體裝置,還使用驅動功率用半導體裝置的驅動用半導體裝置以及控制驅動用半導體裝置的控制用半導體裝置。驅動用半導體裝置係除了驅動功率用半導體裝置的閘極驅動電路,還具有過電流保護功能,以避免功率用半導體裝置遭到過電流等破壞。
就為了提高馬達驅動能力而提高IGBT的驅動電流之方法而言,具有(1)使晶片大小增大的方法;及(2)將複數個IGBT並聯連接的方法。然而,考慮到晶片大小的適合値,採用上述(1)會有限制,並且為了減低導通電阻,較佳為選擇上述(2)。
<比較例> 首先,針對本申請案發明者所探討的技術(比較例)之功率轉換裝置使用圖1、 2予以説明。圖1為表示比較例的功率轉換裝置之構成的方塊圖。圖2為說明比較例的功率轉換裝置之問題點用的電壓及電流之波形圖。
比較例的功率轉換裝置2R具備切換元件11、驅動器IC20R及控制電路30R。 切換元件11係將IGBT12_1及IGBT12_2並聯連接而構成。 驅動器IC20R係在一個半導體晶片中具備:驅動切換元件11的IGBT12_1、12_2之驅動控制電路21R;檢測IGBT12_1、12_2的驅動電流之電流監視電路22;經由截止電阻Rc而連接到IGBT12_1、12_2的截止電路23;及與控制電路30R連接的MCU_I/F24。驅動控制電路21R基於來自控制電路30R的PWM訊號而生成驅動閘極電極的驅動訊號以導通、切斷IGBT12_1、12_2。在驅動控制電路21R及IGB T12_1、12_2之間分別設置閘極電阻Rg1、Rg2。電流檢測用電阻Re1、Re2連接到IGBT12_1、12_2的感測射極端子及電流監視電路22。並且,電流監視電路22為監視過電流未流到IGBT12_1、12_2用的電路,檢測到預定大小的電流時,藉由截止電路23及截止電阻Rc使閘極電壓降低,而使IGBT12_1、12_2的電流減少。 控制電路30R係在一個半導體晶片具備CPU31、PWM電路(PWM)33、記憶裝置(MEMORY)32、及與外部裝置連接的介面輸入輸出部也就是I/O介面(I/O_IF) 34,例如由微電腦單元(MCU)所構成。記憶裝置32由快閃記憶體等可電性改寫的不揮發性記憶體所構成。又,CPU31所執行的程式(馬達控制程式)儲存在記憶裝置32。
比較例的功率轉換裝置具有以下課題。 (a) 針對並聯連接的二個IGBT的特性(例如Vth)相異時的動作,使用圖2予以説明。 從驅動控制電路21R輸出的閘極訊號電壓(VG )被施加到IGBT12_1、12_2時,IGBT12_1及IGBT12_2的Vth特性相異的話,IGBT12_1的閘極端子電壓(VGE1 )及感測電流(ISE1 )、與IGBT12_2的閘極端子電壓(VGE2 )及感測電流(ISE2 )的波形相異。 其中,IGBT12_1的Vth設為Vth1、IGBT12_2的Vth設為Vth2的話,Vth2>Vth1(Vth1 ≠Vth2)。並且,感測電流為具有與射極電流相關(預定的鏡比率)的微小電流。IGBT 12_1的Vth比IGBT12_2的Vth還低的話,IGBT12_1的導通時間(TON1 )會比IGBT12 _2的導通時間(TON2 )還短。並且,IGBT導通的話,VGE1 、VGE2 的斜率會往變小的方向變化,而ISE1 、ISE2 會開始流動。 如此一來,IGBT12_1、12_2的導通/切斷(ON/OFF)具有閾値偏差時,1個IGBT為導通、另1個仍然為切斷狀態,這種狀態不一致會產生。如此一來,在分別流經IGBT12_1、12_2的電流會產生不平衡,而有電流迴路引發的振盪狀態等導致異常電流發生、進入破壞模式之虞。 (b) 作為上述(a)的課題之對策,利用閘極電阻Rg1,Rg2進行不一致修正的話, 由於電阻値增大使響應性降低,而使馬達旋轉頻率的界限値降低,性能無法提升。 (c) 作為上述(a)的課題之對策,IGBT的製造者對使IGBT12_1、12_2的特性一致之排序進行選擇的話,由於特殊選擇對應等,導致製造者端的成本上升。 (d) 即使對IGBT12_1、12_2進行排序,由於閘極電阻Rg1、Rg2的不一致或驅動控制電路的驅動不一致等,故系統安裝後的調整・確認作業必定發生,超過調整範圍時,該系統主機板視為不良,導致使用者端的成本上升。
<實施型態> 接著,針對實施形態的半導體裝置進行説明。 實施形態的半導體裝置具備:複數個驅動控制電路,其個別驅動並聯連接的複數個功率用半導體裝置(例如IGBT);電壓監視電路,其用於監視閘極電壓;及電流監視電路,其用於監視驅動電流。在各驅動控制電路具備波形生成電路,其可任意產生與連接的IGBT之特性對應的閘極訊號。
各驅動控制電路具備:電流驅動電路,其為了調查連接的IGBT之特性,可依照來自控制實施形態的半導體裝置之控制用半導體裝置的指令而使閘極電壓步進式上升及下降。
測試時的電流驅動電路係在波形生成電路內,對正常時間的電流驅動電路進行定標而形成,並且測試時的電流驅動電路之驅動電流相對正常時間的電流驅動電路以一定比率縮小形成。
控制用半導體裝置具備CPU及記憶裝置,將來自電壓監視電路及電流監視電路的監視資訊連同時間資訊儲存在記憶裝置,並且將調查IGBT之狀態變遷用的特性檢査程式保持在記憶裝置。
實施形態的半導體裝置由控制用半導體裝置所控制,並且在系統安裝時,對連接的IGBT執行特性檢査,再針對相異特性的IGBT之驅動時序的同步化及驅動能力予以修正。
將驅動控制電路變遷到測試模式,藉由測試波形生成電路的驅動電路及檢測電路,而檢查使IGBT導通及切斷的閾値電壓等。
特性檢査程式會針對每個IGBT實施測試,然後將該結果作為特性資料儲存到記憶裝置。
特性修正程式基於由特性檢査程式所得到的各個IGBT之特性結果,為了消除並聯連接的IGBT之特性差異,而更新波形生成電路的基底資料記憶體。由特性修正程式執行的特性修正(基底資料記憶體的更新)針對IGBT的導通及切斷時的各個IGBT分別設定。
依照實施形態,可發揮至少下述任一作用效果。 (1) 可將複數個IGBT並聯連接,提升IGBT的驅動電流而提高馬達驅動能力。 (2) 即使將具有相異特性的IGBT並聯連接,由於可將導通及切斷的狀態變遷同步化,故可抑制特性不一致引發的異常電流,而提升品質。 (3) 針對實施高速切換時的過衝或者下衝電流,變更閘極訊號的驅動能力,而可降低切換雜訊及切換損失。(導致低消耗功率) (4) 進行特性最佳化引發的驅動,藉此提升馬達旋轉頻率。 (5) 進行使用控制用半導體裝置的各IGBT之特性檢査,藉此可免除各個IGB T的閘極電阻修正作業,而縮短調整作業時間。又,可免除進行IGBT特性的排序選擇用的檢査步驟及製品區分出貨步驟,而防止IGBT的成本增加。 (6) 由於在測試模式取得IGBT的特性,故不必利用實驗或電腦模擬計算機來預先準備特性。 (7) 由於在使用IGBT的系統取得特性,故可取得包含IGBT或驅動電路、閘極電阻等特性,而可提高精確度。
針對實施形態的一例使用以下實施例予以説明。 [實施例]
針對實施例的電動機系統使用圖3予以説明。圖3為表示實施例的電動機系統之構成的方塊圖。
實施例的電動機系統1具備:三相馬達40;及控制三相馬達40的功率轉換裝置2。功率轉換裝置2具備:反相器電路10;6個驅動用半導體裝置也就是驅動器IC20U、20V、20W、20X、20Y、20Z;及控制用半導體裝置也就是控制電路(MCU) 30。以在車輛等的驅動時,使電流流經三相馬達40的各相之方式,對反相器電路10內部的切換元件11U、11V、11W、11X、11Y、11Z進行導通/切斷控制,藉由該切換的頻率而使車輛等的速度變化。又,在車輛等的制動時,以同步於在三相馬達40的各相所產生的電壓之方式對切換元件11U、11V、11W、11X、11Y、11Z進行導通/切斷控制,進行所謂的整流動作,轉換成直流電壓而進行再生。
三相馬達40係旋轉子為永久磁石,電樞由線圈所構成,三相(U相、V相、W相)的電樞繞線以120度間隔配置。線圈採用三角形接線,電流恆常地流經U相、V相、W相的三個線圈。
反相器電路10由以下元件構成:上臂的U相用切換元件11U;上臂的V相用切換元件11V;上臂的W相用切換元件11W;下臂的U相用切換元件11X;下臂的V相用切換元件11Y;及下臂的W相用切換元件11Z。切換元件11U、11V、11W、11X、11Y、11Z的各切換元件係功率用半導體裝置也就是IGBT以並聯連接而構成。切換元件11U、11V、11W、11X、11Y、11Z具備在IGBT12_1、12_2的各電晶體之射極及集極之間並聯連接的回流二極體(未圖示)。回流二極體係被連接成電流的流動方向與流經IGBT的電流為相反方向。回流二極體可由與IGBT相異的半導體晶片所形成,也可由同一晶片所形成。
電動機系統1作為HEV或者EV等動力源而使用。功率轉換裝置2作為車載用電子裝置而使用。
接著,針對實施例的功率轉換裝置之構成使用圖4予以説明。圖4為表示實施例的功率轉換裝置之構成的方塊圖。在圖4,僅表示功率轉換裝置2之中的其中一相而予以説明,但該說明也適用於其他相。以下,在不必區別切換元件11U、11V、11W、11X、11Y、11Z之各開關的情況,統稱為開關元件11而予以説明。
實施例的功率轉換裝置2具備:具有切換元件11的反相器電路10;驅動器IC 20;及控制電路30。
切換元件11U係IGBT12_1及IGBT12_2以並聯連接而構成。
