TWI738378B - 用於神經形態切換的雙氧化物類比開關 - Google Patents

用於神經形態切換的雙氧化物類比開關 Download PDF

Info

Publication number
TWI738378B
TWI738378B TW109119472A TW109119472A TWI738378B TW I738378 B TWI738378 B TW I738378B TW 109119472 A TW109119472 A TW 109119472A TW 109119472 A TW109119472 A TW 109119472A TW I738378 B TWI738378 B TW I738378B
Authority
TW
Taiwan
Prior art keywords
oxide
layer
neuromorphic
neuromorphic applications
forming
Prior art date
Application number
TW109119472A
Other languages
English (en)
Other versions
TW202107564A (zh
Inventor
狄帕克 卡馬拉那什
安伽那 庫瑪
希達司 克里許南
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202107564A publication Critical patent/TW202107564A/zh
Application granted granted Critical
Publication of TWI738378B publication Critical patent/TWI738378B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

用於神經形態應用的示例性半導體結構可包含覆蓋基板材料的第一層。第一層可為或可包含第一氧化物材料。結構可包含設置於鄰近第一層的第二層。第二層可為或可包含第二氧化物材料。結構亦可包含沉積覆蓋第二層的電極材料。

Description

用於神經形態切換的雙氧化物類比開關
本案技術關於半導體製程及設備。更具體而言,本案技術關於產生用於神經形態應用的半導體元件。
藉由在基板表面上產生複雜圖案化材料層的製程使積體電路成為可能。在基板上產生圖案化材料需要用於沉積及移除材料的受控方法。然而,對於新的元件設計,產生高品質的材料層會帶來新的挑戰。
因此,需要可用於產生高品質元件及結構的改進的系統及方法。藉由本案技術解決這些及其他需求。
用於神經形態應用的示例性半導體結構可包含覆蓋基板材料的第一層。第一層可為或可包含第一氧化物材料。結構可包含設置於鄰近第一層的第二層。第二層可為或可包含第二氧化物材料。結構亦可包含沉積覆蓋第二層的電極材料。
在一些實施例中,第一層可形成為與基板材料接觸。與第一層接觸的基板材料可為或可包含電極材料。電極材料可為或可包含鉑、氮化鈦或氮化鉭中之至少一者。第一氧化物材料及第二氧化物材料可為或可包含以下中之一或更多者:氧化鈦、氧化鉿、氧化矽、氧化鋯、氧化鋁、氧化鎂、氧化鉭、氧化鏑、氧化鈧或氧化鑭。第一層可為或可包含氧化矽,並且第二層可為或可包含氧化鈦。結構亦可包含設置在第一層與基板材料之間的電阻材料。電阻材料可為或可包含矽、鍺、鎵或碳中之一或更多者。電阻材料可為或可包含非晶矽。在1 V的導通電壓下半導體結構的設定及重置電流可小於或約100 µA。
本案技術亦可涵蓋形成用於神經形態應用的元件之方法。方法可包含形成覆蓋基板的含矽材料之層的步驟。基板可為或可包含金屬電極材料,在此金屬電極材料上方形成含矽材料。方法可包含形成覆蓋含矽材料的金屬氧化物材料之層的步驟。
在一些實施例中,含矽材料可為或可包含非晶矽,並且形成金屬氧化物材料之層可導致非晶矽轉變為氧化矽。氧化矽的特徵可在於小於或約2 nm的厚度。在轉變期間非晶矽之至少一部分可維持為緊鄰金屬電極材料。金屬電極材料可包含鉑、氮化鈦或氮化鉭中之至少一者。金屬氧化物材料可為或可包含以下中之一或更多者:氧化鈦、氧化鉿、氧化鋯、氧化鉭、氧化鏑、氧化鈧或氧化鑭。方法亦可包含形成覆蓋金屬氧化物材料的另外的電極材料之步驟。金屬氧化物材料的特徵可在於大於或約5 nm的厚度。相較於神經形態元件內的絲狀切換(filamentary switching),所形成的神經形態元件的特徵可在於本體切換(bulk switching)。所形成的元件的特徵可在於在1 V的導通電壓下神經形態元件的設定及重置電流小於或約100 µA。
