TWI746085B - 磁性記憶裝置 - Google Patents

磁性記憶裝置 Download PDF

Info

Publication number
TWI746085B
TWI746085B TW109125083A TW109125083A TWI746085B TW I746085 B TWI746085 B TW I746085B TW 109125083 A TW109125083 A TW 109125083A TW 109125083 A TW109125083 A TW 109125083A TW I746085 B TWI746085 B TW I746085B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
ferromagnetic layer
memory device
ferromagnetic
Prior art date
Application number
TW109125083A
Other languages
English (en)
Other versions
TW202135062A (zh
Inventor
澤田和也
李永珉
及川忠昭
北川英二
磯田大河
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202135062A publication Critical patent/TW202135062A/zh
Application granted granted Critical
Publication of TWI746085B publication Critical patent/TWI746085B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

實施形態提供一種可提高隧道磁阻比之磁性記憶裝置。 一實施形態之磁性記憶裝置具備磁阻效應元件。磁阻效應元件包含:第1至第3強磁性層、第1及第2強磁性層間之第1非磁性層、以及第2及第3強磁性層間之第2非磁性層。第2強磁性層位於第1及第3強磁性層間。第3強磁性層包含:第4強磁性層,其與第2非磁性層相接;第3非磁性層;及第4強磁性層與第3非磁性層之間之第4非磁性層。第1非磁性層包含含有鎂(Mg)之氧化物。第4非磁性層之熔點高於第3非磁性層之熔點。

