TWI726134B - 磨削裝置 - Google Patents

磨削裝置 Download PDF

Info

Publication number
TWI726134B
TWI726134B TW106125668A TW106125668A TWI726134B TW I726134 B TWI726134 B TW I726134B TW 106125668 A TW106125668 A TW 106125668A TW 106125668 A TW106125668 A TW 106125668A TW I726134 B TWI726134 B TW I726134B
Authority
TW
Taiwan
Prior art keywords
plate
shaped workpiece
grinding
water
air
Prior art date
Application number
TW106125668A
Other languages
English (en)
Other versions
TW201811506A (zh
Inventor
中塚敦
Original Assignee
日商迪思科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪思科股份有限公司 filed Critical 日商迪思科股份有限公司
Publication of TW201811506A publication Critical patent/TW201811506A/zh
Application granted granted Critical
Publication of TWI726134B publication Critical patent/TWI726134B/zh

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

[課題]因應磨削加工條件來適當地測定板狀工件的厚度。 [解決手段]磨削裝置具備有保持板狀工件的保持台、以磨削磨石磨削板狀工件的磨削機構、以及照射測定光而以非接觸方式測定板狀工件的厚度的非接觸式厚度測定器。非接觸式厚度測定器是設成下述構成:具有成為測定光的出入口的外罩玻璃、在外罩玻璃的下方存儲流體的盒體、及將供給到盒體之流體在水與空氣間切換的切換部,藉由對應於磨削加工條件來切換水和空氣,以一邊以從盒體開口排出的水或空氣充滿於板狀工件與外罩玻璃之間,一邊測定板狀工件的厚度。

