1341.823 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種互補氧化半導體感測器之製 造方法,特別是一種具有懸臂樑結構之互補氧化半 導體感測器之製造方法。 【先前技術】 互補金屬氧化半導體生物感測器係將生物感測 器與互補金屬氧化半導體電路元件設計於同一晶 片上,故能整合生物感測器與互補金屬氧化半導體 電路元件之製程。但在生物感測器中經常用於基板 表面的金屬及其他感測薄膜黏著層,在一般的互補 金屬氧化半導體電路元件並不常使用,因此造成製 程設計的困難,製程良率的下降,以及製程成本的 增加。 習知利用互補金屬氧化半導體元件製作懸浮結 構製程中,請參考美國專利號6,3 9 6,3 6 8專利,係利 用導電金屬,例如:A1C u,作為犧牲層,不但所需 的蝕刻時間過長,而且因為導電金屬的厚度固定, 因此懸浮高度固定,使得懸臂樑結構的移動行程受 到固定,而無法多方利用。 【發明内容】 本發明之一目的在於提供一種互補金屬氧化半 導體生物感測器之製造方法,特別是一種具有懸臂 5 1341823 樑結構之互補氧化半導體感測器之製造方法,可以 將生物感測器所需的生物感測層依據需要形成於 二氧化矽或導線金屬上;在同一製程中,依設計製 作出不同厚度的懸臂樑結構;以及使用與互補金屬 氧化半導體元件相容之製程,方便電路整合。 本發明之又一目的在於提供一種互補氧化半導 體感測器之製造方法,包括:提供一基板,該基板 具有複數個元件結構層;形成一保護層,覆蓋該基 板及該些元件結構層;形成一第一圖案化光阻層; 進行一第一蝕刻製程,蝕刻該保護層至一第一蝕刻 終點;形成一圖案化分子感測層;形成一第三圖案 化光阻層;以及進行一第二蝕刻製程,蝕刻該保護 層以及該基板,至一第二蝕刻終點,以移除部份之 該些感測結構層下方該基板之部份。 本發明之又一目的在於提供一種互補氧化半導 體感測器之製造方法,其中形成該圖案化分子感測 層之方法,包括:依序形成一第二圖案化光阻層以 及一分子感測層於該基板上;以及移除該第二圖案 化光阻層及其上方之部份分子感測層。 本發明之又一目的在於提供一種互補氧化半導 體感測器之製造方法,其中形成該圖案化分子感測 層之方法,包括:依序形成一分子感測層以及一第 二圖案化光阻層於該基板上;蝕刻該分子感測層; 以及移除該第二圖案化光阻層。 1341823 本發明之又一目的在於提供一種互補氧化半導 體感測器之製造方法,其中該第二蝕刻製程,依序 包括一非等向性蝕刻製程,蚀刻該保護層,以及一 等向性钱刻製程,#刻該基板。 【實施方式】 以下係以不同實施例說明本發明,所述之組 成、排列及步驟等,用以說明實施之内容,僅為例 示而非用以限制本發明。另外,所揭露之内容中使 用’’及/或”是為了簡要;”覆蓋”或”之上”的敘述, 則可包含該直接接觸以及沒有直接觸等二種。 圖1 A〜1 I所示係本發明第一實施例之互補金屬 氧化半導體生物感測器的製造方法流程圖。圖1A 所示係在基板1 1 (s u b s t r a t e)上以可能包括:化學沉 積(Chemical Vapor Deposition,CVD)、物理沉積 (Physical Vapor Deposition,PVD)、光阻塗佈 (Photoresist Coating) 、 曝 光 顯 影 (Photolithography)、乾式餘刻(Dry Etching)以及濕 式蝕刻(Wet Etching)等半導體製程,形成複數個元 件結構層 20, 21,22, 23, 24,25, 26, 27, 28, 29 以構 成互補氧化半導體(Complementary Metal Oxide Semiconductor,CMOS)結構及生物感測(Biosensor) 結構(圖未示)。在基板上依序形成保護層1 2與第一 圖案化光阻層3 1。其中保護層1 2例如:二氧化矽 (Silicon Oxide,Si〇2)、氮化石夕(Silicon Nitride, 7 1341823BRIEF DESCRIPTION OF THE DRAWINGS 1. Field of the Invention The present invention relates to a method of fabricating a complementary oxidized semiconductor sensor, and more particularly to a method of fabricating a complementary oxidized semiconductor sensor having a cantilever beam structure. [Prior Art] The complementary metal oxide semiconductor biosensor is designed to integrate a biosensor and a complementary metal oxide semiconductor circuit component on the same wafer, so that the process of integrating the biosensor and the complementary metal oxide semiconductor circuit component can be integrated. However, metals and other sensing film adhesion layers, which are often used in the surface of the substrate in biosensors, are not commonly used in general complementary metal oxide semiconductor circuit components, thereby causing difficulty in process design, degradation in process yield, and Increase in process costs. In the process of fabricating a suspension structure using a complementary metal oxide semiconductor device, please refer to U.S. Patent No. 6,3,6,3,6,8, which utilizes a conductive metal such as A1Cu as a sacrificial layer, not only the required etching time. It is too long, and because the thickness of the conductive metal is fixed, the suspension height is fixed, so that the movement stroke of the cantilever structure is fixed and cannot be utilized in many ways. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for fabricating a complementary metal oxide semiconductor biosensor, and more particularly to a method for fabricating a complementary oxide semiconductor sensor having a cantilever 5 1341823 beam structure, which can be used for a biosensor The required bio-sensing layer is formed on the cerium oxide or the wire metal according to the need; in the same process, the cantilever beam structure of different thickness is designed according to the design; and the process compatible with the complementary metal oxide semiconductor component is used to facilitate the circuit Integration. A further object of the present invention is to provide a method for fabricating a complementary oxide semiconductor sensor, comprising: providing a substrate having a plurality of component structure layers; forming a protective layer covering the substrate and the component structure layers; a first patterned photoresist layer; performing a first etching process, etching the protective layer to a first etch end; forming a patterned molecular sensing layer; forming a third patterned photoresist layer; and performing a first The second etching process etches the protective layer and the substrate to a second etch end to remove portions of the substrate under the sensing structure layers. Another object of the present invention is to provide a method for fabricating a complementary oxide semiconductor sensor, wherein the method for forming the patterned molecular sensing layer comprises: sequentially forming a second patterned photoresist layer and a molecular sensing layer On the substrate; and removing the second patterned photoresist layer and a portion of the molecular sensing layer thereon. Another object of the present invention is to provide a method for fabricating a complementary oxide semiconductor sensor, wherein the method for forming the patterned molecular sensing layer comprises: sequentially forming a molecular sensing layer and a second patterned photoresist layer On the substrate; etching the molecular sensing layer; and removing the second patterned photoresist layer. A further object of the present invention is to provide a method for fabricating a complementary oxide semiconductor sensor, wherein the second etching process includes an anisotropic etching process, etching the protective layer, and an isotropic etching process. Process, #刻刻基板. The present invention is described in the following by way of illustration of the embodiments of the invention. In addition, the use of ''and/or' in the disclosed content is for the sake of brevity; the description of "overlay" or "above" may include the direct contact and the absence of direct contact, etc. Figure 1 A~1 I A flow chart of a method for fabricating a complementary metal oxide semiconductor biosensor according to a first embodiment of the present invention is shown in FIG. 1A on a substrate 1 1 (substrate), which may include: Chemical Vapor Deposition (CVD), Semiconductor process such as physical Vapor Deposition (PVD), Photoresist Coating, Photolithography, Dry Etching, and Wet Etching to form a plurality of component structure layers 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 to form a Complementary Metal Oxide Semiconductor (CMOS) structure and a Biosensor structure (not shown). The protective layer 12 and the first patterned photoresist layer 31 are sequentially formed, wherein the protective layer 12 is, for example, silicon dioxide (SiCl 2), and silicon nitride (Silicon Nitride, 7 1341823
Si 3N4)等材料,以覆蓋基板1 1及複數個元件結構層 20, 2 1, 22, 23, 24, 25, 26, 27, 28, 29 ° 這裏所用的基板可以是單晶(mono)、多晶(poly) 或非晶(a m o r p h 〇 u s )結構之叾夕基板;互補氧化半導體 結構可以是各種現在已熟知的半導體元件或裝 置;生物感測結構例如包括用以感測去氧核_核酸 (Deoxyribonucleic Acid , D N A)、蛋 白質 (Protein)、組織(Tissue)、細胞(Cell)、離子 (Ion)、酸驗值(pH value)等之敏感元件,或依其 他感測目的設計與製作不同的感測元件。故元件結 構層 20,21, 22, 23,24, 25, 26, 27, 28, 29的結構或 材料,依半導體元件或裝置與生物感測結構的需要 而有不同的設計,例如其材料可以是金屬材料、多 晶材料等。 請參照圖1 B〜1 C,係用第一圖案化光阻層3 1為 姓刻罩幕(Mask),以例如電聚触刻(plasma etching) 之非等向之蝕刻方式進行第一蝕刻製程,對保護層 1 2進行蝕刻至預設之蝕刻終點,形成溝槽A,B , C 後,移除第一圖案化光阻層3 1。