Description

磁性記憶裝置
實施形態係關於一種磁性記憶裝置。
已知有一種將磁阻效應元件用作記憶元件之磁性記憶裝置(MRAM:Magnetoresistive Random Access Memory(磁阻隨機存取記憶體))。
本發明所欲解決之問題在於提供一種可提高隧道磁阻比之磁性記憶裝置。
實施形態之磁性記憶裝置具備磁阻效應元件。上述磁阻效應元件包含第1強磁性層、第2強磁性層、第3強磁性層、上述第1強磁性層與上述第2強磁性層之間之第1非磁性層、及上述第2強磁性層與上述第3強磁性層之間之第2非磁性層。上述第2強磁性層位於上述第1強磁性層與上述第3強磁性層之間。上述第3強磁性層包含:第4強磁性層,其與上述第2非磁性層相接;第3非磁性層;及上述第4強磁性層與上述第3非磁性層之間之第4非磁性層。上述第1非磁性層包含含有鎂(Mg)之氧化物。上述第4非磁性層之熔點高於上述第3非磁性層之熔點。
以下,參照圖式對實施形態進行說明。另,於以下之說明中,對具有相同之功能及構成之構成要件標註共通之參照符號。又,區分具有共通之參照符號之複數個構成要件之情形時,對該共通之參照符號標註後綴而加以區分。另,不需要對複數個構成要件特別區分之情形時,對該複數個構成要件僅標註共通之參照符號,不標註後綴。此處,後綴不限於下標文字或上標文字,包含例如於參照符號之末尾添加之小寫字母、及意指排列之索引等。
1.實施形態 對實施形態之磁性記憶裝置進行說明。實施形態之磁性記憶裝置包含例如將藉由磁性隧道接合(MTJ:Magnetic Tunnel Junction)而具有磁阻效應(Magnetoresistive effect)之元件(亦稱為MTJ元件、或magnetoresistive effect element(磁阻效應元件))用作電阻變化元件的垂直磁化方式之磁性記憶裝置。
1.1 構成 首先,對實施形態之磁性記憶裝置之構成進行說明。
1.1.1 磁性記憶裝置 圖1係顯示實施形態之磁性記憶裝置之構成之方塊圖。如圖1所示,磁性記憶裝置1具備記憶胞陣列10、列選擇電路11、行選擇電路12、解碼電路13、寫入電路14、讀取電路15、電壓產生電路16、輸入輸出電路17、及控制電路18。
記憶胞陣列10具備各者與列(row)、及行(column)之組建立對應之複數個記憶胞MC。具體而言,位於同一列之記憶胞MC連接於同一字元線WL,位於同一行之記憶胞MC連接於同一位元線BL。
列選擇電路11經由字元線WL與記憶胞陣列10連接。對列選擇電路11供給來自解碼電路13之位址ADD之解碼結果(列位址)。列選擇電路11將與基於位址ADD之解碼結果之列對應之字元線WL設定為選擇狀態。以下,設定為選擇狀態之字元線WL稱為選擇字元線WL。又,選擇字元線WL以外之字元線WL稱為非選擇字元線WL。
行選擇電路12經由位元線BL而與記憶胞陣列10連接。對行選擇電路12供給來自解碼電路13之位址ADD之解碼結果(行位址)。行選擇電路12將與基於位址ADD之解碼結果之行對應之位元線BL設定為選擇狀態。以下,設定為選擇狀態之位元線BL稱為選擇位元線BL。又,選擇位元線BL以外之位元線BL稱為非選擇位元線BL。
解碼電路13將來自輸入輸出電路17之位址ADD進行解碼。解碼電路13將位址ADD之解碼結果供給至列選擇電路11、及行選擇電路12。位址ADD包含選擇之行位址、及列位址。
寫入電路14進行資料向記憶胞MC之寫入。寫入電路14包含例如寫入驅動器(未圖示)。
讀取電路15進行資料自記憶胞MC之讀取。讀取電路15包含例如感測放大器(未圖示)。
電壓產生電路16使用自磁性記憶裝置1之外部(未圖示)提供之電源電壓,產生用以進行記憶胞陣列10之各種動作之電壓。例如,電壓產生電路16產生寫入動作時所需之各種電壓,並輸出至寫入電路14。又,例如,電壓產生電路16產生讀取動作時所需之各種電壓,並輸出至讀取電路15。
輸入輸出電路17將來自磁性記憶裝置1之外部之位址ADD傳送至解碼電路13。輸入輸出電路17將來自磁性記憶裝置1之外部之指令CMD傳送至控制電路18。輸入輸出電路17將各種控制信號CNT於磁性記憶裝置1之外部、與控制電路18之間收發。輸入輸出電路17將來自磁性記憶裝置1之外部之資料DAT傳送至寫入電路14,且將自讀取電路15傳送之資料DAT輸出至磁性記憶裝置1之外部。
控制電路18基於控制信號CNT及指令CMD,控制磁性記憶裝置1內之列選擇電路11、行選擇電路12、解碼電路13、寫入電路14、讀取電路15、電壓產生電路16、及輸入輸出電路17之動作。
1.1.2 記憶胞陣列 接著,使用圖2對實施形態之磁性記憶裝置之記憶胞陣列之構成進行說明。圖2係顯示實施形態之磁性記憶裝置之記憶胞陣列之構成之電路圖。於圖2中,藉由包含2個小寫字母(“u”及“d”)、與索引(“<>”)之後綴而將字元線WL分類顯示。
如圖2所示,記憶胞MC(MCu及MCd)於記憶胞陣列10內配置成矩陣狀,且與複數條位元線BL(BL<0>、BL<1>、…、BL<N>)中之1條、與複數條字元線WLd(WLd<0>、WLd<1>、…、WLd<M>)及WLu(WLu<0>、WLu<1>、…、WLu<M>)中之1條之組建立對應(M及N為任意之整數)。即,記憶胞MCd<i,j>(0≦i≦M,0≦j≦N)連接於字元線WLd<i>與位元線BL<j>之間,記憶胞MCu<i,j>連接於字元線WLu<i>與位元線BL<j>之間。
另,後綴之“d”及“u”分別用於方便地識別複數個記憶胞MC中之(例如相對於位元線BL)設置於下方者、及設置於上方者。關於記憶胞陣列10之立體構造之例予以後述。
記憶胞MCd<i,j>包含串聯連接之開關元件SELd<i,j>及磁阻效應元件MTJd<i,j>。記憶胞MCu<i,j>包含串聯連接之開關元件SELu<i,j>及磁阻效應元件MTJu<i,j>。
開關元件SEL具有作為於向對應之磁阻效應元件MTJ寫入及讀取資料時控制電流向磁阻效應元件MTJ供給之開關的功能。更具體而言,例如某記憶胞MC內之開關元件SEL於施加至該記憶胞MC之電壓低於閾值電壓Vth之情形時,作為電阻值較大之絕緣體切斷電流(成為斷開狀態),於超過閾值電壓Vth之情形時,作為電阻值較小之導電體流通電流(成為接通狀態)。即,開關元件SEL具有無關於流動之電流之方向,而可根據施加至記憶胞MC之電壓之大小,切換流通或切斷電流的功能。
開關元件SEL可為例如2端子型之開關元件。施加至2端子間之電壓小於閾值之情形時,該開關元件為“高電阻”狀態,例如電性非導通狀態。施加至2端子間之電壓為閾值以上之情形時,開關元件變為“低電阻”狀態,例如電性導通狀態。開關元件不論電壓為何種極性都可具有該功能。
磁阻效應元件MTJ可根據藉由開關元件SEL控制供給之電流,而將電阻值切換成低電阻狀態與高電阻狀態。磁阻效應元件MTJ作為可根據其電阻狀態之變化而寫入資料且可非揮發地保持並讀取寫入之資料的記憶元件發揮功能。
接著,使用圖3及圖4對記憶胞陣列10之剖面構造進行說明。圖3及圖4顯示用以說明實施形態之磁性記憶裝置之記憶胞陣列之構成的剖視圖之一例。圖3及圖4分別為自相互交叉之不同方向觀察記憶胞陣列10之剖視圖。