Description

磨削裝置
發明領域 本發明是有關於一種邊測定著板狀工件之厚度來進行磨削的磨削裝置。
發明背景 作為磨削裝置,已知的有使用非接觸式的厚度測定器來一邊測定板狀工件之厚度一邊進行磨削的裝置(參照例如專利文獻1)。非接觸式的厚度測定器是將紅外雷射光等測定光照射到板狀工件上,並依據來自板狀工件的上下表面的反射光來測定板狀工件的厚度。自厚度測定器將水供給到板狀工件的上表面,並將厚度測定器與板狀工件之間以水密封,以免測定光因磨削水的噴霧(飛沫)而被遮蔽。藉由使測定光穿過水層來照射到板狀工件,可精度良好地測定板狀工件的厚度。 先前技術文獻 專利文獻
專利文獻1:日本專利特許第5731806號公報
發明概要 發明欲解決之課題 然而,作為板狀工件,有在正面形成有樹脂層之工件,而有欲在磨削樹脂層之時測定樹脂層的厚度之要求。但是,因樹脂與水有相近似的折射率,因此在樹脂與水的界面上不會適當地反射測定光,因而無法接收來自樹脂層的上、下表面的反射光。又,在磨削加工時之磨削磨石的高速旋轉時,磨削水的噴霧容易飛散,在磨削磨石的低速旋轉時,磨削水的噴霧難以飛散。因此,在噴霧的影響較少之低速旋轉時,毋須一邊以水充滿於厚度測定器與板狀工件之間一邊測定板狀工件的厚度。
本發明即是有鑒於此點而作成的發明,其目的之一即為提供一種可以因應磨削加工條件來適當地測定板狀工件的厚度之磨削裝置。 用以解決課題之手段
本發明之一態樣的磨削裝置,具備保持板狀工件的保持台、以磨削磨石磨削保持台所保持之板狀工件的磨削機構、以及使測定光照射以磨削機構所磨削之板狀工件,且接收第1反射光與第2反射光,以從第1反射光與第2反射光的光路差來測定板狀工件的厚度之非接觸式厚度測定器,其中該第1反射光是測定光在板狀工件的上表面反射之光,該第2反射光是通過上表面的測定光在界面上反射之光,非接觸式厚度測定器具備讓測定光、第1反射光及第2反射光穿透的外罩玻璃、及在外罩玻璃與保持台所保持之板狀工件之間形成的測定光保護部,測定光保護部具備將保持台所保持之板狀工件與外罩玻璃之間以流體充滿之具有開口的盒體、及可將供給到盒體的流體在水與空氣間切換的切換部,該磨削裝置可對應於磨削加工條件來切換並形成水層與空氣層以進行厚度測定。
根據此構成,將水或空氣供給到盒體,並在外罩玻璃與板狀工件之間形成水層或空氣層。來自非接觸式厚度測定器的測定光穿透外罩玻璃,並通過水層或空氣層而照射於板狀工件。由於測定光的光路被水層或空氣層所保護,故不會有因磨削水的噴霧而遮蔽測定光之情形。此時,因供給到盒體的流體可切換為水或空氣,故可在外罩玻璃與板狀工件之間以適合於磨削加工條件的流體來充滿。例如,板狀工件上表面的折射率接近於水時,是對盒體供給空氣,板狀工件的折射率與水充分分開的情況下是對盒體供給水。又,在噴霧的影響較小的狀況下,是對盒體供給空氣,在噴霧的影響較大的狀況下,是對盒體供給水。 發明效果
根據本發明,可以因應工件種類與磨削加工時之旋轉速度等磨削加工條件,以水和空氣來切換外罩玻璃與板狀工件之間的流體,藉此適當地測定板狀工件的厚度。
用以實施發明之形態 以下,參照附加圖式,說明本實施形態的磨削裝置。圖1是本實施形態之磨削裝置的立體圖。圖2是藉由比較例之非接觸式厚度測定器進行的厚度測定之說明圖。又,磨削裝置並不受限於如圖1所示的磨削加工專用的裝置構成,也可以被組裝至例如以全自動方式實施磨削加工、研磨加工、洗淨加工等一連串之加工的全自動化型(Full Auto Type)的加工裝置中。
如圖1所示,磨削裝置1是構成為使用將多數個磨削磨石47排列成環狀之磨削輪46,以磨削被保持在保持台20上之板狀工件W。板狀工件W是在貼附有保護膠帶T的狀態下搬入磨削裝置1,並透過保護膠帶T而保持於保持台20上。再者,板狀工件W只要是可成為磨削對象之板狀構件即可,可以是矽、砷化鎵等半導體晶圓,也可以是陶瓷、玻璃、藍寶石等光裝置晶圓,亦可為元件圖案形成前的原切片晶圓(as-sliced wafer)。