驅動器IC20具備:驅動IGBT12_1的第一驅動控制電路21_1;驅動IGBT12_2的第二驅動控制電路21_2;及檢測IGBT12_1、12_2的驅動電流之電流監視電路22。又,驅動器IC20具備:截止IGBT12_1、12_2的閘極之驅動的截止電路23;與控制電路30連接的MCU_I/F24;檢測IGBT12_1、12_2的閘極電壓之電壓監視電路25;及控制截止電路23的邏輯電路26。驅動器IC20的上述構成要素包含在一個半導體晶片。第一驅動控制電路21_1及第二驅動控制電路21_2的各驅動控制電路基於來自控制電路30的PWM(Pulse Width Modulation)訊號,而生成驅動閘極端子的閘極訊號以導通、切斷IGBT12_1、12_2的各IGBT。邏輯電路26為在使來自第一驅動控制電路21_1的訊號及來自第二驅動控制電路21_2的訊號之至少任一者被起動時,將輸出設為高的電路,例如OR電路。截止電路23由集極被連接到輸入輸出端子IOT的電晶體所構成,對閘極輸入邏輯電路26的輸出。
在第一輸出端子OT1及IGBT12_1的閘極端子之間設置閘極電阻Rg1,在第二輸出端子OT2及IGBT12_2的閘極端子之間設置閘極電阻Rg2。在輸入端子IT1、IT2及IGBT12_1、12_2的感測射極端子之間連接電流檢測用電阻Re1、Re2。在輸入輸出端子IOT及IGBT12_1、12_2的閘極端子之間連接截止電阻Rc1、Rc2。並且,電流監視電路22為用於監視過電流未流經IGBT12_1、12_2的電路,檢測到預定大小的電流時,藉由截止電路23及截止電阻Rc使閘極電壓降低,而使IGB T12_1、12_2的電流減少。又,電流監視電路22及電壓監視電路25在取得後述的測試模式之IGBT的特性資料時被使用。
控制電路30係在一個半導體具備:CPU31;PWM電路(PWM)33;記憶裝置32;及與外部裝置連接的介面輸入輸出部也就是I/O介面(I/O_IF)34,例如由微電腦單元(MCU)所構成。記憶裝置32較佳為由快閃記憶體等可電性改寫的不揮發性記憶體所構成。又,CPU31所執行的程式(馬達控制程式、IGBT特性檢査、IGBT特性修正)被儲存在記憶裝置32。
接著,針對實施例的驅動器IC之構成使用圖5進行説明。圖5為表示實施例的驅動器IC之構成的方塊圖。圖5僅表示功率轉換裝置之中的一頻道(一個IGBT)之控制而予以説明,但該說明也可套用到其他頻道。以下,在不必區別第一驅動控制電路21_1及第二驅動控制電路21_2的情況,統稱為驅動控制電路21予以説明。又,同樣的情況也可套用到驅動控制電路所包含的構成要素,例如第一波形生成電路及第二波形生成電路統稱為波形生成電路211予以説明。進而,同樣地,輸出端子OT1、OT2統稱為輸出端子OT,輸入端子IT1、IT2統稱為輸入端子IT,IGBT12_1、12_2統稱為IGBT12,閘極電阻Rg1、Rg2統稱為閘極電阻Rg,截止電阻Rc1、Rc2統稱為截止電阻Rc,電流檢測用電阻Re1、Re2統稱為電流檢測用電阻Re予以説明。
驅動控制電路21具備:波形生成電路211;狀態機控制電路214;狀態機判斷電路215;電流監視電路22;及電壓監視電路25。並且,圖5的電流監視電路22為一頻道分量的電路,被包含在圖4的電流監視電路22。圖5的電壓監視電路25為一頻道分量的電路,被包含在圖4的電壓監視電路25。在圖5,電流監視電路22及電壓監視電路25被包含在驅動控制電路21。電流顯示器電22由於也檢測IGBT的過電流,故必須與並聯連接的IGBT為相同數量,但電壓監視電路25僅使用於後述的測試模式時,可共用於複數個IGBT。波形生成電路211具備電流驅動電路212及基底資料記憶體213。基底資料記憶體213較佳為由可電性改寫的不揮發性記憶體所構成。並且,驅動控制電路21可由MCU所構成。
接著,針對驅動控制電路(驅動器IC)的狀態變遷使用圖6、7予以説明。圖6為驅動控制電路的重要部分之方塊圖。圖7為驅動控制電路的狀態變遷圖。
藉由使重設訊號(Reset)生效,驅動控制電路21成為等待來自CPU31的指令之「Null」狀態。來自CPU31的指令為「ReProgram」時,驅動控制電路21成為從CPU31對基底資料記憶體213進行寫入的資料安裝(「Data Install」)狀態。來自CPU 31的指令為測試(「Test」)時,驅動制御電路21成為取得IGBT的特性資料之測試模式(「Test Mode」)狀態。來自CPU31的指令為「Normal」時,驅動控制電路21成為進行通常的動作之通常模式(「Normal Mode」)狀態。在資料安裝(「Data Install」)、「Test Mode」、「Normal Mode」的各狀態,來自CPU31的指令為「Init」時,驅動控制電路21成為「Null」狀態。在「Null」狀態,從驅動控制電路21朝向輸出端子OT的輸出為低位準,而使IGBT切斷。
接著,針對通常模式(「Normal Mode」)的狀態變遷利用圖8~11予以説明。圖8為表示圖7的通常模式之PWM訊號及狀態的波形圖。圖9為表示對應於圖8的PWM波形圖之IGBT的狀態之波形圖。圖10為說明圖9的IGBT之狀態的圖。圖11為說明圖7的通常模式之狀態變遷及基底資料記憶體之間的關係之圖。
PWM訊號上升的過渡期為第一狀態(State1)、第二狀態(State2)、第三狀態(State3),穩定保持在高位準的期間為第四狀態(State4)。PWM訊號下降的過渡期為第五狀態(State5)、第六狀態(State6)、第七狀態(State7),穩定保持為低位準的期間為第8狀態(State8)。
第一狀態(State1)為電流流入IGBT的閘極端子,而對閘極電路電容(閘極・集極間的寄生電容及閘極・射極間的寄生電容)充電的狀態,並且為比閾値小的電壓被施加到IGBT的閘極之狀態。在該狀態,隨著輸出端子OT的閘極訊號電壓(VG )上升,IGBT的閘極端子電壓(VGE )也上升,但IGBT未導通,使得感測電流(ISE )不流動。並且,圖9的感測電流(ISE )以檢測到電流時的電壓(VSE )表示。
第二狀態(State2)為閘極電路電容的充電結束而變遷到導通狀態,並且比閾値大的電壓被施加到IGBT的閘極端子之狀態。在該狀態,相較於VG 的上升率,VGE 的上升率較小,但隨著VG 上升,ISE 也會上升。
第三狀態(State3)為即將到達飽和狀態之前的狀態。在該狀態,相較於VG 的上升率,ISE 的上升率較小。
第四狀態(State4)為導通狀態的飽和狀態。
第五狀態(State5)為從IGBT的閘極端子釋放電流,而將閘極電路電容釋放的狀態,並且為比閾値大的電壓被施加在IGBT的閘極之狀態。在該狀態,相較於VG 的下降率,VGE 的下降率較小,ISE 大致未減少。
第六狀態(State6)為閘極電路電容的放電結束而變遷到切斷狀態的狀態,並且為比閾値小的電壓被施加到IGBT的閘極之狀態。在該狀態,相較於VG 的下降率,VGE 的下降率較小,但隨著VG 下降,ISE 也下降。
第七狀態(State7)為到達切斷狀態之前的狀態。在該狀態,相較於VG 的下降率,VGE 的下降率較大,ISE 成為不流動。
第八狀態(State8)為切斷狀態的飽和狀態。
狀態機控制電路214成為通常模式(「Normal Mode」)的話,會以第八狀態(State8)待機。狀態機控制電路214檢測到PWM訊號之上升邊緣(Rise edge)的話,會成為第一狀態(State1),經過第一預定時間後,變遷到第二狀態(State2),經過第二預定時間後,變遷到第三狀態(State3),經過第三預定時間後,變遷到第四狀態(State4)。狀態機控制電路214將第四狀態(State4)維持至檢測到PWM訊號的下降邊緣(Fall edge)為止,檢測PWM訊號之下降邊緣的話,成為第五狀態(State5), 經過第五預定時間後,變遷到第六狀態(State6),經過第六預定時間後,變遷到第七狀態(State7),經過第七預定時間後,變遷到第八狀態(State8)。
第一狀態被維持第一預定時間,對應第一基底資料記憶體213_1的位址為0~ L-1處。在位址為0~L-1處,儲存第一狀態的電流驅動電路212之驅動能力相對應的資料。第二狀態被維持第二預定時間維持,對應第一基底資料記憶體213_1的位址為L~M-1處。在位址為L~M-1處,儲存第二狀態的電流驅動電路212之驅動能力相對應的資料。第三狀態被維持第三預定時間,對應第一基底資料記憶體213_1的位址為M~N-1處。在位址為M~N-1處,儲存第三狀態的電流驅動電路212之驅動能力相對應的資料。從閘極訊號電壓上升的第一狀態到第三狀態,從第一基底資料記憶體213_1讀取驅動電流資訊複數次,然後予以供給到電流驅動電路212。
第四狀態被維持至檢測到PWM訊號的下降邊緣,對應第二基底資料記憶體213_2的位址為0處。在位址為0處,儲存對應第四狀態的電流驅動電路212之驅動能力的資料。
第五狀態被維持第四預定時間,對應第三基底資料記憶體213_3的位址為0~ L-1處。在位址為0~L-1處,儲存第五狀態的電流驅動電路212之驅動能力相對應的資料。第六狀態被維持第五預定時間,對應第三基底資料記憶體213_3的位址為I~J-1處。在位址為I~J-1處,儲存第六狀態的電流驅動電路212之驅動能力相對應的資料。第七狀態被維持第六預定時間,對應第三基底資料記憶體213_3的位址為J~K-1處。在位址為J~K-1處,儲存第七狀態的電流驅動電路212之驅動能力相對應的資料。在閘極訊號電壓下降的第五狀態到第七狀態,從第三基底資料記憶體213_3讀取驅動電流資訊複數次,然後予以供給到電流驅動電路212。
第八狀態被維持至檢測到PWM訊號的上升邊緣,對應第四基底資料記憶體213_4的位址為0處。在位址為0處,儲存第八狀態的電流驅動電路212之驅動能力相對應的資料。
