TWI720886B - 多層電容元件以及多層電容元件的設計方法 - Google Patents

多層電容元件以及多層電容元件的設計方法 Download PDF

Info

Publication number
TWI720886B
TWI720886B TW109115357A TW109115357A TWI720886B TW I720886 B TWI720886 B TW I720886B TW 109115357 A TW109115357 A TW 109115357A TW 109115357 A TW109115357 A TW 109115357A TW I720886 B TWI720886 B TW I720886B
Authority
TW
Taiwan
Prior art keywords
area
groove
modulation
aspect ratio
region
Prior art date
Application number
TW109115357A
Other languages
English (en)
Other versions
TW202143265A (zh
Inventor
陳駿盛
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW109115357A priority Critical patent/TWI720886B/zh
Priority to CN202010472946.3A priority patent/CN113629188A/zh
Priority to US16/905,926 priority patent/US11688761B2/en
Application granted granted Critical
Publication of TWI720886B publication Critical patent/TWI720886B/zh
Publication of TW202143265A publication Critical patent/TW202143265A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • H01G4/306Stacked capacitors made by thin film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

一種多層電容元件以及多層電容元件的設計方法。電容元件包括具有凹槽基板、第一深寬比調制結構以及多個導電層及多個介電層。第一深寬比調制結構位於所述凹槽中,以將所述凹槽定義為第一區域以及第一調制區域,其中所述第一調制區域的深寬比與所述第一區域的深寬比不同。多個導電層及多個介電層交替地堆疊於所述凹槽中。

Description

多層電容元件以及多層電容元件的設計方法
本發明是有關於一種電容元件以及電容元件的設計方法,且特別是有關於一種多層電容元件以及多層電容元件的設計方法。
相較於其他類型的電容器,凹槽式多層電容器在半導體積體電路中具有較高的的功率密度。在尺寸持續地細微化的要求下,所沉積的膜層越來越薄。然而,上述的限定會造成在引出電極的過程中因膜層厚度過薄而不易形成接觸窗的問題。
因此,目前仍需要一種改良的多層電容器,其需具有較大的用於引出電極的面積。
本發明提供一種多層電容元件,其較易引出電極。
本發明提供一種多層電容元件的設計方法,所設計的多層電容元件較易引出電極。
本發明提供一種多層電容元件,包括基板、第一深寬比調制結構以及多個導電層及多個介電層。基板具有凹槽。第一深寬比調制結構位於凹槽中,以將凹槽定義為第一區域以及第一調制區域,其中第一調制區域的深寬比與第一區域的深寬比不同。多個導電層及多個介電層,交替地堆疊於所述凹槽中。
在本發明的一實施例中,上述的多個導電層中的最上導電層填滿凹槽的空間。
在本發明的一實施例中,上述的多個導電層中的至少一導電層自第一區域延伸至第一調制區域。