在磨削裝置1的基台10的上表面形成有在X軸方向上延伸的矩形之開口,此開口被能夠與保持台20一起移動之移動板11與伸縮狀之防水蓋12所覆蓋。在防水蓋12的下方設有使保持台20在X軸方向上移動之滾珠螺桿式的進退機構(圖未示)。保持台20是連結於旋轉機構(圖未示出),並藉由旋轉機構的驅動而可旋轉地構成。又,保持台20的上表面形成有藉由多孔質的多孔材吸引保持板狀工件W的保持面21。
基台10上的支柱15上設有磨削進給機構30,該磨削進給機構30可將磨削機構40朝使其相對於保持台20接近及遠離的方向(Z軸方向)磨削進給。磨削進給機構30具有配置在支柱15上之與Z軸方向平行的一對導軌31、和被設置成可在一對導軌31上滑動之馬達驅動的Z軸工作台32。在Z軸工作台32的背面側形成有圖未示之螺帽部,且在這些螺帽部中螺合有滾珠螺桿33。藉由利用連結於滾珠螺桿33之一端部的驅動馬達34令滾珠螺桿33旋轉驅動,就能沿著導軌31在Z軸方向上移動磨削機構40。
磨削機構40是構成為透過殼體41而安裝於Z軸工作台32的正面,並以主軸單元42使磨削輪46以繞中心的方式旋轉。主軸單元42即為所謂的空氣主軸,可在罩殼43內側透過高壓空氣可旋轉地支撐主軸44。主軸44的前端連結有安裝座45,於安裝座45上裝設有將多個磨削磨石47環狀地配設的磨削輪46。磨削磨石47是用金屬黏結劑或樹脂黏結劑等黏合劑固定鑽石磨粒而形成。
磨削機構40的高度位置是由線性標度尺51來測定。線性標度尺51是以設於Z軸工作台32的讀取部52來讀取設於導軌31表面之標度尺部53的刻度,藉此測定磨削機構40的高度位置。基台10的上表面,是透過支臂56來將測定板狀工件W的厚度的非接觸式厚度測定器60以懸臂方式支撐。非接觸式厚度測定器60,是使其對板狀工件W照射紅外雷射光等測定光,並從板狀工件W的上表面以及界面上的反射光的光路差來測定厚度。此外,有關非接觸式厚度測定器60的詳細構成容後敘述。
又,在磨削裝置1中設有用以整合控制裝置各部的控制機構90。控制機構90是以實行各種處理的處理器及記憶體等所構成。記憶體是因應用途而由ROM(唯讀記憶體(Read Only Memory))、RAM(隨機存取記憶體(Random Access Memory))等的一個或複數個儲存媒體所構成。在此磨削裝置1中,是以邊將配設於磨削輪46上的磨削磨石47按壓到板狀工件W的上表面邊使其旋轉的方式,來將板狀工件W薄化到預定厚度。此時,磨削機構40會依據線性標度尺51以及非接觸式厚度測定器60的測定結果,藉由控制機構90控制磨削進給量。
然而,如圖2A所示,在比較例的非接觸式厚度測定器95中,是將非接觸式厚度測定器95與板狀工件W之間以水來密封,以免磨削加工時飛散的磨削水的噴霧遮蔽測定光。在將矽晶圓W1作為板狀工件W而磨削時,因為測定光可於非接觸式厚度測定器95與矽晶圓W1之間的水層內穿透,所以不會有測定光的光路被磨削水的噴霧所遮蔽之情形。據此,可以邊藉由來自矽晶圓W1的上表面與下表面的反射光而精度良好地測定矽晶圓W1厚度,邊磨削矽晶圓W1。
但是,如圖2B所示,作為板狀工件W而在矽晶圓W1的上表面形成樹脂層W2的情況下,當將非接觸式厚度測定器95與樹脂層W2之間以水密封時,會無法測定樹脂層W2的厚度。這是因為樹脂的折射率(1.4到1.5)與水的折射率(1.33)接近,測定光不會適當地在水與樹脂的界面(樹脂層W2的上表面)上反射之故。非接觸式厚度測定器95與板狀工件W間的水層雖可保護測定光的光路免於磨削水的噴霧所影響,但因測定光並未適當地在樹脂層W2的上表面反射,故無法邊測定樹脂層W2的厚度邊進行磨削。
又,作為板狀工件W而磨削矽晶圓W1的情況下(參照圖2A),雖然在磨削輪46(參照圖1)的高速旋轉時磨削水的噴霧容易飛散,但在磨削輪46的低速旋轉時磨削水的噴霧難以飛散。因此,在磨削水的噴霧難以飛散的情況下,在非接觸式厚度測定器95與板狀工件W間於不用水密封下進行測定的作法,會使由非接觸式厚度測定器95進行的測定精度變高。所以,在本實施形態的非接觸式厚度測定器60(參照圖3)中,是設成可用水和空氣來切換非接觸式厚度測定器60與板狀工件W之間的流體,而形成為可實施適合於板狀工件W的種類與磨削輪46的旋轉速度等磨削加工條件之厚度測定。
以下,參照圖3及圖4,說明本實施形態的非接觸式厚度測定器。圖3為本實施形態之非接觸式厚度測定器的截面示意圖。圖4為本實施形態之流體的供給路徑的示意圖。