在本實施例中,因 預設之蝕刻終點低於元件結構層2 4,2 7,又因元件 結構層24, 27並無第一圖案化光阻層3 1做為罩幕保 護,故溝槽B,C蝕刻至元件結構層2 4,2 7時,藉由 蝕刻製程的選擇,使元件結構層24, 27成為另一種 蝕刻罩幕,故元件結構層24,27下方之保護層12不 會受到钱刻,依此,不需要使用特殊的技術或製 8 1341823 程,即可在此一蝕刻製程之後得到多種不同厚度d 1, d2, d3的保護層1 2。另外需注意的是,即使以例如 元件結構層2 4,2 7本身做為蝕刻終點,只要配合第 一圖案化光阻層3 1的圖案設計,以及蝕刻製程的選 擇,亦可達到相同或類似的效果。 請參照圖1 D〜1 E,於完成第一蝕刻製程之基板 上,依序形成第二圖案化光阻層3 2以及分子感測層 40,其中分子感測層40材質係選自高分子、陶瓷材 料及金、銀、始等金屬或其合金等對分子生物、離 子與酸鹼值等較敏感之材料,其形成方式包括:旋 佈、沈積、濺鍍或電鍍等方式,接著以光阻剝離 (lift-off)製程移除第二圖案化光阻層及其上方之 部份分子感測層4 0,基板上僅留下圖案化之分子感 測層 4 1,4 2,4 3,4 4。 除如圖1 D〜1 E所示,使用光阻剝離製程的方法 外,亦可使用一般的製程方式,未繪示於圖式,但 補充說明如下,先於基板1 1上全面地形成分子感測 層40,再形成第二圖案化光阻層32,以第二圖案化 光阻層3 2為罩幕接著對分子感測層40進行蝕刻,移 除第二圖案化光阻層3 2後,即可形成圖案化之分子 感測層41,42,43, 44。一般的製程方式較圖1D〜1E 所示光阻剝離製程的方法,需增加一道對分子感測 層4 0進行蝕刻的製程,但可依實際的製程設計與元 件要求,選擇使用一般的製程方式,或圖1 D〜1 E所 示光阻剝離製程。 9 1341823 如圖IF〜II所示之製程,基板11上形成一 案化光罩3 3,露出要蝕刻保護層1 2之區域, 以一非等向性蝕刻製程,例如是電漿蝕刻等 刻製程,蝕刻露出之保護層1 2至露出基板 面,再以一等向性蝕刻製程,例如是濕式 程,對基板1 1進行蝕刻,至到達第二蝕刻終 移除除部份感測結構層2 0 , 2 1,2 2 , 2 3 , 2 7 , 的部份基板1 1,故形成一間隙d4,僅由側邊 樑結構(圖未示)連接,使得該些感測結構層 2 2 , 2 3 , 2 7,2 8形成懸臂結構。 雖然本發明已以較佳實施例揭露如上, 非用以限定本發明,任何熟習此項技藝者, 離本發之精神和範圍内,可做各種變動、修 飾,因此本發明之保護管圍當視後附之申請 圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、 實施例能更明顯易懂,所附圖式之詳細說明 圖1 A〜1 I係本發明實施例之互補金屬氧化半 物感測器的製造方法流程圖。 【主要元件符號說明】 11基板 12保護層 第三圖 接著先 乾式蝕 Π之表 触刻製 點,以 28下方 之懸臂 20,2 1, 然其並 在不脫 改及潤 專利範 優點與 如下: 導體生 10 1341823a material such as Si 3N4) to cover the substrate 11 and a plurality of element structure layers 20, 2 1, 22, 23, 24, 25, 26, 27, 28, 29 ° The substrate used herein may be a single crystal, A polycrystalline (amorphous) or amorphous (amorph 〇us) structure; the complementary oxidized semiconductor structure can be a variety of well-known semiconductor components or devices; the biosensing structure includes, for example, a sensing deoxygen nucleus-nucleic acid (Deoxyribonucleic Acid, DNA), Protein (Protein), Tissue (Tissue), Cell (Cell), Ion (Ion), Acid Value (pH value) and other sensitive components, or other design and production according to other sensing purposes Sensing element. Therefore, the structure or material of the component structure layer 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 has different designs according to the needs of the semiconductor component or device and the biological sensing structure, for example, the material thereof can be It is a metal material, a polycrystalline material, or the like. Referring to FIG. 1B to FIG. 1C, the first patterned photoresist layer 3 1 is a mask, and the first etching is performed by an anisotropic etching method such as plasma etching. In the process, the protective layer 12 is etched to a predetermined etching end point, and after the trenches A, B, and C are formed, the first patterned photoresist layer 31 is removed. In this embodiment, since the preset etching end point is lower than the element structure layer 24, 27, and the element structure layer 24, 27 has no first patterned photoresist layer 3 1 as a mask protection, the trench is protected. When the trenches B, C are etched to the device structure layer 2 4, 27, the device structure layers 24, 27 become another etching mask by the etching process selection, so the protective layer 12 under the component structure layers 24, 27 is not It will be engraved with money, and accordingly, a plurality of protective layers 12 of different thicknesses d1, d2, d3 can be obtained after this etching process without using a special technique or process 8 1341823. In addition, it should be noted that even if the component structure layer 24, 27 itself is used as the etching end point, as long as the pattern design of the first patterned photoresist layer 31 and the etching process are