在本發明的一實施例中,上述的自第一區域延伸至第一調制區域的至少一導電層中的最上導電層填滿調制區域的凹槽的空間。
在本發明的一實施例中,上述的第一深寬比調制結構將凹槽定義為第一區域、第一調制區域以及第二區域,其中第一調制區域位於第一區域以及第二區域之間,且第一調制區域的深寬比與第一區域的深寬比以及第二區域的深寬比不同。
在本發明的一實施例中,上述的多個導電層中的至少一導電層自第一區域延伸至第一調制區域及第二區域。
在本發明的一實施例中,上述的自第一區域延伸至調制區域及第二區域的至少一導電層中的最上導電層填滿第一調制區域的凹槽的空間。
在本發明的一實施例中,多層電容元件更包括第二深寬比調制結構,第二深寬比調制結構位於第一區域中,以將第一區域定義為第三區域、第二調制區域以及第四區域,其中第二調制區域的深寬比與第三區域的深寬比及第四區域的深寬比不同。
在本發明的一實施例中,上述的多個導電層中的至少一導電層自第三區域延伸至第二調制區域以及第四區域。
在本發明的一實施例中,上述的自第三區域延伸至第二調制區域以及第四區域的至少一導電層中的最上導電層填滿第二調制區域的凹槽的空間。
在本發明的一實施例中,上述的第一深寬比調制結構的材料與基板的材料相同。
在本發明的一實施例中,上述的第二深寬比調制結構的材料與所述基板的材料相同。
在本發明的一實施例中,上述的多個導電層及多個介電層中的最下層為導電層。
在本發明的一實施例中,上述的多個導電層及多個介電層中的最下層為介電層。
本發明提供一種多層電容元件的設計方法,其包括以下步驟。步驟a),決定多層電容元件所需的預定電容值。步驟b),定義所述多層電容元件中的凹槽的起始的幾何邊界。步驟c),將所述凹槽的空間分割為多個格子點。步驟d),計算每一個格子點的最大允許沉積層數。步驟e ),依據所述預定電容值決定電極的連接位置。
在本發明的一實施例中,上述的計算每一個格子點的最大允許沉積層數包括:計算每一個格子點在X-Z平面上的第一允許沉積層數,其中X方向平行於凹槽的底表面,Z方向垂直於凹槽的底表面;計算每一個格子點在Y-Z平面上的第二允許沉積層數,其中Y方向平行於凹槽的底表面且垂直於X方向以及Z方向;計算每一個格子點在Z方向上因預定平坦化製程的終止位置所得的第三允許沉積層數;以及決定每一個格子點的第一允許沉積層數、第二允許沉積層數及第三允許沉積層數中的最小值作為每一個格子點的最大允許沉積層數。
在本發明的一實施例中,上述的多層電容元件的設計方法更包括步驟f ):檢測所述電極的連接位置是否滿足一預設條件,其中當電極的連接位置滿足預設條件時,則保留電極的連接位置,以及當電極的連接位置未滿足預設條件時,重新改變多層電容元件中的凹槽的幾何邊界,並重複步驟c)、步驟d)以及步驟e )。
在本發明的一實施例中,上述的預設條件包括電容元件的電容值滿足預定電容值,且電極的連接位置的面積大於一預定面積。
在本發明的一實施例中,上述的改變多層電容元件中的凹槽的幾何邊界包括使用調制結構改變凹槽的幾何邊界,藉此改變凹槽中的部分區域的深寬比。
基於上述,在本發明所提出的多層電容元件及其設計方法中,可藉由深寬比調制結構改變凹槽的幾何邊界以及部分區域的深寬比,進而設計出具有預定電容值以及較大連接面積的多層電容元件。
以下說明內容的術語是參照本技術領域的習慣術語,如本說明書對部分術語有加以說明或定義,所述部分術語的解釋是以本說明書的說明或定義為準。
下列提供許多用於實施所提供標的之不同特徵的不同實施例或實例。為了簡化本發明,於下描述組件及配置的具體實例。當然這些僅為實例而非意圖為限制性。例如,在下面說明中,形成第一特徵在第二特徵上方或上可包括其中第一特徵及第二特徵是經形成為直接接觸的實施例,以及也可包括其中額外特徵可形成在第一特徵與第二特徵之間而使得第一特徵及第二特徵不可直接接觸的實施例。此外,本發明可重複圖式編號及/或字母於各種實例中。此重複是為了簡單與清楚之目的且其本身並不決定所討論的各種實施例及/或構形之間的關係。
