TWI728526B - 奈米孔流動槽及其製造方法 - Google Patents

奈米孔流動槽及其製造方法 Download PDF

Info

Publication number
TWI728526B
TWI728526B TW108138553A TW108138553A TWI728526B TW I728526 B TWI728526 B TW I728526B TW 108138553 A TW108138553 A TW 108138553A TW 108138553 A TW108138553 A TW 108138553A TW I728526 B TWI728526 B TW I728526B
Authority
TW
Taiwan
Prior art keywords
substrate
opening
film layer
multilayer stack
layer
Prior art date
Application number
TW108138553A
Other languages
English (en)
Other versions
TW202026234A (zh
Inventor
喬瑟夫R 強生
洛傑 庫恩
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202026234A publication Critical patent/TW202026234A/zh
Application granted granted Critical
Publication of TWI728526B publication Critical patent/TWI728526B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/002Holes characterised by their shape, in either longitudinal or sectional plane
    • B81B1/004Through-holes, i.e. extending from one face to the other face of the wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

此處提供奈米孔流動槽及其製造方法。在一個實施例中,一種形成流動槽之方法包括:在將多層堆疊傳送至例如玻璃基板的第二基板之前,於例如單晶矽基板的第一基板上形成多層堆疊。此處,多層堆疊的特徵為膜層,具有穿過其形成的第一開口,其中膜層佈置於第一基板上,且材料層佈置於膜層上。方法進一步包括圖案化第二基板,以在其中形成第二開口,且將第二基板的圖案化的表面結合至多層堆疊的表面。方法進一步包括薄化第一基板且薄化第二基板。此處,薄化第二基板至第二開口穿過其佈置。方法進一步包括移除薄化的第一基板及材料層之至少部分,以暴露膜層的相對表面。