相較於習知的系統及技術,上述技術可提供眾多益處。例如,製程可產生能夠包含基於高電流狀態與低電流狀態之間的多個中間操作狀態的每單元操作中多個位元的結構。另外,與習知的元件相比,製程可提供增加的中間狀態之穩定性。結合以下的描述及附圖更詳細地描述這些及其他實施例以及它們的許多優點及特徵。
隨著在半導體處理中產生的元件持續縮小,正在尋求替代結構來增加元件之能力,同時持續減少元件佔地面積。例如,習知的記憶體結構包含特定的限制。動態隨機存取記憶體為一種儘管特徵在於相對有利的速度但為揮發性的結構。因此,當系統電源關閉時,記憶體傾向於遺失資料。快閃記憶體不會遭受此遺失,並且在整個電源循環中維持資料,然而,讀取及寫入過程是以多個週期執行,這可能為較慢的過程。因此,正在開發具有各種較新的材料層的改進的記憶體結構。例如,正在開發導電橋接RAM、氧化物RAM、磁性RAM、相關電子RAM、電阻RAM及其他記憶體結構。這些結構中之許多結構包含利用過渡金屬或類金屬的新材料層,這可增強產生的單元之操作特性。
一般而言,藉由跨金屬電極施加電壓,在金屬-絕緣體-金屬或電阻式記憶體結構中的介電材料在高電阻狀態與較低電阻狀態之間切換。藉由施加電壓(如設定電壓),可形成穿過可為均質的或局部的介電材料的導電路徑。此路徑可能是由於相變、細絲的形成、電鑄或金屬絕緣體轉變而引起,這可能使材料操作為記憶體或開關中之一者或兩者。藉由斷開導電路徑(如藉由重設),材料可回復至較高的電阻狀態。
這些電阻式記憶體結構經常藉由在電極之間產生細絲或導電路徑來操作。然而,這種產生這些細絲的操作可能招致具有高開關動態範圍的基本電導限制,這可能將單元限制為1位元資料,因為可能難以維持穩定的中間狀態。例如,習知的絲狀元件可包含在兩個電極之間的金屬氧化物材料。因為氧化物之性質,當施加不足的電壓時,可能不存在導電路徑,其可能為元件的低電流狀態或高電阻狀態。當施加足夠的電壓脈衝時,可形成導電細絲,其可將元件快速轉變成高電流狀態或低電阻狀態。這兩個穩定狀態可為資料0或1的儲存,從而產生1位元單元。因為閾值及切換操作,經常可能無法維持中間儲存狀態,而導致這些元件僅限於1位元資料。
為了將儲存增加至每單元2位元資料或4位元資料,可提供2^(位元數)穩定的儲存級。儘管如上所述的電阻式RAM可能無法產生這些狀態,但用於神經形態應用的單元可藉由增加0與1低電流狀態與高電流狀態之間的穩定儲存值之數量來改善儲存及能力。本案技術藉由產生每單元多於兩個的穩定儲存狀態來克服與絲狀電阻式RAM有關的問題。藉由形成特徵在於設定及重置電流的雙氧化物結構,其設定及重置電流可能比習知的電阻式RAM低一或更多個數量級,可提供多個中間狀態以將儲存增加至4、8、16或更多的儲存級。
儘管其餘揭示內容將照例地將特定結構(如開關)標識為本案結構及方法可採用之,但將容易理解,此系統及方法同樣適用於可受益於所開發的元件之功能或特性的任何數量的結構及元件。因此,本案技術不應視為僅限於與任何特定結構一起使用。而且,儘管將描述示例性工具系統以為本案技術提供基礎,但應理解,本案技術可在可執行待描述的一些或全部操作的任何數量的半導體處理腔室及工具中產生。
第1圖根據本案技術之一些實施例圖示沉積、蝕刻、烘烤及固化腔室之處理系統100之一個實施例之平面俯視圖,其可具體地經配置以執行以下所述的一些或全部操作。在圖式中,一對前開式晶圓傳送盒(FOUP) 102供應各種尺寸的基板,這些基板由機械臂104接收並且放入低壓保持區106中,隨後再放入位於串聯(tandem)部分109a~109c中的基板處理腔室108a~108f中之一者中。儘管繪示了串聯系統,但應理解,本案技術同樣地涵蓋併入獨立腔室的平台。第二機械臂110可用於將基板晶圓從保持區106傳送至基板處理腔室108a~108f並且返回。每個基板處理腔室108a~108f可經裝配成執行許多基板處理操作,包含任何數量的沉積製程,包含循環層沉積(CLD)、原子層沉積(ALD)、化學氣相沉積(CVD)、物理氣相沉積(PVD)以及蝕刻、預清洗、退火、電漿處理、脫氣、定向及其他基板製程。
