TWI738305B - 工件的加工方法及其nc程式的生成方法 - Google Patents

工件的加工方法及其nc程式的生成方法 Download PDF

Info

Publication number
TWI738305B
TWI738305B TW109113642A TW109113642A TWI738305B TW I738305 B TWI738305 B TW I738305B TW 109113642 A TW109113642 A TW 109113642A TW 109113642 A TW109113642 A TW 109113642A TW I738305 B TWI738305 B TW I738305B
Authority
TW
Taiwan
Prior art keywords
tool
amount
workpiece
program
deflection
Prior art date
Application number
TW109113642A
Other languages
English (en)
Other versions
TW202040297A (zh
Inventor
土屋康二
Original Assignee
日商芝浦機械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商芝浦機械股份有限公司 filed Critical 日商芝浦機械股份有限公司
Publication of TW202040297A publication Critical patent/TW202040297A/zh
Application granted granted Critical
Publication of TWI738305B publication Critical patent/TWI738305B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/16Compensation for wear of the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

工件的加工機(1),具有:將加工工件(5)的工具(3)保持的工具保持部(9)、及為了將工件(5)由工具(3)加工而將工具(3)移動的移動部(11)、及依據NC程式使對於工件(5)將工具(3)移動而將移動部(11)控制的控制部(13),在前述NC程式中被寫入供算出工具(3)的位置用的運算式,且除了工具(3)的輪廓誤差以外,更依據切削移動距離及磨耗量及撓曲量的關係,修正程式。