第一預定時間、第二預定時間、第三預定時間、第四預定時間、第五預定時間、第一基底資料記憶體213_1、第二基底資料記憶體213_2、第三基底資料記憶體213_3、第四基底資料記憶體213_4的値係基於以下所述的測試模式之特性檢測結果而設定。
針對電流驅動電路使用圖12予以説明。圖12為表示圖6的電流驅動電路之構成的電路圖。
電流驅動電路212在高基準電位及端子CDT之間具備N個並聯連接的P通道型MOS電晶體(PMOS電晶體)MP1~MPN,在低基準電位及端子CDT之間具備N個並聯連接的N通道型MOS電晶體(NMOS電晶體)MN1~MNN。又,電流驅動電路212具備:連接到PMOS電晶體MP1~MPN的各閘極之N條配線;及連接到NMO S電晶體MN1~MNN的各閘極之N條配線。端子CDT連接到輸出端子OT。PMOS電晶體MP1~MPN使閘極訊號電壓(VG )上升,NMOS電晶體MN1~MNN使閘極訊號電壓(VG )下降。藉由調整平行驅動的PMOS電晶體MP1~MPN或者NMOS電晶體MN1~MNN的數量,而可調整驅動能力。
在基底資料記憶體213,儲存將PMOS電晶體MP1~MPN之中某個PMOS電晶體或者NMOS電晶體MN1~MNN之中某個NMOS電晶體予以驅動的資料。在基底資料記憶體213的「高側」,儲存PMOS電晶體MP1~MPN的資料,在「低側」,儲存NMOS電晶體MN1~MNN的資料。
將PMOS電晶體MP1~MPN的各電晶體及NMOS電晶體MN1~MNN的各電晶體定比縮小配置,使電流比成為特定値。例如,將PMOS電晶體MP1及NMOS電晶體MN1的驅動電流設為1(=20 )時,PMOS電晶體MP2及NMOS電晶體MN2的驅動電流設為2(=21 )、・・・、PMOS電晶體MPN及NMOS電晶體MNN的驅動電流設為2N-1 的話,電流驅動電路212可由2N 通道的驅動電流來驅動。因此,藉由改變儲存在基底資料記憶體213的驅動電流資訊,而可變更驅動能力。
接著,針對測試模式(「Test Mode」)的狀態變遷使用圖13、14予以説明。圖13為表示圖7的測試模式之閘極訊號及狀態的波形圖。圖14為說明圖7的測試模式之狀態變遷及基底資料記憶體之間的關係之圖。
閘極訊號的上升為第一測試狀態(Test State1),高位準為第二測試狀態(Test State2),下降為第三測試狀態(Test State3),低位準為第四測試狀態(Test State4)。
狀態機控制電路214成為測試模式(「Test Mode」)的話,經過預定時間後,會變遷到第一測試狀態(Test State1),經過第一測試預定時間後,會返回測試模式(「Test Mode」)。之後,經過預定時間後,變遷到第二測試狀態(Test State2),經過第二預定測試時間後,返回測試模式(「Test Mode」)。之後,經過預定時間後,返回第三測試狀態(Test State3),經過第三測試預定時間後,返回測試模式(「Test Mode」)。之後,經過預定時間後,變遷到第四測試狀態(Test State4),經過第四測試預定時間後,返回測試模式(「Test Mode」)。
第一測試狀態被維持第一測試預定時間維持,對應第一基底資料記憶體213 _1的位址為0~M處。在位址為0~M處,儲存第一測試狀態的電流驅動電路212之驅動能力相對應的資料。第二測試狀態被維持第二測試預定時間,對應第二基底資料記憶體213_2的位址為0為止處。在位址為0處,儲存第二測試狀態的電流驅動電路212之驅動能力相對應的資料。第三測試狀態被維持第三測試預定時間維持,對應第三基底資料記憶體213_3的位址為0~M處。在位址為0~M處,儲存第三測試狀態的電流驅動電路212之驅動能力相對應的資料。
將測試模式(「Test Mode」)時的電流驅動電路212之驅動能力設成遠比通常模式(「Normal Mode」)時的電流驅動電路212之驅動能力還小的値,而使閘極訊號波形(閘極訊號電壓(VG ))不急遽上升。例如,測試模式(「Test Mode」)時的電流驅動電路212在使閘極電壓(VG )上升時,驅動一個PMOS電晶體MP1,而在使閘極電壓(VG )下降時,驅動一個NMOS電晶體MN1。又,如上述,藉由將電流驅動電路212的各電晶體定比縮小配置,使得測試模式(「Test Mode」)時及通常模式(「Normal Mode」)時的驅動電流比率為特定値。藉此,可精確取得閘極訊號上升及下降時的IGBT之特性。
接著,針對基底資料記憶體使用圖15進行説明。圖15為表示基底資料記憶體的構成之方塊圖。基底資料記憶體213具備第一基底資料記憶體213_1、第二基底資料記憶體213_2、第三基底資料記憶體213_3及第四基底資料記憶體213_ 4,各個基底資料記憶體的構成如下文所示。
基底資料記憶體213具備:記憶體部MEM,其儲存對應電流驅動電路的驅動能力之資料;及計時器(Timer),其生成記憶體部MEM的讀取位址。又,基底資料記憶體213具備:第一選擇器(Selector)SL1,其切換寫入位址(Write Address)及讀取位址(Read Address);及選擇器SL2,其切換寫入資料(Write Data)及浮動防止用的固定值(「0」或「1」)。「Data Install」狀態的情況,狀態機控制電路214使改寫(ReProgram)訊號起動,選擇器SL1選擇寫入位址(Write Address),選擇器SL2選擇寫入資料(Write Data)。如此一來,可藉由來自CPU31的位址及資料而改寫基底資料記憶體213。「Normal Mode」狀態或者「Test Mode」狀態的情況,狀態機控制電路214使改寫訊號去起動,選擇器SL1選擇讀取位址(Read Address), 選擇器SL2選擇固定值。如此一來,藉由來自計時器TM的位址,可從基底資料記憶體213讀取對應驅動能力的資料。計時器TM在啟用(Enable)訊號被起動時,會對時脈(Clock)訊號進行計數,讀取位址從0開始每次增加1。並且,「Data Install」狀態的情況,也可藉由來自CPU31的位址,而從基底資料記憶體213讀取對應驅動能力的資料。
第一基底資料記憶體213_1的計時器TM之啟用(Enable)訊號會在第一狀態(State1)開始時被起動,並且在第三狀態(State3)結束時被去起動。第二基底資料記憶體213_2的計時器TM之啟用(Enable)訊號在第四狀態(State4)開始時被起動, 並且在第五狀態(State5)開始時被去起動。第三基底資料記憶體213_3的計時器T M之啟用(Enable)訊號在第五狀態(State5)開始時被起動,並且在第七狀態(State7)結束時被去起動。第四基底資料記憶體213_4的計時器TM之啟用(Enable)訊號在第八狀態(State8)開始時被起動,並且在第一狀態(State)開始時被去起動。
接著,針對測試模式(「Test Mode」)狀態的IGBT之特性檢査使用圖16~24予以説明。圖16為執行IGBT的特性檢査之電路部分的方塊圖。圖17為表示閘極訊號電壓上升時的IGBT之特性檢測時序及狀態的時序圖。圖18為表示閘極訊號電壓下降時的IGBT之特性檢測時序及狀態的時序圖。
執行IGBT的特性檢査之電路(特性檢査電路)的主要電路為狀態機控制電路214、基底資料記憶體213、電流驅動電路212、電壓監視電路25、電流監視電路22、及狀態機判斷電路215。電流監視電路22在通常模式下用於檢測過電流,在測試模式下電流檢測電壓較低,故較佳為DC放大器。藉由特性檢査電路,可取得IGBT的特性。
IGBT表示如以下所式的特性。 如圖17所示,輸出端子OT的閘極訊號電壓(VG )同步於時脈訊號(Clock)並且由較小驅動能力的電流驅動電路212來驅動,故呈階段狀上升。 閘極訊號電壓(VG )開始上升的話,IGBT12的閘極電容會開始充電,電壓監視電路25的輸入也就是閘極端子電壓(VGE )的dV/dt會朝向正方向變大(時序A)。圖17的時序A對應圖9的通常模式之時序A。 閘極電容結束充電,IGBT12變成導通狀態的話,VGE 的dV/dt會下降(時序B)。 圖17的時序B對應圖9的通常模式之時脈B。 VGE 超越閾値電壓的話,電流會開始流經IGBT12,使感測電流(ISE )>0。並且,對電流監視電路22輸入將ISE 轉換成電壓的電流檢測電壓(VSE ),使VSE >0(時序C)。 圖17的時序C對應圖9的通常模式之時序C。 由於IGBT12的導通狀態保持穩定,使得電流大致為一定,ISE 的dI/dt會下降。 因此,VSE 的dV/dt會下降(時序D)。圖17的時序D對應圖9的通常模式之時序D。
如圖18所示,輸出端子OT的閘極訊號電壓(VG )同步於時脈訊號(Clock)並且由較小驅動能力的電流驅動電路212來驅動,故呈階段狀下降。 閘極訊號電壓(VG )開始下降的話,IGBT12的閘極電容會開始放電(時序E)。圖18的時序E對應圖9的通常模式之時序E。 VGE 下降到比臨界電壓還低的話,IGBT12會進入切斷狀態(時序F)。圖18的時序F對應圖9的通常模式之時序F。 VGE 下降到比閾値電壓還低的話,IGBT12的電流開始急遽下降,使ISE 的dI/dt <0。因此,VSE 的dV/dt<0(時序G)。圖18的時序G對應圖9的通常模式之時序G。 閘極電容結束放電,IGBT12成為穩定的切斷狀態的話,VGE 的dV/dt朝向負方向變大(時序H)。圖18的時序H對應圖9的通常模式之時序H。 ISE 的電流値成為大致為零的狀態,IGBT12會成為穩定的切斷狀態(時序I)。圖18的時序I對應圖9的通常模式之時序I。