基板處理腔室108a~108f可包含一或更多個系統部件,用於在基板或晶圓上沉積、退火、固化及/或蝕刻材料膜。在一種配置中,兩對處理腔室,例如,108c~108d及108e~108f,可用以在基板上沉積材料,並且第三對處理腔室,例如,108a~108b,可用以固化、退火或處理所沉積的膜。在另一種配置中,所有三對腔室,例如,108a~108f,可經配置以在基板上沉積膜並且固化膜。所述的製程中之任一或更多者可在不同的實施例中示出的與製造系統分開的另外的腔室中進行。應理解,系統100考量用於材料膜的沉積、蝕刻、退火及固化腔室之另外的配置。另外,本案技術可利用任何數量的其他處理系統,系統可併入用於執行特定操作中之任一者的腔室。在一些實施例中,腔室系統可提供進出多個處理腔室的入口,同時維持各個部分中的真空環境(如所述的保持區及傳送區),從而可允許在多個腔室中執行操作同時在離散製程之間維持特定的真空環境。
系統100,或更具體地併入系統100或其他處理系統中的腔室,可用於產生根據本案技術之一些實施例的結構。第2圖根據本案技術之一些實施例圖示形成用於神經形態應用的半導體結構之方法200中的示例性操作。方法200可在一或更多個處理腔室中執行,例如併入系統100中的腔室。方法200可包含或可不包含在方法起始之前的一或更多個操作,包含前端處理、沉積、蝕刻、拋光、清洗或可在所述的操作之前執行的任何其他操作。方法可包含如圖所標示的數個任選的操作,這些任選的操作可或可不與根據本案技術的方法之一些實施例具體相關聯。方法200描述第3A圖至第3D圖中示意性圖示的操作,將結合方法200之操作來描述第3A圖至第3D圖之圖示。應理解,第3圖僅繪示具有有限細節的局部示意圖,並且在一些實施例中,基板可含有具有如圖式中繪示的態樣的任何數量的電晶體或半導體部分,以及仍可從本案技術之任何態樣受益的替代性結構態樣。
方法200可包括將半導體結構開發為特定製造操作的任選的操作。儘管在一些實施例中,方法200可在基底結構上執行,但在一些實施例中,方法可在隨後的電晶體或其他材料形成之後執行。如第3A圖繪示,半導體結構可代表在完成前端或其他處理之後的元件300。例如,基板305可為平面材料,或可為結構化的元件,其可包含如將理解的由本案技術類似地涵蓋的經配置為柱、溝槽或其他結構的多種材料。基板305可包含任何數量的包含金屬的導電及/或介電材料,其可包含過渡金屬、後過渡金屬(post-transition metal)、類金屬及這些材料中之任一者之氧化物、氮化物及碳化物,以及可併入結構內的任何其他材料。
一或更多個材料層可形成在基板305之一些或全部上方,以及至少部分地形成在基板內,以產生在實施例中可為位於介電材料內的平坦化導電材料的結構。例如,在一些實施例中,電極材料310可任選地形成為覆蓋基板305,或凹入基板材料305之部分內。作為一個非限制性實例,在基板305之暴露表面處可為介電材料,如氧化矽或任何其他介電質,其中可形成導電材料。電極材料310可為跨基板的連續層,或可如所繪示的跨基板之表面間歇地形成。在一個非限制性實例中,導電材料可為或可包含可跨基板305間歇地形成的金屬。金屬可包含鉭、鐠、鉿、鈦、銥、銠、鉑或可在記憶體結構中操作為電極或例如可存在於替代結構中的任何其他材料,並且在一些實施例中可包含材料以及這些材料中之任一者之氧化物或氮化物之組合。
在一些實施例中,可將電極材料310蝕刻、平坦化或以其他方式處理以產生間歇圖案,此間歇圖案經由蝕刻或其他形成方式可在電極材料310之區段之間暴露基板305之部分。儘管繪示為單一情況,但應理解,可包含任何數量的電極材料310之部分。另外,儘管示意性地繪示為包含筆直側壁,但電極材料310之形成或移除製程可產生傾斜側壁。因此,在一些實施例中,電極材料310之區段的特徵可在於平截頭體形狀,或沿區段之一或更多個面的傾斜表面。可包含電極材料310的基板305可被容納或位於半導體處理腔室之處理區域中,並且可執行方法200以在基板上形成用於神經形態應用的半導體結構。
方法200可包含在操作205中形成覆蓋基板及電極材料310的第一氧化物材料之層。第一氧化物材料可為或可包含多種材料,多種材料可與第二氧化物材料一起操作以在結構化元件之電極之間產生切換材料。第一氧化物材料可跨電極材料310形成,如第3B圖中繪示為第一氧化物材料320,並且第一氧化物材料320可跨材料完全地延伸以覆蓋電極材料310以及基板材料305之兩者區域。