Description

工件的加工方法及其NC程式的生成方法
本發明,是有關於工件的加工方法及工件的加工機,尤其是,有關於進行工具的輪廓修正而將工件加工者。
習知,已知藉由NC程式(程式),對於工件將工具相對移動,且在工件施加切削加工之工件的加工機(NC工作機械)。
在習知的NC工作機械中,例如,將端銑刀等的工具旋轉,且對應被包含在NC程式中的具體的數字(小數等的數值),將工具相對移動來進行工件的加工。在此,提出專利文獻1作為顯示先前技術的文獻。
[先前技術文獻] [專利文獻]
[專利文獻1]日本特開昭63-233403號公報
但是在工具中,會對應其切削距離和NC程 式的進展率等,而發生撓曲和磨耗。在此工具的撓曲中,包含工具本身的撓曲和工具的軸承的姿勢變化等。藉由此撓曲和磨耗等而發生輪廓誤差(理想的工具的輪廓形狀及實際的工具的輪廓形狀之間的差)。在進行超精密加工的工作機械中,工件的形狀誤差要因之中,多數是球頭立銑刀等的工具的輪廓誤差。
在此考慮,藉由對應工具的輪廓誤差來修正工具的位置並進行工件的加工,使工件的形狀誤差極力變小。此時,藉由被包含在程式中的具體的數字而將工具相對移動的話,程式的結構就變單。
但是使用具體的數字的話,具有:當將工具交換,或工具發生磨耗及撓曲時等,就必需每次重寫NC程式的問題。
本發明,是有鑑於上述問題點,其目的是提供一種工件的加工方法及工件的加工機,對於對應工具的輪廓誤差將工具的位置修正且將工件加工之工件的加工方法及工件的加工機,當將工具交換,或工具發生磨耗及撓曲時等,不需要每次重寫NC程式。
本發明的特徵,是藉由工具將工件加工成所期的形狀的加工方法,將供修正前述工具的位置用的運算式寫入至NC程式中,依據前述NC程式來運算前述工具移動的路徑也就是加工路徑,從前述加工路徑算出前述工具的各部位將前述工件切削的切削移動距離,從前述切削移動距離將前述工具的各部位的磨耗量及撓曲量算出,除了前述工具的輪廓誤差以外也藉由磨耗量及撓曲量將前述NC程式修正,藉由該修正後的前述NC程式進行加工。
本發明的態樣,是對於上述加工方法,前述NC程式,是為了抑制由前述工具的輪廓誤差所產生的前述工件的加工誤差的發生,而使用前述運算式,修正前述工具的位置。
本發明的其他的態樣,是對於上述加工方法,設定由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量、及由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率,隨著前述加工路徑從前述加工的開始朝向加工的結束,使由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率下降,且,使由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率增加。
本發明的其他的態樣,是對於上述加工方法,前述磨耗量是從加工前後測量的工具形狀的變化而求得,前述撓曲量是先從加工後測量的工件形狀、及作為加工目標的形狀的差求得切削殘留量,再從切削殘留量將磨耗量減去者。
本發明的其他的特徵,是藉由工具將工件加工成所期的形狀的加工機,將供修正前述工具的位置用的運算式寫入至NC程式中,依據前述NC程式來運算前述工具移動的路徑也就是加工路徑,從前述加工路徑算出前述工具的各部位將前述工件切削的切削移動距離,從前述切削移動距離將前述工具的各部位的磨耗量及撓曲量算出,除了前述工具的輪廓誤差以外也藉由磨耗量及撓曲量將前述NC程式修正,依據該修正後的前述NC程式進行加工。
本發明的其他的特徵,是藉由工具將工件加工成所期的形狀用的NC程式的生成方法,具有:在前述NC程式中寫入修正前述工具的位置用的運算式的步驟、及在前述運算式中寫入供朝加工點的法線方向修正前述工具的輪廓誤差用的法線單位向量及變數步驟、及依據前述NC程式來運算前述工具移動的路徑也就是加工路徑的步驟、及從前述加工路徑算出前述工具的各部位將前述工件切削的距離也就是切削移動距離的步驟、及從前述切削移動距離算出前述工具的各部位的磨耗量及撓曲量的步驟、及除了前述工具的輪廓誤差以外也藉由前述磨耗量及撓曲量來修正前述NC程式的步驟。
以下,參照圖面說明本發明的實施方式。
本發明的實施方式的工件的加工機(工作機械)1,是使用工具(加工工具;例如球頭立銑刀)3將作為被加工物的工件5加工者,如第1圖和第2圖所示,具備工件保持部7及工具保持部9及移動部11及控制部13(控制裝置)。
在此,將空間中的規定的一方向設成X方向(X軸方向;橫方向),將空間中的規定的其他的一方向且對於X方向垂直交叉的方向設成Y方向(Y軸方向;前後方向),將對於X方向及Y方向垂直交叉的方向設成Z方向(Z軸方向;上下方向)。又,在此定義中,X方向及Y方向雖是水平方向,Z方向雖是上下方向,但是不限定於此,X方向或是Y方向也可以成為上下方向,X方向、Y方向、Z方向,也可以對於水平方向或上下方向傾斜。
工件保持部7,是將工件5保持,工具保持部9,是將工具3保持。被工具保持部9保持的保持完成工具3(以下,只稱為「工具3」),是將由工件保持部7被保持的保持完成工件5(以下,只稱為「工件5」)加工(切削加工)。
工具3(球頭立銑刀),是在外周設有切削刃部。進一步說明的話,球頭立銑刀3,是具備圓柱狀的基端部15(第1圖)及半球狀的前端部17。基端部15的外徑及前端部17的直徑是彼此一致,成為使前端部17附著在基端部15的中心軸C1的延伸方向的一端的形狀。又,前端部17的中心軸及基端部15的中心軸C1是彼此一致。
在此,將前端部17的圓形的端面(附著在基端部15的圓形的端面的端面)的中心,設成前端部17的中心C2。此中心C2,是存在於工具3的中心軸C1上。
球頭立銑刀3的切削刃,是形成於前端部17的外周及基端部15的端部(前端部17側的端部)。球頭立銑刀3,是使基端部15的另一端部卡合於工具保持部9由工具保持部被保持。
且被工具保持部9保持的工具3,是藉由旋轉(以中心軸C1為旋轉中心進行自轉),由切削刃將工件5切削加工。
移動部11,是為了將工件5由保持完成工具3加工,而將工具3對於工件5相對地移動。又,也可以將工件5對於工具3移動。
控制部13,是依據NC程式將移動部11控制,將工具3對於工件5移動。
進一步說明的話,如第2圖所示,工件5的加工機1,是具備床台19及載置台21及機身23及主軸支撐體25及主軸框體27及自旋軸29。
載置台21,是透過無圖示的線性導軌軸承被支撐於床台19,藉由無圖示的線性馬達等的致動器,成為沿X方向對於床台19相對移動。
機身23是一體地被設置在床台19。主軸支撐體25,是透過無圖示的線性導軌軸承被支撐於機身23,藉由無圖示的線性馬達等的致動器,成為沿Y方向對於機身23相對移動。
主軸框體27,是透過無圖示的線性導軌軸承被支撐於主軸支撐體25,藉由無圖示的線性馬達等的致動器,沿Z方向對於主軸支撐體25相對移動。
自旋軸29,是透過軸承被支撐於主軸框體27,藉由無圖示的馬達等的致動器,以中心軸(與朝Z方向延伸的工具3共通的中心軸)C1作為旋轉中心對於主軸框體27可旋轉自如。
在自旋軸29中,設有工具保持部9,在載置台21的上面,設有工件保持部7。由此,保持完成工具3是對於工件5沿X方向、Y方向、Z方向相對地移動。
在NC程式中,寫入供算出工具3的位置(對於工件5的座標)用的運算式(例如使用四則運算等的數式)。即,保持完成工具3移動時的位置座標,是藉由運算式的解而被決定。
且NC程式,是為了抑制因為工具3的輪廓誤差而發生的工件5的加工誤差,而使用運算式,修正工具3的位置。 工具3的位置修正,是使用:該工具3的加工點T1(詳細如後述)的對於加工面的法線向量V1、及工具3之間的輪廓誤差。由此,由X方向、Y方向、Z方向之中的至少其中任一的方向(由法線向量V1的形態決定),來修正工具3的三次元(三維空間)的位置。
在此,首先說明,藉由第2圖所示的工具形狀測量裝置31進行測量的輪廓誤差的修正也就是初期校正處理(後述的第12圖的步驟S102)。
工具3的輪廓誤差,是藉由工具形狀測量裝置31,在將工件5實際加工之前,事先被求得。又,以下,使用「工具形狀測量裝置31」初期地算出工具3的輪廓誤差的處理,是稱為「初期校正處理」。
工具形狀測量裝置31,是被設置在工件的加工機1的規定的位置。且,藉由將保持完成工具3位置在可將保持完成工具3的形狀由工具形狀測量裝置31(雷射和照相機等)測量的位置,將保持完成工具3旋轉(繞中心軸C1周圍自轉),將保持完成工具3的外形在機上(工件的加工機1的機上)測量。
此測量到的保持完成工具3的外形、及理想形狀(無形狀誤差)的保持完成工具的外形之間的差(工具3的各部位的差),是成為工具3的「輪廓誤差」。
在第3圖(a)中由虛線顯示者,是理想形狀的工具的外形的形狀,在第3圖(a)中由實線所示者,是具有形狀誤差的實際的工具3的外形的形狀。在第3圖(a)中,工具未繞中心軸C1周圍旋轉。且,在第3圖(a)中由實線所示的保持完成工具3,是位於對於中心軸C1極些微地朝右側偏的位置。
在第3圖(b)中由虛線顯示者,是理想形狀的工具的外形的形狀,在第3圖(b)中由實線所示者,是將具有形狀誤差的實際的工具3(在第3圖(a)中由實線顯示的工具3)繞中心軸C1的周圍旋轉時的外形的形狀。
在第3圖(b)中由實線所示的工具3的形狀,當然是對於中心軸C1成為線對稱。工件5的加工,是由球頭立銑刀3的前端部17進行的話,球頭立銑刀3的輪廓誤差,是如第3圖所示,由前端部17的1/4的圓弧(即角度為90°的範圍)求得即可。
又,工具形狀測量裝置,可以是例如,日本特開昭63-233403號公報者。
在此,將工具(球頭立銑刀)3的輪廓誤差,一邊參照第4圖一邊進一步詳細說明。
在第4圖由二點鎖線所示的半圓弧狀者,是無形狀誤差的工具的外形的形狀。在第4圖由實線所示者,是由工具形狀測量裝置31所測量到的工具3的前端部17的外形的形狀。又,在圖中為了理解容易,將輪廓誤差誇張顯示。
從工具3的半球狀的前端部17的中心C2朝向工具3的1/4圓弧狀的外形延伸的複數本的半直線L00~L90之間,是隔有角度10°的間隔。工具3的中心軸C1及半直線L00及交叉角度是成為「0°」。保持完成工具3的中心軸C1及半直線L10之間交叉角度是成為「10°」。同樣地,保持完成工具3的中心軸C1及半直線L20~半直線L90之間的交叉角度是成為「20°」~「90°」。
在此,將半直線L00及理想形狀的工具的外形之間的交點設成交點Q00a。同樣地,將半直線L10、L20、‧‧L90、及理想形狀的工具的外形之間的交點設成交點Q10a、Q20a‧‧Q90a。另一方面,將半直線L00、L10、L20、‧‧L90、及由工具形狀測量裝置31所測量到的實際的工具3的外形之間的交點設成交點Q00b、Q10b、Q20b‧‧Q90b。
且將各差分設成參照符號「#500~#590」記憶在記憶體等。具體而言,設成「#500=Q00b-Q00a」,設成「#510=Q10b-Q10a」,以下同樣地,設成「#590=Q90b- Q90a」。
由參照符號(成為程式變數編號)#500~#590顯示的尺寸的值,是顯示半直線L00~L90中的,理想形狀的工具的外形之間的交點Q00a~Q90a、及實際的工具3的外形之間的交點Q00b~Q90b之間的距離,即各半直線上的工具3的輪廓誤差的值。
又,在第4圖中,對於工具3的中心軸C1的半直線L00~L90的交叉角度是由10°的間隔被刻劃,工具3的輪廓誤差雖是10處,但是交叉角度也可以由更細小的間隔(例如1°的間隔)被刻劃。
即,例如,在與工具3的中心軸C1之間的交叉角度是成為「64°」的半直線L64處的工具3的輪廓誤差(交點Q64a及交點Q64b之間的距離;#564)的狀況,工具3的輪廓誤差也可以具有91處。