特性檢査電路藉由檢測時序C,而可檢測從第一狀態(State1)變化成第二狀態(State2)的時序。又,藉由檢測時序D,可檢測從第二狀態(State2)變化成第三狀態(State3)的時序。又,藉由檢測時序D,可檢測從第五狀態(State5)變化成第六狀態(State6)的時序。又,藉由檢測時序H,可檢測從第六狀態(State6)變化成第七狀態(State7)的時序。
並且,從第三狀態(State3)變化成第四狀態(State4)的時序為從第一測試狀態(Test State1)變化成第二測試狀態(Test State2)的時序,從第四狀態(State4)變化成第五狀態(State5)的時序為從第二測試狀態(Test State2)變化成第三測試狀態(Test State3)的時序。又,從第七狀態(State7)變化成第八狀態(State8)的時序為從第三測試狀態(TestState3)變化成第四測試狀態(Test State4)的時序,從第八狀態(State 8)變化成第一狀態(State1)的時序為從第四測試狀態(Test State4)變化成第一測試狀態(Test State1)的時序。
針對時序C的檢測使用圖19、20予以説明。圖19為表示檢測時序C的電路之方塊圖。圖20為檢測時序C的時序圖。
電流監視電路22具備比較VSE 及預先設定的基準電壓(Vmon(State2))之比較器221。Vmon(State2)為ISE 開始流動的電流値相當之電壓。並且,比較器221比較被輸入的電壓及基準電壓,但被輸入的電壓及基準電壓由於動作模式或狀態而不同,故電流監視電路22可藉由狀態訊號等而切換功能。
狀態機控制電路214具備第一計時器(Timer)TM1,其在被輸入到開始(Start)端子的訊號被起動時,即對於時脈訊號(Clock)開始計數,並且被輸入到停止(Sto p)端子的訊號被起動時,即停止計數。對於開始(Start)端子輸入第一啟用訊號(Ena ble1),對於停止(Stop)端子,在比較器221的比較結果為一致時,即輸入已起動的電流監視輸出訊號(CMO)。第一啟用訊號(Enable1)在第一狀態(State1)開始時即被起動,電流監視輸出訊號(CMO)在第二狀態(State2)開始時即被起動,故可量測第一狀態(State1)的期間(TONA )。並且,狀態機控制電路214具備儲存TONA 的電晶體(未圖示)。
針對時序D的檢測使用圖21予以説明。圖21為表示檢測時序D的電路之方塊圖。
電流監視電路22係除了比較器221,還具備檢測VSE 之斜率的變化之微分電路(dI/dt電路)222。比較器221比較微分電路222的輸出電壓及預先設定的基準電壓(Vmon(State3))。Vmon(State3)為表示ISE (VSE )之斜率變化的電壓。
狀態機控制電路214具備第二計時器(Timer)TM2,其在被輸入到開始(Start)端子的訊號被起動時,即對於時脈訊號(Clock)開始計數,在被輸入到停止(Stop)端子的訊號被起動時,即停止計數。對於開始(Start)端子,輸入第一啟用訊號(Ena ble1),對於停止(Stop)端子,在比較器221的比較結果一致時,即輸入被起動的電流監視輸出訊號(CMO)。第一啟用訊號(Enable1)在第一狀態(State1)開始時即被起動,電流監視輸出訊號(CMO)在第三狀態(State3)開始時即被起動,故可量測第一狀態(State1)及第二狀態(State2)的合計期間(TONB )。並且,狀態機控制電路214具備儲存TONB 的電晶體(未圖示)。又,以圖21的電流顯示器輸出訊號(CMO)不被輸入到計時器TM2的停止(Stop)端子之方式,而在電流監視電路22及計時器TM2之間,插入藉由狀態訊號等而允許及禁止電流監視輸出訊號(CMO)之通過的閘極電路等。
針對時序G的檢測使用圖22、23予以説明。圖22為表示檢測時序G的電路之方塊圖。圖23為檢測時序G的時序圖。並且,為了檢測時序G,必須將閘極訊號電壓(VG )預先調升到最大電壓。
電流監視電路22的比較器221比較VSE 及預先設定的基準電壓(Vmon(State 6))。Vmon(State6)為相當於ISE 開始減少的電流値之電壓。
對於狀態機控制電路214的第一計時器(Timer)TM1之開始(Start)端子,輸入第二啟用訊號(Enable2),對於停止(Stop)端子,比較器221的比較結果一致的話,即輸入被起動的電流顯示器輸出訊號(CMO)。第二啟用訊號(Enable2)在第五狀態(State5)開始時即被起動,電流顯示器輸出訊號(CMO)在第六狀態(State6)開始時即被起動,故可量測第五狀態(State5)的期間(TOFFA )。並且,狀態機控制電路214具備儲存TOFFA 的電晶體(未圖示)。
針對時序H的檢測使用圖24進行説明。圖24為表示檢測時序H的電路之方塊圖。
電壓監視電路25具備比較器251,其用於比較檢測VGE 的斜率之變化的微分電路(dV/dt電路)252、微分電路252的輸出電壓、及預先設定的基準電壓(Vmon(Sta te7))。Vmon(State7)為表示VGE 的斜率變化之電壓。
對於狀態機控制電路214的第二計時器(Timer)TM2之開始(Start)端子,輸入第二啟用訊號(Enable2),對於停止(Stop)端子,比較器251的比較結果一致的話,即輸入被起動的電壓監視輸出訊號(VMO)。第二啟用訊號(Enable2)在第五狀態(State5)開始時即被起動,電壓顯示器輸出訊號(VMO)在第七狀態(State7)開始時即被起動,故可量測第五狀態(State5)及第六狀態(State6)的合計期間(TOFFB )。並且,狀態機控制電路214具備儲存TOFFB 的電晶體(未圖示)。
接著,針對實施例的功率轉換裝置之準備處理使用圖25~30予以説明。圖25為特性檢査用準備處理的流程圖。圖26表示特性檢査時的構成之方塊圖。圖27為IGBT特性檢査處理的流程圖。圖28為IGBT特性測試的流程圖。圖29為IGBT特性修正處理的流程圖。
針對特性檢査用準備處理使用圖25、26予以説明。 步驟S11:如圖26所示,為了取代馬達,而將基準電阻連接到功率轉換裝置2來構成特性檢査用電動機系統。
步驟S12:CPU31發出「ReProgram」指令,將所有驅動器IC20U、20V、20W、20X、20Y、20Z的控制狀態(驅動控制電路)變遷到「Data Install」狀態。
步驟S13:CPU31將測試用驅動模式寫入各驅動器IC的各驅動控制電路之基底資料記憶體213_1~213_4的各記憶體。移動到圖27的IGBT特性檢査處理。
針對IGBT特性檢査處理使用圖27、28予以説明。 步驟21:CPU31發出「Test」指令,將所有驅動器IC20U、20V、20W、20X、20Y、20Z變遷到測試模式(「Test Mode」)狀態。例如,將切換元件11的IGBT12作為測試對象時,為了經由切換元件11U的IGBT及基準電阻而做出電流路徑,例如將切換元素11Z的IGBT設成導通而成為第二測試狀態,並且將其他切換元件11V、11W、11X、11Y的IGBT12設成切斷而成為第四測試狀態。
步驟S22:將測試對象的切換元件內之1個IGBT設為DUT,再將另1個IGBT設為切斷而成為第四測試狀態。
步驟S23:執行如圖28所示的IGBT特性測試。
步驟S231:驅動器IC20U在第一測試狀態測定IGBT12的TONA ,然後儲存在電晶體。
步驟S232:驅動器IC20U在第一測試狀態測定IGBT12的TONB ,然後儲存在電晶體。
步驟S233:驅動器IC20U在第三測試狀態測定IGBT12的TOFFA ,然後儲存在電晶體。
步驟S234:驅動器IC20U在第三測試狀態測定IGBT12的TONB ,然後儲存在電晶體。
步驟S24:CPU31將儲存在電晶體的IGBT特性測試之結果(TONA 、TONB 、TOFFA 、 TOFFB )儲存在MCU30內的記憶裝置32。
將步驟S21~S24套用到所有IGBT。移動到圖28的IGBT特性修正處理。
針對IGBT特性修正處理使用圖29、30予以説明。圖29為IGBT特性修正處理的流程圖。圖30為說明特性相異的IGBT之特性的偏差之修正用的時序圖。圖30之左側的時序圖係與圖2相同,表示2個IGBT的Vth相異的情況,圖30之右側的時序圖表示已修正特性的偏差之情況。
步驟S31:從儲存在MCU30的記憶裝置32之各驅動器IC20U、20V、20W、20X、20Y、20Z內的2個IGBT特性測試結果(TONA 、TONB 、TOFFA 、TOFFB ),以2個IGBT成為相同特性的方式,算出儲存在基底資料記憶體的通常模式用之電流驅動的圖表。進行該算出時係考慮測試模式下的電流驅動電路之驅動能力與通常模式下的電流驅動電路之驅動能力呈預定的比率。並且,如圖30所示,從驅動控制電路21輸出的閘極訊號電壓(VG )被施加到IGBT12_1、12_2時,IGBT12_1及IGBT12_2的Vth特性相異的話,IGBT12_1的閘極端子電壓(VGE1 )與感測電流(ISE1 )、及IGBT12_2的閘極端子電壓(VGE2 )與感測電流(ISE2 )的波形會相異。IGBT12_ 1的Vth1比IGBT12_2的Vth2還低的話,IGBT12_1的導通時間(TON1 )會變得比IGB T12_2的導通時間(TON2 )還短。此時,將驅動IGBT12_2的閘極之能力(驅動電流)提升,並且如圖30的A所示,調整VGE2 的斜率,使得TON2 變短,進而使TON2 =TON1 。IGBT12_1的切斷時間(TOFF1 )變得比IGBT12_2的切斷時間(TOFF2 )還短時,也將驅動IGBT12_2的閘極之能力(驅動電流)提升,並且與圖30的A相同,調整VGE2 的斜率,使得TOFF2 變短,進而使TOFF2 =TOFF1