如圖3及圖4所示,記憶胞陣列10設置於半導體基板20上。於以下之說明中,將與半導體基板20之表面平行之面設為XY平面,將垂直於XY平面之軸設為Z軸。又,於XY平面內,將沿著字元線WL之軸設為X軸,且將沿著位元線BL之軸設為Y軸。即,圖3及圖4分別為沿著Y軸及X軸觀察記憶胞陣列10之情形時之剖視圖。
於半導體基板20之上表面上,例如設置複數個導電體21。複數個導電體21具有導電性,作為字元線WLd發揮功能。複數個導電體21例如沿著Y軸並排設置,各者沿X軸延伸。另,於圖3及圖4中,對複數個導電體21設置於半導體基板20上之情形進行說明,但不限於此。例如,複數個導電體21亦可不與半導體基板20相接,而遠離設置於上方。
於1個導電體21之上表面上,設置各者作為磁阻效應元件MTJd發揮功能之複數個元件22。設置於1個導電體21之上表面上之複數個元件22例如沿著X軸並排設置。即,於1個導電體21之上表面,共通連接沿X軸排列之複數個元件22。另,關於元件22之構成之細節予以後述。
於複數個元件22各者之上表面上,設置作為開關元件SELd發揮功能之元件23。複數個元件23各者之上表面連接於複數個導電體24之任1者。複數個導電體24具有導電性,作為位元線BL發揮功能。複數個導電體24例如沿著X軸並排設置,且各者沿Y軸延伸。即,於1個導電體24,共通連接沿Y軸排列之複數個元件23。另,於圖3及圖4中,對複數個元件23之各者與元件22之上表面上、及導電體24之下表面上相接而設置之情形進行說明,但不限於此。例如,複數個元件23之各者亦可經由導電性之接觸插塞(未圖示),與元件22、及導電體24連接。
於1個導電體24之上表面上設置各者作為磁阻效應元件MTJu發揮功能之複數個元件25。設置於1個導電體24之上表面上之複數個元件25例如沿著X軸並排設置。即,於1個導電體24之上表面,共通連接沿Y軸排列之複數個元件25。另,元件25例如具有與元件22同等之構成。
於複數個元件25各者之上表面上,設置作為開關元件SELu發揮功能之元件26。複數個元件26各者之上表面連接於複數個導電體27之任1者。複數個導電體27具有導電性,且作為字元線WLu發揮功能。複數個導電體27例如沿著Y軸並排設置,且各者沿X軸延伸。即,於1個導電體27,共通連接沿X軸排列之複數個元件26。
另,於圖3及圖4中,對複數個元件26之各者與元件25之上表面上、及導電體27之下表面上相接設置之情形進行說明,但不限於此。例如,複數個元件26之各者亦可經由導電性之接觸插塞(未圖示),與元件25、及導電體27連接。
藉由如以上般構成,記憶胞陣列10採用2條字元線WLd及WLu之組相對於1條位元線BL對應之構造。且,記憶胞陣列10於字元線WLd與位元線BL之間設置記憶胞MCd,於位元線BL與字元線WLu之間設置記憶胞MCu。即,記憶胞陣列10具有複數個記憶胞MC沿著Z軸設置於不同高度之構造。於圖3及圖4所示之胞構造中,記憶胞MCd與下層建立對應,記憶胞MCu與上層建立對應。即,共通連接於1條位元線BL之2個記憶胞MC中,設置於位元線BL之上層之記憶胞MC對應於標註有後綴“u”之記憶胞MCu,設置於下層之記憶胞MC對應於標註有後綴“d”之記憶胞MCd。
1.1.3 磁阻效應元件 接著,使用圖5對實施形態之磁性記憶裝置之磁阻效應元件之構成進行說明。圖5係顯示實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。於圖5中,例如顯示沿著垂直於Z軸之平面(例如XZ平面)切割圖3及圖4所示之磁阻效應元件MTJd之剖面之一例。另,由於磁阻效應元件MTJu具有與磁阻效應元件MTJd同等之構成,故省略其圖示。
如圖5所示,磁阻效應元件MTJ包含例如作為頂層TOP(Top layer)發揮功能之非磁性層31、作為覆蓋層CAP(Capping layer)發揮功能之非磁性層32、作為記憶層SL(Storage layer)發揮功能之強磁性層33、作為隧道障壁層TB(Tunnel barrier layer)發揮功能之非磁性層34、作為參考層RL(Reference layer)發揮功能之積層體35、作為間隔層SP(Spacer layer)發揮功能之非磁性層36、作為移位消除層SCL(Shift cancelling layer)發揮功能之積層體37、及作為基底層UL(Under layer)發揮功能之非磁性層38。記憶層SL、參考層RL、及移位消除層SCL之各者可視為作為一體而具有強磁性之構造體。
磁阻效應元件MTJd例如自字元線WLd側朝向位元線BL側(於Z軸方向),按非磁性層38、積層體37、非磁性層36、積層體35、非磁性層34、強磁性層33、非磁性層32、及非磁性層31之順序,積層複數個膜。磁阻效應元件MTJu例如自位元線BL側朝向字元線WLu側(於Z軸方向),按非磁性層38、積層體37、非磁性層36、積層體35、非磁性層34、強磁性層33、非磁性層32、及非磁性層31之順序,積層複數個膜。磁阻效應元件MTJd及MTJu例如作為構成磁阻效應元件MTJd及MTJu之磁性體之磁化方向分別相對於膜面朝向垂直方向的垂直磁化型之MTJ元件發揮功能。另,磁阻效應元件MTJ亦可於上述各層31~38之間包含未圖示之其他層。
非磁性層31為非磁性之導電體,具有作為提高磁阻效應元件MTJ之上端與位元線BL或字元線WL之電性連接性的上部電極(top electrode)之功能。非磁性層31包含例如選自鎢(W)、鉭(Ta)、氮化鉭(TaN)、鈦(Ti)、及氮化鈦(TiN)中之至少1種元素或化合物。
非磁性層32為非磁性體之層,具有抑制強磁性層33之阻尼常數上升且降低寫入電流之功能。非磁性層32包含例如選自氧化鎂(MgO)、氮化鎂(MgN)、氮化鋯(ZrN)、氮化鈮(NbN)、氮化矽(SiN)、氮化鋁(AlN)、氮化鉿(HfN)、氮化鉭(TaN)、氮化鎢(WN)、氮化鉻(CrN)、氮化鉬(MoN)、氮化鈦(TiN)、氮化釩(VN)中之至少1種氮化物或氧化物。又,非磁性層32亦可為該等氮化物或氧化物之混合物。即,非磁性層32不限於由2種元素組成之二元化合物,可包含由3種元素組成之三元化合物,例如氮化鈦鋁(AlTiN)等。
強磁性層33具有強磁性,且於垂直於膜面之方向具有易磁化軸向。強磁性層33具有沿著Z軸朝向位元線BL側、字元線WL側之任一方向之磁化方向。強磁性層33包含鐵(Fe)、鈷(Co)、及鎳(Ni)中之至少任1者,強磁性層33進而包含硼(B)。
更具體而言,例如強磁性層33包含鐵鈷硼(FeCoB)或硼化鐵(FeB),且可具有體心立方系之結晶構造。
非磁性層34為非磁性之絕緣體,包含例如氧化鎂(MgO),如上所述,可進而包含硼(B)。非磁性層34具有膜面於(001)面配向之NaCl結晶構造,且於強磁性層33之結晶化處理中作為晶種材料發揮功能,該晶種材料於該結晶化處理中成為用以使結晶質之膜自其與強磁性層33之界面生長的晶核。非磁性層34設置於強磁性層33與積層體35之間,與該等2個強磁性層一起形成磁性隧道接合。
積層體35可整體視為1個強磁性層,且於垂直於膜面之方向具有易磁化軸向。積層體35具有沿著Z軸朝向位元線BL側、字元線WL側之任一方向之磁化方向。積層體35之磁化方向固定,於圖5之例中,朝向積層體37之方向。另,所謂「磁化方向固定」係指磁化方向不會因足以使強磁性層33之磁化方向反轉之大小之電流(自旋轉矩)而變化。