再者,空間相關術語,例如“在...之下”、“下面”、“下”、“上面”、“上”和類似術語,可為了使說明書便於描述如圖式繪示的一個元件或特徵與另一個(或多個)元件或特徵的相對關係而使用於本文中。除了圖式中所畫的方位外,這些空間相對術語也意圖用來涵蓋裝置在使用中或操作時的不同方位。該設備可以其他方式定向(旋轉90度或於其它方位),據此在本文中所使用的這些空間相關說明符可以類似方式加以解釋。
在本實施例中,形成電容元件的方法可包括以下步驟。首先,在基板中形成凹槽。在一實施例中,可在基板中形成二維陣列的凹槽。接著,在凹槽中形成調制結構,以改變凹槽的幾何邊界,進而改變凹槽中部分區域的深寬比。然後,在凹槽中形成交替堆疊的多個導電層以及多個介電層,以覆蓋基板且多個導電層中的最上導電層完全地填充凹槽。在本實施例中,上述的多個導電層以及多個介電層是垂直地(即沿Z方向)堆疊並共形地形成在凹槽中。然後,進行平坦化製程以移除部分的導電層以及介電層直至預定的位置。在一實施例中,平坦化製程例如是化學機械研磨製程或回蝕刻(Etching Back)。在本實施例中,可進一步在填滿凹槽的最上導電層上形成接觸窗。
圖1為本發明一實施例的電容元件的剖面圖。電容元件10包括基板100、深寬比調制結構102、多個導電層104a~104d以及多個介電層106a~106c。在本實施例中,基板100例如是矽基板。在一實施例中,基板100摻雜有P型摻雜物(例如硼)。在此實施例中,基板100為P型基板。在另一實施例中,基板100摻雜有N型摻雜物(例如磷或砷)。在此實施例中,基板100為N型基板。在一實施例中,基板100為絕緣層上(semiconductor on insulator,SOI)半導體基板。
深寬比調制結構102位於基板100的凹槽101中。在本實施例中,深寬比調制結構102定義為三維空間的幾何物件。當深寬比調制結構102被設置於凹槽101中,深寬比調制結構102所佔據的空間便不能再為電容所用(即多層電容並無法在深寬比調制結構102所佔據的空間中形成)。在本實施例中,深寬比調制結構102的材料可與基板100的材料相同,其有助於製程的相容性,但本發明不限於此。在另一實施例中,深寬比調制結構102的材料亦可與基板100的材料不同。
在本實施例中,深寬比調制結構102在X方向上將凹槽101定義為第一區域101a以及調制區域101b,其中調制區域101b的深寬比與第一區域101a的深寬比不同。在本實施例中,由於深寬比調制結構102設置於凹槽101中,因此改變了凹槽101的幾何邊界,進而改變凹槽101中部分區域(即調制區域101b)的深寬比。如圖1所示,調制區域101b的凹槽的深度(即在Z方向上的高度)小於第一區域101a的凹槽的深度,因此調制區域101b的深寬比會與第一區域101a的深寬比不同。
在本實施例中,深寬比調制結構102的數量為1個,且深寬比調制結構102設置在凹槽101的底面與側面的交界處(如圖1所示),但本發明不限於此。
多個導電層104a~104d以及多個介電層106a~106c交替地堆疊在凹槽101中。在本實施例中,導電層104a~104d的材料例如是多晶矽。在本實施例中,導電層104a~104d為正負交錯的電性。介電層106a~106c的絕緣性材料例如是氧化物層、氮化物層或氧化物/氮化物/氧化物(oxide/nitride/oxide,ONO)的複合層。
導電層104a~104d中的最上導電層(即導電層104d)填滿凹槽101的空間。在本實施例中,如圖1所示,導電層與介電層的數量分別為4層與3層,但本發明不限於此,圖1中導電層與介電層的數量僅為示例用,可依需求改變導電層與介電層的數量,只要多個導電層中的最上導電層填滿凹槽101的空間即可。在本實施例中,如圖1所示,導電層先設置於凹槽中,但本發明不限於此。但另一實施例中,介電層可先設置於凹槽101中,只要多個導電層中的最上導電層填滿凹槽101的空間即可。
在本實施例中,由於填滿凹槽101的最上導電層(即導電層104d)的頂表面相對於其他層的頂表面具有較大的面積,因此適合作為電極的連接位置(即用於形成接觸窗的位置)。