selected, the same or similar can be achieved. Effect. Referring to FIG. 1D to FIG. 1E, a second patterned photoresist layer 32 and a molecular sensing layer 40 are sequentially formed on the substrate on which the first etching process is completed, wherein the molecular sensing layer 40 is selected from the group consisting of polymers. Ceramic materials, materials such as gold, silver, metals, or alloys thereof that are sensitive to molecular biology, ions, and pH, etc., are formed by means of spin coating, deposition, sputtering, or electroplating, followed by light. A lift-off process removes the second patterned photoresist layer and a portion of the molecular sensing layer 40 thereon, leaving only the patterned molecular sensing layer 4 1, 4 2, 4 3 on the substrate , 4 4. In addition to the method of using the photoresist stripping process as shown in FIG. 1 D to 1 E, a general process method can also be used, which is not shown in the drawings, but the supplementary explanation is as follows, the molecules are formed comprehensively on the substrate 1 1 The sensing layer 40 is further formed with a second patterned photoresist layer 32, and the second patterned photoresist layer 32 is used as a mask to etch the molecular sensing layer 40 to remove the second patterned photoresist layer 3 2 . Thereafter, the patterned molecular sensing layers 41, 42, 43, 44 are formed. The general process method is the same as the method of the photoresist stripping process shown in FIGS. 1D to 1E, and a process of etching the molecular sensing layer 40 is required, but the general process mode can be selected according to the actual process design and component requirements. , or the photoresist stripping process shown in Figure 1 D~1 E. 9 1341823 As shown in the process shown in FIGS. IF to II, a substrate mask 3 is formed on the substrate 11, and the region where the protective layer 12 is to be etched is exposed, and an anisotropic etching process, such as plasma etching, is performed. The process etches the exposed protective layer 12 to expose the substrate surface, and then etches the substrate 11 by an isotropic etching process, for example, a wet process, until the second etch end removes the partial sensing structure. The partial substrate 1 1 of the layer 2 0 , 2 1, 2 2 , 2 3 , 2 7 , forms a gap d4, which is only connected by a side beam structure (not shown), so that the sensing structure layer 2 2, 2 3 , 2 7, 2 8 form a cantilever structure. While the present invention has been described in its preferred embodiments, it is not intended to limit the present invention, and various modifications and changes can be made within the spirit and scope of the present invention. The person defined in the attached application enclosure shall prevail. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features and embodiments of the present invention more comprehensible, the detailed description of the accompanying drawings. FIG. 1A-1I is a complementary metal oxide half of the embodiment of the present invention. Flow chart of the manufacturing method of the sensor. [Main component symbol description] 11 substrate 12 protective layer third figure followed by dry etching etched surface touch engraving point, with 28 cantilever 20, 2 1, and then it does not change and run patent vane advantages and the following : Conductor, born 10 1341823
2 1, 22, 23, 24, 25, 26, 27, 28, 29 元件結構層 31,32,33 光阻層 40, 4 1, 42, 43, 44 分子感測層 A, B, C 溝槽2 1, 22, 23, 24, 25, 26, 27, 28, 29 Component structure layer 31,32,33 photoresist layer 40, 4 1, 42, 43, 44 molecular sensing layer A, B, C trench