更具體而言,積層體35包含作為界面層IL(Interface layer)發揮功能之強磁性層35a、作為功能層FL(Function layer)發揮功能之非磁性層35b、及作為主參考層MRL(Main reference layer)發揮功能之強磁性層35c。例如,於非磁性層36之上表面與非磁性層34之下表面之間,依序積層強磁性層35c、非磁性層35b、及強磁性層35a。
強磁性層35a為強磁性之導電體,包含例如鐵(Fe)、鈷(Co)、及鎳(Ni)中之至少任1者。又,強磁性層35a亦可進而包含硼(B)。更具體而言,例如強磁性層35a包含鐵鈷硼(FeCoB)或硼化鐵(FeB),且可具有體心立方系之結晶構造。
非磁性層35b為非磁性之導電體,包含例如選自鉭(Ta)、鉿(Hf)、鎢(W)、鋯(Zr)、鉬(Mo)、鈮(Nb)、及鈦(Ti)中之至少1種金屬。非磁性層35b具有維持強磁性層35a與強磁性層35c之間之交換耦合之功能。
強磁性層35c可包含例如選自鈷(Co)與鉑(Pt)之多層膜(Co/Pt多層膜)、鈷(Co)與鎳(Ni)之多層膜(Co/Ni多層膜)、及鈷(Co)與鈀(Pd)之多層膜(Co/Pd多層膜)中之至少1種多層膜。
非磁性層36為非磁性之導電體,包含例如選自釕(Ru)、鋨(Os)、銠(Rh)、銥(Ir)、釩(V)、及鉻(Cr)中之至少1種元素。
積層體37可整體視為1個強磁性層,且於垂直於膜面之方向具有易磁化軸向。積層體37具有沿著Z軸朝向位元線BL側、字元線WL側之任一方向之磁化方向。積層體37之磁化方向與積層體35同樣地固定,於圖5之例中,朝向積層體35之方向。
更具體而言,積層體37包含作為反強磁性耦合層AFL(Anti-ferromagnetic coupling layer)發揮功能之強磁性層37a、作為擴散抑制層DBL(Diffusion barrier layer)發揮功能之非磁性層37b、以及各者作為多層膜ML(Multi-layer)之1者發揮功能之強磁性層37c(ML1)、非磁性層37d(ML2)、及強磁性層37e(ML3)。例如,於非磁性層38之上表面與非磁性層36之下表面之間,依序積層強磁性層37e、非磁性層37d、強磁性層37c、非磁性層37b、及強磁性層37a。
強磁性層37a為具有六方最密填充構造(hcp:Hexagonal close-packed)或面心立方(fcc:face-centered cubic)系之結晶構造之強磁性之導電體,包含例如鈷(Co)。強磁性層35c及37a藉由非磁性層36而反強磁性地耦合。即,強磁性層35c及37a以具有相互反平行之磁化方向之方式耦合。因此,於圖5之例中,強磁性層35c及37a之磁化方向朝向相互面對之方向。將此種強磁性層35c、非磁性層36、及強磁性層37a之耦合構造稱為SAF(Synthetic Anti-Ferromagnetic:合成反強磁性)構造。
非磁性層37b為具有非晶質構造之非磁性之導電體,包含例如選自鈦(Ti)、釩(V)、鉻(Cr)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鎝(Tc)、釕(Ru)、銠(Rh)、鉿(Hf)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、及銥(Ir)中之至少1種元素。又,非磁性層37b可包含選自鈦(Ti)、釩(V)、鉻(Cr)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鎝(Tc)、釕(Ru)、銠(Rh)、鉿(Hf)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、及銥(Ir)中之至少1種元素之氮化物。另,非磁性層37b亦可於設置成薄至不對強磁性層37a之結晶構造造成影響之程度之情形時,具有與上述之結晶構造不同之結晶構造。上述之非磁性層37b內之元素(選自鈦(Ti)、釩(V)、鉻(Cr)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鎝(Tc)、釕(Ru)、銠(Rh)、鉿(Hf)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、及銥(Ir)中之至少1種元素及其氮化物)例如具有至少高於非磁性層37d之熔點,更佳而言,具有高於鐵(Fe)及鈷(Co)之熔點。又,具有不存在元素易擴散之結晶粒界之非晶質構造。藉此,非磁性層37b內之物質具有於高溫環境下不易擴散至其他層之性質,且具有抑制自其他層擴散而來之元素通過非磁性層37b內之性質。
強磁性層37c為強磁性之導電體,包含例如鈷(Co)。強磁性層37c與強磁性層37a磁性耦合,具有與強磁性層37a相同之磁化方向。
非磁性層37d為非磁性之導電體,包含例如選自鉑(Pt)、鎳(Ni)、及鈀(Pd)中之至少1種元素,且具有維持強磁性層37c與強磁性層37e之交換耦合之功能。強磁性層37e為強磁性之導電體,包含例如鈷(Co)。
另,於圖5之例中,顯示非磁性層37d及強磁性層37e之組僅積層1組之情形,但非磁性層37d及強磁性層37e之組亦可積層複數次。
即,積層複數次之非磁性層37d及強磁性層37e之組可形成選自鉑(Pt)與鈷(Co)之多層膜(Pt/Co多層膜)、鎳(Ni)與鈷(Co)之多層膜(Ni/Co多層膜)、及鈀(Pd)與鈷(Co)之多層膜(Pd/Co多層膜)選擇之至少1種多層膜。
藉由以上之構成,積層體37可消除積層體35之漏磁場對強磁性層33之磁化方向造成之影響。因此,抑制因積層體35之漏磁場等使強磁性層33之磁化之反轉容易度產生非對稱性(即,強磁性層33之磁化方向反轉時之反轉容易度於自一者反轉至另一者之情形、與反轉至其反方向之情形時不同)。
非磁性層38為非磁性之導電體,具有作為提高位元線BL或字元線WL之電性連接性的電極之功能。又,非磁性層38包含例如高熔點金屬。所謂高熔點金屬表示例如熔點高於鐵(Fe)及鈷(Co)之材料,包含例如選自鋯(Zr)、鉿(Hf)、鎢(W)、鉻(Cr)、鉬(Mo)、鈮(Nb)、鈦(Ti)、鉭(Ta)、釩(V)、釕(Ru)、及鉑(Pt)中之至少1種元素。
於實施形態中,採用如下之自旋注入寫入方式:使寫入電流直接流入至此種磁阻效應元件MTJ,藉由該寫入電流將自旋轉矩注入至記憶層SL及參考層RL,而控制記憶層SL之磁化方向及參考層RL之磁化方向。磁阻效應元件MTJ可根據記憶層SL及參考層RL之磁化方向之相對關係為平行或反平行,而採取低電阻狀態及高電阻狀態之任一者。
若於磁阻效應元件MTJ,於圖5之箭頭A1之方向,即自記憶層SL朝向參考層RL之方向,流通某大小之寫入電流Ic0,則記憶層SL及參考層RL之磁化方向之相對關係為平行。該平行狀態之情形時,磁阻效應元件MTJ之電阻值最低,磁阻效應元件MTJ設定為低電阻狀態。該低電阻狀態稱為「P(Parallel:平行)狀態」,定義為例如資料“0”之狀態。