這些的各輪廓誤差的值,是藉由使用工具形狀測量裝置31來實施上述的「初期校正處理」,並作為顯示工具3的輪廓誤差的資料,在由工具3進行工件5的加工之前,也可以預先被記憶於在第2圖顯示的PC33a的記憶體(PC33和控制部13的記憶體35)。又,在第2圖中的符號47,是顯示工具3的輪廓誤差的資料。
在此說明,防止由工具3的輪廓誤差所產生的工件5的加工精度惡化用的NC程式(有修正的NC程式)。
如第2圖所示,也可以從:CAD資料(顯示完成品的工件的形狀的資料)37、及由CAM39所作成的加工路徑(依據工具的輪廓誤差為「0」的CAD資料的NC程式),將工具3的加工點T1(第5圖參照)的法線向量(單位法線向量)V1,例如,由PC33(PC33a)求得。
當工具3的半球狀的前端部17的切削刃部將工件5切削加工時,工具3及工件5之間的接觸點是成為加工點T1。
進一步說明的話,當將工件5使用工具3由規定的切入量切削加工時,工具3雖是對於工件5朝X方向和Y方向和Z方向移動,但是在進行此加工時,例如,工具3是由此移動方向的最後端,使與工件5接觸的點(加工後決定工件的外形的形狀處)成為加工點T1。
以加工點T1為中心的加工點T1的附近雖是曲面,但是被視為平面的極微小的面也可以視為存在。法線向量V1,是對於上述極微小的曲面垂直交叉的向量,具備X方向的成分及Y方向的成分及Z方向的成分。且,法線向量V1,其純量是成為「1」。
即,法線向量V1是單位向量。且,在本實施方式中,藉由初期校正處理,來運算工具3的偏離量(純量)。進一步,運算法線向量V1。且,如後述,將法線向量V1分解成X方向、Y方向、Z方向的各方向,進一步,將偏離量乘算,來運算X方向、Y方向、Z方向的偏離量。
進一步說明將工件5切削加工時的保持完成工具3的位置修正。
如第5圖所示,將工件5切削加工時,工具3,是沿X方向、Y方向、Z方向之中的至少其中任一的方向,對於保持完成工件5移動。此時的工具3的座標值,是例如,如第6圖所示,從座標值f51(X-1.60657 Y-0.42583 Z-1.09809)至座標值f52(X-1.62951 Y-0.6141 Z-1.09809)花費規定的些微的時間例如直線地移動。同樣地,從座標值f52朝座標值f53移動,進一步,從座標值f53朝座標值f54,從座標值f54朝座標值f55‧‧‧‧移動。且,加工點T1當然也移動。
又,如第6圖顯示者,是顯示對於工具3的輪廓誤差未修正時(由理想的工具切削加工時)的工具3的座標值(NC程式的一部分)。
第7圖,是顯示在如第6圖所示的座標值f51~f55,加算了修正值之後的座標值f61~f65。藉由使對於工具3的輪廓誤差被修正,如第7圖顯示,使工具3依序通過‧‧‧座標值f61、座標值f62、座標值f63、座標值f64、座標值f65‧‧‧。
又,座標值f61、座標值f62‧‧‧,是具備運算式,由PC33作成,朝工件的加工機1的控制部13被送出。且,由控制部13進行運算式的計算。又,不使用PC33,也可以由控制部13,作成運算式的座標值f61、座標值f62‧‧‧。
將修正工具3的輪廓誤差時的保持完成工具3的座標值,以座標值f61為例進行說明。
座標值f61中的X座標的「-1.60657」,是修正前(未修正輪廓誤差)的保持完成工具3的X方向的座標值。座標值f61中的「-0.89101」,是加工點T1的法線向量V1的X方向成分。座標值f61中的「*」,是乘算的記號(×)。座標值f61中的參照符號「#564」,是如第4圖說明的工具3的加工點T1中的輪廓誤差(純量)。
座標值f61中的Y座標的「-0.42583」,是修正前(未修正輪廓誤差)的工具3的Y方向的座標值。座標值f61中的「0.11528」,是加工點T1的法線向量V1的Y方向成分。座標值f61中的參照符號「#564」,是如第4圖說明的工具3的加工點T1的輪廓誤差(純量)。
座標值f61中的Z座標的「-1.09809」,是修正前(未修正輪廓誤差)的工具3的Z方向的座標值。座標值f61中的「-0.4391」,是加工點T1中的法線向量V1的Z方向成分。座標值f61中的參照符號「#564」,是如第4圖說明的保持完成工具3的加工點T1的輪廓誤差(純量)。
又,座標值f61中的具有X方向成分及Y方向成分及Z方向的成分的法線向量V1的大小是成為「1」。即,成為「((-0.89101‧‧‧)2 +(0.11528‧‧‧)2 +( -0.4391‧‧‧)2 )1/2 =1」。
在此說明具備如第2圖顯示的工件5的加工機1、PC33、CAM39的工件的加工系統的動作。
在初期狀態下,工具3是被工具保持部9保持,工件5是被工件保持部7保持,使保持完成工具3的輪廓誤差被測量。
在上述初期狀態下,由CAM39作成加工路徑41,由CAD資料37及加工路徑41,藉由PC33作成依據工具3的輪廓誤差進行修正的加工路徑(修正完成加工路徑)43,將修正完成加工路徑43朝工件的加工機1的控制裝置(控制部13)送出。
工件的加工機1,是在控制部13的控制下,依據修正完成加工路徑43將移動部11控制,將保持完成工具3旋轉且對於保持完成工件5適宜移動,進行保持完成工件5的切削加工。
依據工件的加工機1的話,因為在NC程式中寫入了供算出工具3的位置(座標值)用的運算式,所以在每當將工具交換,或工具磨耗完了時等不需要重寫NC程式。
即,使用具體的數字的話,每當交換工具或工具磨耗完了時等,雖仍必須重寫NC程式,但是藉由作成運算式,就可以隨時應付該不時變化的工具輪廓誤差。
且因為藉由使用運算式,將測量到的工具輪廓值存儲在變數,在加工時進行計算(運算),所以一旦將NC程式作成之後就可以一直利用。且,因為可由控制部13進行NC程式的運算式的運算,所以不需要專用的裝置。
且依據工件的加工機1的話,NC程式,因為是為了抑制因為工具3的輪廓誤差而發生的工件5的加工誤差,而使用運算式,修正工具3的位置,所以可以將NC程式的結構簡化。
且依據工件的加工機1的話,因為使用CAD資料37及加工路徑41而求得工具3的加工點T1的法線向量V1,使用包含此法線向量V1及加工點T1的工具3的輪廓誤差的運算式來修正工具3的位置,所以可以將保持完成工具3的位置確實且精度佳地修正。
但是在上述說明中,朝工件的加工機1的NC程式的供給雖是藉由從外部的PC33發訊而進行,但是也可以將朝工件的加工機1的NC程式的供給透過記憶卡等的媒體而進行。
但是在第4圖顯示的態樣中,工具3的輪廓誤差是由1°單位求得。即,求得輪廓誤差的工具3的部位,是非連續,例如各隔1°。
在此,當加工點T1,成為在輪廓誤差未被求得的工具3的部位情況時,是使用加工點T1左右兩邊的彼此鄰接的2個部位的輪廓誤差,來算出加工點T1的輪廓誤差,並使用此算出的輪廓誤差,將工具3的位置修正。
說明詳細的話,工具3的輪廓誤差,是使用第4圖如以上說明,由對於工具3的旋轉中心軸C1的交叉角度為每隔1°的間隔求得。但是,實際上,工具3的加工點T1,是如第8圖所示,當然會發生例如成為63.9°的角度處的事態。
此情況,63.9°的角度(中途的角度)處的工具3的輪廓誤差,是使用:顯示鄰接於中途的角度的一方的角度63°處的工具3的輪廓誤差的參照符號「#563」、及顯示與中途的角度鄰接的另一方的角度64°處的工具3的輪廓誤差的參照符號「#564」而求得。此情況,對於一方的角度63°、另一方的角度64°,是偏重使用接近上述中途的角度63.9°的顯示角度64°處的輪廓誤差的參照符號「#564」。
說明具體例的話,求得中途的角度63.9°及一方的角度63°之間的第1差0.9°,求得另一方的角度64°及中途的角度63.9°之間的第2差0.1°。
且求得:第1差0.9°對於另一方的角度64°及一方的角度63°的差也就是1°的第1比率「0.9」、及第2差0.1°對於另一方的角度64°及一方的角度63°的差也就是1°的第2比率「0.1」。
中途的角度63.9°處的工具的輪廓誤差,是由:顯示第1比率0.9×另一方的角度64°的位置的工具的輪廓誤差的參照符號「#564」、及顯示第2比率0.1×一方的角度63°處的工具的輪廓誤差的參照符號「#563」的和而求得。
有關於修正中途的角度63.9°處的工具的輪廓誤差時的保持完成工具3的座標值,是以第9圖所示的座標值f81為例說明。
座標值f81中的「-1.60657」,是修正前(未修正輪廓誤差)的保持完成工具的X方向的座標值。座標值f81中的「-0.89101」,是座標值f81的加工點T1中的法線向量的X方向成分。
座標值f81中的參照符號「#563」,是如第4圖說明的保持完成工具3的加工點T1中的輪廓誤差(純量)。座標值f81中的「0.046」,是相當於上述的第2比率「0.1」的值(比率)。
座標值f81中的參照符號「#564」,是如第4圖說明的保持完成工具3的加工點T1中的輪廓誤差(純量)。座標值f81中的「0.954」,是相當於上述的第1比率「0.9」的值(比率)。
座標值f81中的「-0.42583」,是修正前(未修正輪廓誤差)的工具3的Y方向的座標值。座標值f81中的「0.11528」,是座標值f81的加工點T1中的法線向量的Y方向成分。
座標值f81中的參照符號「#563」,是如第4圖說明的工具3的加工點T1中的輪廓誤差(純量)。座標值f81中的「0.046」,是相當於上述的第2比率「0.1」的值(比率)。
座標值f81中的參照符號「#564」,是如第4圖說明的工具3的加工點T1中的輪廓誤差(純量)。座標值f81中的「0.954」,是相當於上述的第1比率「0.9」的值(比率)。
座標值f81中的「-1.09809」,是修正前(未修正輪廓誤差)的工具3的Z方向的座標值。座標值f81中的「-0.4391」,是座標值f81的加工點T1中的法線向量的Z方向成分。
座標值f81中的參照符號「#563」,是如第4圖說明的工具3的加工點T1中的輪廓誤差(純量)。座標值f81中的「0.046」,是相當於上述的第2比率「0.1」的值(比率)。
座標值f81中的參照符號「#564」,是如第4圖說明的工具3的加工點T1中的輪廓誤差(純量)。座標值f81中的「0.954」,是相當於上述的第1比率「0.9」的值(比率)。
座標值f82、座標值f83、座標值f84、座標值f85‧‧‧也是與座標值f81同樣地解釋。
藉由工具3的輪廓誤差(中途的角度處的工具3的輪廓誤差)被修正,如第9圖顯示,使工具3依序通過‧‧‧座標值f81、座標值f82、座標值f83、座標值f84、座標值f85‧‧‧,進行工件5的切削加工。
又,在第8圖、第9圖中,雖舉例具體的數字,但是將第8圖顯示的態樣一般化的話成為如第10圖(a)所示,將第9圖顯示的態樣一般化的話成為如第10圖(b)所示。
依據工件的加工機1的話,因為輪廓誤差所求得的保持完成工具3的部位是非連續的分離的狀態,所以加工點T1,會具有位於輪廓誤差不存在的工具3的部位的情況。即使這種情況時,因為也可使用加工點T1左右兩邊的彼此鄰接的2個部位的輪廓誤差,算出加工點T1的輪廓誤差,並使用此算出的輪廓誤差,將工具3的位置修正,所以可防止被加工面中的段差等的發生,可以獲得形狀精度更良好的工件5。
如上述,有關初期校正處理,是說明了藉由使用工具形狀測量裝置31運算工具3(保持完成工具)的輪廓誤差,並實施初期結構處理,將工具3的輪廓誤差抵消而修正的處理。
接著,除了上述初期校正處理以外,也說明藉由工具3的磨耗和撓曲而發生的輪廓誤差的修正處理。
本案發明,是除了藉由上述的工具形狀測量裝置31測量的輪廓誤差的修正以外,也測量由工具3進行工件5的加工開始之後至結束為止期間的工具3的磨耗量及撓曲量,在此考慮由磨耗量及撓曲量所起因而變化的工具3的形狀將NC程式修正,來實施更高精度的工件5的加工。
第11圖是顯示工具3的前端部的形狀的說明圖,如第11圖(a)所示,f0是顯示理想的工具形狀,f1,是顯示實際的工具形狀,f2,是顯示合成了撓曲量的工具形狀。如第11圖(b)所示,斜線部分R,是顯示由磨耗所產生的消失量。又,對於由磨耗所產生的消失量R及由撓曲所產生的變形(應變)量f2的算出,是如後詳細說明。