如圖3所示,非接觸式厚度測定器60是構成為邊將流體供給於板狀工件W的上表面,邊朝向板狀工件W將測定光照射成從測定器本體61的內部穿透流體層,以測定板狀工件W的厚度。測定器本體61的內部收容有發光部62、半反射鏡63、受光部64,並藉由這些構件而形成有測定光的光路。測定器本體61的下表面設有成為測定光以及反射光的出入口的外罩玻璃65,並藉由外罩玻璃65以不透液體的方式區隔測定器本體61的內側與外側。
在測定器本體61中,於外罩玻璃65與板狀工件W之間設有保護測定光的測定光保護部70。測定光保護部70具有在測定器本體61的下部存儲流體的盒體71、以及將供給到盒體71之流體在水和空氣間切換的切換部75。於盒體71的側面形成有連接於水供給源76以及空氣供給源77的供給口72,於盒體71的下表面形成有將已供給於盒體71之水與空氣等流體排出至板狀工件W的上表面的開口73。藉由盒體71而將板狀工件W與外罩玻璃65之間以液體充滿,並保護測定光的光路不受磨削水的噴霧所影響。
在非接觸式厚度測定器60中,是藉由切換部75而將盒體71之供給口72的連接處在水供給源76以及空氣供給源77間切換。例如,板狀工件W為矽晶圓W1的情況下(參照圖5A),是將供給口72的連接處切換成水供給源76,並將水供給到外罩玻璃65與板狀工件W之間。又,板狀工件W的上表面形成有折射率接近水的樹脂層W2的情況下(參照圖5B),是將供給口72的連接處切換成空氣供給源77,並將空氣供給到外罩玻璃65與板狀工件W之間。像這樣,可因應於板狀工件W的上表面的材質(折射率)而將流體在水和空氣間切換。
在此,水和空氣會由於折射率不同,而必須變更非接觸式厚度測定器60的焦點距離。因此,切換水和空氣之時,會調整外罩玻璃65與板狀工件W之間的設定距離。例如,水的折射率為1.33,空氣的折射率為1.00,將以水進行厚度測定之時的設定距離a(參照圖5A)作為基準,以空氣進行厚度測定之時的設定距離b(參照圖5B),是表示如以下的式(1)。 式(1) b=a/1.33
像這樣,藉由因應於折射率來調整設定距離,以補正以水和空氣之折射率所進行的測定結果之誤差。測定相同的測定對象之時,即使藉由此補正來切換水與空氣並進行測定,還是可測定出相同厚度。再者,非接觸式厚度測定器60與板狀工件W之間形成有空氣層的情況下,雖然可藉由空氣層保護測定光的光路,但有時會無法完全防止磨削水的噴霧。空氣層內若有噴霧進入時,會測定得比實際的厚度更厚,因此亦可設成:預測空氣層內的噴霧的比例來補正測定結果。
在此非接觸式厚度測定器60中,是讓從發光部62射出之測定光穿透外罩玻璃65,並於外罩玻璃65與板狀工件W之間的流體通過而照射於板狀工件W。此時,藉由選擇折射率與板狀工件W的上表面大幅不同的流體,以使測定光在板狀工件W上表面反射作為第1反射光,並使穿透上表面的測定光在板狀工件W的界面反射作為第2反射光。第1、第2反射光會再度穿透外罩玻璃65,並以半反射鏡63朝向受光部64反射。然後,以受光部64從第1、第2反射光的光路差來測定板狀工件W的厚度。
又,在外罩玻璃65與板狀工件W之間,是藉由流體保護測定光的光路,因此變得可在沒有受到磨削水之噴霧的影響之下測定板狀工件W的厚度。此外,不限於因應板狀工件W的種類而將流體在水與空氣間切換的構成,亦可設成因應磨削輪46(參照圖1)的旋轉速度而以水和空氣來切換流體之構成。
如圖4所示,在非接觸式厚度測定器60之盒體71的供給口72中,是通過第1流路81而從水供給源76供給水,並通過第2流路82而從空氣供給源77供給空氣。於第1流路81的中途部分設有水層形成閥84以及水層用的第1節流閥85,於第2流路82的中途部分設有空氣層形成閥86以及空氣層用的第2節流閥87。又,於第2流路82上連接有旁通流路83以於第2節流閥87迂迴,旁通流路83上設有乾燥用的第3節流閥88以及乾燥空氣閥89。