Description

奈米孔流動槽及其製造方法
此處的實施例關於與固態奈米孔感測器一起使用的流動槽及其製造方法。
固態奈米孔感測器已出現作為低成本、高行動性且快速處理的生物聚合物,例如,DNA或RNA定序技術。生物聚合物鏈的固態奈米孔定序包含將生物聚合物鏈易位穿過具有介於約0.1 nm及約100 nm之間的直徑的奈米規模尺寸的開口,亦即,奈米孔。通常,奈米孔穿過膜層佈置,膜層將兩個導電流體貯藏器分開。待定序的生物聚合物鏈(例如,帶負電特徵的DNA或RNA鏈)引入兩個導電流體貯藏器之一者,且接著藉由在其之間提供電位而吸引穿過奈米孔。隨著生物聚合物鏈行進穿過奈米孔,其不同的單體單元,例如DNA或RNA鏈的蛋白質基遮蓋奈米孔的不同百分比,因此改變流動穿過的離子電流。所得到的電流訊號模式可用以決定生物聚合物鏈中的單體單元的序列,例如在DNA或RNA鏈中蛋白質的序列。
常常,膜層及穿過其佈置的奈米孔在單晶矽基板上製成,其全部一起形成奈米孔流動槽。單晶矽基板通常與在半導體裝置的製造中使用的基板相同或類似。使用與在半導體裝置的製造中使用的彼等相同或類似的基板,促進使用商業上可取得的半導體裝置製造裝備及方法製作奈米孔流動槽。
通常,膜層沉積在矽基板的前側表面上,且奈米孔使用光微影圖案化及蝕刻處理序列穿過膜層形成,但沒有穿過矽基板。靠近矽基板佈置的膜層的表面接著藉由在矽基板的背側表面中蝕刻開口而暴露。通常,在矽基板的背側表面中的開口藉由將基板的背側表面穿過佈置於其上的圖案化遮罩而暴露至例如KOH的濕式或水性矽蝕刻劑而形成。常見矽基板將需要暴露至矽蝕刻劑9及13小時之間,以異向性地蝕刻穿過矽基板的厚度。此長的蝕刻時間非所欲地增加循環時間,且因此增加形成奈米孔流動槽的成本。再者,在習知奈米孔流動槽中,於高頻核苷酸偵測期間用以支撐膜層的單晶基板中積累的電荷非所欲地於電流訊號中增加背景雜訊。此非所欲的背景雜訊降低奈米孔感測器或流動槽的偵測解析度。
因此,本領域中需要形成在固態奈米孔感測器中使用的奈米孔流動槽之改良的方法,及以此形成的改良的奈米孔流動槽。
本揭露案的實施例提供可在固態奈米孔感測器中使用的裝置,例如奈米孔流動槽,及其製造方法。
在一個實施例中,一種形成流動槽之方法包括:在將多層堆疊傳送至例如玻璃基板的第二基板之前,於例如單晶矽基板的第一基板上形成多層堆疊。此處,多層堆疊的特徵為膜層,具有穿過其形成的第一開口,其中膜層佈置於第一基板上,且材料層佈置於膜層上。方法進一步包括圖案化第二基板,以在其中形成第二開口,且將第二基板的圖案化的表面結合至多層堆疊的表面。方法進一步包括薄化第一基板。方法進一步包括移除薄化的第一基板及第一及第二材料層之至少部分,以暴露膜層的相對表面。在一些實施例中,第二開口穿過第二基板而佈置。在其他實施例中,方法包括薄化第二基板至穿過其中佈置的第二開口。此處,可在圖案化的表面結合至多層堆疊的表面之前或之後薄化第二基板。
在另一實施例中,一種形成流動槽之方法包括:在第一基板上形成多層堆疊,多層堆疊包含插入第一材料層及第二材料層之間的膜層,其中膜層的特徵為穿過其形成的第一開口。方法進一步包括圖案化第二基板的表面,以在其中形成第二開口;將第二基板的圖案化的表面結合至多層堆疊的第一表面;及從多層堆疊移除第一基板,以暴露多層堆疊的相對於第一表面的第二表面。方法進一步包括圖案化第三基板的表面,以在其中形成第三開口;將第三基板的圖案化的表面結合至多層堆疊的第二表面;及薄化第二基板及第三基板至分別穿過其中佈置的第二開口及第三開口。方法進一步包括移除第一及第二材料層之至少部分,以暴露膜層的相對表面。
在另一實施例中,一種奈米孔流動槽之特徵為:玻璃基板,具有穿過其形成的開口;及膜層,佈置於玻璃基板上。膜層的特徵為穿過其佈置的單一奈米孔。單一奈米孔定位於膜層的一部分中,而跨過穿過玻璃基板形成的開口。
本揭露案的實施例提供可在固態奈米孔感測器中使用的例如奈米孔流動槽的裝置,以及其製造方法。此處所述的方法大致包括在將圖案化多層堆疊傳送至母基板之前,於犧牲單晶矽基板上形成圖案化多層堆疊。圖案化多層堆疊通常特徵為膜層,具有穿過其佈置的奈米規模開口。母基板通常以介電玻璃材料形成。因此,形成於其中的奈米孔流動槽實質上不含單晶矽材料。有益地,母基板的玻璃材料消除或實質上降低與包含單晶矽基板的固態奈米孔流動槽相關聯的背景雜訊等級。
第1圖根據一個實施例,為可用以定序生物聚合物鏈的奈米孔感測器100的示意性剖面視圖。此處,奈米孔感測器100特徵為插入第一貯藏器102及第二貯藏器103之間的流動槽101。此處,第一及第二貯藏器102、103之各者含有導電流體及與電壓源106連通的相應的電極104、105。電壓源106用以產生從第一貯藏器102穿過單一奈米規模尺寸的開口(此處為奈米孔108)至第二貯藏器103的離子電流。奈米孔108穿過流動槽101的介電膜層109佈置。
此處,離子電流吸引帶負電特徵的DNA或RNA生物聚合物鏈(例如,生物聚合物鏈107之一者)從第一貯藏器102穿過奈米孔108且至第二貯藏器103中。隨著生物聚合物鏈107吸引穿過奈米孔108,其單體單元依序堵塞奈米孔108而造成穿過的離子電流的改變。通常,離子電流的改變對應於同時經過奈米孔108的單體單元的特徵,例如大小或電荷。此處,離子電流及離子電流中的改變使用例如皮安培計110的離子電流感測器量測。