第一氧化物材料可藉由任何數量的沉積技術來形成,沉積技術包含化學氣相沉積、物理氣相沉積或原子層沉積。另外,第一氧化物材料可藉由如下所說明的轉變操作來產生,其中首先可形成可能不包含氧的材料,隨後進行二次操作以將材料轉變為第一氧化物材料。第一氧化物材料可為或可包含一或更多種金屬或包含過渡金屬、類金屬或貧金屬的金屬氧化物材料。來自此列表的示例性材料(不視為限制性)包含氧化鈦、氧化鉿、氧化矽、氧化鋯、氧化鋁、氧化鎂、氧化鉭、氧化鏑、氧化鈧或氧化鑭,其可包含材料之任何氧化態或化合物。
方法200亦可包含以下步驟:在操作210處形成與第一氧化物材料相鄰或與第一氧化物材料接觸的第二氧化物材料之層。第二氧化物材料可與第一氧化物材料相同或不同,並且在一些實施例中亦可包含以上提到的形成操作及材料中之任一者。在本案技術之一些實施例中,可基於材料之間的氧親和力來選擇第二氧化物材料及第一氧化物材料。例如,與細絲形成相反,第一氧化物材料可提供弱的氧交換層,從而促進跨材料層的類比本體切換(analog bulk switching)。因此,可基於對這些層之間的氧交換的親和力來選擇第一氧化物材料及第二氧化物材料,這可產生體積切換層並且限制或防止經由切換材料形成細絲,細絲可能妨礙如上所述的中間層之穩定性。另外,藉由根據本案技術之實施例產生氧交換層,可在較低的設定及重置電流下執行本體切換,並且與絲狀元件相比可低幾個數量級。
為了調適氧親和力,在一些實施例中,第二氧化物材料的特徵可在於比第一氧化物材料對氧的親和力較高。另外,第一氧化物材料的特徵可在於對氧足夠的親和力以產生對氧的特定保留。例如,在一個非限制性實例中,並且理解可使用許多其他材料對,第一氧化物材料可為或可包含氧化矽,並且第二氧化物材料可為或可包含氧化鈦。氧化鈦的特徵可在於對氧的親和力較高,這可促進與鈦結合之初始狀態。另外,當施加足夠的導通電壓時,鈦很容易將氧貢獻給矽。最後,矽的特徵可在於對氧具有足夠的親和力,一旦傳遞就保留氧。例如,當此實例之矽被鍺取代時,鍺的特徵可在於較低的親和力,並且當移除電壓時鍺可能無法充分保留氧,從而基本上形成揮發性記憶體,其可能無法提供根據本案技術之實施例的類比本體切換。
產生的層之厚度可另外影響所述的操作,因此在一些實施例中,第二氧化物層的厚度可大於第一氧化物層的厚度或約第一氧化物層的厚度的兩倍。在一些實施例中,第二氧化物層的厚度可為第一氧化物層的厚度的至少或約3倍、至少或約4倍、至少或約5倍、至少或約6倍、至少或約7倍、至少或約8倍、至少或約10倍、至少或約12倍、至少或約15倍、至少或約20倍,或更大。
例如,在一些實施例中,第一氧化物層(作為一個實例可為氧化矽)的特徵可在於小於或約5 nm的厚度,並且特徵可在於小於或約4 nm、小於或約3 nm、小於或約2 nm、小於或約1 nm、小於或約0.5 nm或更小的厚度。然而,將第一氧化物層維持在適合的範圍內可促進本體切換。例如,當第一氧化物層增加至大於或約5 nm時,電流分佈可能太低而無法使元件充分作用。另外,若厚度減小至小於或約1 nm或0.5 nm,則層之間可能不會發生氧交換,並且可能會發生更多的絲狀效應。
在一些實施例中,第一層可直接接觸電極材料。在一些實施例中,可在第一層與電極材料之間併入另外的電阻層。電阻材料可藉由進一步調諧材料之電流/電壓分佈來改善本體切換。不希望受到任何特定理論的拘束,併入電阻材料可為切換結構提供串聯電阻,其可控制切換材料的過度程式化,並且控制中間切換狀態。電阻材料可為設置在電極材料與第一氧化物材料之間的非晶材料或一些結晶材料。
示例性材料可包含任何類金屬、貧金屬或其他材料,其可進一步調諧結構。在一個實施例中,電阻材料可為硫族化物,例如碳、矽、鍺或錫。另外的材料可為或可包含提供類似或其他電阻性質的材料,其可包含如鎵、釩、鈮的材料,以及如矽鍺的組合材料,以及可類似地用作調整穿過結構的電阻的許多其他材料。電阻層可形成為促使控制元件之電壓分佈的厚度。因此,為了產生足夠的效應,電阻層可大於或約2 nm,並且在一些實施例中可大於或約3 nm、大於或約4 nm、大於或約5 nm、大於或約6 nm、大於或約8 nm、大於或約10 nm或更大。