從第11圖可理解,工具3,是藉由持續加工而磨耗及撓曲而使形狀變化。在本案發明中,考慮由磨耗及撓曲所產生的形狀的變化,來修正NC程式。
收集磨耗量的資料用的處理,是使用工具3實際將工件5加工,測量此加工時的磨耗量並記憶在記憶體等。
在此處理中,在任意的加工處理中,取得:從工具3開始進行工件5的加工之後直到加工結束為止之間的加工路徑。且,在加工路徑中,算出:工具3與工件5接觸的場所、及未接觸的場所,將工具3及工件5接觸的場所中的移動距離設成「切削移動距離」。
在此,參照第12圖所示的流程圖,說明本發明的實施方式的工件的加工機的處理程序。
首先,在第12圖的步驟S101中,依據市售的CAM,生成:將工件5加工時的NC程式,即,工具3的加工路徑的3次元座標。在步驟S102中,進行前述的初期校正處理。
在步驟S103中,比較:NC程式、及加工機的CAD資料,算出工具3的各領域R1~R5的切削移動距離。
在此,參照第13圖、第14圖,說明「切削移動距離」的算出方法。例如,如第13圖所示,使用工具對於表面具有曲面形狀的工件5進行切削的情況時,如第14圖(a)所示,連續地實施:將工具3朝向第1方向(在此為箭頭Y1所示的方向)移動,進一步,朝與第1方向垂直交叉的方向滑動移動,再度朝箭頭Y1的方向移動並切削的處理。此時,可以對應加工形狀,例如第14圖(b)所示的加工點A、第14圖(c)所示的加工點B,對應加工點,辨認工具3的前端部與工件5接觸的部位。
即,從開始由工具3進行加工之後直到結束為止,工具3移動時,可以算出工具3的前端與工件5接觸並移動的距離,即切削移動距離。又,接觸、非接觸的判斷,例如,從工件5的表面開始,至由工具3進行加工的深度是0.5[μm]以上的情況,就判斷為工具3及工件5接觸。或是其他的判斷基準,當工具3及工件5的完成形狀的表面之間的距離是一定值以下的情況時,就判斷為工具3及工件5接觸。但是,不限定於這些。
在步驟S104中,預測各領域R1~R5的各切削移動距離的磨耗量M。具體而言,作成如第15圖所示的圖表,預測各領域R1~R5的對應進展率的磨耗量M。
在此,將切削移動距離及工具3的磨耗量的關係算出,將此關係作成對應表格並記憶在記憶體等。且,在實際加工時,估計工具3因為磨耗而形狀變化的量,修正NC程式。以下舉一例詳細說明。
第16圖,是顯示使用工具3將工件5加工的程序、及工具3的切削移動距離的說明圖。第16圖(a),是顯示工件5的形狀,在表面具有平面部及曲面部。第16圖(b),是顯示藉由工具3將工件5加工時的加工路徑的說明圖。如第16圖(b)所示,一邊將工具3朝第1方向(橫向方向)移動一邊將工件5加工,進一步,朝與第1方向垂直交叉的第2方向(進給方向)滑動,進一步,一邊反覆朝第1方向移動的動作,一邊將工件5加工。
第16圖(c),是顯示工具3的前端部的領域的圖,第16圖(d),是顯示NC程式的進展率[%]、及工具3的前端部的各部位的切削移動距離的關係的圖表。
如第16圖(c)所示,將工具3的軸方向定義為「0°」,將與工具3的軸垂直交叉的方向定義為「90°」,將0°附近定義為領域R1,將90°附近定義為領域R5,將工具3的前端部分割成5個領域R1、R2、R3、R4、R5。如此的話,可以從NC程式的資料,算出藉由各領域R1~R5將工件5切削的距離,例如,如第16圖(d)所示的圖表。又,在本實施方式中,雖說明區分成5個領域R1~R5的例,但是本發明不限定於此。
因此,實施工件5的加工時,可從NC程式的進展率,獲得各領域R1~R5的切削移動距離的資料。即,在本實施方式中,在實際將工件5加工時的工具3的加工路徑中,該工具3與工件5接觸時,算出切削移動距離。此時,參照CAD資料,界定工具3與工件5接觸的領域R1~R5,進一步,求得各領域R1~R5的切削距離。
第17圖,是使工具3依照NC程式作動,將工件5加工時,顯示切削移動距離及各領域R1~R5的磨耗量M的關係的圖表。
此切削移動距離及各領域R1~R5的磨耗量M的關係,是如以下求得。
首先,將磨耗量M的資料收集的處理,是使用工具3實際將工件5加工,測量此加工時的磨耗量並記憶在記憶體等。即,將加工前後的工具形狀的測量結果比較而獲得工具3的磨耗量。
且從工具3開始進行工件5的加工之後直到加工結束為止之間,取得加工路徑,在該加工路徑中,算出:工具3與工件5接觸的場所、及未接觸的場所,將工具3及工件5接觸的場所中的移動距離設成「切削移動距離」。
如此,可獲得切削移動距離及各領域R1~R5的磨耗量M的關係。
從第17圖的圖表可理解,以切削移動距離是成為一定作為條件的話,在工具3的前端的「0°」附近的領域R1中磨耗量小,在領域R2中磨耗量大,進一步,可理解磨耗量是愈朝向領域R5愈小。即,大體上說明的話,磨耗量的大小是成為R2>R3>R4>R5>R1。
且在控制部13中,依據如第16圖(d)所示的圖表、及如第17圖所示的圖表,可以從NC程式的進展率來估計各領域R1~R5的磨耗量。例如,可獲得第15圖所示的圖表。
且可以藉由參照第15圖所示的圖表,從NC程式的進展率,估計各領域R1~R5的磨耗量M。藉由使用此估計結果來修正工具3的形狀,就可進行高精度的加工。詳細的修正方法,是運算由前述的初期校正處理所產生的輪廓誤差,進一步,考慮上述的磨耗量M,將NC程式修正較佳。
具體而言,對於工具3的前端的0°至90°的91個的角度,各別運算磨耗量M,以NC程式的進展率是100%時的工具3的形狀(即考慮了磨耗量M的工具3的形狀)為基準的輪廓誤差設成參照符號「#600~690」並記憶在控制部13的記憶體。即,「#500~#590」是未考慮磨耗量M的輪廓誤差的參照符號,「#600~#690」是考慮了磨耗量M的輪廓誤差的參照符號。
且對應加工的進展率,分配參照符號#500~#590、及參照符號#600~#690並運算修正值,修正NC程式。
在步驟105中,預測各領域R1~R5的各切削移動距離的撓曲量L。具體而言,作成如第19圖所示的圖表,預測各領域R1~R5的對應進展率的撓曲量L。
在此,將切削移動距離及工具3的撓曲量L的關係算出,將此關係作成對應表格並記憶在記憶體等。且,在實際加工時,估計工具3因為撓曲而形狀變化的量,修正NC程式。以下,詳細說明。
在第16圖中,顯示使用工具3將工件5加工的程序、及工具3的切削移動距離。
如前述,可以從NC程式的資料,算出藉由各領域R1~R5將工件5切削的距離,例如,如第16圖(d)所示的圖表。又,在本實施方式中,雖說明區分成5個領域R1~R5的例,但是本發明不限定於此。
因此,實施工件5的加工時,可從NC程式的進展率,獲得各領域R1~R5的切削移動距離的資料。
第18圖,是顯示使工具3依照NC程式作動,將工件5加工時,切削移動距離及各領域R1~R5的撓曲量L的關係的圖表。
在此,此切削移動距離及各領域R1~R5的撓曲量L的關係,是如以下求得。
首先,收集工具3的磨耗量M的資料。在此,使用工具3實際將工件5加工,測量此加工時的磨耗量並記憶在記憶體等。即,將加工前後的工具形狀的測量結果比較而獲得工具3的磨耗量。
接著,測量加工後的工件形狀,與原正式加工的預定的形狀(CAD資料等)相比較而獲得切削殘留的量。即,切削殘留的原因,因為是磨耗及撓曲,所以切削殘留的量是比磨耗多的情況時,該多的部分是成為撓曲。
因此,可從切削殘留的量-磨耗量=撓曲量的式獲得撓曲量。
且從工具3開始進行工件5的加工之後直到加工結束為止之間,取得加工路徑,在該加工路徑中,算出:工具3與工件5接觸的場所、及未接觸的場所,將工具3及工件5接觸的場所中的移動距離設成「切削移動距離」。
如此,可獲得切削移動距離及各領域R1~R5的撓曲量L的關係。
從第18圖的圖表可理解,以切削移動距離是成為一定作為條件的話,在工具3的前端的「0°」附近的領域R1中撓曲量L小,在領域R2中撓曲量L大,進一步,可理解撓曲量L愈朝向領域R5愈小。即,大體上說明的話,撓曲量L的大小是成為R2>R3>R4>R5>R1。
且在控制部13中,依據如第16圖(d)所示的圖表、及如第18圖所示的圖表,可以從NC程式的進展率估計各領域R1~R5的撓曲量L。例如,可獲得第19圖所示的圖表。
且可以藉由參照第19圖所示的圖表,從NC程式的進展率,估計各領域R1~R5的撓曲量L。藉由使用此估計結果來修正工具3的形狀,就可進行高精度的加工。詳細的修正方法,是藉由前述的初期校正處理而運算輪廓誤差,進一步,考慮上述的撓曲量L,將NC程式修正較佳。
具體而言,對於工具3的前端的0°至90°為止的91個的角度,各別運算撓曲量L,以NC程式的進展率是100%時的工具3的形狀(即考慮了撓曲量L的工具3的形狀)為基準的輪廓誤差設成參照符號「#600~690」記憶在控制部13的記憶體。即,「#500~#590」是未考慮撓曲量L的輪廓誤差的參照符號,「#600~#690」是考慮了撓曲量L的輪廓誤差的參照符號。
且對應加工的進展率,分配參照符號#500~#590、及參照符號#600~#690並運算修正值,修正NC程式。
第20圖,是顯示0°~90°的各角度的參照符號#500及參照符號#600的分配率的說明圖。設定:從開始由工具3進行加工之後,直到結束為止的分配率。
從第20圖可理解,在加工開始之前,將由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#500~#590設成100%,將由考慮了磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#600~#690設成0%。其後,隨著進展率提高而增加參照符號#600~#690的比率,並使參照符號#500~#590的比率下降。在加工結束時,將由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#500~#590設成0%,將由考慮了磨耗M及撓曲量L的輪廓誤差所產生的參照符號#600~#690設成100%。
例如,舉例前述的第9圖的(f85)的X成分的[-1.68077+[-0.90974*[#565*0.227+#566*0.773]]]的例的話,將參照符號「#565」由規定的比率分配成「#565」及「#665」的數值。同樣地,將參照點「#566」由規定的比率分配成「#566」及「#666」的數值。
具體而言,將如第9圖(f85)所示的「#565」,設成「(0.667)*(#565)+(0.333)*(#665)」。此情況時,由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#565的比率是「0.667」,由考慮了磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#665的比率是「0.333」。
即,角度65°的情況時,如第21圖的式所示,運算X座標。又,Y座標、Z座標雖被省略記載,但是成為與X座標同樣的運算式。
藉由磨耗及撓曲而變化之後的實際的工具的形狀,是從加工結束直到測量實施為止無法知道。但是,藉由參照如前述的第15圖及第19圖所示的圖表,就可以估計磨耗量及撓曲量。
在步驟S106中,在NC程式,附加加上了磨耗預測及撓曲預測的向量運算式,進一步,將加工結束時點中的工具3的各角度(0°~90°)中的總磨耗量保存在專用的檔案等。
在步驟S107中,將NC程式讀入加工機1的控制部13。
在步驟S109中,依據在步驟S102的處理所採取的工具形狀,將NC程式的修正量算出,將參照符號(#500~#590)設定在控制部13的記憶體等。
在步驟S110中,依據工具3的磨耗量及撓曲量的資料,將NC程式的修正量算出,將參照符號(#600~#690)設定在控制部13的記憶體等。其後,在步驟S111中,開始由工具3加工。
如此的話,依據考慮了工具3的磨耗量M及撓曲量L的輪廓誤差將NC程式修正使工具3作動,就可以實施工件5的加工。