第2圖為圖表200,圖示隨著例如DNA鏈或RNA鏈的生物聚合物鏈或其蛋白質經過時,穿過例如第1圖中所述的奈米孔108之奈米規模尺寸的開口的離子電流。此處,圖表200顯示基準值201,其中並無生物聚合物鏈堵塞開口且離子電流自由地流動穿過。隨著生物聚合物鏈吸引至奈米孔中,其單體單元堵塞奈米孔之部分,造成離子電流改變成第一值202。隨著接續的單體單元堵塞奈米孔,亦即,隨著生物聚合物鏈進一步吸引穿過,取決於藉由生物聚合物鏈堵塞的奈米孔的剖面積的百分比,離子電流改變成相對應的值203-206。相對應於生物聚合物鏈的單體單元的接續值202-206可因此用以決定生物聚合物鏈的單體單元序列,例如,DNA或RNA基本序列。
第3圖根據一個實施例,為闡述形成奈米孔流動槽之方法300的流程圖。第4A圖-第4I圖圖示第3圖中闡述的方法300之各種態樣。
在動作301處,方法300包括在第4A圖中所顯示的第一基板401上形成多層堆疊。多層堆疊的特徵為插入第一材料層402及第二材料層405之間的膜層403。膜層403具有穿過其形成的第一開口404,例如,單一奈米孔。通常,第一基板401以單晶矽形成,且具有厚度T(1)。厚度T(1)經選擇以促進使用與在半導體裝置製造設施中用於處理矽基板相同或類似的裝備及方法來處置及處理第一基板401。在一些實施例中,第一基板401具有介於約450 µm及約800 µm之間的厚度T(1),例如介於約600 µm及約800 µm之間,例如介於約700 µm及約800 µm之間。
此處,例如在第4A圖-第4B圖中所顯示,形成多層堆疊包括沉積第一材料層402至第一基板401上、在第一材料層402上方沉積膜層403、及圖案化膜層403以穿過其形成第一開口404。在一些實施例中,例如在第4C圖中所顯示,形成多層堆疊進一步包括在膜層403上方沉積第二材料層405。在一些實施例中,多層堆疊不包括第一材料層402。在彼等實施例中,多層堆疊包括沉積至第一基板401上的膜層403,及沉積至膜層403上的第二材料層405。
通常,第一材料層402以介電材料形成,例如氧化矽(Six Oy ),例如SiO2 。此處,第一材料層402沉積至大於約10 nm的厚度T(2),例如介於約10 nm及約500 nm之間,介於約10 nm及400 nm之間,介於約10 nm及約300 nm之間,例如介於約10 nm及約200 nm之間。在其他實施例中,第一材料層402沉積至大於約1 µm的厚度T(2),例如大於約2 µm,或大於約3 µm,舉例而言介於約4 µm及約6 µm之間。
膜層403以介電材料形成,而不同於用以形成第一及第二材料層402、405的介電材料。舉例而言,在一些實施例中,膜層403以氮化矽或氮氧化矽材料形成,例如Six Ny 或SiOx Ny 。通常,膜層403沉積至約500 nm或更少的厚度T(3),例如約400 nm或更少,約300 nm或更少,約200 nm或更少,約100 nm或更少,或約50 nm或更少,舉例而言,介於約0.1 nm及約100 nm之間,或介於約1 nm及約100 nm之間。
形成第一開口404以延伸穿過膜層403,且具有小於約100 nm的直徑D,例如小於約50 nm,或介於約0.1 nm及約100 nm之間,舉例而言,介於約1 nm及約100 nm之間,或介於約0.1 nm及約50 nm之間。此處,使用適合的光微影及材料蝕刻圖案化方法之一者或組合形成第一開口404。通常,適合的微影方法包括奈米印壓微影、定向自組裝、光微影、ArF雷射浸沒微影、深度UV微影或其組合。
此處,沉積在膜層403上方的第二材料層405以介電材料形成,而可與用以形成第一材料層402的介電材料相同或不同。在一些實施例中,第二材料層405沉積至介於約10 nm之間的厚度T(4),例如介於約10 nm及約500 nm之間,介於約10 nm及400 nm之間,介於約10 nm及約300 nm之間,舉例而言,介於約10 nm及約200 nm之間。此處,多層堆疊的層可使用任何適合的沉積方法形成。舉例而言,在一些實施例中,多層堆疊的層使用化學氣相沉積(CVD)或物理氣相沉積(PVD)方法之一者或組合而沉積。
在動作302處,方法300包括圖案化第二基板407的表面,以在其中形成開口,此處第二開口409顯示於第4D圖-第4E圖中。通常,第二基板407以介電材料形成,具有經選擇的厚度T(5)以促進使用在半導體裝置製造設施中用於處理矽基板相同或類似的裝備處置及處理第二基板407。舉例而言,在一些實施例中,第二基板407具有介於約450 µm及約800 µm之間的厚度T(5),例如介於約600 µm及約800 µm之間,舉例而言,介於約700 µm及約800 µm之間。在其他實施例中,第二基板407具有約400 µm或更少的厚度,例如約300 µm或更少,舉例而言,約300 µm。
此處,第二基板407例如以非結晶的非晶質固體形成,亦即,玻璃,例如透明的二氧化矽基玻璃材料,舉例而言,熔融二氧化矽,亦即,非晶質石英材料,或硼矽酸鹽玻璃材料。在一些實施例中,第二基板407具有沉積在其背側表面上的不透明材料層408,舉例而言,非晶質矽層。第二基板407的背側表面相對於圖案化的表面,此處為在其中形成第二開口409的前側表面。當使用時,不透明材料層408通常具有約20 nm或更大的厚度T(6),舉例而言,約100 nm或更大。根據一些實施例,不透明材料層408藉由習知半導體裝置製造裝備的光學感測器,促進其他光學透明基板的偵測。
此處,形成第二開口409以從此處為圖案化的表面的第二基板407的表面延伸至介於約100 µm或更大且小於第二基板407的厚度T(5)之間的深度H。舉例而言,在一些實施例中,第二開口409的深度H從第二基板407的前側表面延伸介於約100 µm及約600 µm之間,或介於約200 µm及約400 µm之間。在一些其他實施例中,例如在第二基板407的厚度小於約400 µm的實施例中,第二開口409延伸穿過其厚度而形成。