在本實施例中,層間介電層可配置於導電層與介電層上且第一接觸窗可形成在導電層104d的頂表面上(未繪示)。在一實施例中,第一接觸窗可形成在導電層104d的頂表面上、第二接觸窗可形成在導電層104c的頂表面上、第三接觸窗可形成在導電層104b的頂表面上及/或第四接觸窗可形成在導電層104a的頂表面上(未繪示)。在一實施例中,第一接觸窗與第三接觸窗可與第一電極電性連接,第二接觸窗與第四接觸窗可與第二電極電性連接。
圖2為本發明一實施例的電容元件的上視圖。在本實施例中,將沿用前述實施例的部分內容,並且省略了相同技術內容的說明。
請參照圖2,深寬比調制結構202位於基板200的凹槽201中。在本實施例中,2個獨立的深寬比調制結構202在X方向上將凹槽201定義為第一區域201a以及調制區域201b,其中調制區域201b的深寬比與第一區域201a的深寬比不同。在本實施例中,由於深寬比調制結構202設置於凹槽201中,因此改變了凹槽201的幾何邊界,進而改變凹槽201中部分區域(即調制區域201b)的深寬比。如圖2所示,調制區域201b的凹槽的寬度(即在Y方向上的寬度)小於第一區域201a的凹槽的寬度,因此調制區域201b的深寬比會與第一區域201a的深寬比不同。
多個導電層204a~204d以及多個介電層206a~206c交替地堆疊在凹槽201中。在本實施例中,導電層204a~204d中的至少一導電層自第一區域201a延伸至調制區域201b。如圖2所示,導電層204a以及導電層204b自第一區域201a延伸至調制區域201b。導電層204c以及導電層204d僅設置在第一區域201a中。
在本實施例中,自第一區域201a延伸至調制區域201b的導電層(即導電層204a以及導電層204b)中的最上導電層(即導電層204b)填滿調制區域201b的凹槽的空間。
在本實施中,由於深寬比調制結構202形成了具有不同深寬比的第一區域201a以及調制區域201b,因此在沉積多個導電層以及多個介電層的過程中,調制區域201b的凹槽會先被填滿(舉例來說,調制區域201b的凹槽先被導電層204b填滿)。而在進行後續的機械研磨製程後,調制區域201b中的導電層204b之後所沉積的層皆會被完全移除。具體來說,調制區域201b的導電層204c、導電層204d、介電層206b以及介電層206c皆會被完全移除。也就是說,在第一區域201a中,所有設計的導電層以及介電層可完整的形成。而在調制區域201b中,在填滿調制區域201b的凹槽的導電層204b之後的層皆無法形成。因此調制區域201b阻斷了導電層204b之後的所有層的連接。
在本實施例中,如圖2所示,導電層204b的自第一區域201a往調制區域201b凸出的區域(即凸接的區域)具有較大的面積,因此適合作為電極的連接位置(即用於形成接觸窗的位置)。
在本實施例中,層間介電層可配置於導電層與介電層上且第一接觸窗可形成在導電層204b的頂表面上(未繪示)。更具體來說,第一接觸窗可形成在導電層204b的自第一區域201a往調制區域201b凸出的區域上。
在一實施例中,第一接觸窗可形成在導電層204b的頂表面上、第二接觸窗可形成在導電層204a的頂表面上、第三接觸窗可形成在導電層204c的頂表面上及/或第四接觸窗可形成在導電層204d的頂表面上(未繪示)。在一實施例中,第一接觸窗與第三接觸窗可與第一電極電性連接,第二接觸窗與第四接觸窗可與第二電極電性連接。
圖3為本發明另一實施例的電容元件的上視圖。在本實施例中,將沿用前述實施例的部分內容,並且省略了相同技術內容的說明。
請參照圖3,深寬比調制結構302位於基板300的凹槽301中。在本實施例中,2個獨立的深寬比調制結構302在X方向上將凹槽301定義為第一區域301a、調制區域301b以及第二區域301c,其中所述調制區域301b位於第一區域以及所述第二區域之間,且調制區域301b的深寬比與第一區域301a的深寬比及第二區域301c的深寬比不同。在本實施例中,由於深寬比調制結構302設置於凹槽301中,因此改變了凹槽301的幾何邊界,進而改變凹槽301中部分區域(即調制區域301b)的深寬比。如圖3所示,調制區域301b的凹槽的寬度(即在Y方向上的寬度)小於第一區域301a與第二區域301c的凹槽的寬度,因此調制區域301b的深寬比會與第一區域301a的深寬比及第二區域301c的深寬比不同。