又,若於磁阻效應元件MTJ,於圖5之箭頭A2之方向,即自參考層RL朝向記憶層SL之方向(與箭頭A1相反之方向),流通大於寫入電流Ic0之寫入電流Ic1,則記憶層SL及參考層RL之磁化方向之相對關係為反平行。該反平行狀態之情形時,磁阻效應元件MTJ之電阻值最高,磁阻效應元件MTJ設定為高電阻狀態。該高電阻狀態稱為「AP(Anti-Parallel:反平行)狀態」,定義為例如資料“1”之狀態。
另,於以下之說明中,按照上述之資料之定義方法進行說明,但資料“1”及資料“0”之定義方式不限於上述之例。例如,亦可將P狀態定義為資料“1”,將AP狀態定義為資料“0”。
1.2 磁阻效應元件之製造方法 接著,對實施形態之磁性記憶裝置之磁阻效應元件之製造方法進行說明。
於以下之說明中,對磁阻效應元件MTJ內之各構成要件中自非磁性層38(基底層UL)至強磁性層35a(界面層IL)之層之製造方法進行特別說明,且對非磁性層34以上之層構造省略說明。
圖6及圖7係用以說明實施形態之磁性記憶裝置之磁阻效應元件之製造方法之模式圖。於圖6及圖7中,顯示執行退火處理前後作為磁阻效應元件MTJ發揮功能之預定之層構造。
如圖6所示,非磁性層38、強磁性層37e、非磁性層37d、強磁性層37c、非磁性層37b、強磁性層37a、非磁性層36、強磁性層35c、非磁性層35b、及強磁性層35a於半導體基板20之上方依序積層。
如上所述,於非磁性層37b內,包含具有於高溫環境下亦不易擴散至其他層且抑制來自其他層之元素擴散之性質的元素(於圖6中,作為「擴散抑制元素」而以圓顯示)。另一方面,於非磁性層37d內,包含具有於高溫環境下容易擴散至其他層之性質之元素(於圖6中,作為「容易擴散元素」而以菱形顯示)。
接著,如圖7所示,對圖6中形成之層構造進行退火處理,該層構造可獲得作為磁阻效應元件MTJ之性質。
另,藉由退火處理,自外部對各層施加熱,藉此,非磁性層37d內之容易擴散元素可向其他層擴散。容易擴散元素例如藉由擴散至非磁性層36或強磁性層35a內,可使磁阻效應元件MTJ之性能劣化。
根據實施形態,包含擴散抑制元素之非磁性層37b設置於非磁性層37d與非磁性層36之間、及非磁性層37d與強磁性層35a之間。藉此,抑制容易擴散元素通過非磁性層37b而擴散。因此,可抑制容易擴散元素作為雜質混入至非磁性層36及強磁性層35a內。因此,可抑制磁阻效應元件MTJ之性能劣化。
1.3 本實施形態之效果 根據實施形態,可製造提高隧道磁阻比之磁阻效應元件MTJ。關於本效果,使用圖8於以下進行說明。
圖8係用以說明實施形態之效果之圖解。於圖8中,於橫軸顯示退火處理時施加至磁阻效應元件MTJ之溫度(退火溫度),於縱軸顯示磁阻效應元件MTJ之隧道磁阻比TMR(Tunnel magnetoresistance ratio)之大小,並繪製線L1及L2。線L1對應於實施形態之磁阻效應元件MTJ之隧道磁阻比TMR,線L2對應於比較例之磁阻效應元件MTJ之隧道磁阻比TMR。比較例之磁阻效應元件MTJ例如不包含非磁性層37b。另,於圖8中,線L1及L2各者之隧道磁阻比TMR之大小相對於退火溫度為溫度T0之情形時之隧道磁阻比TMR分別正規化顯示。
如圖8所示,退火溫度為高於溫度T0之溫度T1之情形時(T1>T0),隧道磁阻比TMR於實施形態之情形與比較例之情形之任一者,皆以相同程度之比例自溫度T0之值上升(提高)。其理由在於,退火處理時施加之溫度越高,強磁性層33、非磁性層34、及強磁性層35a越優質地結晶化。然而,退火溫度為較溫度T1更高之溫度T2之情形時(T2>T1),比較例之隧道磁阻比TMR亦較溫度T1之情形劣化。其理由在於,隨著退火處理時施加之溫度增加,非磁性層37d內之鉑(Pt)等容易擴散元素於強磁性層35a內擴散之量增加,該增加之強磁性層35a內之容易擴散元素使強磁性層35a之自旋極化率降低。
另一方面,根據實施形態,退火溫度為溫度T2之情形時,隧道磁阻比TMR可較溫度T1之情形進一步提高。其理由在於,藉由非磁性層37b抑制非磁性層37d內之容易擴散元素向強磁性層35a擴散,藉此抑制容易擴散元素所致之強磁性層35a之自旋極化率降低。
因此,根據實施形態,於比較例中隧道磁阻比TMR可能劣化之退火溫度T2,亦可提高隧道磁阻比TMR。
又,根據實施形態,可製造SAF構造之耦合能量較高之磁阻效應元件MTJ。關於本效果,使用圖9於以下進行說明。
於圖9中,與圖8同樣地於橫軸顯示退火,於縱軸顯示磁阻效應元件MTJ之反強磁性耦合之耦合能量Jex之大小,並繪製線L3及L4。線L3對應於實施形態之磁阻效應元件MTJ之耦合能量Jex,線L4對應於比較例之磁阻效應元件MTJ之耦合能量Jex。比較例之磁阻效應元件MTJ與圖8之情形同樣,不包含非磁性層37b。另,於圖9中,線L3及L4各者之耦合能量Jex之大小相對於退火溫度為溫度T0之情形時分別正規化顯示。
如圖9所示,每當退火溫度自溫度T0上升至T1、自溫度T1上升至T2時,比較例之耦合能量Jex劣化。其理由在於,隨著退火處理時施加之溫度增加,非磁性層37d內之鉑(Pt)等容易擴散元素於非磁性層36內擴散之量增加,且該增加之非磁性層36內之容易擴散元素會使得將強磁性層35c與強磁性層37a之間反強磁性地耦合之非磁性層36之功能劣化。
另一方面,根據實施形態,可視為即便退火溫度自溫度T0上升至T1、自溫度T1上升至T2,耦合能量Jex亦不劣化。其理由在於,藉由非磁性層37b抑制非磁性層37d內之容易擴散元素向非磁性層36擴散,藉此抑制將強磁性層35c與強磁性層37a之間反強磁性耦合之非磁性層36之功能劣化。因此,根據實施形態,即使於比較例中耦合能量Jex可能劣化之退火溫度T2下,亦可抑制耦合能量Jex之劣化。
2.變化例等 另,不限於上述實施形態,可應用各種變化。以下,對可應用於上述實施形態之若干變化例進行說明。另,為便於說明,主要對與實施形態之差異點進行說明。
2.1 第1變化例 上文已對上述實施形態之磁阻效應元件MTJ為記憶層SL設置於參考層RL上方之無頂構造進行說明,但不限於此。例如,磁阻效應元件MTJ亦可為記憶層SL設置於參考層RL下方之無底構造。
圖10係用以說明第1變化例之磁性記憶裝置之磁阻效應元件之構成之剖視圖。圖10對應於實施形態之圖5中說明之無頂型之磁阻效應元件MTJ,顯示無底型之磁阻效應元件MTJ之構成。
如圖10所示,作為無底型構成之情形時,磁阻效應元件MTJd自字元線WLd側朝向位元線BL側(於Z軸方向)、磁阻效應元件MTJu自位元線BL側朝向字元線WLu側(於Z軸方向),依序積層複數個膜如下:作為緩衝層BUF(Buffer layer)發揮功能之非磁性層31、作為基底層UL發揮功能之非磁性層32、作為記憶層SL發揮功能之強磁性層33、作為隧道障壁層TB發揮功能之非磁性層34、作為參考層RL發揮功能之積層體35、作為間隔層SP發揮功能之非磁性層36、作為移位消除層SCL發揮功能之積層體37、及作為頂層TOP發揮功能之非磁性層38。又,積層體35於Z軸方向,依序積層如下:作為界面層IL發揮功能之強磁性層35a、作為功能層FL發揮功能之非磁性層35b、及作為主參考層MRL發揮功能之強磁性層35c。積層體37於Z軸方向,依序積層如下:作為反強磁性耦合層AFL發揮功能之強磁性層37a、作為擴散抑制層DBL發揮功能之非磁性層37b、以及各自作為多層膜ML之1者發揮功能之強磁性層37c、非磁性層37d、及強磁性層37e。對第1變化例之各層31~38分別例如應用與實施形態之各層31~38同等之材料。藉由如以上般構成,於無底型之情形時,亦可發揮與實施形態之情形同等之效果。