此處,形成第二開口409以具有介於約1 µm及約20 µm之間的寬度W(1),例如介於約1 µm及約15 µm之間,介於約5 µm及約15 µm之間,或介於約5 µm及約10μm之間。第二開口409可使用光微影及材料蝕刻圖案化方法之任何適合的組合形成。
在動作403處,例如第4F圖-第4G圖中顯示,方法300包括將第二基板407的圖案化的表面結合至佈置於第一基板401上的多層堆疊的暴露的表面。通常,第二基板407的圖案化的表面及多層堆疊的暴露的表面使用適合的直接結合方法結合在一起。直接結合說明在原子等級下接合兩個基板表面的方法,例如透過基板之間的化學鍵,而無須使用中間層,例如插入其之間的導電黏結層、焊料等等。在一個實例中,適合的直接結合方法包括電漿激發待結合的基板401、407的表面之一者或兩者,接觸待結合的表面,施加壓縮結合力至接觸的基板以形成複合基板,且退火複合基板。
此處,將第二基板407的圖案化的表面結合至多層堆疊的暴露的表面包括將第二開口409與第一開口404對齊。當第一及第二基板401、407適當地對齊時,在獲得的奈米孔流動槽中的第一開口404及第二開口409將流體連通,例如,具有穿過其形成的第一開口404的膜層403的一部分將跨過形成於第二基板407中的第二開口409。
在動作304處,方法300包括薄化第一基板401。薄化第一基板401包括可用以達成所欲厚度T(7)(顯示於第4H圖中)的研磨、精研、化學機械平坦化(CMP)、蝕刻或切割方法之任何一者或組合。在薄化第一基板401包含切割方法的實施例中,在其上形成多層堆疊之前,第一基板401的表面通常以氫或氦離子之一者或組合植入至約100 nm的深度。植入處理意圖將損傷層(例如,微氣泡)引入第一基板401中,以促進沿著損傷的層切割第一基板401。通常,第一基板401薄化至小於約100 µm的厚度T(7),例如小於約50 µm,小於約10 µm,或舉例而言小於約1 µm。在一些實施例中,第一基板401薄化至小於約500 nm的厚度T(7),例如小於約200 nm,舉例而言,約100 nm或更小。
在動作305處,方法300包括使用研磨、精研、CMP或蝕刻方法之任何一者或組合薄化第二基板407,以達成所欲厚度T(8)(顯示於第4I圖中)。此處,薄化第二基板407直到第二開口409穿過其佈置,亦即,厚度T(8)與在動作302處形成於圖案化的表面中的第二開口409的深度H相同或更小。舉例而言,在一些實施例中,薄化的第二基板407的厚度T(8)小於約700 µm,例如小於約600 µm,小於約500 µm,舉例而言,小於約400 µm,或介於約100 µm及約700 µm之間,例如介於約200 µm及約500 µm之間。在一些實施例中,在圖案化的表面結合至多層堆疊的表面之前薄化第二基板407。
在動作306處,方法300包括移除薄化的第一基板401及第一及第二材料層402、405之至少部分,以暴露跨過第二開口409的膜層403的相對表面,例如在第4J圖或第4K圖中所顯示。在一些實施例中,移除薄化的第一基板401及第一及第二材料層402、405之至少部分包括將其暴露至濕式或水性蝕刻劑,例如KOH或KOH及HF的組合。
在一些實施例中,例如第4J圖中所顯示,從佈置於第二基板407的遠端的膜層403的表面移除所有或實質上所有的第一材料層402。在其他實施例中,例如第4K圖中所顯示,在第一材料層402中形成第三開口412,且穿過其暴露膜層403的表面。可使用光微影及材料蝕刻圖案化方法之任何適合的組合形成第三開口412,例如電漿輔助蝕刻或濕式蝕刻(水溶液)處理。
第4J圖為根據第3圖中闡述之方法所形成的流動槽410的示意性剖面視圖,而可用以取代第1圖中所述之流動槽101。此處,流動槽410包括第二基板407,具有厚度T(8);及佈置於第二基板407上的第二材料層405,具有厚度T(4)。具有寬度W(1)的第二開口409穿過第二基板407佈置,且進一步穿過第二材料層405。具有厚度T(3)及穿過其中佈置的第一開口404的膜層403佈置於第二材料層405上且跨過第二開口409。此處,第一開口404與第二開口409流體連通。
第4K圖為根據第3圖中闡述之方法所形成的奈米孔流動槽411的示意性剖面視圖,而可用以取代第1圖中所述的流動槽101。此處,奈米孔流動槽411與第4J圖中所述的流動槽410實質上相同,且進一步包括佈置於膜層403上的第一材料層402,第一材料層402具有開口,此處為穿過其佈置的第三開口412。此處,第一材料層402的厚度T(9)介於約1 µm及約5 µm之間。在一些實施例中,第三開口412的寬度與第二開口409的寬度W(1)相同。在其他實施例中,第三開口412的寬度小於或大於第二開口409的寬度W(1)。此處,第三開口412與第二開口409流體連通,且第一開口404佈置於其之間。
第5圖根據另一實施例,為闡述形成流動槽之方法的流程圖。第6A圖-第6C圖圖示除了第4A圖-第4H圖中圖示的態樣之外,第5圖中闡述之方法的各種態樣。
此處,方法500的動作501-502與第3圖中闡述、圖示於第4A圖-第4E圖及以上所述之方法300的動作301-302相同。
方法500的動作503包括將第二基板407的圖案化的表面結合至多層堆疊的暴露的表面,此處為第一表面,例如在第3圖中闡述的方法300之動作303所述,且圖示於第4F圖中。