於水層形成閥84、空氣層形成閥86、乾燥空氣閥89上電連接有控制機構90,藉由以控制機構90將閥開關,以用水和空氣來切換供給到盒體71的流體。像這樣,將切換部75藉由水層形成閥84、空氣層形成閥86、乾燥空氣閥89而構成。當打開水層形成閥84,並關閉空氣層形成閥86時,會將來自水供給源76的水以第1節流閥85節流成預定水量(1~2[l/分鐘])來供給到盒體71。藉此,可在外罩玻璃65與板狀工件W之間形成水層,以藉由水層保護測定光的光路不受磨削時的噴霧等所影響。
在已關閉水層形成閥84的狀態下,打開空氣層形成閥86,並關閉乾燥空氣閥89時,會將來自空氣供給源77的空氣以第2節流閥87節流成預定空氣量(4~5[l/分鐘])來供給到盒體71。藉此,可在外罩玻璃65與板狀工件W之間形成空氣層,以藉由空氣層保護測定光的光路不受磨削時的噴霧等所影響。再者,第1、第2節流閥85、87只要可調整成可以做到即使因外罩玻璃65與板狀工件W的間隔不同,仍將外罩玻璃65與板狀工件W之間以水和空氣充滿的程度的流量即可。
又,已關閉水層形成閥84的狀態下,當將空氣層形成閥86以及乾燥空氣閥89打開時,會使來自空氣供給源77的空氣於第2節流閥87迂迴而流入旁通流路83。這是因為旁通流路83的第3節流閥88的開口面積,比第2流路82之第2節流閥87更寬之故。並且,將旁通流路83內的空氣以第3節流閥88節流成預定空氣量(40~50[l/分鐘]),並通過第2流路82來供給到盒體71。藉此,於外罩玻璃65與板狀工件W之間在形成水層後形成空氣層之時,可使大量的空氣流入盒體71內,以將盒體71內的水滴去除並且將板狀工件W乾燥。
參照圖5,說明由非接觸式厚度測定器所進行的厚度測定。圖5是藉由本實施形態之非接觸式厚度測定器進行的測定之說明圖。再者,各自為圖5A是表示測定矽晶圓厚度之一例,圖5B是表示測定矽晶圓上之樹脂層的厚度的一例。再者,非接觸式厚度測定器的測定對象並不限定於矽晶圓以及樹脂層,而是可適當變更的。又,如上所述,切換水和空氣來測定板狀工件之時,外罩玻璃與保持台之間的設定距離也可被調整。
如圖5A所示,將作為板狀工件W的矽晶圓W1透過保護膠帶T保持在保持台20上。因矽晶圓W1與水的折射率大幅不同,所以可藉由切換部75將盒體71從空氣供給源77阻斷並連接到水供給源76。藉此,可從水供給源76將水供給到盒體71內,並在外罩玻璃65與矽晶圓W1之間形成水層S1。在此狀態下,當從發光部62射出測定光L0時,使測定光L0穿透半反射鏡63以及外罩玻璃65,並於水層S1內通過而將測定光L0照射到矽晶圓W1。
在矽晶圓W1的上表面,是使測定光L0作為第1反射光L1而被反射,在矽晶圓W1與保護膠帶T的界面上,是使測定光L0作為第2反射光L2而被反射。第1、第2反射光L1、L2會再度通過水層S1並穿透外罩玻璃65,且藉由半反射鏡63而朝向受光部64反射。在受光部64中,是從第1、第2反射光L1、L2的光路差(干涉差)來測定矽晶圓W1的厚度。再者,如上所述,在矽晶圓W1的厚度測定上,亦可在如磨削輪46(參照圖1)的低速旋轉時,磨削水的噴霧較少的情況下,在外罩玻璃65與矽晶圓W1之間形成空氣層S2(參照圖5B)。
如圖5B所示,將作為板狀工件W之附樹脂層W2的矽晶圓W1,以將樹脂層W2朝向上方的狀態隔著保護膠帶T保持於保持台20上。因樹脂層W2與水的折射率接近,故藉由切換部75將盒體71從水供給源76阻斷,並連接到空氣供給源77。藉此,可從空氣供給源77將空氣供給到盒體71內,並在外罩玻璃65與樹脂層W2之間形成空氣層S2。在此狀態下,當從發光部62射出測定光L0時,使測定光L0穿透半反射鏡63以及外罩玻璃65,並於空氣層S2內通過而將測定光照射到樹脂層W2。
在樹脂層W2的上表面,是使測定光L0作為第1反射光L1而被反射,在樹脂層W2與矽晶圓W1的界面上,是使測定光L0作為第2反射光L2而被反射。第1、第2反射光L1、L2會再度通過空氣層S2並穿透外罩玻璃65,且藉由半反射鏡63而朝向受光部64反射。在受光部64中,是從第1、第2反射光L1、L2的光路差來測定樹脂層W2的厚度。像這樣,藉由形成空氣層S2來代替水層S1,使樹脂層W2與空氣的折射率充分地分開,因此可以使其在空氣層S2與樹脂層W2的界面(樹脂層W2的上表面)適當地反射測定光。