2.2 第2變化例 又,雖對上述實施形態之記憶胞MC中應用2端子型之開關元件作為開關元件SEL之情形進行說明,但亦可應用MOS(Metal oxide semiconductor:金屬氧化物半導體)電晶體作為開關元件SEL。
即,記憶胞陣列不限於於Z方向之不同高度具有複數個記憶胞MC之構造,可應用任意之陣列構造。
圖11係用以說明第2變化例之磁性記憶裝置之記憶胞陣列之構成之電路圖。圖11對應於實施形態之圖1中說明之磁性記憶裝置1中之記憶胞陣列10。
如圖11所示,記憶胞陣列10A具備各者與列及行建立對應之複數個記憶胞MC。且,位於同一列之記憶胞MC連接於同一字元線WL,位於同一行之記憶胞MC之兩端連接於同一位元線BL及同一源極線/BL。
圖12係用以說明第2變化例之磁性記憶裝置之記憶胞之構成之剖視圖。圖12對應於實施形態之圖3及圖4中說明之記憶胞MC。另,於圖12之例中,由於記憶胞MC未相對於半導體基板積層,故未標註“u”及“d”等後綴。
如圖12所示,記憶胞MC設置於半導體基板40上,包含選擇電晶體41(Tr)及磁阻效應元件42(MTJ)。選擇電晶體41設置為於向磁阻效應元件42寫入及讀取資料時控制電流之供給及停止之開關。磁阻效應元件42之構成與實施形態之圖5或第1變化例之圖10所示之磁阻效應元件MTJ同等。
選擇電晶體41具備作為字元線WL發揮功能之閘極(導電體43)、與於該閘極之沿著x軸之兩端設置於半導體基板40上之1對源極區域或汲極區域(擴散區域44)。導電體43於設置於半導體基板40上且作為閘極絕緣膜發揮功能之絕緣體45上設置。導電體43例如沿著y軸延伸,且共通連接於沿y軸排列之其他記憶胞MC之選擇電晶體(未圖示)之閘極。導電體43例如沿x軸排列。於設置於選擇電晶體41之第1端之擴散區域44上,設置接觸插塞46。
接觸插塞46連接於磁阻效應元件42之下表面(第1端)上。於磁阻效應元件42之上表面(第2端)上設置接觸插塞47,且於接觸插塞47之上表面上,連接於作為位元線BL發揮功能之導電體48。導電體48例如沿x軸延伸,共通連接於沿x軸排列之其他記憶胞之磁阻效應元件(未圖示)之第2端。於設置於選擇電晶體41之第2端之擴散區域44上,設置接觸插塞49。接觸插塞49連接於作為源極線/BL發揮功能之導電體50之下表面上。導電體50例如沿x軸延伸,共通連接於例如沿x軸排列之其他記憶胞之選擇電晶體(未圖示)之第2端。導電體48及50例如沿y軸排列。導電體48例如位於導電體50之上方。另,雖於圖12中予以省略,但導電體48及50相互避免物理及電性干涉而配置。選擇電晶體41、磁阻效應元件42、導電體43、48、及50、以及接觸插塞46、47、及49藉由層間絕緣膜51而被覆。另,相對於磁阻效應元件42沿x軸或y軸排列之其他磁阻效應元件(未圖示)例如設置於同一層上。即,於記憶胞陣列10A內,複數個磁阻效應元件42例如配置於XY平面上。
藉由如以上般構成,關於對開關元件SEL應用3端子型之開關元件即MOS電晶體而非2端子型之開關元件之情形,亦可發揮與實施形態同等之效果。
2.3 其他 又,雖對上述實施形態及變化例所敘述之記憶胞MC之磁阻效應元件MTJ設置於開關元件SEL之下方之情形進行說明,但磁阻效應元件MTJ亦可設置於開關元件SEL之上方。
雖已說明本發明之若干實施形態,但該等實施形態係作為例子而提示者,並非意圖限定發明之範圍。該等新穎之實施形態可以其他各種形態實施,於不脫離發明主旨之範圍內可進行各種省略、置換、變更。該等實施形態或其變形包含在發明範圍或主旨內,且包含在申請專利範圍所記載之發明及其均等之範圍內。 [相關申請案]
本申請案享有以日本專利申請案2020-040615號(申請日:2020年3月10日)為基礎申請案之優先權。本申請案藉由參照該基礎申請案而包含基礎申請案之全部內容。
1:磁性記憶裝置 10, 10A:記憶胞陣列 11:列選擇電路 12:行選擇電路 13:解碼電路 14:寫入電路 15:讀取電路 16:電壓產生電路 17:輸入輸出電路 18:控制電路 20, 40:半導體基板 21, 24, 27, 43, 48, 50:導電體 22, 23, 25, 26:元件 31, 32, 34, 35b, 36, 37b, 37d, 38:非磁性層 33, 35a, 35c, 37a, 37c, 37e:強磁性層 35, 37:積層體 41:選擇電晶體 42:磁阻效應元件 44:擴散區域 45:絕緣體 46, 47, 49:接觸插塞 51:層間絕緣膜 A1:箭頭 A2:箭頭 ADD:位址 AFL:反強磁性耦合層 BL:位元線 BL(BL<0>、BL<1>、…、BL<N>):位元線 /BL:源極線 BUF:緩衝層 CAP:覆蓋層 CMD:指令 CNT:控制信號 DAT:資料 DBL:擴散抑制層 FL:功能層 IL:界面層 L1:線 L2:線 L3:線 L4:線 MC:記憶胞 MCd<i,j>:記憶胞 MCu<i,j>:記憶胞 ML1:多層膜 ML2:多層膜 ML3:多層膜 MRL:主參考層 MTJ:磁阻效應元件 MTJd<i,j>:磁阻效應元件 MTJu<i,j>:磁阻效應元件 RL:參考層 SCL:移位消除層 SELd<i,j>:開關元件 SELu<i,j>:開關元件 SL:記憶層 SP:間隔層 T0:溫度 T1:溫度 T2:溫度 TB:隧道障壁層 TOP:頂層 Tr:選擇電晶體 UL:基底層 WL:字元線 WLd(WLd<0>、WLd<1>、…、WLd<M>):字元線 WLu(WLu<0>、WLu<1>、…、WLu<M>):字元線 X:軸 Y:軸 Z:軸
圖1係用以說明實施形態之磁性記憶裝置之構成之方塊圖。 圖2係用以說明實施形態之磁性記憶裝置之記憶胞陣列之構成之電路圖。 圖3係用以說明實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖。 圖4係用以說明實施形態之磁性記憶裝置之記憶胞陣列之構成之剖視圖。 圖5係用以說明實施形態之磁性記憶裝置之磁阻效應元件之構成之剖視圖。 圖6係用以說明實施形態之磁性記憶裝置之磁阻效應元件之製造方法之模式圖。 圖7係用以說明實施形態之磁性記憶裝置之磁阻效應元件之製造方法之模式圖。 圖8係用以說明實施形態之效果之圖解。 圖9係用以說明實施形態之效果之圖解。 圖10係用以說明第1變化例之磁性記憶裝置之磁阻效應元件之構成之剖視圖。 圖11係用以說明第2變化例之磁性記憶裝置之記憶胞陣列之構成之電路圖。 圖12係用以說明第2變化例之磁性記憶裝置之記憶胞之構成之剖視圖。
31, 32, 34, 35b, 36, 37b, 37d, 38:非磁性層 33, 35a, 35c, 37a, 37c, 37e:強磁性層 35, 37:積層體 A1:箭頭 A2:箭頭 AFL:反強磁性耦合層 CAP:覆蓋層 DBL:擴散抑制層 FL:功能層 IL:界面層 ML1:多層膜 ML2:多層膜 ML3:多層膜 MRL:主參考層 MTJ:磁阻效應元件 RL:參考層 SCL:移位消除層 SL:記憶層 SP:間隔層 TB:隧道障壁層 TOP:頂層 UL:基底層 X:軸 Y:軸 Z:軸