多個導電層304a~304d以及多個介電層306a~306c交替地堆疊在凹槽301中。在本實施例中,導電層304a~304d中的至少一導電層自第一區域301a延伸至調制區域301b及第二區域301c。如圖1所示,導電層304a以及導電層304b自第一區域301a延伸至調制區域301b及第二區域301c。更具體來說,第一區域301a、調制區域301b及第二區域301c中的導電層304a及導電層304b連續地連接。也就是說,第一區域301a與第二區域301c藉由調制區域301b的導電層304a及導電層304b而橋接(bridge connection)。在本實施例中,導電層304c以及導電層304d僅設置在第一區域301a及第二區域301c中。
在本實施例中,自第一區域301a延伸至調制區域301b及第二區域301c的導電層(即導電層304a以及導電層304b)中的最上導電層(即導電層304b)填滿調制區域301b的凹槽的空間。
在本實施中,由於深寬比調制結構302形成了具有與第一區域301a以及第二區域301c不同深寬比的調制區域301b,因此在沉積多個導電層以及多個介電層的過程中,調制區域301b的凹槽會先被填滿(舉例來說,調制區域301b的凹槽先被導電層304b填滿)。而在進行後續的機械研磨製程後,調制區域301b中的導電層304b之後所沉積的層皆會被完全移除。具體來說,調制區域301b的導電層304c、導電層304d、介電層306b以及介電層306c皆會被完全移除。也就是說,在第一區域301a及第二區域301c中,所有設計的導電層以及介電層可完整的形成。而在調制區域301b中,在填滿調制區域301b的凹槽的導電層304b之後的層皆無法形成。因此調制區域301b阻斷了導電層304b之後的所有層的連接。
在本實施例中,導電層304b的自第一區域301a往調制區域301b凸出的區域(或導電層304b的自第二區域301c往調制區域301b凸出的區域)具有較大的面積(圖3所示),因此適合作為電極的連接位置(即用於形成接觸窗的位置)。
在本實施例中,層間介電層可配置於導電層與介電層上且第一接觸窗可形成在導電層304b的頂表面上(未繪示)。更具體來說,第一接觸窗可形成在導電層304b的自第一區域301a往調制區域301b凸出的區域(或導電層304b的自第二區域301c往調制區域301b凸出的區域)上。
在一實施例中,第一接觸窗可形成在導電層304b的頂表面上、第二接觸窗可形成在導電層304a的頂表面上、第三接觸窗可形成在導電層304c的頂表面上及/或第四接觸窗可形成在導電層304d的頂表面上(未繪示)。在一實施例中,第一接觸窗與第三接觸窗可與第一電極電性連接,第二接觸窗與第四接觸窗可與第二電極電性連接。
圖4為本發明又一實施例的電容元件的上視圖。在本實施例中,將沿用前述實施例的部分內容,並且省略了相同技術內容的說明。
請參照圖4,第一深寬比調制結構402a位於基板400的凹槽401中。在本實施例中,2個獨立的第一深寬比調制結構402a在Y方向上將凹槽401定義為第一區域401a以及第一調制區域401b,其中第一調制區域401b的深寬比與第一區域401a的深寬比不同。在本實施例中,由於第一深寬比調制結構402a設置於凹槽401中,因此改變了凹槽401的幾何邊界,進而改變凹槽401中部分區域(即第一調制區域401b)的深寬比。如圖4所示,第一調制區域401b的凹槽的寬度(即在X方向上的寬度)小於第一區域401a的凹槽的寬度,因此第一調制區域401b的深寬比會與第一區域401a的深寬比不同。