如此,在工件的加工機中,預先測量隨著工件5的加工進行而變動的工具3的磨耗量及撓曲量,估計對應切削移動距離的磨耗量及撓曲量。且,工具3開始加工工件5之後,隨著加工進展,變化:由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號「#500~#590」、及由考慮了磨耗量M及撓曲量L的輪廓誤差所產生的參照符號「#600~#690」的比率,將NC程式修正。因此,成為可對應工具3的輪廓誤差、及工具3的磨耗量適切地修正NC程式,成為可將工件5高精度地加工。
又,參照符號#500~#590、及參照符號#600~#690的比率,其中一例雖舉例說明了如第20圖所示的比率的例,但是本發明不限定於此,可對應工件5、工具3的形狀、狀況適宜地變更。
但是上述記載內容,也可以成為工件的加工方法。
即,此工件的加工方法,是具有:將工件保持的工件保持階段、及保持將由前述工件保持階段被保持的保持完成工件加工的工具用的工具保持階段,並利用由前述工具保持階段被保持的保持完成工具將前述保持完成工件加工。因此,具有將前述保持完成工具對於前述保持完成工件移動的移動階段,該移動階段,是成為依據NC程式,將前述保持完成工具對於前述保持完成工件移動的階段。因此,此NC程式,也可以成為算出前述保持完成工具的位置用的運算式被寫入的工件的加工方法。
在上述工件的加工方法中,前述NC程式,為了抑制由前述保持完成工具的輪廓誤差所產生的前述保持完成工件的加工誤差的發生,也可以使用前述運算式,修正前述保持完成工具的位置。
且在上述工件的加工方法中,已求得前述輪廓誤差的前述保持完成工具的部位,因為是在非連續的分離的狀態,所以前述加工點,是具有位於前述輪廓誤差未被求得的前述保持完成工具的部位的情況。在此情況下,也可以使用前述加工點左右兩邊彼此鄰接的2個部位的輪廓誤差,將前述加工點的輪廓誤差算出,使用此算出的輪廓誤差,就可進行前述保持完成工具的位置修正。
且在上述工件的加工方法中,也可以依據前述NC程式,從前述保持完成工具開始前述工件的加工之後直到加工結束為止期間,運算對於前述工件移動的路徑也就是加工路徑,在前述保持完成工具中的各部位,算出將前述工件切削的距離也就是切削移動距離,且,前述保持完成工具的加工結束時,對應前述各部位的磨耗量及撓曲量,取得前述各部位的切削移動距離及磨耗量及撓曲量的關係,除了前述保持完成工具的輪廓誤差以外,依據前述切削移動距離及磨耗量及撓曲量的關係,修正前述NC程式。
且在上述工件的加工方法中,也可以設定:由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量、及由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率,前述加工路徑,是隨著從前述加工的開始朝向加工的結束,使由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率下降,且,增加由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率。
且也可以將上述記載內容,作成程式(NC程式;工件的加工程式)。
即,一種程式,是為了將由工件保持部被保持的保持完成工件,利用由工具保持部被保持的保持完成工具進行加工,而在工件的加工機實行使將前述保持完成工具對於前述保持完成工件移動的移動程序用的程式,前述程式,也可以是作為算出前述保持完成工具的位置用的運算式被寫入的程式。
在上述程式中,也可以為了抑制由前述保持完成工具的輪廓誤差所產生的前述保持完成工件的加工誤差的發生,使用前述運算式,修正前述保持完成工具的位置。
且在上述程式中,已求得前述輪廓誤差的前述保持完成工具的部位,是成為非連續的分離的狀態,前述加工點,是位於前述輪廓誤差未被求得的前述保持完成工具的部位的情況時,也可以使用前述加工點左右兩邊彼此鄰接的2個部位的輪廓誤差,將前述加工點的輪廓誤差算出,使用此算出的輪廓誤差,進行前述保持完成工具的位置修正。
且在上述程式中,依據NC程式,從前述保持完成工具開始前述工件的加工之後直到加工結束為止期間,運算對於前述工件移動的路徑也就是加工路徑,在前述保持完成工具中的各部位,算出將前述工件切削的距離也就是切削移動距離,且,前述保持完成工具的加工結束時,對應前述各部位的磨耗量及撓曲量,取得前述各部位的切削移動距離及磨耗量及撓曲量的關係,除了前述保持完成工具的輪廓誤差以外,也可以依據前述切削移動距離及磨耗量及撓曲量的關係,修正前述NC程式。
且在上述程式中,也可以設定:由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量、及由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率,前述加工路徑,是隨著從前述加工的開始朝向加工的結束,使由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率下降,且,增加由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率。
接著,參照第22圖及第23圖所示的流程圖,說明本發明的工件的加工機的處理程序的其他的實施方式。在此其他的實施方式中,說明從樣品加工至正式加工至為止的加工機的處理程序。
第22圖及第23圖,是本發明的工件的加工機的處理程序的其他的實施方式的流程圖。
首先,在第22圖的步驟S201中,藉由CAM39,生成將工件5樣品加工時的NC程式,即,工具3的加工路徑的3次元座標。在步驟S202中,為了前述的初期校正處理,藉由工具形狀測量裝置31,使保持完成工具3的形狀被測量。
接著,在步驟203中,藉由PC33,在樣品加工用的NC程式,附加考慮了工具3的形狀的向量運算式。即,例如,第21圖所示,修正工具3的座標用的運算式,是被寫入NC程式。
如此,因為在NC程式,寫入了供修正工具3的位置(座標值)用的運算式,所以可以不需要每當將工具交換,或在工具磨耗完了時等,就得重寫NC程式。
即,使用具體的數字的話,每當交換工具或工具磨耗完了時等,雖仍必須重寫NC程式,但是藉由作成運算式,就可以隨時應付該不時變化的工具輪廓誤差。
且因為是藉由使用此運算式,將測量到的工具輪廓值存儲在變數,在加工時進行計算(運算),所以一旦將NC程式作成的話之後就可以一直利用。且,因為可由控制部13進行NC程式的運算式的運算,所以不需要專用的裝置。
且依據工件的加工機1的話,NC程式,因為是為了抑制因為工具3的輪廓誤差而發生的工件5的加工誤差,而使用運算式,修正工具3的位置,所以可以將NC程式的結構簡化。
且依據工件的加工機1的話,因為使用CAD資料37及加工路徑41而求得工具3的加工點T1的法線向量V1,使用包含此法線向量V1及加工點T1的工具3的輪廓誤差的運算式來修正工具3的位置,所以可以將保持完成工具3的位置確實且精度佳地修正。
接著,在步驟204中,藉由控制部13,讀入樣品加工用的NC程式,在步驟205中,藉由PC33,依據在上述步驟202中所採取的工具形狀,算出NC程式中的工具形狀修正量,作為運算變數被設定在控制部13的記憶體等。
接著,在步驟206中,藉由加工機1,進行作為工件的工件5的樣品加工,在步驟207中,在上述樣品加工的第1過程結束的時點,中斷加工,在步驟208中,藉由工具形狀測量裝置31,測量加工機1上的工具3的形狀,在步驟209中,測量工件5的形狀。
接著,在步驟210中,藉由PC33,比較NC程式、及加工機1的CAD資料,算出工具3的各領域R1~R5的切削移動距離。即,算出各工具角度的切削移動距離。
在此,參照第13圖、第14圖,說明「切削移動距離」的算出方法。例如,如第13圖所示,使用工具對於表面具有曲面形狀的工件5進行切削的情況時,如第14圖(a)所示,連續地實施:將工具3朝向第1方向(在此為箭頭Y1所示的方向)移動,進一步,朝與第1方向垂直交叉的方向滑動移動,再度朝箭頭Y1的方向移動並切削的處理。此時,可以對應加工形狀,例如第14圖(b)所示的加工點A、第14圖(c)所示的加工點B,對應加工點,辨認工具3的前端部與工件5接觸的部位。
即,從開始由工具3進行加工之後直到結束為止,工具3移動時,可以算出工具3的前端與工件5接觸並移動的距離,即切削移動距離。又,接觸、非接觸的判斷,例如,從工件5的表面開始,至由工具3進行加工的深度是0.5[μm]以上的情況,就判斷為工具3及工件5接觸。或是其他的判斷基準,當工具3及工件5的完成形狀的表面之間的距離是一定值以下的情況時,就判斷為工具3及工件5接觸。但是,不限定於這些。
接著,在步驟S211中,藉由PC33,從在上述步驟208中藉由工具形狀測量裝置31所測量到的工具3的形狀,算出各領域R1~R5的各切削移動距離的磨耗量M。即,算出各工具角度的各切削移動距離的磨耗量M。
具體而言,作成如第15圖所示的圖表,算出各領域R1~R5的對應進展率的磨耗量M,記憶於PC33。
在此,將切削移動距離及工具3的磨耗量的關係算出,將此關係作為對應表格記憶在PC33的記憶體等。且,在實際加工時,估計工具3因為磨耗而形狀變化的量,修正NC程式。以下舉一例詳細說明。
第16圖,是顯示使用工具3將工件5加工的程序、及工具3的切削移動距離的說明圖。第16圖(a),是顯示工件5的形狀,在表面具有平面部及曲面部。第16圖(b),是顯示藉由工具3將工件5加工時的加工路徑的說明圖。如第16圖(b)所示,一邊將工具3朝第1方向(橫向方向)移動一邊將工件5加工,進一步,朝與第1方向垂直交叉的第2方向(進給方向)滑動,進一步,一邊反覆朝第1方向移動的動作,一邊將工件5加工。
第16圖(c),是顯示工具3的前端部的領域的圖,第16圖(d),是顯示NC程式的進展率[%]、及工具3的前端部的各部位的切削移動距離的關係的圖表。
如第16圖(c)所示,將工具3的軸方向定義為「0°」,將與工具3的軸垂直交叉的方向定義為「90°」,將0°附近定義為領域R1,將90°附近定義為領域R5,將工具3的前端部分割成5個領域R1、R2、R3、R4、R5。如此的話,可以從NC程式的資料,算出藉由各領域R1~R5將工件5切削的距離,例如,如第16圖(d)所示的圖表。又,在本實施方式中,雖說明區分成5個領域R1~R5的例,但是本發明不限定於此。
因此,實施工件5的加工時,可從NC程式的進展率,獲得各領域R1~R5的切削移動距離的資料。即,在本實施方式中,在實際將工件5加工時的工具3的加工路徑中,該工具3與工件5接觸時,算出切削移動距離。此時,參照CAD資料,界定工具3與工件5接觸的領域R1~R5,進一步,求得各領域R1~R5的切削距離。
第17圖,是使工具3依照NC程式作動,將工件5加工時,顯示切削移動距離及各領域R1~R5的磨耗量M的關係的圖表。
此切削移動距離及各領域R1~R5的磨耗量M的關係,是如以下求得。
首先,將磨耗量M的資料收集的處理,是使用工具3實際將工件5加工,測量此加工時的磨耗量並記憶在記憶體等。即,將加工前後的工具形狀的測量結果比較而獲得工具3的磨耗量。
且從工具3開始進行工件5的加工之後直到加工結束為止之間,取得加工路徑,在該加工路徑中,算出:工具3與工件5接觸的場所、及未接觸的場所,將工具3及工件5接觸的場所中的移動距離設成「切削移動距離」。
如此,可獲得切削移動距離及各領域R1~R5的磨耗量M的關係。
從第17圖的圖表可理解,以切削移動距離是成為一定作為條件的話,在工具3的前端的「0°」附近的領域R1中磨耗量小,在領域R2中磨耗量大,進一步,可理解磨耗量是愈朝向領域R5愈小。即,大體上說明的話,磨耗量的大小是成為R2>R3>R4>R5>R1。
且在PC33中,依據如第16圖(d)所示的圖表、及如第17圖所示的圖表,可以從NC程式的進展率來估計各領域R1~R5的磨耗量。例如,可獲得第15圖所示的圖表。