步驟S32:CPU31發出「ReProgram」指令,將所有驅動器IC20U、20V、20W、20X、20Y、20Z的控制狀態(驅動控制電路)變遷到「Data Install」狀態。
步驟S33:CPU31將通常模式用驅動型態寫入各驅動器IC的各驅動控制電路之基底資料記憶體213_1~213_4的各記憶體。
步驟S34:CPU31發出「Normal」指令,將所有驅動器IC20U、20V、20W、20X、20Y、20Z的控制狀態(驅動控制電路)變遷到「Normal Mode」狀態。
<變形例> 以下,列舉幾個典型的變形例。在以下的變形例之説明中,針對具有與上述的實施例中所説明者相同的構成及功能之部分,可能會使用與上述的實施例相同的符號。然後,針對該部分的説明,只要在技術上未出現矛盾的範圍內,即可能會適當引用上述的實施例中之説明。又,上述的實施例之一部分以及複數個變形例的全部或一部分,只要在技術上未出現矛盾的範圍內,即可能會以適當的方式組合應用。
(變形例1) 接著,針對變形例1的功率轉換裝置之構成使用圖31予以説明。圖31為表示變形例1的功率轉換裝置之構成的方塊圖。在圖31,雖然僅表示功率轉換裝置2之中的其中一相予以説明,但該說明也可套用到其他相。以下,在不必區別切換元件11U,11V,11W,11X,11Y,11Z的各個開關之情況,統稱為切換元件11予以説明。
在變形例1的功率轉換裝置2,構成切換元件的IGBT12以3個並聯的方式連接,由此驅動器IC20具備3個驅動控制電路21,但其他構成及動作係與實施例相同。以下,主要說明與實施例相異的部分。
變形例1的功率轉換裝置2具備:具有切換元件11的反相器電路10;驅動器IC 20;及控制電路30。
切換元件11係IGBT12_1、IGBT12_2及IGBT12_3以並聯連接而構成。
驅動器IC20具備:驅動IGBT12_1的第一驅動控制電路21_1;驅動IGBT12_2的第二驅動控制電路21_2;驅動IGBT12_3的第三驅動控制電路21_3;及檢測IGB T12_1、12_2、12_3的驅動電流之電流監視電路22。又,驅動器IC20具備:截止IGBT12_1、12_2、12_3的閘極之驅動的截止電路23;與控制電路30連接的MCU_ I/F24;檢測IGBT12_1、12_2、12_3的閘極電壓之電壓監視電路25;及控制截止電路23的邏輯電路26。驅動器IC20在一個半導體晶片具備上述構成要素。第一驅動控制電路21_1、第二驅動控制電路21_2及第三驅動控制電路21_3的各驅動控制電路基於來自控制電路30的PWM訊號,而生成驅動閘極電極的驅動訊號以導通、切斷IGBT12_1、12_2、12_3。邏輯電路26為在來自第一驅動控制電路21_1的訊號、來自第二驅動控制電路21_2的訊號、及來自第三驅動控制電路21_3的訊號之至少任一者被起動時,將輸出設為高的電路,例如OR電路。
在第一輸出端子OT1及IGBT12_1的閘極端子之間設置閘極電阻Rg1,在第二輸出端子OT2及IGBT12_2的閘極端子之間設置閘極電阻Rg2,在第三出力端子OT3及IGBT12_3的閘極端子之間設置閘極電阻Rg3。在輸入端子IT1、IT2、IT3及IGBT12_1、12_2、12_3的感測射極端子之間連接電流檢測用電阻Re1、Re2、Re3。在輸入輸出端子IOT及IGBT12_1、12_2、12_3的閘極端子之間連接截止電阻Rc1、Rc2、Rc3。
在變形例2,雖然說明構成切換元件11的IGBT12以3個並聯的方式連接之例, 但並不限定於此,也可為4個以上。此時,驅動控制電路21的設置數量與IGBT12相同。
(變形例2) 針對變形例2的測試模式之基底資料記憶體使用圖32予以説明。圖32為說明測試模式的狀態及基底資料記憶體之間的關係之圖。
在實施例,如圖14所示,對應四個測試狀態而具備四個基底資料記憶體,而在變形例2,藉由CPU31來改寫一個相同的基底資料記憶體,而對應到四個測試狀態。如此一來,可減少HW資源。
變形例2例如也可應用於變形例1。
(變形例3) 針對IGBT特性修正處理的變形例使用圖33、34予以説明。圖33為變形例3的IGBT特性修正處理之流程圖。圖34為IGBT特性修正確認處理的流程圖。在變形例3,執行圖33的IGBT特性修正處理及圖34的IGBT特性修正確認處理,以取代圖27的IGBT特性檢査之後的圖29的IGBT特性修正處理。在測試模式,將電流驅動電路212以基底資料記憶體的驅動能力資訊進行控制,可進行IGBT特性修正的確認。
步驟S41:從儲存在MCU30的記憶裝置32之各驅動器IC20U、20V、20W、20X、20Y、20Z內的2個IGBT特性測試結果(TONA 、TONB 、TOFFA 、TOFFB ),以2個IGBT成為相同特性的方式,而修正基底資料記憶體用的電流驅動之圖表。例如,將IGBT12_1的TONA 設成TONA (1),將IGBT12_2的TONA 設成TONA (2),並且TONA (1)<TONA (2)時,提高IGBT12_2的驅動能力,或者降低IGBT12_1的驅動能力。
步驟S42:CPU31發出「ReProgram」指令,將所有驅動器IC20U、20V、20W、20X、20Y、20Z的控制狀態(驅動控制電路)變遷到「Data Install」狀態。
步驟S43:CPU31將測試用驅動型態寫入各驅動器IC的各驅動控制電路之基底資料記憶體213_1~213_4之各記憶體。移動到圖31的IGBT特性修正確認處理。
針對IGBT特性修正確認處理使用圖31予以説明。
步驟S51:針對所有IGBT執行圖27的IGBT特性檢査(步驟S21~S24)。
步驟S52:CPU31判斷IGBT特性測試結果的特性差是否在規定値內。是(YES)的情況,移動到圖29的IGBT特性修正處理。否(NO)的情況,移動到步驟S53。
步驟S53:CPU31執行錯誤處理。
(變形例4) 針對變形例的驅動控制電路使用圖35、36予以説明。圖35表示變形例的驅動控制電路之構成的方塊圖。圖36表示變形例的波形生成電路之構成的方塊圖。
在實施例,共用通常模式及測試模式的波形生成電路,由基底資料記憶體切換電流驅動電路的驅動能力,但在變形例4,除了通常模式用的波形生成電路211,還具備測試模式用的波形生成電路211T。如此一來,可簡化測試模式時的控制。
通常模式用的波形生成電路211具備基底資料記憶體213、電流驅動電路212及選擇器SL3。基底資料記憶體213及電流驅動電路212具有與實施例相同的構成。選擇器SL3具備2輸入的OR閘極及2輸入的AND閘極,對於AND閘極的一個輸入,輸入反轉訊號。
測試模式用的波形生成電路211T具備電流驅動電路212T及選擇器SL4、SL 5。測試模式用的波形生成電路211T係與通常模式用的波形生成電路211相異,不具備基底資料記憶體,而使電流驅動電路212T的驅動能力為固定。
電流驅動電路212T在高基準電位及端子TCT之間具備PMOS電晶體MPT,在低基準電位及端子TCT之間具備NMOS電晶體MNT1~MNN。端子TCT連接到輸出端子OT。PMOS電晶體MPT使閘極訊號電壓(VG )上升,NMOS電晶體MNT使閘極訊號電壓(VG )下降。將電流驅動電路212T的驅動能力設成遠比電流驅動電路212的驅動能力還小的値,而使閘極訊號波形不會急遽上升。又,電流驅動電路212T為將電流驅動電路212定比縮小配置而成者,藉此使電流比成為特定値。如此一來,可精確取得閘極訊號上升及下降時的IGBT之特性。
在測試模式(「Test Mode」)狀態,從狀態機控制電路214輸出的測試模式訊號(Test mode)為H,選擇器SL3的OR閘極之輸出為H,AND閘極的輸出為L,電流驅動電路212的端子TCT之輸出為浮動。又,在選擇器SL4、SL5,來自狀態機控制電路214的輸出訊號(RUM、FDM)被輸入到電流驅動電路212T,驅動電流被輸出到輸出端子OT。從輸出端子OT輸出H時,從狀態機控制電路214輸入到選擇器SL4的訊號(RUM)為被輸入到計時器TM2等的時脈訊號(Clock),並且輸入到選擇器SL5的訊號為L。然後,從選擇器SL4輸出時脈訊號(Clock),並且從選擇器SL5輸出L。如此一來,與圖20相同,電流驅動電路212T的輸出在時脈訊號(Clock)的周期中以階梯狀上升。從輸出端子OT輸出L時,從狀態機控制電路214輸入到選擇器SL4的訊號為H,並且輸入到選擇器SL5的訊號(FDM)為時脈訊號(Clock)。 然後,從選擇器SL4輸出H,並且從選擇器SL5輸出時脈訊號(Clock)。如此一來,與圖23相同,電流驅動電路212T的輸出在時脈訊號(Clock)的周期中以階梯狀下降。
在通常模式(「Normal Mode」)狀態,從狀態機控制電路214輸出的測試模式訊號(Test mode)成為L,從基底資料記憶體213輸入到選擇器SL3的訊號可輸出到電流驅動電路212。又,選擇器SL4輸出H,SL5輸出L,電流驅動電路212T的端子TCT之輸出為浮動,電流驅動電路212的驅動電流被輸出到輸出端子OT。
變形例4的功率轉換裝置之IGBT的特性檢査係可與實施例相同的方式執行。 並且,測試模式用的波形生成電路不具有基底資料記憶體,而使電流驅動電路的驅動能力為固定,故圖25的步驟S12、S13不執行。
變形例4例如也可應用於變形例1。
(變形例5) 圖37為執行變形例5的IGBT之特性檢査的電路部分之方塊圖。