在本實施例中,電容元件40可更包括第二深寬比調制結構402b,其中第二深寬比調制結構402b位於所述第一區域401a中。在本實施例中,2個獨立的第二深寬比調制結構402b在X方向上將第一區域401a定義為第三區域401c、第二調制區域401d以及第四區域401e,其中第二調制區域401d位於第三區域401c以及第四區域401e之間,且第二調制區域401d的深寬比與第三區域401c的深寬比及第四區域401e的深寬比不同。在本實施例中,由於第二深寬比調制結構402b設置於第一區域401a中,因此改變了凹槽401的幾何邊界,進而改變第一區域401a中部分區域(即第二調制區域401d)的深寬比。如圖4所示,第二調制區域401d的凹槽的寬度(即在Y方向上的寬度)小於第三區域401c與第四區域401e的凹槽的寬度,因此第二調制區域401d的深寬比會與第三區域401c的深寬比及第四區域401e的深寬比不同。
多個導電層404a~404d以及多個介電層406a~406c交替地堆疊在凹槽401中。在本實施例中,導電層404a~404d中的至少一導電層自第一區域401a延伸至第一調制區域401b。更具體來說,導電層404a~404d中的至少一導電層自第三區域401c延伸至第二調制區域401d、第四區域401e以及第一調制區域401b。
如圖4所示,導電層404a、導電層404b以及導電層404c自第三區域401c延伸至第二調制區域401d、第四區域401e以及第一調制區域401b。導電層404a、導電層404b以及導電層404c自第一區域401a延伸至第一調制區域401b。在本實施例中,第三區域401c、第二調制區域401d、第四區域401e以及第一調制區域401b中的導電層404a、導電層404b以及導電層404c連續地連接。在本實施例中,第三區域401c與第四區域401e藉由第二調制區域401d的導電層404a、導電層404b以及導電層404c而橋接(bridge connection)。在本實施例中,導電層404d僅設置在第三區域401c及第四區域401e中。
在本實施例中,自第一區域401a延伸至第一調制區域401b的導電層中的最上導電層(即導電層404c)填滿第一調制區域401b的凹槽的空間。自第三區域401c延伸至第二調制區域401d及第四區域401e的導電層中的最上導電層(即導電層404c)填滿第二調制區域401d的凹槽的空間。
在本實施例中,導電層404c的自第一區域401a往第一調制區域401b凸出的區域具有較大的面積(圖4所示),因此適合作為電極的連接位置(即用於形成接觸窗的位置)。而導電層404c的自第三區域401c往第二調制區域401d凸出的區域(或導電層404c的自第四區域401e往第二調制區域401d凸出的區域)具有較大的面積,因此亦適合作為電極的連接位置。在本實施例中,凸接區域以及橋接區域皆為導電層404c,但本發明不限於此。在另一實施例中,凸接區域以及橋接區域可為不同的導電層。
為了使所製備的電容元件的導電層較容易連接電極,本發明提出了可達到上述目的的多層電容元件的設計方法。以下,特舉實施例作為本發明確實能夠據以實施的說明。
本發明提供一種多層電容元件的設計方法。圖5是用以說明本發明第一實施例的多層電容元件的設計方法的流程圖。
下文將參照圖5來說明書本實施例的多層電容元件的設計方法。
首先,執行步驟S100:決定多層電容元件所需的預定電容值。在一實施例中,多層電容元件所需的預定電容值可依據一或多個給定的設計規格來決定。在另一實施例中,多層電容元件所需的預定電容值可依據電路設計者的需求來決定。
接著,執行步驟S110:定義所述多層電容元件中的凹槽的起始的幾何邊界(geometry boundary)。在本實施例中,凹槽的起始的幾何邊界意指在凹槽在三維空間中的平面邊界,即X-Y平面、X-Z平面以及Y-Z平面。在本實施例中,X方向可為平行於凹槽的底表面的長度方向(或寬度方向);Y方向可為平行於凹槽的底表面的寬度方向(或長度方向),且Y方向與X方向垂直;Z方向可為垂直於凹槽的底表面的深度方向,且Z方向與X方向及Y方向垂直。在此要說明的是,在本實施例中,平坦化製程的終止位置(例如是化學機械研磨製程終止處)可決定深度(即Z方向)的邊界。