且藉由參照第15圖所示的圖表,在PC33中,可以從NC程式的進展率,算出各領域R1~R5的磨耗量M。藉由使用此算出結果,修正工具3的形狀,就可進行高精度的加工。詳細的修正方法,是運算由前述的初期校正處理所產生的輪廓誤差,進一步,考慮上述的磨耗量M,將NC程式修正較佳。
具體而言,對於工具3的前端的0°至90°的91個的角度,各別運算磨耗量M,以NC程式的進展率是100%時的工具3的形狀(即考慮了磨耗量M的工具3的形狀)為基準的輪廓誤差設成參照符號「#600~690」並記憶在控制部13的記憶體。即,「#500~#590」是未考慮磨耗量M的輪廓誤差的參照符號,「#600~#690」是考慮了磨耗量M的輪廓誤差的參照符號。
且藉由PC33,對應加工的進展率,分配參照符號#500~#590、及參照符號#600~#690並運算修正值,使NC程式被修正。
接著,在步驟S212中,藉由PC33,算出各領域R1~R5的各切削移動距離的撓曲量L。即,算出各工具角度的撓曲量L及切削移動距離的對應關係。
具體而言,作成如第19圖所示的圖表,使各領域R1~R5的對應進展率的撓曲量L被算出,並被記憶於PC33。
在此,將切削移動距離及工具3的撓曲量L的關係算出,將此關係作成對應表格並記憶在記憶體等。且,在實際加工時,估計工具3因為撓曲而形狀變化的量,修正NC程式。以下,詳細說明。
在第16圖中,顯示使用工具3將工件5加工的程序、及工具3的切削移動距離。
如前述,可以從NC程式的資料,算出藉由各領域R1~R5將工件5切削的距離,例如,如第16圖(d)所示的圖表。又,在本實施方式中,雖說明區分成5個領域R1~R5的例,但是本發明不限定於此。
因此,實施工件5的加工時,可從NC程式的進展率,獲得各領域R1~R5的切削移動距離的資料。
第18圖,是顯示使工具3依照NC程式作動,將工件5加工時,切削移動距離及各領域R1~R5的撓曲量L的關係的圖表。
在此,此切削移動距離及各領域R1~R5的撓曲量L的關係,是如以下求得。
首先,收集工具3的磨耗量M的資料。在此,使用工具3實際將工件5加工,測量此加工時的磨耗量並記憶在記憶體等。即,將加工前後的工具形狀的測量結果比較而獲得工具3的磨耗量。
接著,測量加工後的工件形狀,與原正式加工的預定的形狀(CAD資料等)相比較而獲得切削殘留的量。即,切削殘留的原因,因為是磨耗及撓曲,所以切削殘留的量是比磨耗多的情況時,該多的部分是成為撓曲。
因此,可從切削殘留的量-磨耗量=撓曲量的式獲得撓曲量。
且從工具3開始進行工件5的加工之後直到加工結束為止之間,取得加工路徑,在該加工路徑中,算出:工具3與工件5接觸的場所、及未接觸的場所,將工具3及工件5接觸的場所中的移動距離設成「切削移動距離」。
如此,可獲得切削移動距離及各領域R1~R5的撓曲量L的關係。
從第18圖的圖表可理解,以切削移動距離是成為一定作為條件的話,在工具3的前端的「0°」附近的領域R1中撓曲量L小,在領域R2中撓曲量L大,進一步,可理解撓曲量L愈朝向領域R5愈小。即,大體上說明的話,撓曲量L的大小是成為R2>R3>R4>R5>R1。
且在控制部13中,依據如第16圖(d)所示的圖表、及如第18圖所示的圖表,可以從NC程式的進展率估計各領域R1~R5的撓曲量L。例如,可獲得第19圖所示的圖表。
且可以藉由參照第19圖所示的圖表,從NC程式的進展率,估計各領域R1~R5的撓曲量L。藉由使用此估計結果來修正工具3的形狀,就可進行高精度的加工。詳細的修正方法,是藉由前述的初期校正處理而運算輪廓誤差,進一步,考慮上述的撓曲量L,將NC程式修正較佳。
具體而言,對於工具3的前端的0°至90°為止的91個的角度,各別運算撓曲量L,以NC程式的進展率是100%時的工具3的形狀(即考慮了撓曲量L的工具3的形狀)為基準的輪廓誤差設成參照符號「#600~690」記憶在控制部13的記憶體。即,「#500~#590」是未考慮撓曲量L的輪廓誤差的參照符號,「#600~#690」是考慮了撓曲量L的輪廓誤差的參照符號。
且對應加工的進展率,分配參照符號#500~#590、及參照符號#600~#690並運算修正值,修正NC程式。
第20圖,是顯示0°~90°的各角度的參照符號#500及參照符號#600的分配率的說明圖。設定:從開始由工具3進行加工之後,直到結束為止的分配率。
從第20圖可理解,在加工開始之前,將由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#500~#590設成100%,將由考慮了磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#600~#690設成0%。其後,隨著進展率提高而增加參照符號#600~#690的比率,並使參照符號#500~#590的比率下降。在加工結束時,將由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#500~#590設成0%,將由考慮了磨耗M及撓曲量L的輪廓誤差所產生的參照符號#600~#690設成100%。
例如,舉例前述的第9圖的(f85)的X成分的[-1.68077+[-0.90974*[#565*0.227+#566*0.773]]]的例的話,將參照符號「#565」由規定的比率分配成「#565」及「#665」的數值。同樣地,將參照點「#566」由規定的比率分配成「#566」及「#666」的數值。
具體而言,將如第9圖(f85)所示的「#565」,設成「(0.667)*(#565)+(0.333)*(#665)」。此情況時,由未考慮磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#565的比率是「0.667」,由考慮了磨耗量M及撓曲量L的輪廓誤差所產生的參照符號#665的比率是「0.333」。
即,角度65°的情況時,如第21圖的式所示,運算X座標。又,Y座標、Z座標雖被省略記載,但是成為與X座標同樣的運算式。
藉由磨耗及撓曲而變化之後的實際的工具的形狀,是從加工結束直到測量實施為止無法知道。但是,藉由參照如前述的第15圖及第19圖所示的圖表,就可以算出磨耗量及撓曲量。
且在步驟S213中,藉由PC33,記憶:加工結束時點的工具3的各角度(0°~90°)的撓曲量L及摩擦量M及切削移動距離的對應關係。
且總磨耗量及總撓曲量,是藉由PC33,被讀入加工機1的控制部13。又,也可以將加工結束時點的工具3的各角度(0°~90°)的總磨耗量及總撓曲量保存在專用的檔案等。
接著,在步驟214中,藉由PC33,判別全部的樣品加工過程是否結束,全部的樣品加工過程若未結束的情況時,直到全部的樣品加工過程結束為止,反覆上述步驟206~213。
且在上述步驟214中被判別為全部的樣品加工過程已結束的情況時,在第23圖的步驟215中,藉由PC33,作成全部的樣品加工過程結束的時點的各工具角度的磨耗量及切削移動距離的對應圖表資料,並記憶於PC33的記憶體等,在步驟216中,藉由PC33,作成全部的樣品加工過程結束的時點中的各工具角度的撓曲量及切削移動距離的對應圖表資料,並記憶於PC33的記憶體等。
接著,在步驟S217中,藉由CAM39,生成將工件5正式加工時的路徑也就是NC程式,在步驟S218中,藉由PC33,藉由工具形狀測量裝置31,測量正式加工中的保持完成工具3的形狀。
且在步驟S219中,藉由PC33,比較正式加工用的NC程式及CAD資料,算出各工具角度的切削移動距離,在步驟220中,藉由PC33,預測各工具角度的磨耗量,在步驟221中,藉由PC33,預測各工具角度的撓曲量。
接著,在步驟S222中,藉由PC33,在正式加工用的NC程式中,附加考慮了工具形狀、磨耗量、撓曲量的向量運算式,在步驟223中,藉由PC33,朝加工機1的控制部13讀入正式加工用的NC程式,在步驟224中,藉由PC33,算出由工具形狀、磨耗量、撓曲量所產生的修正量,並設定在加工機1的控制部13中的運算式的運算變數。又,上述步驟217~224的處理內容,是與樣品加工的情況同樣。
且在步驟S225中,依據由上述正式加工用的NC程式所產生的控制部13的控制,開始藉由加工機1進行工件的正式加工,在步驟226中,判別是否具有連續的其他的正式加工,若有連續的其他的正式加工的情況時,返回至步驟217,無連續的其他的正式加工的情況時結束處理。
且在工具的撓曲中,除了工具本身的撓曲以外,也考慮工具的軸承的姿勢變化。
第24圖,是顯示工具的軸承的姿勢變化的樣子的概略圖。
如第24圖所示,將安裝了工具3的軸承3a藉由空氣靜壓保持於工具保持構件3b內的情況時,在該工具保持構件3b內會有引起軸承3a姿勢變化的情況。
在第24圖中,軸承3a的正常的狀態是由虛線顯示,引起軸承3a的姿勢變化的狀態是由實線顯示。
如此,在工具保持構件3b內引起軸承3a姿勢變化的情況時,也可以適用前述的本案發明的如第12圖或是第22、23圖所示的處理程序,實施修正了輪廓誤差的工件5的加工。 [產業上的可利用性]
依據本發明的話,對於對應工具的輪廓誤差將工具的位置修正且將工件加工之工件的加工方法及工件的加工機,可以在每當將工具交換,或工具是磨耗或撓曲時等,不需要重寫NC程式。
1:加工機 3:工具 3a:軸承 3b:工具保持構件 5:工件 7:工件保持部 9:工具保持部 11:移動部 13:控制部 15:基端部 17:前端部 19:床台 21:載置台 23:機身 25:主軸支撐體 27:主軸框體 29:自旋軸 31:工具形狀測量裝置 33,33a:PC 35:記憶體 37:CAD資料 39:CAM 41:加工路徑 43:修正完成加工路徑
[第1圖]顯示本發明的實施方式的工件的加工機中的工件及工具的圖。 [第2圖]顯示本發明的實施方式的工件的加工機及此系統的圖。 [第3圖]說明本發明的實施方式的工件的加工機中的工具的輪廓誤差的圖。 [第4圖]說明本發明的實施方式的工件的加工機中的工具的輪廓誤差的圖。 [第5圖]顯示本發明的實施方式的工件的加工機中的工具對於保持完成工件移動的移動路徑的圖。 [第6圖]顯示本發明的實施方式的工件的加工機的程式中,未被修正位置之工具的位置座標的圖。 [第7圖]顯示本發明的實施方式的工件的加工機的程式中,已被修正位置之工具的位置座標的圖。 [第8圖]顯示已被修正的工具的部位的圖。 [第9圖]顯示第8圖所示的部位中的已被修正位置之工具的位置座標的圖。 [第10圖]將第8圖、第9圖的態樣一般化的圖。 [第11圖]說明本發明的實施方式的工件的加工機中的工具的磨耗和撓曲的圖。 [第12圖]顯示本發明的實施方式的工件的加工機的處理程序的流程圖。 [第13圖]顯示使用工具進行加工的工件的表面形狀的圖。 [第14圖]顯示工件及工具的接觸的圖,(a)是顯示加工方向,(b)是顯示將凸形狀的表面加工的樣子,(c)是顯示將凹形狀的表面加工的樣子。 [第15圖]顯示NC程式的進展率及各領域的磨耗量的關係的圖表。 [第16圖]顯示工具前端部的領域的切削距離的圖,(a)是顯示工件的表面的圖,(b)是顯示工具的加工方向的圖,(c)是顯示工具前端的各領域的圖,(d)是顯示NC程式進展率及切削移動距離的關係的圖表。 [第17圖]顯示切削移動距離及磨耗量的關係的圖表。 [第18圖]顯示切削移動距離及撓曲量的關係的圖表。 [第19圖]顯示NC程式的進展率及各領域的撓曲量的關係的圖表。 [第20圖]顯示未考慮磨耗量及撓曲量的輪廓誤差及考慮了磨耗量及撓曲量的輪廓誤差之間的比率的圖。 [第21圖]顯示本發明的實施方式的工件的加工機的程式中,用於修正工具的座標的式的圖。 [第22圖]本發明的工件的加工機的處理程序的其他的實施方式的流程圖。 [第23圖]本發明的工件的加工機的處理程序的其他的實施方式的流程圖。 [第24圖]顯示工具的軸承的姿勢變化的樣子的概略圖。
1:加工機
3:工具
5:工件
7:工件保持部
9:工具保持部
11:移動部
13:控制部
15:基端部
17:前端部
35:記憶體
C1:中心軸
C2:中心
T1:加工點
V1:法線向量