在實施例及變形例4,電流監視電路22及電壓監視電路25由比較器所構成,而在變形例5,電流監視電路22及電壓監視電路25由A/D轉換電路所構成。其他構成及動作係與實施例相同。
變形例5例如也可應用於變形例1、4。
<應用例> 在實施例、變形例1~5,係説明複數個IGBT的導通時間及切斷時間一致的情形,但實施例、變形例1~5的構成,也可應用於過渡響應的過衝之對策。又,也可應用於切換元件11U、11V、11W、11X、11Y、11Z的各切換元件由一個IGBT所構成的情況(未並聯連接的情況)之過渡響應的過衝之對策。
針對過渡響應的對策使用圖38~43予以説明。圖38為導通時(Rg=3.5Ω)的訊號波形。圖39為導通時(Rg=43Ω)的訊號波形。圖40為切斷時(Rg=3.5Ω)的訊號波形。圖41為切斷時(Rg=43Ω)的訊號波形。圖42為表示導通時的訊號波形及狀態的波形圖。圖43為表示由基底資料記憶體進行驅動控制之例的圖。並且,在基底資料記憶體不儲存「Address」「IGBT State」。
如圖38~41所示,欲提升響應性時,藉由降低閘極電阻(Rg),而可達成高速化,但集極電流(Ic)的過衝易發生,導致雜訊及切換損失增加。
因此,將閘極的驅動電流(IG)在緊接導通時的飽和狀態之前的狀態(State3)及緊接切斷時的飽和狀態之前的狀態(State7)中,設成使電流驅動能力降低的訊號波形,藉此可防止過衝。
例如,將導通時的各狀態之驅動電流(IG )(基底資料記憶體的設定)設成如下文所示。 第一狀態(State1):設定成最大電流驅動(IG =I1 )。例如,如圖43所示,將基底資料記憶體的位址(Address)0~L-1之「高側」的資料設成「000000」,將「低側」的資料設成「000000」。 第二狀態(State2):設定成限制電流驅動能力(IG =I2 <I1 )。例如,如圖43所示,將基底資料記憶體的位址(Address)L~M-1之「高側」的資料設成「110000」,將「低側」的資料設成「000000」。「高側」的資料中有「1」的話,電流驅動能力會變低。 第三狀態(State3):暫時設定成將電流驅動能力提升,再以不過衝的方式緩緩降低電流驅動能力(IG =I1 ⇒I3 )。例如,如圖43所示,將基底資料記憶體的位址(Address)M~N-n之「高側」的資料設成「000000」,將位址(Address)N-2之「高側」的資料設成「111100」,將位址(Address)N-1的資料設成「111101」,將位址(Address)N的「高側」的資料設成「111110」,而使驅動能力緩緩下降。將位址(Address)M~N之「低側」的資料設成「000000」。 第四狀態(State4):設定成維持最低限度的導通狀態用的電流驅動能力(IG = I3 )。例如,將基底資料記憶體之「高側」的資料設成「111100」,將「Low side」的資料設成「000000」。
以上,針對本發明者所完成的發明,基於實施形態、實施例及變形例而予以具體説明,但誠然本發明並不限定於上述實施形態、實施例及變形例,而是可有各種變更。
1‧‧‧電動機系統 2、2R‧‧‧功率轉換裝置 10‧‧‧反相器電路 11、11U、11V、11W、11X、11Y、11Z‧‧‧切換元件 12‧‧‧IGBT(功率用半導體裝置) 20、20R、20U、20V、20W、20X、20Y、20Z‧‧‧驅動IC(半導體裝置) 21、21R‧‧‧驅動控制電路 211、211T‧‧‧波形生成電路 212、212T‧‧‧電流驅動電路 213‧‧‧基底資料記憶體 214‧‧‧狀態機控制電路 215‧‧‧狀態機判斷電路 21‧‧‧驅動控制電路 21_1‧‧‧第一驅動控制電路 21_2‧‧‧第二驅動控制電路 21_3‧‧‧第三驅動控制電路 22‧‧‧電流監視電路 23‧‧‧截止電路 24‧‧‧MCU_I/F 25‧‧‧電壓監視電路 251‧‧‧選擇器 252‧‧‧微分電路 26‧‧‧邏輯電路 30、30R‧‧‧控制電路(MCU,控制用半導體裝置) 31‧‧‧CPU 32、32R‧‧‧記憶裝置 33‧‧‧PWM電路 34‧‧‧I/O介面 40‧‧‧三相馬達 CDT‧‧‧端子 CMO‧‧‧電流監視輸出訊號 FDM、RUM‧‧‧輸出訊號 IOT‧‧‧輸入輸出端子 IT、IT1、IT2、IT3‧‧‧輸入端子 ISE1、ISE2‧‧‧感測電流 MEM‧‧‧記憶體部 MN1~MNN‧‧‧NMOS電晶體 MP1~MPN‧‧‧PMOS電晶體 OT‧‧‧輸出端子 OT1‧‧‧第一輸出端子 OT2‧‧‧第二輸出端子 OT3‧‧‧第三輸出端子 Rc、Rc1、Rc2、Rc3‧‧‧截止電阻 Re、Re1、Re2、Re3‧‧‧電流檢測用電阻 Rg、Rg1、Rg2、Rg3‧‧‧閘極電阻 SL1、SL2、SL3、SL4、SL5‧‧‧選擇器 TCT‧‧‧端子 TM、TM1、TM2‧‧‧計時器 TON1、TON2‧‧‧導通時間 VG‧‧‧閘極訊號電壓 VGE、VGE1、VGE2‧‧‧閘極端子電壓 Vmon‧‧‧基準電壓 VSE‧‧‧電流檢測電壓 VMO‧‧‧電壓監視輸出訊號
【圖1】圖1為表示比較例的功率轉換裝置之構成的方塊圖。 【圖2】圖2為說明圖1的功率轉換裝置之問題點用的電壓及電流之波形圖。 【圖3】圖3為表示實施例的電動機系統之構成的方塊圖。 【圖4】圖4為表示圖3的功率轉換裝置之單相的構成之方塊圖。 【圖5】圖5為表示圖4的驅動器IC之單頻道的構成之方塊圖。 【圖6】圖6為表示圖5的驅動控制電路之構成的方塊圖。 【圖7】圖7為圖5的驅動控制電路之狀態變遷圖。 【圖8】圖8為表示圖7的通常模式之PWM訊號及狀態的波形圖。 【圖9】圖9為表示與圖8的PWM波形圖對應的IGBT之狀態的波形圖。 【圖10】圖10為說明圖9的IGBT之狀態的圖。 【圖11】圖11為說明圖7的通常模式之狀態變遷及基礎資料記憶體之間的關係之圖。 【圖12】圖12為表示圖6的電流驅動電路之構成的電路圖。 【圖13】圖13為表示圖7的測試模式之閘極訊號及狀態之波形圖。 【圖14】圖14為說明圖7的測試模式之狀態變遷及基礎資料記憶體之間的關係之圖。 【圖15】圖15為表示圖6的基底資料記憶體之構成的方塊圖。 【圖16】圖16為執行IGBT的特性檢査之電路部分的方塊圖。 【圖17】圖17為表示閘極電壓上升時的IGBT之特性檢測時序及狀態之時序圖。 【圖18】圖18為表示閘極電壓下降時的IGBT之特性檢測時序及狀態之時序圖。 【圖19】圖19為表示檢測時序C之電路的方塊圖。 【圖20】圖20為檢測時序C的時序圖。 【圖21】圖21為表示檢測時序D之電路的方塊圖。 【圖22】圖22為表示檢測時序G之電路的方塊圖。 【圖23】圖23為檢測時序G的時序圖。 【圖24】圖24為表示檢測時序H之電路的方塊圖。 【圖25】圖25為特性檢査用準備處理的流程圖。 【圖26】圖26為表示特性檢査時的構成之方塊圖。 【圖27】圖27為IGBT特性檢査處理的流程圖。 【圖28】圖28為IGBT特性測試的流程圖。 【圖29】圖29為IGBT特性修正處理的流程圖。 【圖30】圖30為說明特性相異的IGBT之特性的偏差之修正用的時序圖。 【圖31】圖31為表示變形例1的功率轉換裝置之構成的方塊圖。 【圖32】圖32為說明變形例2的測試模式之狀態及基底資料記憶體之間的關係之圖。 【圖33】圖33為變形例3的IGBT特性修正處理之流程圖。 【圖34】圖34為變形例3的IGBT特性修正確認處理之流程圖。 【圖35】圖35為表示變形例4的驅動控制電路之構成的方塊圖。 【圖36】圖36為表示變形例4的波形生成電路之構成的方塊圖。 【圖37】圖37為執行變形例5的IGBT之特性檢査的電路部分之方塊圖。 【圖38】圖38為IGBT導通時(Rg=3.5Ω)的訊號波形圖。 【圖39】圖39為IGBT導通時(Rg=43Ω)的訊號波形圖。 【圖40】圖40為IGBT切斷時(Rg=3.5Ω)的訊號波形圖。 【圖41】圖41為IGBT切斷時(Rg=43Ω)的訊號波形圖。 【圖42】圖42為表示IGBT導通時的訊號波形及狀態之波形圖。 【圖43】圖43為表示由基底資料記憶體進行驅動控制之例的圖。
2‧‧‧功率轉換裝置
10‧‧‧反相器電路
11‧‧‧切換元件
12‧‧‧IGBT(功率用半導體裝置)
20‧‧‧驅動IC(半導體裝置)
21‧‧‧驅動控制電路
211‧‧‧波形生成電路
212‧‧‧電流驅動電路
213‧‧‧基底資料記憶體
214‧‧‧狀態機控制電路
215‧‧‧狀態機判斷電路
21‧‧‧驅動控制電路
22‧‧‧電流監視電路
23‧‧‧截止電路
24‧‧‧MCU_I/F
25‧‧‧電壓監視電路
26‧‧‧邏輯電路
IOT‧‧‧輸入輸出端子
IT‧‧‧輸入端子
OT‧‧‧輸出端子
Rc‧‧‧截止電阻
Re‧‧‧電流檢測用電阻
Rg‧‧‧閘極電阻

Claims (18)

  1. 一種半導體裝置,具備驅動IGBT的閘極端子之驅動控制電路,前述驅動控制電路具備:基於來自控制用半導體裝置的PWM訊號之上升及下降而控制狀態的狀態機控制電路;儲存上升用之驅動電流資訊及下降用之驅動電流資訊的基底資料記憶體;基於儲存在前述基底資料記憶體的驅動電流資訊而驅動前述IGBT的電流驅動電路;及前述電流驅動電路的輸出所連接的輸出端子;前述狀態機控制電路在前述PWM訊號上升時,將儲存在前述基底資料記憶體的上升用之驅動電流資訊在預定期間內讀取複數次,而驅動前述電流驅動電路,前述狀態機控制電路在前述PWM訊號下降時,將儲存在前述基底資料記憶體的下降用之驅動電流資訊在預定期間內讀取複數次,而驅動前述電流驅動電路;前述電流驅動電路具備:在被施加預定電位的端子與前述輸出端子之間並聯連接的複數個上升用之電晶體;及在被施加比前述預定電位還低的基準電位之端子與前述輸出端子之間並聯連接的複數個下降用之電晶體;前述驅動電流資訊為使前述複數個上升用之電晶體的任一電晶體導通或使前述複數個下降用之電晶體任一電晶體導通的資訊;前述基底資料記憶體被設定成使在前述預定期間內讀取的上升用之驅動電流資訊變化, 前述基底資料記憶體被設定成使在前述預定期間內讀取的下降用之驅動電流資訊變化。