在動作504處,方法500包括從多層堆疊移除第一基板401以暴露多層堆疊的第二表面。此處,多層堆疊的第二表面相對於第一表面,且在從其移除第一基板401之前靠近第一基板401佈置。從多層堆疊移除第一基板401可包括在第3圖中闡述的方法300之動作304中所述的研磨、精研、化學機械平坦化(CMP)、蝕刻或切割方法之任何一者或組合。
在動作505處,方法500包括圖案化第三基板的表面,例如第6A圖中所顯示的第三基板607,以在其中形成開口,此處為第三開口609。在一些實施例中,第三基板607以用於形成第二基板407相同的介電材料形成,且具有相同或實質上相同的厚度T(5)。在一些實施例中,第三基板607使用方法300的動作302中所述的圖案化第二基板407的方法來圖案化。在一些實施例中,形成第三開口609以具有與第二基板407中的第二開口409相同的寬度W(1)及深度H。在一些實施例中,第三基板607包括沉積於其背側表面上的不透明材料層608。在一些實施例中,不透明材料層608以與佈置於第二基板407上的不透明材料層408相同的材料形成,且具有相同的厚度T(6)。在其他實施例中,第三基板607以與第二基板407的介電材料不同的介電材料形成,使用與方法300的動作302中闡述之方法不同的方法圖案化,及/或形成開口以具有與第二開口409的寬度W(1)及深度H不同的寬度及深度。
在動作506處,方法500包括使用適合的直接結合方法,將第三基板607的圖案化的表面結合至多層堆疊的第二表面。適合的直接結合方法在第3圖中闡述的方法300的動作303處說明。此處,將第三基板607的圖案化的表面結合至多層堆疊的第二表面包括將第三基板607中形成的第三開口609與膜層403中形成的第一開口404對齊,例如第6A圖-第6B圖中所顯示。
在動作507處,方法500包括薄化第二及第三基板407、607至厚度T(8),其中第二及第三開口409、609分別穿過其佈置。通常,薄化第二及第三基板407、607包括研磨、精研、CMP或蝕刻方法之任何一者或組合,以達成第6C圖中所顯示的所欲厚度T(8),而分別對第二及第三基板407、607的每一者而言可為相同的或不同的。
在動作508處,方法500包括移除第一及第二材料層402、405之至少部分,以暴露膜層403的相對表面,例如第6D圖中所顯示。在一些實施例中,移除第一及第二材料層402、405之至少部分包含將其暴露至蝕刻劑,例如KOH或KOH及HF之組合。
第6D圖為使用第5圖中闡述之方法形成的流動槽610的示意性剖面視圖,而可用以取代第1圖中所述之流動槽101。此處,流動槽610與第4J圖中所述之流動槽410實質上相同,且進一步包括佈置於膜層403上的具有厚度T(4)的第一材料層402,及佈置於第一材料層402上的第三基板607。此處,第三基板607具有與第二基板407的厚度T(8)相同的厚度。在其他實施例中,第二及第三基板407、607的厚度為不同的。第三開口609穿過第三基板607佈置,且進一步穿過第一材料層402。第三開口609的寬度與第二開口409的寬度W(1)相同。在其他實施例中,第三開口609的寬度小於或大於第二開口409的寬度W(1)。在此處的實施例中,第三開口609與第一開口404及第二開口409流體連通。
儘管以上涉及本揭露案的實施例,可涉及本揭露案的其他及進一步實施例而不會悖離其基本範疇,且其範疇藉由以下申請專利範圍來決定。
100:奈米孔感測器 101:流動槽 102:第一貯藏器 103:第二貯藏器 104:電極 105:電極 106:電壓源 107:生物聚合物鏈 108:奈米孔 109:介電膜層 110:皮安培計 200:圖表 201:基準值 202:第一值 203:值 204:值 205:值 206:值 300:方法 301-306:動作 401:第一基板 402:第一材料層 403:膜層 404:第一開口 405:第二材料層 407:第二基板 408:不透明材料層 409:第二開口 410:流動槽 411:奈米孔流動槽 412:第三開口 500:方法 501-508:動作 607:第三基板 608:不透明材料層 609:第三開口 610:流動槽
為了詳細理解以上本揭露案所記載的特徵所用方式,以上簡要概述的本揭露案的更具體說明可藉由參考實施例而獲得,一些實施例圖示於隨附圖式中。然而,應注意隨附圖式僅圖示此揭露案的常見實施例,且因此不應考量為其範疇之限制,因為本揭露案認可其他均等效果的實施例。
第1圖根據一個實施例,為奈米孔感測器的示意性剖面視圖。
第2圖為圖表,圖示隨著生物聚合物鏈吸引穿過,而穿過諸如第1圖中所述的奈米孔的奈米規模尺寸的開口的離子電流。
第3圖根據一個實施例,為闡述形成奈米孔流動槽之方法的流程圖。
第4A圖-第4I圖圖示第3圖中闡述之方法的各種態樣。
第4J圖為根據第3圖中闡述的方法之一個實施例所形成的奈米孔流動槽之示意性剖面視圖。
第4K圖為根據第3圖中闡述的方法之另一實施例所形成的奈米孔流動槽之示意性剖面視圖。
第5圖根據另一實施例,為闡述形成奈米孔流動槽之方法的流程圖。
第6A圖-第6C圖圖示第5圖中闡述之方法的各種態樣。
第6D圖為根據第5圖中闡述的方法之一個實施例所形成的奈米孔流動槽之示意性剖面視圖。
為了促進理解,已盡可能地使用相同的元件符號代表圖式中共用的相同元件。應考量一個態樣的元件及特徵可有益地併入其他態樣中而無須進一步記載。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
100:奈米孔感測器
101:流動槽
102:第一貯藏器
103:第二貯藏器
104:電極
105:電極
106:電壓源
107:生物聚合物鏈
108:奈米孔
109:介電膜層
110:皮安培計