產生材料之電阻層之步驟可以一或更多種方式進行,包含藉由上述方法中之任一者的沉積或形成。以這種方式,第3B圖可繪示在一些實施例中在底部電極上方形成的材料之電阻層。另外,在一些實施例中,此電阻材料可用以形成第一氧化物材料。例如,儘管第一氧化物材料中之任一者可沉積在電極材料或電阻材料上方,但在一些實施例中,可在方法200之任選的操作215處執行轉變。作為一個非限制性實例,並且繼續先前提到的材料,矽(如非晶矽)可沉積在基板上方的電極上。當形成第二材料層(如氧化鈦)時,一部分的非晶矽可轉變為氧化矽。在一些實施例中,非晶矽之整個厚度可轉變為氧化矽,儘管在一些實施例中,定量的非晶矽可維持在所產生的氧化矽與電極材料之間。
因此,第3C圖可繪示多個實施例。例如,層320可為如先前所論述的第一氧化物材料,並且可任選地不包含層330。在一些實施例中,層320可為在基板上方沉積的電阻層,並且在一些實施例中,層330可為在電阻材料上方形成的第一氧化物材料。在一些實施例中,層340可為在第一氧化物材料上方形成的第二氧化物材料,儘管如上所述,在一些實施例中,第二氧化物材料層340可直接形成覆蓋電阻材料,這可將一些或全部電阻材料轉變為如先前所述的第一氧化物材料。在方法200之任選的操作220中,另外的電極材料可形成為覆蓋第二氧化物材料,並且可為先前所述的電極材料中之任一者。如第3D圖中繪示,電極材料350(可與電極材料310相同或不同)可形成為覆蓋第二電極材料340。由第3D圖涵蓋的元件可不包含所繪示的所有層,其取決於電阻材料之併入及/或用以產生第一氧化物材料的轉變操作可容納上述提到的變化中之每一者。
第4圖根據本案技術之一些實施例圖示絲狀元件操作之圖表400。如先前所述,與第4圖中繪示的絲狀元件切換相比,本案技術可執行類比本體切換,可基於材料層之結構或厚度來產生。如先前所述,絲狀元件的特徵可在於高動態開-關範圍之更突然的改變特性。如所繪示,當不存在細絲時,元件可處於低電流狀態或高電阻狀態,如410所繪示。當對元件施加足以產生細絲的電壓時,電流狀態發生突然變化,這可能幾乎將元件完全切換至高電流狀態,如420所繪示。當施加另外的電壓脈衝時,可產生較粗的細絲從而增加電流狀態,儘管仍處於高電流位置之範圍內,如430所繪示。因此,由於切換元件之本質,在低電流狀態與高電流狀態之間幾乎沒有或無中間狀態發生。
第5圖根據本案技術之一些實施例圖示用於神經形態應用的元件操作之圖表500。圖表500可繪示根據本案技術之一些實施例的用於體積切換或類比切換元件的在高電流導通狀態與低電流斷開狀態之間可能的多個中間狀態。如510處繪示,當跨元件施加電壓脈衝時,可基於在第一氧化物材料與第二氧化物材料之間的相對薄的空乏層來形成低電流狀態。隨著電壓持續被脈衝化,可產生與延伸至第一氧化物材料中的空乏量有關的中間、穩定、較高電流狀態520。因為可根據本案技術之實施例在結構中控制此空乏層,所以可使中間位置穩定。隨著電壓持續施加至元件,元件可在抵達元件的最高電流狀態530之前如圖示轉變經過多個另外的穩定狀態。根據本案技術的元件的特徵可在於低電流狀態與高電流狀態之間的穩定中間狀態之間的受控的轉變。
第6圖根據本案技術之一些實施例圖示用於神經形態應用的元件操作之圖表600。圖表600可以對數尺度繪示根據本案技術之一些實施例的元件之電流-電壓特性。如所繪示,根據本案技術的用於神經形態應用的元件的特徵可在於比習知元件較低的設定及重置電流。例如,在1 V的導通電壓下,許多絲狀RAM元件的特徵可在於設定及重置電流大於或約100 µA,並且其特徵可在於設定及重置電流大於或約500 µA、大於或約1 mA、大於或約10 mA或更大。根據本案技術之一些實施例的元件的特徵可在於如繪示的較低的設定及重置電流。例如,在1 V的導通電壓下,根據本案技術之一些實施例的元件的特徵可在於設定及重置電流小於或約100 µA,對此及其他操作導通電壓的特徵可在於設定及重置電流小於或約50 µA、小於或約20 µA、小於或約10 µA、小於或約5 µA、小於或約1 µA、小於或約0.5 µA、小於或約0.1 µA、小於或約0.05 µA、小於或約0.01 µA或更小。