  2. 如申請專利範圍第1項之半導體裝置,尚具備:複數個前述驅動控制電路,前述複數個驅動控制電路的各者驅動以並聯連接的複數個IGBT之閘極端子的各者。
  3. 如申請專利範圍第2項之半導體裝置,其中由於前述複數個IGBT的閘極閾值電壓相異而使閘極端子電壓的上升特性相異時,以使前述複數個IGBT的閘極端子電壓之上升特性接近的方式,調整在前述預定期間內讀取的上升用之驅動電流資訊。
  4. 如申請專利範圍第2項之半導體裝置,其中由於前述複數個IGBT的閘極閾值電壓相異而使閘極端子電壓的下降特性相異時,以使前述複數個IGBT的閘極端子電壓之下降特性接近的方式,調整在前述預定期間內讀取的下降用之驅動電流資訊。
  5. 一種半導體裝置,具備:驅動IGBT的閘極端子之電流驅動電路;前述電流驅動電路的輸出所連接的輸出端子;控制前述電流驅動電路的控制電路;檢測前述IGBT的閘極端子電壓之電壓監視電路;檢測前述IGBT的感測電流之電流監視電路;及基於前述電壓監視電路或電流監視電路的檢測結果而取得對應前述IGBT的閘極閾值之時間資訊的時間量測電路; 前述電流驅動電路具備:在被施加預定電位的端子與前述輸出端子之間連接的上升用之電晶體;及在被施加比前述預定電位還低的基準電位之端子與前述輸出端子之間連接的下降用之電晶體。
  6. 如申請專利範圍第5項之半導體裝置,其中前述電流驅動電路具備:在被施加前述預定電位的端子與前述輸出端子之間並聯連接的複數個上升用之電晶體;及在被施加前述基準電位的端子與前述輸出端子之間並聯連接的複數個下降用之電晶體;前述控制電路具備儲存前述電流驅動電路的驅動能力資訊之基底資料記憶體。
  7. 如申請專利範圍第5項之半導體裝置,其中前述控制電路基於時脈訊號而驅動前述電流驅動電路。
  8. 如申請專利範圍第5項之半導體裝置,其中前述時間量測電路在開始訊號被起動時,對時脈訊號計數,在停止訊號被起動時,停止計數,前述停止訊號為前述電流監視電路或前述電壓監視電路的檢測訊號。
  9. 一種功率轉換裝置,具備:並聯連接的第一IGBT及第二IGBT;半導體裝置;及 具有記憶體的控制用半導體裝置,前述半導體裝置具備:驅動前述第一IGBT的第一驅動控制電路;驅動前述第二IGBT的第二驅動控制電路;檢測前述第一IGBT的驅動電流之第一電流監視電路;檢測前述第二IGBT的驅動電流之第二電流監視電路;及檢測前述第一IGBT及第二IGBT的各者之驅動電壓的電壓監視電路,前述第一驅動控制電路及第二驅動控制電路的各者具備:基於來自前述控制用半導體裝置的指令而控制動作模式的狀態機控制電路;儲存驅動電流資訊的基底資料記憶體;及基於儲存在前述基底資料記憶體的前述驅動電流資訊而分別驅動前述第一IGBT及第二IGBT的電流驅動電路,前述控制用半導體裝置係將前述半導體裝置設定為第一動作模式,並且使前述第一及第二驅動控制電路藉由前述第一或第二電流監視電路及前述電壓監視電路而取得前述第一IGBT及第二IGBT的特性,再將取得的前述第一IGBT及第二IGBT的特性儲存在前述記憶體,前述控制用半導體裝置係基於儲存在前述記憶體的前述第一IGBT及第二IGBT特性,而以前述第一IGBT及第二IGBT特性的偏差變少的方式,算出電流驅動資訊,然後在前述第一驅動控制電路及第二驅動控制電路的前述基底資料記憶體儲存前述算出的電流驅動資訊,前述控制用半導體裝置係將前述半導體裝置設定為第二動作模式,並且使前述第一驅動控制電路及第二驅動控制電路基於儲存在各者的基底資料記憶體之電流驅動情報,而驅動前述第一IGBT及第二IGBT。
  10. 如申請專利範圍第9項之功率轉換裝置,其中前述電流驅動電路的前述第一動作模式之驅動能力比前述第二動作模式的驅動能力還小。
  11. 如申請專利範圍第10項之功率轉換裝置,其中前述半導體裝置為第一動作模式時,前述第一驅動控制電路會檢測:從將前述第一IGBT的閘極電路電容充電的狀態到閘極電路電容的充電結束而變遷到導通狀態的時序;及從將前述第一IGBT的閘極電路電容放電的狀態到閘極電路電容的放電結束而變遷到切斷狀態的時序,然後將這些時序作為時間資訊保持在第一暫存器,前述第二驅動控制電路會檢測:從將前述第二IGBT的閘極電路電容充電的狀態到閘極電路電容的充電結束而變遷到導通狀態的時序;及從將前述第二IGBT的閘極電路電容放電的狀態到閘極電路電容的放電結束而變遷到切斷狀態的時序,然後將這些時序作為時間資訊保持在第二暫存器。
  12. 如申請專利範圍第11項之功率轉換裝置,其中前述半導體裝置為第一動作模式時,前述控制用半導體裝置將前述第一暫存器及第二暫存器的內容儲存在前述記憶體,再基於儲存在前述記憶體的前述第一暫存器及第二暫存器的內容,而以前述第一IGBT及第二IGBT特性的偏差變少的方式,算出電流驅動資訊,然後在前述第一驅動控制電路及第二驅動控制電路的前述基底資料記憶體儲存前述算出的電流驅動資訊。
  13. 如申請專利範圍第12項之功率轉換裝置,其中前述狀態機控制電路基於時脈訊號驅動前述電流驅動電路。
  14. 如申請專利範圍第12項之功率轉換裝置,尚具備:時間量測電路,其基於前述第一電流監視電路、前述第二電流監視電路或前述電壓監視電路的檢測結果,而取得與前述第一IGBT及第二IGBT的閘極閾值對應的時間資訊,前述時間量測電路當開始訊號被起動時,對時脈訊號計數,停止訊號被起動時,停止計數,前述停止訊號為前述電流監視電路或前述電壓監視電路的檢測訊號。
  15. 如申請專利範圍第9項之功率轉換裝置,其中前述半導體裝置為第二動作模式時,前述狀態機控制電路當前述PWM訊號上升時,將儲存在前述基底資料記憶體的上升用之驅動電流資訊在預定期間內讀取複數次,然後驅動前述電流驅動電路,前述狀態機控制電路當前述PWM訊號下降時,將儲存在前述基底資料記憶體的下降用之驅動電流資訊在預定期間內讀取複數次,然後驅動前述電流驅動電路。
  16. 如申請專利範圍第15項之功率轉換裝置,其中前述電流驅動電路具備:在被施加預定電位的端子與前述輸出端子之間並聯連接的複數個上升用之電晶體;及在被施加比前述預定電位還低的基準電位之端子與前述輸出端子之間並聯連接的複數個下降用之電晶體,前述驅動電流資訊為使前述複數個上升用之電晶體的任一電晶體導通及使前述複數個下降用之電晶 體的任一電晶體導通的資料。
  17. 如申請專利範圍第16項之功率轉換裝置,其中由於前述複數個IGBT的閘極閾值電壓相異而使閘極端子電壓的上升特性相異時,以使前述複數個IGBT的閘極端子電壓之上升特性接近的方式,調整在前述預定期間內讀取的上升用之驅動電流資訊。
  18. 如申請專利範圍第17項之功率轉換裝置,其中由於前述複數個IGBT的閘極閾值電壓相異而使閘極端子電壓的下降特性相異時,以使前述複數個IGBT的閘極端子電壓之下降特性接近的方式,調整在前述預定期間內讀取的下降用之驅動電流資訊。
TW106141747A 2016-12-07 2017-11-30 半導體裝置及功率轉換裝置 TWI746713B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016237423A JP2018093684A (ja) 2016-12-07 2016-12-07 半導体装置および電力変換装置
JP2016-237423 2016-12-07

Publications (2)

Publication Number Publication Date
TW201834397A TW201834397A (zh) 2018-09-16
TWI746713B true TWI746713B (zh) 2021-11-21

Family

ID=60515184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141747A TWI746713B (zh) 2016-12-07 2017-11-30 半導體裝置及功率轉換裝置

Country Status (6)

Country Link
US (1) US10211824B2 (zh)
EP (1) EP3334046B1 (zh)
JP (2) JP2018093684A (zh)
KR (1) KR20180065919A (zh)
CN (1) CN108173418B (zh)
TW (1) TWI746713B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671988B (zh) * 2018-07-10 2019-09-11 群光電能科技股份有限公司 電源轉換裝置及其控制方法
JP6924216B2 (ja) * 2019-03-05 2021-08-25 株式会社東芝 電子回路および方法
US11067629B2 (en) * 2019-06-03 2021-07-20 Teradyne, Inc. Automated test equipment for testing high-power electronic components
US10790818B1 (en) * 2019-09-27 2020-09-29 Infineon Technologies Austria Ag Slew rate control by adaptation of the gate drive voltage of a power transistor