Claims (20)

  1. 一種形成一流動槽之方法,包含以下步驟:在一第一基板上形成一多層堆疊,該多層堆疊包含佈置於該第一基板上的一膜層及佈置於該膜層上的一材料層,該膜層具有穿過其形成的一第一開口;圖案化一第二基板的一表面,以在其中形成一第二開口;將該第二基板的圖案化的該表面結合至該多層堆疊的一表面;薄化該第一基板;及移除薄化的該第一基板及該材料層的至少部分,以暴露該膜層的相對表面。
  2. 如請求項1所述之方法,其中該第一基板以單晶矽形成。
  3. 如請求項2所述之方法,其中該第二基板以一玻璃材料形成。
  4. 如請求項3所述之方法,其中該玻璃材料包含熔融二氧化矽、硼矽酸鹽或一其組合。
  5. 如請求項3所述之方法,其中該膜層以一介電材料形成。
  6. 如請求項5所述之方法,其中該第一開口具有約100nm或更小的一直徑。
  7. 如請求項6所述之方法,其中該膜層具有約100nm或更小的一厚度。
  8. 如請求項7所述之方法,其中將該第二基板的圖案化的該表面結合至該多層堆疊的該表面之步驟包括以下步驟:將該第一開口與該第二開口對齊。
  9. 一種形成一流動槽之方法,包含以下步驟:在一第一基板上形成一多層堆疊,該多層堆疊包含插入一第一材料層及一第二材料層之間的一膜層,該膜層具有穿過其形成的一第一開口;圖案化一第二基板的一表面,以在其中形成一第二開口;將該第二基板的圖案化的該表面結合至該多層堆疊的一第一表面;從該多層堆疊移除該第一基板,以暴露該多層堆疊相對於該第一表面的一第二表面;圖案化一第三基板的一表面,以在其中形成一第三開口;將該第三基板的圖案化的該表面結合至該多層堆疊的該第二表面;薄化該第二基板及該第三基板至分別穿過其中佈置的該第二開口及該第三開口;及移除該等第一及第二材料層之至少部分,以暴露該 膜層的相對表面。
  10. 如請求項9所述之方法,其中該第一基板以單晶矽形成。
  11. 如請求項10所述之方法,其中該第二基板以一玻璃材料形成。
  12. 如請求項11所述之方法,其中該玻璃材料包含熔融二氧化矽、硼矽酸鹽或一其組合。
  13. 如請求項11所述之方法,其中該膜層以一介電材料形成。
  14. 如請求項13所述之方法,其中該第一開口具有約100nm或更小的一直徑。
  15. 如請求項14所述之方法,其中該膜層具有約100nm或更小的一厚度。
  16. 如請求項15所述之方法,其中將該第二基板的圖案化的該表面結合至該多層堆疊的該表面之步驟包括以下步驟:將該第一開口與該第二開口對齊。
  17. 一種流動槽裝置,包含:一玻璃基板;及一多層堆疊,佈置於該玻璃基板上,其中該多層堆疊包含一膜層,該膜層插入一第一介電材料層與一第二介電材料層之間且與該第一介電材料層與該第二介電材料層接觸, 該膜層具有穿過其佈置的一單一奈米孔,該單一奈米孔定位於該膜層的一部分中,而跨過穿過該玻璃基板形成的一開口,以及其中穿過該第一介電材料層與該第二介電材料層的每一者形成的開口暴露該膜層的相對表面。
  18. 如請求項17所述之流動槽裝置,其中該玻璃基板以一熔融二氧化矽、一硼矽酸鹽或一其組合而形成。
  19. 如請求項18所述之流動槽裝置,其中該單一奈米孔具有約100nm或更小的一直徑。
  20. 如請求項19所述之流動槽裝置,其中該膜層的一厚度小於約100nm。
TW108138553A 2018-10-29 2019-10-25 奈米孔流動槽及其製造方法 TWI728526B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862752045P 2018-10-29 2018-10-29
US62/752,045 2018-10-29
US16/573,540 US11249067B2 (en) 2018-10-29 2019-09-17 Nanopore flow cells and methods of fabrication
US16/573,540 2019-09-17