Claims (3)

  1. 一種加工方法,是藉由工具將工件加工成所期的形狀的加工方法,將供修正前述工具的位置用的運算式寫入至NC程式中,依據前述NC程式來運算前述工具移動的路徑也就是加工路徑,從前述加工路徑算出前述工具的各部位將前述工件切削的切削移動距離,從前述切削移動距離將前述工具的各部位的磨耗量及撓曲量算出,除了前述工具的輪廓誤差以外也藉由磨耗量及撓曲量將前述NC程式修正,依據該修正後的前述NC程式進行加工,設定由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量、及由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率,隨著前述加工路徑從前述加工的開始朝向加工的結束,使由未考慮前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率下降,且,使由考慮了前述磨耗量及撓曲量的輪廓誤差所產生的修正量的比率增加。
  2. 一種加工方法,是藉由工具將工件加工成所期的形狀的加工方法,將供修正前述工具的位置用的運算式寫入至NC程式中, 依據前述NC程式來運算前述工具移動的路徑也就是加工路徑,從前述加工路徑算出前述工具的各部位將前述工件切削的切削移動距離,從前述切削移動距離將前述工具的各部位的磨耗量及撓曲量算出,除了前述工具的輪廓誤差以外也藉由磨耗量及撓曲量將前述NC程式修正,依據該修正後的前述NC程式進行加工,前述磨耗量是從加工前後測量的工具形狀的變化而求得,前述撓曲量是先從加工後測量的工件形狀、及作為加工目標的形狀的差求得切削殘留量,再從切削殘留量將磨耗量減去者。
  3. 一種NC程式的生成方法,是藉由工具將工件加工成所期的形狀用的NC程式的生成方法,具有:在前述NC程式中寫入修正前述工具的位置用的運算式的步驟、及在前述運算式中寫入供朝加工點的法線方向修正前述工具的輪廓誤差用的法線單位向量及變數步驟、及依據前述NC程式來運算前述工具移動的路徑也就是加工路徑的步驟、及從前述加工路徑算出前述工具的各部位將前述工件切 削的距離也就是切削移動距離的步驟、及從前述切削移動距離算出前述工具的各部位的磨耗量及撓曲量的步驟、及除了前述工具的輪廓誤差以外也藉由前述磨耗量及撓曲量來修正前述NC程式的步驟。
TW109113642A 2019-04-26 2020-04-23 工件的加工方法及其nc程式的生成方法 TWI738305B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019085764 2019-04-26
JP2019-085764 2019-04-26
JP2020055747A JP7194707B2 (ja) 2019-04-26 2020-03-26 ワークの加工方法およびワークの加工機
JP2020-055747 2020-03-26