第7A圖至第7B圖根據本案技術之一些實施例圖示用於神經形態應用的元件操作之圖表。第7A圖可根據本案技術之一些實施例繪示不具有另外的電阻層的元件,而第7B圖可繪示在元件之第一氧化物層與電極之間併入電阻層的元件。如所繪示,儘管沒有電阻層的元件提供如先前所論述的電流分佈以促進類比切換,但併入電阻層可進一步修改元件之電流-電壓分佈。藉由允許經由元件堆疊的導電線性被修改及拉直,此舉可允許更大的靈活性及對中間狀態的控制,這可產生進一步的穩定性並且控制電壓脈衝以在元件之中間狀態之間進行調整。因此,藉由根據本案技術之一些實施方式產生用於神經形態應用的元件,可提供體積切換,其允許每單元操作增加位數,並且相較於絲狀電阻元件改善了特性。
在前面的描述中,為了解釋之目的,已記載了眾多細節以便提供對本案技術之各種實施例的理解。然而,對於本領域熟悉技藝者將為顯而易見的是,可在沒有這些細節中之一些細節或具有另外的細節的情況下實踐某些實施例。
已揭示了幾個實施例,熟習本領域者將認知,在不脫離實施例之精神的情況下,可使用各種修改、替代構造及均等物。另外,為了避免不必要地使本案技術模糊,並未描述許多已知的製程及元件。因此,以上描述不應被視為限制技術之範疇。另外,方法或製程可被描述為依序的或以步驟的,但應理解,操作可同時執行,或以與列出的不同的順序來執行。
當提供值之範圍時,應理解,除非上下文另外清楚地指出,否則亦具體揭示了在範圍之上限與下限之間的每個中間值至下限之單位之最小分數。涵蓋了所述範圍中的任何所述值或未陳述中間值與所述範圍中的任何其他所述或中間值之間的任何較窄範圍。這些較小範圍之上限及下限可獨立地被包含在此範圍中,或排除在範圍之外,並且每個範圍(其中任一、皆無或兩者界限被包含在較小的範圍內)亦被涵蓋在技術內,遵守所述範圍中任何具體排除的界限。當所述範圍包含界限之一或兩者時,則亦包含排除那些包含的界線中之任一或兩者的範圍。
如本文及所附申請專利範圍所使用,除非上下文另外清楚地指出,否則單數形式「一」、「一個」及「該」包含複數參照。因此,例如,對「前驅物」的參照包含複數個這樣的前驅物,而對「該層」的參照包含對一或更多個層及熟習本領域者已知的所述層之均等物的參照等等。
此外,當在本說明書及以下申請專利範圍中使用時,用字「包括(comprise(s))」、「包括(comprising)」、「含有contain(s)」、「含有(containing)」、「包含(include(s))」及「包含(including)」欲指明所述的特徵、整數、部件或操作之存在,但它們不排除一或更多個其他特徵、整數、部件、操作、動作或群組之存在或添加。
100:系統 102:前開式晶圓傳送盒 104:機械臂 106:保持區 108a~108f:基板處理腔室 109a~109c:串聯部分 110:機械臂 200:方法 205:操作 210:操作 215:操作 220:操作 300:元件 305:基板 310:電極材料 320:第一氧化物材料 330:層 340:第二氧化物材料層 350:電極材料 400:圖表 410:低電流狀態或高電阻狀態 420:高電流狀態 430:高電流位置之範圍內 500:圖表 510:低電流狀態 520:中間、穩定、較高電流狀態 530:最高電流狀態
藉由參照說明書之其餘部分及圖式,可實現對所揭示的技術之本質及優點的進一步理解。
第1圖根據本案技術之一些實施例圖示示例性處理系統之一個實施例之平面俯視圖。
第2圖根據本案技術之一些實施例圖示在產生用於神經形態應用的結構之方法中的示例性操作。
第3A圖至第3D圖根據本案技術之一些實施例圖示所處理的基板之剖面圖。
第4圖根據本案技術之一些實施例圖示絲狀元件操作之圖表。
第5圖根據本案技術之一些實施例圖示執行神經形態操作的結構之圖表。
第6圖根據本案技術之一些實施例圖示執行神經形態操作的結構之圖表。
第7A圖至第7B圖根據本案技術之一些實施例圖示執行神經形態操作的結構之圖表。
圖式中之一些圖式作為示意圖包含在內。應理解,圖式僅用於說明目的,除非特別說明為按尺度或成比例,否則不應視為按尺度或成比例。另外,作為示意圖,圖式提供用以協助理解,並且與現實的表示相比可不包含所有態樣或資訊,並且為了說明目的可包含誇大的材料。
在附圖中,類似的部件及/或特徵可具有相同的元件符號。此外,可藉由在元件符號後面加上一個區分類似部件的字母來區分相同類型的各種部件。若在說明書中僅使用第一元件符號,則描述適用於具有相同的第一元件符號的類似部件中之任一者,而不論字母。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
200:方法
205:操作
210:操作
215:操作
220:操作