US11362646B1 (en) * 2020-12-04 2022-06-14 Skyworks Solutions, Inc. Variable current drive for isolated gate drivers
US11641197B2 (en) 2021-04-28 2023-05-02 Skyworks Solutions, Inc. Gate driver output protection circuit
TWI781814B (zh) * 2021-11-03 2022-10-21 致茂電子股份有限公司 可切換電源供應模式與電子負載模式之電源整合系統及其切換方法
CN116436450B (zh) * 2023-03-28 2024-04-09 重庆大学 Mos型半导体器件的栅极驱动电路和电力变换装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496933A (zh) * 2011-11-25 2012-06-13 东北大学 一种双并联有源电力滤波装置
CN102608382A (zh) * 2010-12-23 2012-07-25 通用电气公司 栅极驱动器处的电源开关电流估计器
US20130229209A1 (en) * 2012-03-05 2013-09-05 Denso Corporation Drive unit for switching element
CN103401219A (zh) * 2013-07-31 2013-11-20 华南理工大学 一种移相全桥驱动信号控制电路及其控制方法
CN105897073A (zh) * 2016-05-23 2016-08-24 上海交通大学 开关磁阻电机调速系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485341A (en) * 1992-09-21 1996-01-16 Kabushiki Kaisha Toshiba Power transistor overcurrent protection circuit
JP3125622B2 (ja) * 1995-05-16 2001-01-22 富士電機株式会社 半導体装置
JP3577847B2 (ja) * 1996-08-27 2004-10-20 富士電機デバイステクノロジー株式会社 電力変換装置のゲート駆動回路
JPH11235015A (ja) * 1998-02-13 1999-08-27 Toshiba Corp 電圧駆動型電力用半導体装置およびそのゲート制御方法
JPH11252896A (ja) * 1998-02-25 1999-09-17 Toshiba Corp Iegtのゲート制御装置
JP3773664B2 (ja) * 1998-09-11 2006-05-10 三菱電機株式会社 駆動制御装置、モジュール、および、複合モジュール
US6717785B2 (en) * 2000-03-31 2004-04-06 Denso Corporation Semiconductor switching element driving circuit
JP2004229382A (ja) * 2003-01-21 2004-08-12 Toshiba Corp ゲート駆動回路、および電力変換装置
JP2007502569A (ja) * 2003-08-12 2007-02-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電力変換回路及び電力制御回路の動作及び回路
JP2011082764A (ja) * 2009-10-06 2011-04-21 Mitsubishi Electric Corp パワーデバイス制御回路およびそれを用いたipm
EP2445110B1 (en) * 2010-10-22 2014-05-14 ABB Research Ltd Gate driver unit for electrical switching device
JP5887220B2 (ja) * 2012-07-04 2016-03-16 株式会社 日立パワーデバイス 半導体モジュール
JP5796586B2 (ja) * 2013-02-04 2015-10-21 株式会社デンソー 回路制御装置
JP6171553B2 (ja) * 2013-05-17 2017-08-02 富士電機株式会社 電力変換装置
JP6549451B2 (ja) * 2015-09-02 2019-07-24 ルネサスエレクトロニクス株式会社 半導体集積回路装置および電子装置
JP6639373B2 (ja) * 2016-11-18 2020-02-05 株式会社日立製作所 電力変換装置及びパワー半導体素子制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608382A (zh) * 2010-12-23 2012-07-25 通用电气公司 栅极驱动器处的电源开关电流估计器
US8723590B2 (en) * 2010-12-23 2014-05-13 General Electric Company Power switch current estimator at gate driver
CN102496933A (zh) * 2011-11-25 2012-06-13 东北大学 一种双并联有源电力滤波装置
US20130229209A1 (en) * 2012-03-05 2013-09-05 Denso Corporation Drive unit for switching element
CN103401219A (zh) * 2013-07-31 2013-11-20 华南理工大学 一种移相全桥驱动信号控制电路及其控制方法
CN105897073A (zh) * 2016-05-23 2016-08-24 上海交通大学 开关磁阻电机调速系统

Also Published As

Publication number Publication date
EP3334046B1 (en) 2021-06-23
JP2018093684A (ja) 2018-06-14
CN108173418A (zh) 2018-06-15
KR20180065919A (ko) 2018-06-18
US10211824B2 (en) 2019-02-19
US20180159521A1 (en) 2018-06-07
EP3334046A2 (en) 2018-06-13
TW201834397A (zh) 2018-09-16
CN108173418B (zh) 2021-10-15
JP2022093390A (ja) 2022-06-23
EP3334046A3 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
TWI746713B (zh) 半導體裝置及功率轉換裝置
US8981689B2 (en) Driver for switching element and control system for rotary machine using the same
US9590616B2 (en) Drive control device
JP5430608B2 (ja) 半導体スイッチング素子駆動回路
JP5141049B2 (ja) ゲート電圧制御回路及びゲート電圧制御方法
JP4915158B2 (ja) 電力用スイッチング素子の駆動装置
JP6350301B2 (ja) 負荷駆動制御装置および負荷駆動制御方法
US20150318848A1 (en) Segmented driver for a transistor device
WO2015079492A1 (ja) ゲート駆動回路及びインテリジェントパワーモジュール
JP2017079534A (ja) ゲート制御回路
JP5056405B2 (ja) スイッチング装置
CN103715971A (zh) 马达控制装置以及空调机
US11799472B2 (en) Drive circuit
JP2019110431A (ja) 半導体装置およびパワーモジュール
JP5282492B2 (ja) スイッチング素子駆動回路
JP6887320B2 (ja) 電力変換ユニットの駆動回路および駆動方法、電力変換ユニット、並びに電力変換装置
JP2009254199A (ja) モータ駆動回路およびモータの異常判定方法
US8866515B2 (en) Drive unit for driving voltage-driven element
JP6753348B2 (ja) スイッチング素子の駆動回路
JP7427949B2 (ja) ゲート駆動回路
US11539349B1 (en) Integrated circuit and power module
JP2022183824A (ja) ゲート駆動装置
CN117748908A (zh) 驱动器系统和用于检测驱动器系统中的短路状况的方法
JP2015224963A (ja) 過電流検出装置
JP2012249343A (ja) スイッチング回路