如以上所述,根據本實施形態的磨削裝置1,可將水或空氣供給到非接觸式厚度測定器60的盒體71,並於外罩玻璃65與板狀工件W之間形成水層或空氣層。來自非接觸式厚度測定器60的測定光穿透外罩玻璃65,通過水層或空氣層而被照射到板狀工件W。由於測定光的光路可藉由水層或空氣層而被保護,因此不會有測定光被磨削水的噴霧所遮蔽之情形。此時,因為可將供給到盒體71的流體切換為水或空氣,故可以使外罩玻璃65與板狀工件W之間以適合於磨削加工條件的流體來充滿。例如,在板狀工件W的上表面的折射率與水接近的情況下是將空氣供給到盒體71,在板狀工件W的折射率為與水充分分開的情況下是將水供給到盒體71。又,在噴霧的影響較小的狀況下,是將空氣供給到盒體71,在噴霧的影響較大的狀況下,是將水供給到盒體71。
再者,在本實施形態中,雖然是設成因應板狀工件W的種類和磨削輪46的旋轉速度等磨削加工條件來將流體在水和空氣間切換之構成,但並不限定於此構成。也可設成因應其他條件來將流體在水和空氣間切換的構成。
又,在本實施形態中,雖然是設成板狀工件W的上表面為矽的情況下是形成水層,板狀工件W的上表面為樹脂的情況下是形成空氣層的構成,但並不限定於此構成。板狀工件W的上表面的材質並不受限,因應於板狀工件W的上表面的折射率來切換水和空氣即可。
又,在本實施形態中,雖然設成非接觸式厚度測定器60作為使板狀工件W乾燥的空氣噴嘴而發揮作用之構成,但非接觸式厚度測定器60不具備空氣噴嘴的功能亦可。
又,雖然已說明過本實施形態以及變形例,但作為本發明之其他實施形態,亦可為將上述實施形態以及變形例整體地或局部地組合而成之實施形態。
又,本發明之實施形態並不限定於上述之實施形態,且亦可在不脫離本發明之技術思想的主旨的範圍內進行各種變更、置換、變形。此外,若能經由技術之進步或衍生之其他技術而以其他的方式來實現本發明之技術思想的話,亦可使用該方法來實施。因此,專利請求的範圍涵蓋了可包含在本發明之技術思想範圍內的所有的實施形態。
又,在本實施形態中,雖然針對適用於磨削裝置之構成來說明本發明,但亦可為適用於可適當地測定板狀工件的厚度的其他裝置。 産業上之可利用性
如以上所說明,本發明具有可以因應磨削加工條件而適當地測定板狀工件的厚度的效果,特別是對使用於附樹脂層的矽晶圓的磨削之磨削裝置而言是有用的。
1‧‧‧磨削裝置10‧‧‧基台11‧‧‧移動板12‧‧‧防水蓋15‧‧‧支柱20‧‧‧保持台21‧‧‧保持面30‧‧‧磨削進給機構31‧‧‧導軌32‧‧‧Z軸工作台33‧‧‧滾珠螺桿40‧‧‧磨削機構41‧‧‧殼體42‧‧‧主軸單元43‧‧‧罩殼44‧‧‧主軸45‧‧‧安裝座46‧‧‧磨削輪47‧‧‧磨削磨石51‧‧‧線性標度尺52‧‧‧讀取部53‧‧‧標度尺部56‧‧‧支臂60、95‧‧‧非接觸式厚度測定器61‧‧‧測定器本體62‧‧‧發光部63‧‧‧半反射鏡64‧‧‧受光部65‧‧‧外罩玻璃70‧‧‧測定光保護部71‧‧‧盒體72‧‧‧供給口73‧‧‧開口75‧‧‧切換部76‧‧‧水供給源77‧‧‧空氣供給源81‧‧‧第1流路82‧‧‧第2流路83‧‧‧旁通流路84‧‧‧水層形成閥85‧‧‧第1節流閥86‧‧‧空氣層形成閥87‧‧‧第2節流閥88‧‧‧第3節流閥89‧‧‧乾燥空氣閥90‧‧‧控制機構L0‧‧‧測定光L1‧‧‧第1反射光L2‧‧‧第2反射光S1‧‧‧水層S2‧‧‧空氣層T‧‧‧保護膠帶W‧‧‧板狀工件W1‧‧‧矽晶圓W2‧‧‧樹脂層a、b‧‧‧設定距離
圖1是本實施形態之磨削裝置的立體圖。 圖2A、B是藉由比較例之非接觸式厚度測定器進行的厚度測定之說明圖。 圖3是本實施形態之非接觸式厚度測定器的截面示意圖。 圖4是本實施形態之流體的供給路徑之示意圖。 圖5A、B是藉由本實施形態之非接觸式厚度測定器進行的厚度測定之說明圖。
20‧‧‧保持台
60‧‧‧非接觸式厚度測定器
61‧‧‧測定器本體
62‧‧‧發光部
63‧‧‧半反射鏡
64‧‧‧受光部
65‧‧‧外罩玻璃
71‧‧‧盒體
72‧‧‧供給口
75‧‧‧切換部
76‧‧‧水供給源
77‧‧‧空氣供給源
L0‧‧‧測定光
L1‧‧‧第1反射光
L2‧‧‧第2反射光
S1‧‧‧水層
S2‧‧‧空氣層
T‧‧‧保護膠帶
W‧‧‧板狀工件
W1‧‧‧矽晶圓
W2‧‧‧樹脂層
a、b‧‧‧設定距離