Claims (19)

  1. 一種用於神經形態應用的半導體結構,包括:一第一層,覆蓋一基板材料,其中該第一層包括一第一氧化物材料;一第二層,設置於鄰近該第一層,其中該第二層包括一第二氧化物材料;及一電極材料,沉積覆蓋該第二層;其中相較於用於神經形態應用的半導體結構內的絲狀切換,用於神經形態應用的該半導體結構的特徵在於本體切換。
  2. 如請求項1所述之用於神經形態應用的半導體結構,其中該第一層形成為與該基板材料接觸。
  3. 如請求項1所述之用於神經形態應用的半導體結構,其中與該第一層接觸的該基板材料包括一電極材料。
  4. 如請求項3所述之用於神經形態應用的半導體結構,其中該電極材料包括鉑、氮化鈦或氮化鉭中之至少一者。
  5. 如請求項1所述之用於神經形態應用的半導體結構,其中該第一氧化物材料及該第二氧化物材料包括以下中之一或更多者:氧化鈦、氧化鉿、氧化矽、氧化鋯、氧化鋁、氧化鎂、氧化鉭、氧化鏑、氧化鈧或氧化鑭。
  6. 如請求項5所述之用於神經形態應用的半導體結構,其中該第一層包括氧化矽,並且其中該第二層包括氧化鈦。
  7. 如請求項1所述之用於神經形態應用的半導體結構,進一步包括設置在該第一層與該基板材料之間的一電阻材料。
  8. 如請求項7所述之用於神經形態應用的半導體結構,其中該電阻材料包括矽、鍺、鎵或碳中之一或更多者。
  9. 如請求項8所述之用於神經形態應用的半導體結構,其中該電阻材料包括非晶矽。
  10. 如請求項1所述之用於神經形態應用的半導體結構,其中在1V的導通電壓下該半導體結構的一設定及重置電流小於或約100μA。
  11. 一種形成用於神經形態應用的一元件之方法,該方法包括以下步驟:形成覆蓋一基板的一含矽材料之一層,其中該基板包括一金屬電極材料,在該金屬電極材料上方形成該含矽材料;及形成覆蓋該含矽材料的一金屬氧化物材料之一層;其中相較於用於神經形態應用的元件內的絲狀切換,所形成的用於神經形態應用的該元件的特徵在於本體切換。
  12. 如請求項11所述之形成用於神經形態應用 的一元件之方法,其中該含矽材料包括非晶矽,並且其中形成該金屬氧化物材料之該層的步驟導致該非晶矽轉變為氧化矽。
  13. 如請求項12所述之形成用於神經形態應用的一元件之方法,其中該氧化矽的特徵在於小於或約2nm的一厚度。
  14. 如請求項12所述之形成用於神經形態應用的一元件之方法,其中在該轉變期間該非晶矽之至少一部分維持為緊鄰該金屬電極材料。
  15. 如請求項11所述之形成用於神經形態應用的一元件之方法,其中該金屬電極材料包括鉑、氮化鈦或氮化鉭中之至少一者。
  16. 如請求項11所述之形成用於神經形態應用的一元件之方法,其中該金屬氧化物材料包括以下中之一或更多者:氧化鈦、氧化鉿、氧化鋯、氧化鉭、氧化鏑、氧化鈧或氧化鑭。
  17. 如請求項11所述之形成用於神經形態應用的一元件之方法,進一步包括以下步驟:形成覆蓋該金屬氧化物材料的一另外的電極材料。
  18. 如請求項11所述之形成用於神經形態應用的一元件之方法,其中該金屬氧化物材料的特徵在於大於或約5nm的一厚度。
  19. 如請求項11所述之形成用於神經形態應用的一元件之方法,其中所形成的該元件的特徵在於在1 V的導通電壓下該神經形態元件的一設定及重置電流小於或約100μA。
TW109119472A 2019-06-12 2020-06-10 用於神經形態切換的雙氧化物類比開關 TWI738378B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962860313P 2019-06-12 2019-06-12
US62/860,313 2019-06-12