Claims (17)

  1. 一種磁性記憶裝置,其具備磁阻效應元件; 上述磁阻效應元件包含: 第1強磁性層; 第2強磁性層; 第3強磁性層; 上述第1強磁性層與上述第2強磁性層之間之第1非磁性層;及 上述第2強磁性層與上述第3強磁性層之間之第2非磁性層;且 上述第2強磁性層位於上述第1強磁性層與上述第3強磁性層之間; 上述第3強磁性層包含: 第4強磁性層,其與上述第2非磁性層相接; 第3非磁性層;及 上述第4強磁性層與上述第3非磁性層之間之第4非磁性層;且 上述第1非磁性層包含含有鎂(Mg)之氧化物; 上述第4非磁性層之熔點高於上述第3非磁性層之熔點。
  2. 如請求項1之磁性記憶裝置,其中 上述第4非磁性層為非晶質。
  3. 如請求項1之磁性記憶裝置,其中 上述第2非磁性層包含選自釕(Ru)、鋨(Os)、銠(Rh)、銥(Ir)、釩(V)、及鉻(Cr)中之至少1種元素。
  4. 如請求項3之磁性記憶裝置,其中 上述第2強磁性層及上述第3強磁性層具有互為相反之磁化方向。
  5. 如請求項1之磁性記憶裝置,其中 上述第4非磁性層包含選自鈦(Ti)、釩(V)、鉻(Cr)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鎝(Tc)、釕(Ru)、銠(Rh)、鉿(Hf)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、及銥(Ir)中之至少1種元素。
  6. 如請求項5之磁性記憶裝置,其中 上述第4非磁性層包含選自鈦(Ti)、釩(V)、鉻(Cr)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鎝(Tc)、釕(Ru)、銠(Rh)、鉿(Hf)、鉭(Ta)、鎢(W)、錸(Re)、鋨(Os)、及銥(Ir)中之至少1種元素之氮化物。
  7. 如請求項5之磁性記憶裝置,其中 上述第3非磁性層包含選自鉑(Pt)、鎳(Ni)、及鈀(Pd)中之至少1種元素。
  8. 如請求項1之磁性記憶裝置,其中 上述第3強磁性層於上述第3非磁性層與上述第4非磁性層之間包含第5強磁性層。
  9. 如請求項8之磁性記憶裝置,其中 上述第4強磁性層及上述第5強磁性層包含鈷(Co)。
  10. 如請求項1之磁性記憶裝置,其中 上述第1強磁性層及上述第2強磁性層包含選自鐵(Fe)、鈷(Co)、及鎳(Ni)中之至少1種元素。
  11. 如請求項1之磁性記憶裝置,其中 上述磁阻效應元件 相應於自上述第1強磁性層流向上述第2強磁性層之第1電流而成為第1電阻值;且 相應於自上述第2強磁性層流向上述第1強磁性層之第2電流而成為第2電阻值。
  12. 如請求項11之磁性記憶裝置,其中 上述第1電阻值小於上述第2電阻值。
  13. 如請求項1之磁性記憶裝置,其中 上述第1強磁性層設置於上述第2強磁性層之上方。
  14. 如請求項1之磁性記憶裝置,其中 上述第1強磁性層設置於上述第2強磁性層之下方。
  15. 如請求項1之磁性記憶裝置,其中 上述磁性記憶裝置具備記憶胞,該記憶胞包含: 上述磁阻效應元件;及 開關元件,其與上述磁阻效應元件串聯連接。
  16. 如請求項15之磁性記憶裝置,其中 上述開關元件為2端子型開關元件。
  17. 如請求項15之磁性記憶裝置,其中 上述開關元件為MOS(Metal oxide semiconductor:金屬氧化物半導體)電晶體。
TW109125083A 2020-03-10 2020-07-24 磁性記憶裝置 TWI746085B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040615A JP2021144969A (ja) 2020-03-10 2020-03-10 磁気記憶装置
JP2020-040615 2020-03-10