Publications (2)

Publication Number Publication Date
TW202040297A TW202040297A (zh) 2020-11-01
TWI738305B true TWI738305B (zh) 2021-09-01

Family

ID=73044622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113642A TWI738305B (zh) 2019-04-26 2020-04-23 工件的加工方法及其nc程式的生成方法

Country Status (4)

Country Link
JP (1) JP7194707B2 (zh)
KR (1) KR102616092B1 (zh)
CN (1) CN113227920B (zh)
TW (1) TWI738305B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022087704A (ja) * 2020-12-01 2022-06-13 株式会社日立製作所 計算機、パラメータ推定処理方法、及びパラメータ推定処理プログラム
TWI817487B (zh) * 2021-05-13 2023-10-01 日商芝浦機械股份有限公司 檢測工具的形狀的裝置及檢測工具的形狀的方法
JP2023067034A (ja) * 2021-10-29 2023-05-16 株式会社小松製作所 制御装置、産業機械および制御方法
WO2023223571A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 工具経路補正装置、工作機械システム、工具経路の補正方法およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833617A (en) * 1987-08-14 1989-05-23 General Electric Company Solid modeling based adaptive feedrate control for NC machining
US5930142A (en) * 1995-06-26 1999-07-27 Siemens Aktiengesellschaft Numerical control system with hierarchical interpolation functions
TW446599B (en) * 1999-10-08 2001-07-21 Chiou Huan Jung A method for reversely tracing the dimensions of the workpiece by means of a cutting center machine
CN1320979C (zh) * 2000-09-29 2007-06-13 三菱电机株式会社 高精度加工方法
EP2191923A1 (en) * 2008-02-29 2010-06-02 Murata Machinery, Ltd. Machine tool with chip processing function
TW201900887A (zh) * 2017-05-16 2019-01-01 日商新東工業股份有限公司 表面處理加工方法及表面處理加工裝置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB830783A (en) * 1955-10-25 1960-03-23 Svenska Aeroplan Ab Method for forming sheet metal blanks
SU791510A1 (ru) * 1978-03-14 1980-12-30 Выборгский Филиал Специального Конструкторского Бюро "Индикатор" Устройство дл автоматической компенсации погрешностей обработки на токарных станках
JPS5973260A (ja) * 1982-10-15 1984-04-25 Osaka Kiko Co Ltd 刃具寸法自動補正方法及び装置
JPS63233403A (ja) * 1987-03-20 1988-09-29 Mitsubishi Heavy Ind Ltd 数値制御装置
JP3067147B2 (ja) * 1990-02-20 2000-07-17 日産自動車株式会社 切削寸法補正方法
KR100277320B1 (ko) * 1992-06-03 2001-01-15 가나이 쓰도무 온라인 롤 연삭 장치를 구비한 압연기와 압연 방법 및 회전 숫돌
JPH07205022A (ja) * 1993-12-30 1995-08-08 Hitachi Constr Mach Co Ltd 力制御ロボットの砥石摩耗補正方法
JPH07237088A (ja) * 1994-02-25 1995-09-12 Mitsubishi Electric Corp 加工装置および加工方法
JPH07266194A (ja) * 1994-03-30 1995-10-17 Hitachi Seiki Co Ltd 工具刃先位置計測補正装置
JP3099286B2 (ja) * 1995-08-07 2000-10-16 株式会社牧野フライス製作所 Nc工作機械の制御方法および装置
JPH0962328A (ja) * 1995-08-29 1997-03-07 Fujitsu Ltd Ncデータ作成方法
JP3666947B2 (ja) * 1995-09-19 2005-06-29 キヤノン株式会社 Ncデータ作成装置及びその補正データ作成方法
JPH09150348A (ja) * 1995-11-28 1997-06-10 Fanuc Ltd Nc工作機械における切削誤差補正方法
JP3901290B2 (ja) * 1997-05-26 2007-04-04 シチズン時計株式会社 内径加工寸法の補正方法及びこの補正方法を実施可能なnc旋盤
JP3749970B2 (ja) * 2001-11-15 2006-03-01 株式会社池貝 ワークの曲面加工システム及び曲面加工方法
JP4778675B2 (ja) 2003-11-18 2011-09-21 東芝機械株式会社 形状加工方法、数値制御装置、および工作機械
JP2006334732A (ja) * 2005-06-02 2006-12-14 Konica Minolta Opto Inc 切削工具、切削加工方法、切削加工装置、光学素子成形用金型、光学素子及び光学素子成形用金型の切削加工方法
JP4727634B2 (ja) * 2007-09-07 2011-07-20 本田技研工業株式会社 加工方法
CN101507977B (zh) * 2009-03-20 2012-06-06 燕山大学 板带轧机板形检测设备系统误差综合补偿方法
JP5309288B2 (ja) 2009-03-30 2013-10-09 広島県 加工誤差予測のためのコンピュータプログラム、加工誤差予測装置およびその予測結果に基づいて工具経路を修正する装置
CN201427265Y (zh) * 2009-07-10 2010-03-24 北京力准机械制造有限公司 一种刀具补偿系统
JP2011237885A (ja) 2010-05-06 2011-11-24 Fanuc Ltd テーブル形式データでの制御における刃先r補正または工具径補正の機能を備えた数値制御装置
JP5804367B2 (ja) * 2011-09-01 2015-11-04 広島県 加工誤差予測方法、加工誤差予測装置、工具経路修正方法及び工具経路修正装置
JP6012712B2 (ja) * 2012-03-30 2016-10-25 株式会社牧野フライス製作所 工具経路生成方法、工具経路生成装置および工具経路生成プログラム
KR20140085927A (ko) * 2012-12-28 2014-07-08 현대자동차주식회사 공작기계용 툴의 가공 오차 보정 시스템 및 방법
CN105522484B (zh) * 2016-02-24 2017-09-15 苏州瑞格思创光电科技有限公司 一种玻璃雕铣机的控制加工方法
JP2017177262A (ja) * 2016-03-29 2017-10-05 ダイハツ工業株式会社 シェービングカッタ研削盤
DE102016006128A1 (de) * 2016-05-18 2017-11-23 Institut für innovative Technologien, Technologietransfer, Ausbildung und berufsbegleitende Weiterbildung (ITW) e. V. Vorrichtung zur Positionsbestimmung von Werkzeugen beim Tiefbohren
JP6727041B2 (ja) * 2016-06-28 2020-07-22 株式会社小松製作所 工作機械
DE102017206931A1 (de) * 2017-04-25 2018-10-25 Dr. Johannes Heidenhain Gmbh Verfahren zur Kompensation der Fräserabdrängung
JP6574915B1 (ja) * 2018-05-15 2019-09-11 東芝機械株式会社 被加工物の加工方法および被加工物の加工機
JP2022024542A (ja) * 2020-07-28 2022-02-09 芝浦機械株式会社 加工機、加工システム及び被加工物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833617A (en) * 1987-08-14 1989-05-23 General Electric Company Solid modeling based adaptive feedrate control for NC machining
US5930142A (en) * 1995-06-26 1999-07-27 Siemens Aktiengesellschaft Numerical control system with hierarchical interpolation functions
TW446599B (en) * 1999-10-08 2001-07-21 Chiou Huan Jung A method for reversely tracing the dimensions of the workpiece by means of a cutting center machine
CN1320979C (zh) * 2000-09-29 2007-06-13 三菱电机株式会社 高精度加工方法
EP2191923A1 (en) * 2008-02-29 2010-06-02 Murata Machinery, Ltd. Machine tool with chip processing function
TW201900887A (zh) * 2017-05-16 2019-01-01 日商新東工業股份有限公司 表面處理加工方法及表面處理加工裝置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CNC 車削幾何適應控制",陳議雄、范光照、王海;技術學刊第九卷第一期,國立臺灣科技大學技術及職業教育研究中心,民國83年 *

Also Published As

Publication number Publication date
CN113227920B (zh) 2023-12-01
TW202040297A (zh) 2020-11-01
KR102616092B1 (ko) 2023-12-21
JP7194707B2 (ja) 2022-12-22
KR20210073567A (ko) 2021-06-18
CN113227920A (zh) 2021-08-06
JP2020184321A (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
TWI738305B (zh) 工件的加工方法及其nc程式的生成方法
TWI717733B (zh) 被加工物的加工方法及被加工物的加工機
US11938580B2 (en) Workpiece machining method and workpiece machining device
WO2020218278A1 (ja) ワークの加工方法およびワークの加工機
CN109154805B (zh) 校正切削刃的轨迹的方法和记录介质
JP2009136937A (ja) 加工方法、加工プログラム、加工装置
JP2002346899A (ja) 曲面加工法及び加工装置
CN113710418B (zh) 工件加工方法以及工件加工装置
JP7152433B2 (ja) ワークの加工方法及びワークの加工装置
WO2023181476A1 (ja) 被加工物の加工方法および被加工物の加工システム
TWI842166B (zh) 被加工物之加工方法及被加工物之加工系統
TW201350252A (zh) 附帶機上測量功能之加工裝置
CN118131685A (zh) 被加工物的加工方法及被加工物的加工机
JP2015055954A (ja) 研削加工機及びその方法