Publications (2)

Publication Number Publication Date
TW202107564A TW202107564A (zh) 2021-02-16
TWI738378B true TWI738378B (zh) 2021-09-01

Family

ID=73746527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109119472A TWI738378B (zh) 2019-06-12 2020-06-10 用於神經形態切換的雙氧化物類比開關

Country Status (6)

Country Link
US (2) US11616195B2 (zh)
EP (1) EP3984074A4 (zh)
JP (1) JP7359876B2 (zh)
CN (1) CN113950752A (zh)
TW (1) TWI738378B (zh)
WO (1) WO2020251747A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170083811A1 (en) * 2015-09-18 2017-03-23 Samsung Electronics Co., Ltd. Weighting device, neural network, and operating method of the weighting device
US20190165356A1 (en) * 2017-11-30 2019-05-30 International Business Machines Corporation Battery structure with stable voltage for neuromorphic computing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162086A (ja) * 2012-02-08 2013-08-19 Toshiba Corp 不揮発性抵抗変化素子
SG11201405685RA (en) * 2012-03-14 2014-11-27 Tokyo Inst Tech Resistance change memory device
US9343207B2 (en) * 2012-09-05 2016-05-17 Ulvac, Inc. Resistance change device, and method for producing same
JP5572749B2 (ja) 2012-09-26 2014-08-13 パナソニック株式会社 不揮発性記憶素子及びその製造方法
KR101588980B1 (ko) 2014-12-04 2016-01-27 포항공과대학교 산학협력단 뉴로모픽 시스템 응용을 위한 시냅스 소자 및 그 제조방법
US10049732B2 (en) * 2015-02-24 2018-08-14 Hewlett Packard Enterprise Development Lp Determining a state of memristors in a crossbar array
JP6430306B2 (ja) * 2015-03-19 2018-11-28 東芝メモリ株式会社 不揮発性記憶装置
US10381557B2 (en) 2015-12-14 2019-08-13 Shih-Yuan Wang Resistive random-access memory with protected switching layer
KR101811108B1 (ko) * 2015-12-16 2017-12-26 포항공과대학교 산학협력단 부도체-도체 전이현상을 이용한 뉴런 소자를 포함한 고집적 뉴로모픽 시스템 및 고집적 뉴로모픽 회로
US10062845B1 (en) * 2016-05-13 2018-08-28 Crossbar, Inc. Flatness of memory cell surfaces
US9887351B1 (en) 2016-09-30 2018-02-06 International Business Machines Corporation Multivalent oxide cap for analog switching resistive memory
KR102143440B1 (ko) * 2017-01-20 2020-08-11 한양대학교 산학협력단 3차원 뉴로모픽 소자 및 그 제조방법
JP2018160547A (ja) * 2017-03-22 2018-10-11 東芝メモリ株式会社 記憶装置
KR102369715B1 (ko) * 2017-06-12 2022-03-03 삼성전자주식회사 이차원 물질을 포함하는 비휘발성 메모리 소자 및 이를 포함하는 장치
KR101940669B1 (ko) 2017-12-07 2019-01-21 재단법인 대구경북과학기술원 인공 시냅스 소자 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170083811A1 (en) * 2015-09-18 2017-03-23 Samsung Electronics Co., Ltd. Weighting device, neural network, and operating method of the weighting device
US20190165356A1 (en) * 2017-11-30 2019-05-30 International Business Machines Corporation Battery structure with stable voltage for neuromorphic computing

Also Published As

Publication number Publication date
CN113950752A (zh) 2022-01-18
EP3984074A4 (en) 2023-08-09
US20230232727A1 (en) 2023-07-20
EP3984074A1 (en) 2022-04-20
WO2020251747A1 (en) 2020-12-17
JP7359876B2 (ja) 2023-10-11
JP2022536917A (ja) 2022-08-22
US20200395538A1 (en) 2020-12-17
TW202107564A (zh) 2021-02-16
US11616195B2 (en) 2023-03-28
KR20220018055A (ko) 2022-02-14

Similar Documents

Publication Publication Date Title
CN101771131B (zh) 制造电阻式存储器件的方法
KR101988147B1 (ko) 탄소를 포함하는 금속 라인들을 포함하는 구조들 및 이를 형성하는 방법들
KR101851101B1 (ko) 개선된 형성 전압 특성을 갖는 저항성 랜덤 액세스 메모리 (rram) 및 이의 제조 방법
TWI426605B (zh) 具有自對準頂部電極以及可編程阻抗記憶的側壁薄膜電極
US20110291064A1 (en) Resistance variable memory cell structures and methods
CN111029459B (zh) 一种界面型原子忆阻器及其制备方法
CN104979470A (zh) Rram单元的底电极的形成
US20100163819A1 (en) Resistive memory device and method for fabricating the same
US11283014B2 (en) RRAM crossbar array circuits with specialized interface layers for low current operation
US8987695B2 (en) Variable resistance memory device and method for fabricating the same
KR20100081561A (ko) 가변저항 기억 소자 및 그 제조방법
US20190288201A1 (en) Vertical and planar rram with tip electrodes and methods for producing the same
CN106803533A (zh) 电阻式随机存取内存及其制造方法
US20210028360A1 (en) Semiconductor device including a data storage material pattern
TWI738378B (zh) 用於神經形態切換的雙氧化物類比開關
TW201015713A (en) Dielectric-sandwiched pillar memory device
KR102722302B1 (ko) 뉴로모픽 스위칭을 위한 이중 산화물 아날로그 스위치
US9246084B2 (en) RRAM cell including V-shaped structure
CN104425709B (zh) 相变存储器的形成方法
WO2022106422A1 (en) Hybrid non-volatile memory cell
TWI779282B (zh) 記憶體元件的退火處理
US20220165944A1 (en) Hybrid non-volatile memory cell
CN105591027B (zh) 电阻式非易失性存储器装置及其制造方法
JP2020167210A (ja) 記憶装置および記憶装置の製造方法
CN106920876A (zh) 存储器结构及其制造方法