Claims (1)

  1. 一種磨削裝置,具備有:保持台,保持由一層或上層與下層之二層形成的板狀工件;磨削機構,以磨削磨石磨削該保持台所保持之板狀工件;以及非接觸式厚度測定器,使測定光照射以該磨削機構所磨削之板狀工件,且接收在板狀工件的上表面反射之第1反射光、與通過上表面的該測定光在該一層的下表面或該上層與該下層的界面上反射之第2反射光,以從該第1反射光與該第2反射光的光路差來測定板狀工件的厚度或者上層的厚度,該非接觸式厚度測定器具備:讓該測定光、該第1反射光及該第2反射光穿透的外罩玻璃、及在該外罩玻璃與該保持台所保持之板狀工件之間形成的測定光保護部,該測定光保護部具備:將該保持台所保持之板狀工件與該外罩玻璃之間以流體充滿之具有開口的盒體、及可將供給到該盒體的流體在水和空氣間切換的切換部,該以一層形成之板狀工件的情況是將該板狀工件的上表面與該外罩玻璃的的下表面之間以水充滿而形成水層,一面測定板狀工件的厚度一面進行磨削,該以二層形成之板狀工件的情況是將該板狀工件的上表面與該外罩玻璃的下表面之間以空氣充滿而形成空氣層,一面測定該上層的厚度一面進行磨削。
TW106125668A 2016-09-02 2017-07-31 磨削裝置 TWI726134B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016171855A JP6844971B2 (ja) 2016-09-02 2016-09-02 研削装置
JP2016-171855 2016-09-02