然後,執行步驟S120:將所述凹槽的空間分割為多個格子點。在本實施例中,格子點由沿X方向上多數個等間距假想線、沿Y方向上多數個等間距假想線與沿Z方向上多數個等間距假想線所交錯形成。
之後,執行步驟S130:計算每一個格子點的最大允許沉積層數。在本實施例中,最大允許沉積層數意指在該處最多可沉積的膜的層數。在本實施例中,每一個格子點在X-Z平面、Y-Z平面以及Z方向上各自具有一個允許沉積層數。在本實施例中,Z方向上的允許沉積層數是藉由預定平坦化製程的終止位置所得。在本實施例中,X-Z平面的允許沉積層數、Y-Z平面的允許沉積層數與Z方向上的允許沉積層數中的最小值作為格子點的的最大允許沉積層數。舉例來說,若格子點G在X-Z平面上的允許沉積層數為3,在Y-Z平面上的允許沉積層數為4,在Z方向上允許沉積層數為4,則格子點G的最大允許沉積層數則為3。這是因為在X-Z平面的狀況下,沉積至第三層時已填滿凹槽。
在本實施例中,可藉由深寬比(AR)、沉積製程的深寬比極限(R lim)、沉積膜厚來計算允許沉積層數。而上述的參數即可稱為電容元件的設計空間(design space)。以下將以多層膜沉積模型來解釋如何計算出允許沉積層數。
圖6為凹槽在X-Z平面下的剖面圖。請參照圖6,凹槽501在X方向上的寬度為A,在Z方向上的深度為H,而凹槽501的初始深寬比R為H/A。在沉積第一層510後,第一層510在凹槽501頂部的膜厚定義為dHt、第一層510在凹槽501底部的膜厚定義為dHb、以及第一層510在凹槽510側壁的膜厚定義為dAs。在沉積第一層510後,凹槽501在X方向上的寬度為A-2dAs,且凹槽501可得到新的深寬比R’,深寬比R’由以下數學式1表示。 [數學式1]
Figure 02_image003
在本實施例中,假設所沉積的每一層的膜厚皆相同,在沉積至第n層時,深寬比R (n)由以下數學式2。 [數學式2]
Figure 02_image001
在數學式2中,dH為dHt-dHb。
此外,在沉積過程中,需滿足以下數學式3以及數學式4,才可確保可進行下一層的沉積。 [數學式3]
Figure 02_image005
[數學式4]
Figure 02_image007
數學式3意指凹槽的開口(即在X方向上的寬度為A)需大於2n倍的側壁的膜厚dAs。數學式4意指第n層的深寬比需小於沉積製程的填縫能力的極限時的深寬比(R lim
由數學式3經換算可進一步推得以下數學式5。 [數學式5]
Figure 02_image011
將數學式2代入數學式4中,可進一步推得以下數學式6。 [數學式6]
Figure 02_image013
當dH=(dHt-dHb) =0時(即在凹槽頂部的膜厚dHt與在凹槽底部的膜厚dHb相同時),可進一步將數學式6推得以下數學式7。 [數學式7]
Figure 02_image015
在本實施例中,當沉積的每一層的膜厚相同時,允許沉積層數 n可由數學式5以及化學式6計算出。也就是說,可藉由深寬比(AR)、沉積製程的深寬比極限(R lim)、沉積膜厚來計算允許沉積層數n。
在另一實施例中,假設所沉積的每一層的膜厚不相同,在沉積至第n層時,深寬比R (n)由以下數學式8。 [數學式8]
Figure 02_image017
在數學式8中,i代表每一層的順次。舉例來說,i為1時則代表第1層。
同樣地,在本實施例中,在沉積過程中,需滿足以下數學式9以及數學式10,才可確保可進行下一層的沉積。 [數學式9]
Figure 02_image019
[數學式10]
Figure 02_image009
接著,執行步驟S140:依據預定電容值決定電極的連接位置。在本實施例中,由於在步驟S130中已可推知凹槽中每個格子點的最大允許沉積層數,因此可依據預定電容值來決定平坦化製程的終止位置,進而決定電極的連接位置(即形成接觸窗的位置)。