Publications (2)

Publication Number Publication Date
TW202026234A TW202026234A (zh) 2020-07-16
TWI728526B true TWI728526B (zh) 2021-05-21

Family

ID=70326687

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110117685A TWI772022B (zh) 2018-10-29 2019-10-25 奈米孔流動槽及其製造方法
TW108138553A TWI728526B (zh) 2018-10-29 2019-10-25 奈米孔流動槽及其製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110117685A TWI772022B (zh) 2018-10-29 2019-10-25 奈米孔流動槽及其製造方法

Country Status (7)

Country Link
US (2) US11249067B2 (zh)
EP (1) EP3874263A4 (zh)
JP (1) JP7087200B2 (zh)
KR (1) KR102562628B1 (zh)
CN (1) CN112912726A (zh)
TW (2) TWI772022B (zh)
WO (1) WO2020091924A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020146A1 (en) * 2005-06-29 2007-01-25 Young James E Nanopore structure and method using an insulating substrate

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777505B2 (en) * 2006-05-05 2010-08-17 University Of Utah Research Foundation Nanopore platforms for ion channel recordings and single molecule detection and analysis
WO2008030582A2 (en) 2006-09-07 2008-03-13 University Of Utah Research Foundation Nanopore based ion-selective electrodes
US7902091B2 (en) 2008-08-13 2011-03-08 Varian Semiconductor Equipment Associates, Inc. Cleaving of substrates
WO2010020912A1 (en) 2008-08-20 2010-02-25 Nxp B.V. Apparatus and method for molecule detection using nanopores
KR20100121303A (ko) 2009-05-08 2010-11-17 나노칩스 (주) 나노게이트 탐침을 내재한 나노세공 제조방법
WO2012044857A2 (en) * 2010-09-30 2012-04-05 California Institute Of Technology Devices and methods for sequencing nucleic acids
ES2565634T7 (es) 2011-07-20 2017-08-02 The Regents Of The University Of California Dispositivo de poro dual
EP3385992A1 (en) 2011-07-27 2018-10-10 The Board of Trustees of the University of Illinois Nanopore sensors for biomolecular characterization
AU2012339711B2 (en) 2011-11-14 2014-10-16 Brigham Young University Two- chamber dual-pore device
US10029915B2 (en) 2012-04-04 2018-07-24 International Business Machines Corporation Functionally switchable self-assembled coating compound for controlling translocation of molecule through nanopores
WO2014105246A2 (en) * 2012-10-05 2014-07-03 Massachusetts Institute Of Technology Nanofluidic sorting system for gene synthesis and pcr reaction products
US20140099726A1 (en) 2012-10-10 2014-04-10 Two Pore Guys, Inc. Device for characterizing polymers
US9194860B2 (en) 2012-11-13 2015-11-24 International Business Machines Corporation Integrated nanopore and paul trap mechanism for DNA capture and motion control
WO2014182634A1 (en) 2013-05-06 2014-11-13 Two Pore Guys, Inc. A method of biological target detection using a nanopore and a fusion protein binding agent
US9352315B2 (en) * 2013-09-27 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method to produce chemical pattern in micro-fluidic structure
KR20150050770A (ko) 2013-10-31 2015-05-11 한국과학기술원 다층 형상을 포함하는 미세 구조의 제조 방법 및 그 활용.
EP3116651B1 (en) 2014-03-11 2020-04-22 Illumina, Inc. Disposable, integrated microfluidic cartridge and methods of making it
JP6285040B2 (ja) 2014-09-11 2018-02-28 株式会社日立製作所 生体分子構造解析用デバイスおよび生体分子構造解析用デバイスの形成方法
JP6472208B2 (ja) 2014-10-24 2019-02-20 株式会社日立ハイテクノロジーズ 核酸搬送制御デバイス及びその製造方法、並びに核酸シーケンシング装置
CN104458813B (zh) 2014-11-28 2016-08-31 中国科学院重庆绿色智能技术研究院 基于类金刚石薄膜的纳米孔测量系统及其制备方法
WO2016094131A2 (en) * 2014-12-01 2016-06-16 Cornell University Nanopore-containing substrates with aligned nanoscale electronic elements and methods of making and using same
EP4293349A3 (en) 2015-02-05 2024-02-21 President and Fellows of Harvard College Nanopore sensor including fluidic passage
CN104730111A (zh) 2015-03-27 2015-06-24 中国科学院上海微系统与信息技术研究所 基于Si/SiGe/Si量子阱MOSFET的生物传感器及其制备方法
US9945836B2 (en) * 2015-04-23 2018-04-17 International Business Machines Corporation Field effect based nanopore device
EP3440703B1 (en) 2016-03-21 2021-05-19 Nooma Bio, Inc. Wafer-scale assembly of insulator-membrane-insulator devices for nanopore sensing
US10908121B2 (en) 2016-04-28 2021-02-02 Hitachi, Ltd. Membrane device, measurement device, and method for producing membrane device
US10669579B2 (en) * 2016-07-15 2020-06-02 International Business Machines Corporation DNA sequencing with stacked nanopores
JP6727052B2 (ja) 2016-07-19 2020-07-22 株式会社日立製作所 生体分子分析用デバイス及び生体分子分析装置
CN107479777A (zh) * 2017-08-09 2017-12-15 安徽奕辉电子科技有限公司 一种基于纳米材料的电容式触摸屏
WO2019118495A1 (en) 2017-12-12 2019-06-20 Board Of Regents, The University Of Texas System Nanosensors and methods of making and using nanosensors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070020146A1 (en) * 2005-06-29 2007-01-25 Young James E Nanopore structure and method using an insulating substrate