Publications (2)

Publication Number Publication Date
TW201811506A TW201811506A (zh) 2018-04-01
TWI726134B true TWI726134B (zh) 2021-05-01

Family

ID=61566856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106125668A TWI726134B (zh) 2016-09-02 2017-07-31 磨削裝置

Country Status (2)

Country Link
JP (1) JP6844971B2 (zh)
TW (1) TWI726134B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507576B2 (ja) 2020-03-17 2024-06-28 株式会社東京精密 研削装置
JP2023000307A (ja) 2021-06-17 2023-01-04 株式会社ディスコ 研削装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115960A (ja) * 2010-12-02 2012-06-21 Disco Corp 研削装置
TW201503997A (zh) * 2013-07-12 2015-02-01 Ebara Corp 膜厚測定裝置、膜厚測定方法、及具備膜厚測定裝置的研磨裝置
TW201628789A (zh) * 2014-12-10 2016-08-16 Disco Corp 磨削裝置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958148A (en) * 1996-07-26 1999-09-28 Speedfam-Ipec Corporation Method for cleaning workpiece surfaces and monitoring probes during workpiece processing
US6967715B2 (en) * 2002-12-06 2005-11-22 International Business Machines Corporation Method and apparatus for optical film measurements in a controlled environment
JP2006313883A (ja) * 2005-04-04 2006-11-16 Shin Etsu Handotai Co Ltd 貼り合わせウエーハの製造方法及び貼り合わせウエーハ並びに平面研削装置
KR20070118617A (ko) * 2005-04-04 2007-12-17 신에쯔 한도타이 가부시키가이샤 접합 웨이퍼의 제조방법 및 접합 웨이퍼 및 평면 연삭장치
JP5101312B2 (ja) * 2008-01-17 2012-12-19 株式会社ディスコ 厚み計測装置及び該厚み計測装置を備えた研削装置
JP2011519735A (ja) * 2008-04-21 2011-07-14 アプライド マテリアルズ インコーポレイテッド 研磨中に基板縁部の厚さを測定する方法および装置
JP5795942B2 (ja) * 2011-11-11 2015-10-14 株式会社ディスコ Sawデバイス用ウェーハの研削方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115960A (ja) * 2010-12-02 2012-06-21 Disco Corp 研削装置
TW201503997A (zh) * 2013-07-12 2015-02-01 Ebara Corp 膜厚測定裝置、膜厚測定方法、及具備膜厚測定裝置的研磨裝置
TW201628789A (zh) * 2014-12-10 2016-08-16 Disco Corp 磨削裝置

Also Published As

Publication number Publication date
TW201811506A (zh) 2018-04-01
JP6844971B2 (ja) 2021-03-17
JP2018034283A (ja) 2018-03-08

Similar Documents

Publication Publication Date Title
CN106903810A (zh) 切削装置
KR102319943B1 (ko) 연삭 장치
US11819975B2 (en) Workpiece processing apparatus including a resin coater and a resin grinder
KR20160125303A (ko) 웨이퍼의 가공 방법
TWI726134B (zh) 磨削裝置
JP6377433B2 (ja) 研削方法
JP6552930B2 (ja) 研削装置
JP2016078147A (ja) 研削装置
JP5731806B2 (ja) 研削装置
JP5101312B2 (ja) 厚み計測装置及び該厚み計測装置を備えた研削装置
JP6687455B2 (ja) 研削装置
JP6262593B2 (ja) 研削装置
KR102315293B1 (ko) 건식 연마 장치
CN102615585B (zh) 磨削装置
JP6774263B2 (ja) 切削装置
JP2010120130A (ja) 研磨装置、研磨方法および研磨用制御プログラム
JP6910888B2 (ja) 研削装置、及び研削方法
JP7334065B2 (ja) チップの製造方法
TW202111799A (zh) 計測裝置
JP6244206B2 (ja) 研削装置
JP6888397B2 (ja) 工作機械システム
JP7185446B2 (ja) 被加工物の研削装置及び研削方法
JP5731134B2 (ja) 研削装置
TW202327779A (zh) 磨削裝置