Publications (2)

Publication Number Publication Date
TW202135062A TW202135062A (zh) 2021-09-16
TWI746085B true TWI746085B (zh) 2021-11-11

Family

ID=77568965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125083A TWI746085B (zh) 2020-03-10 2020-07-24 磁性記憶裝置

Country Status (4)

Country Link
US (1) US11563168B2 (zh)
JP (1) JP2021144969A (zh)
CN (1) CN113380944A (zh)
TW (1) TWI746085B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145025A (ja) * 2020-03-11 2021-09-24 キオクシア株式会社 磁気記憶装置及び磁気記憶装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878318B2 (en) * 2011-09-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for a MRAM device with an oxygen absorbing cap layer
US9362489B1 (en) * 2015-04-24 2016-06-07 Yimin Guo Method of making a magnetoresistive element
US20190067564A1 (en) * 2015-12-11 2019-02-28 Imec Vzw Method of manufacturing a magnetic memory device having buffer layer
US10546997B2 (en) * 2016-12-02 2020-01-28 Regents Of The University Of Minnesota Magnetic structures including FePd
US20200066319A1 (en) * 2016-02-05 2020-02-27 Industry-University Cooperation Foundation Hanyang University Memory device

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577017B2 (en) * 2006-01-20 2009-08-18 Industrial Technology Research Institute High-bandwidth magnetoresistive random access memory devices and methods of operation thereof
JP2008085202A (ja) * 2006-09-28 2008-04-10 Toshiba Corp 磁気抵抗効果素子、磁気メモリ、磁気ヘッド、および磁気記録再生装置
US7951708B2 (en) * 2009-06-03 2011-05-31 International Business Machines Corporation Copper interconnect structure with amorphous tantalum iridium diffusion barrier
JP2013069862A (ja) 2011-09-22 2013-04-18 Toshiba Corp 磁気抵抗効果素子
CN102392216A (zh) * 2011-11-22 2012-03-28 南京大学 一种高热稳定性双层扩散阻挡层材料的制备方法
US9178136B2 (en) * 2012-08-16 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetoresistive random access memory cell and fabricating the same
US8995181B2 (en) 2013-03-21 2015-03-31 Daisuke Watanabe Magnetoresistive element
US9184374B2 (en) 2013-03-22 2015-11-10 Kazuya Sawada Magnetoresistive element
US9269890B2 (en) 2013-03-22 2016-02-23 Masahiko Nakayama Magnetoresistance effect element with shift canceling layer having pattern area greater than that of storage layer
US20140284733A1 (en) 2013-03-22 2014-09-25 Daisuke Watanabe Magnetoresistive element
US20140284534A1 (en) 2013-03-22 2014-09-25 Toshihiko Nagase Magnetoresistive element and manufacturing method thereof
US9178137B2 (en) 2013-03-22 2015-11-03 Youngmin EEH Magnetoresistive element and magnetic memory
US9142756B2 (en) 2013-09-06 2015-09-22 Makoto Nagamine Tunneling magnetoresistive element having a high MR ratio
US9209386B2 (en) 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
US9293695B2 (en) 2013-09-09 2016-03-22 Koji Ueda Magnetoresistive element and magnetic random access memory
US9130143B2 (en) 2013-09-10 2015-09-08 Toshihiko Nagase Magnetic memory and method for manufacturing the same
US9647203B2 (en) 2014-03-13 2017-05-09 Kabushiki Kaisha Toshiba Magnetoresistive element having a magnetic layer including O
US9705076B2 (en) 2014-03-13 2017-07-11 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method of the same
WO2015136725A1 (en) 2014-03-13 2015-09-17 Daisuke Watanabe Magnetoresistive element
US10026888B2 (en) 2014-08-06 2018-07-17 Toshiba Memory Corporation Magnetoresistive effect element and magnetic memory
US9620561B2 (en) 2014-09-05 2017-04-11 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method thereof
US9991313B2 (en) 2014-10-02 2018-06-05 Toshiba Memory Corporation Magnetic memory and manufacturing method of the same
US9640584B2 (en) 2014-10-02 2017-05-02 Kabushiki Kaisha Toshiba Method of manufacturing a magnetoresistive memory device
US20160130693A1 (en) 2014-11-11 2016-05-12 Kazuya Sawada Method of manufacturing magnetoresistive memory device and manufacturing apparatus of the same
US9461240B2 (en) 2015-02-26 2016-10-04 Kabushiki Kaisha Toshiba Magnetoresistive memory device
US20160260773A1 (en) 2015-03-04 2016-09-08 Kabushiki Kaisha Toshiba Magnetoresistive element, method of manufacturing magnetoresistive element, and memory device
US9608199B1 (en) 2015-09-09 2017-03-28 Kabushiki Kaisha Toshiba Magnetic memory device
US10211256B2 (en) 2015-09-10 2019-02-19 Toshiba Memory Corporation Magnetic memory device with stack structure including first and second magnetic layers and nonmagnetic layer between the first and second magnetic layers
US20170263679A1 (en) 2016-03-11 2017-09-14 Kabushiki Kaisha Toshiba Magnetic memory device
US9947862B2 (en) 2016-03-14 2018-04-17 Toshiba Memory Corporation Magnetoresistive memory device
US10170519B2 (en) 2016-03-14 2019-01-01 Toshiba Memory Corporation Magnetoresistive element and memory device
US20170263680A1 (en) * 2016-03-14 2017-09-14 Kabushiki Kaisha Toshiba Magnetoresistive memory device and manufacturing method of the same
TWI688001B (zh) 2016-09-14 2020-03-11 東芝記憶體股份有限公司 半導體裝置及其製造方法
US10263178B2 (en) 2016-09-15 2019-04-16 Toshiba Memory Corporation Magnetic memory device
JP6365901B2 (ja) 2016-09-28 2018-08-01 株式会社東芝 磁気抵抗素子及び磁気記憶装置
JP2018163921A (ja) 2017-03-24 2018-10-18 東芝メモリ株式会社 磁気記憶装置
JP2019054054A (ja) * 2017-09-13 2019-04-04 東芝メモリ株式会社 磁気装置
JP2019054095A (ja) * 2017-09-14 2019-04-04 東芝メモリ株式会社 磁気抵抗素子
JP7086664B2 (ja) * 2018-03-20 2022-06-20 キオクシア株式会社 磁気装置
JP2020035976A (ja) * 2018-08-31 2020-03-05 キオクシア株式会社 磁気記憶装置
JP2020043224A (ja) * 2018-09-11 2020-03-19 キオクシア株式会社 磁気装置
JP2020043282A (ja) 2018-09-13 2020-03-19 キオクシア株式会社 記憶装置
JP2020150216A (ja) * 2019-03-15 2020-09-17 キオクシア株式会社 磁気抵抗素子及び磁気記憶装置
JP7204549B2 (ja) * 2019-03-18 2023-01-16 キオクシア株式会社 磁気装置
JP2020155442A (ja) 2019-03-18 2020-09-24 キオクシア株式会社 磁気デバイス
JP6806199B1 (ja) * 2019-08-08 2021-01-06 Tdk株式会社 磁気抵抗効果素子およびホイスラー合金
US11361805B2 (en) * 2019-11-22 2022-06-14 Western Digital Technologies, Inc. Magnetoresistive memory device including a reference layer side dielectric spacer layer
US11404193B2 (en) * 2019-11-22 2022-08-02 Western Digital Technologies, Inc. Magnetoresistive memory device including a magnesium containing dust layer
US11404632B2 (en) * 2019-11-22 2022-08-02 Western Digital Technologies, Inc. Magnetoresistive memory device including a magnesium containing dust layer
US11839162B2 (en) * 2019-11-22 2023-12-05 Western Digital Technologies, Inc. Magnetoresistive memory device including a plurality of reference layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878318B2 (en) * 2011-09-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for a MRAM device with an oxygen absorbing cap layer
US9362489B1 (en) * 2015-04-24 2016-06-07 Yimin Guo Method of making a magnetoresistive element
US20190067564A1 (en) * 2015-12-11 2019-02-28 Imec Vzw Method of manufacturing a magnetic memory device having buffer layer
US20200066319A1 (en) * 2016-02-05 2020-02-27 Industry-University Cooperation Foundation Hanyang University Memory device
US10546997B2 (en) * 2016-12-02 2020-01-28 Regents Of The University Of Minnesota Magnetic structures including FePd

Also Published As

Publication number Publication date
TW202135062A (zh) 2021-09-16
US11563168B2 (en) 2023-01-24
JP2021144969A (ja) 2021-09-24
CN113380944A (zh) 2021-09-10
US20210288240A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10304509B2 (en) Magnetic storage device
US10854252B2 (en) Magnetic storage device with a stack of magnetic layers including iron (Fe) and cobalt (co)
KR102567512B1 (ko) 자기 터널 접합 소자 및 그를 포함하는 자기 메모리 장치
TWI794529B (zh) 磁性元件及記憶體元件
US10937947B2 (en) Magnetic memory device with a nonmagnet between two ferromagnets of a magnetoresistive effect element
JP2020035976A (ja) 磁気記憶装置
TWI716830B (zh) 磁性裝置
TW202036558A (zh) 磁記憶裝置
TWI746085B (zh) 磁性記憶裝置
US11316095B2 (en) Magnetic device which improves write error rate while maintaining retention properties
TWI794931B (zh) 磁性記憶裝置
TWI698865B (zh) 磁性記憶裝置
JP2020043133A (ja) 磁気記憶装置
US20230309413A1 (en) Magnetic memory device
TW202404105A (zh) 磁性記憶裝置
TW202324402A (zh) 磁性記憶體裝置