Also Published As

Publication number Publication date
US20200132663A1 (en) 2020-04-30
TW202138285A (zh) 2021-10-16
TW202026234A (zh) 2020-07-16
EP3874263A1 (en) 2021-09-08
JP7087200B2 (ja) 2022-06-20
TWI772022B (zh) 2022-07-21
KR20210065196A (ko) 2021-06-03
CN112912726A (zh) 2021-06-04
JP2022505957A (ja) 2022-01-14
US20220155279A1 (en) 2022-05-19
WO2020091924A1 (en) 2020-05-07
KR102562628B1 (ko) 2023-08-03
US11249067B2 (en) 2022-02-15
EP3874263A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US8080481B2 (en) Method of manufacturing a nanowire device
US5994750A (en) Microstructure and method of forming the same
KR100449069B1 (ko) 미소전극, 미소전극 어레이 및 미소전극 제조 방법
JP2006528422A (ja) 積重ね構造およびそれの作成方法
JP2014063866A (ja) シリコン基板の加工方法及び荷電粒子線レンズの製造方法
CN101920932A (zh) 制作纳米尺寸间距的电极的方法
TWI390631B (zh) 製造薄膜裝置之方法
JP2008030189A (ja) Memsデバイスに関するシリコン−オン−金属
TWI728526B (zh) 奈米孔流動槽及其製造方法
WO2004103892A1 (ja) マイクロ構造体の製造方法およびマイクロ構造体
TWI787565B (zh) 用於移轉表面層至凹穴上之方法
CN111108591B (zh) 形成用于生物应用的自支撑膜的方法
US10825719B2 (en) Methods of fabricating silicon-on-insulator (SOI) semiconductor devices using blanket fusion bonding
JP4260339B2 (ja) 加速度センサの製造方法
US20100048025A1 (en) Nanostructures and nanostructure fabrication
JP4551922B2 (ja) SmartCut基板接着プロセスを利用したグレイスケールマスクおよびその製造方法
CN105241476B (zh) 惯性传感器及其制作方法
WO2022047869A1 (zh) 固态纳米孔制造方法和包括固态纳米孔的传感器
US20090107844A1 (en) Glass electrophoresis microchip and method of manufacturing the same by mems fabrication
CN109680052B (zh) 纳米孔薄膜、基因测序装置及纳米孔薄膜的制备方法
KR20110099948A (ko) 비구면 형태의 실리콘 몰드, 마이크로 렌즈 어레이 및 상기 실리콘 몰드와 마이크로 렌즈 어레이를 제조하는 방법
WO2022271852A1 (en) Ultrathin free-standing solid state membrane chips and methods of making
KR101699249B1 (ko) 접합 기판 및 그 제조 방법
TWI341823B (en) Method for manufacturing cmos compatible biosensor
JPH11233794A (ja) マイクロセンサデバイスの製造方法