為了確保電極的連接位置是適當的,在執行步驟S140後,可進一步執行步驟S150:檢測電極的連接位置是否滿足一預設條件。在本實施例中,預設條件例如是電容元件的電容值滿足所需的預定電容值,且電極的連接位置的面積大於一預定面積。
若電容元件的電容值滿足所需的預定電容值、且電極的連接位置的面積大於一預定面積(預定面積由製程需求所決定)時,表示預設條件被滿足,而電極的連接位置則保留。至此,即完成電容元件的設計。由於本發明的電容元件的電極的連接位置的面積大於預定面積,因此有助於形成接觸窗並使電極較容易引出,且可避免產生短路的問題。
若電極的連接位置未滿足預設條件時,則重新改變多層電容元件中的凹槽的幾何邊界(步驟S160),並重複步驟S120、步驟S130以及步驟S140。具體來說,若電極的連接位置未滿足預設條件時,重新改變電容元件中的凹槽的幾何邊界,以使得凹槽中的部分區域的深寬比改變(步驟S160)。接著,重新將具有新的幾何邊界的凹槽分割成格子點(步驟S120)。然後,重新計算具有新的幾何邊界的凹槽中每一個格子點的最大允許沉積層數(步驟S130)。由於具有新的幾何邊界的凹槽中的部分區域的深寬比改變,因此位於其內的格子點的最大允許沉積層數亦會改變。之後,依據預定電容值重新決定電極的連接位置(步驟S140)。接著,並再次檢測電極的連接位置是否滿足預設條件(步驟S150)。可重複步驟S120~步驟S160直至電極的連接位置滿足預設條件,則完成電容元件的設計。
在本實施例中,改變多層電容元件中的凹槽的幾何邊界(步驟S160)的方法例如是使用調制結構改變凹槽的幾何邊界,藉此改變凹槽中的部分區域的深寬比。在本實施例中,當調制結構被設計入凹槽的部分區域中,調制結構所佔據的空間即不能再為形成電容所用。也就是說,導電層與介電層的多層膜結構並不能形成在調制結構所佔據的空間中。因此,當調制結構被設計入凹槽中,凹槽的部分幾何邊界便改變成調制結構的幾何邊界,因此改變了凹槽中的部分區域的深寬比。
以下列舉實施例以說明本發明的多層電容元件及其設計方法,但這些實施例非用以限制本發明保護範圍。所繪圖式係為示意圖僅為說明方便而繪製,並非代表限制其實際的方法、條件或裝置等。
[實施例1]
圖7A及圖7B為本發明的實施例的模擬的多層電容元件的上視圖。請參照圖7A,多層電容元件70的基板700的凹槽701在二維延伸方向上被分割成多個格子點G,每一個格子點中的數字0~4即是代表所沉積的層的順次。詳細來說,詳細來說,在凹槽中依序交替沉積導體層與介電層(共5層,導體層先沉積),格子點的數字0~4分別代表依序沉積的第一導電層710、第一介電層720、第二導電層730、第二介電層740以及第三導電層750。如圖7A所示,數字4的格子點所構成的區域B(即形成接觸窗的位置)為可能的電極的連接位置(即第三導電層750的位置),區域B包括4個格子點。
若預增加區域B的面積,則可將圖7A中右側的深寬比調制結構715向左移動2格。具體來說,如圖7B所示,當深寬比調制結構715向左移動2格後,區域B’的面積增加為8個格子點,而圖7A的區域C則消失。這是因為右側的深寬比調制結構715的位置改變,造成了深寬比調制結構擠壓或拉長多層膜沉積在某一方向的邊界及改變某些區域的深寬比,進而使較後順序沉積的膜無法在部分區域沉積(如區域C),或者使部分區域的空間被拉長,進而可使較後順序沉積的膜可以沉積(如區域B’)。
如圖7B所示,由於第三導電層750的面積(區域B’) 變大,因此以區域B’作為電極的連接位置,則有助於形成接觸窗並使電極較容易引出,且可避免產生短路的問題。
[實施例2]
圖8A至圖8H為本發明的實施例的模擬的多層電容元件的剖視圖。請參照圖8A,多層電容元件80的基板800的凹槽801在二維延伸方向上被分割成多個格子點G,每一個格子點中的數字0~8即是代表所沉積的層的順次。詳細來說,在凹槽中依序交替沉積導體層與介電層(共9層,導體層先沉積),格子點的數字0~8分別代表依序沉積的第一導電層810、第一介電層820、第二導電層830、第二介電層840、第三導電層850、第三介電層860、第四導電層870、第四介電層880以及第五導電層890。每一個格子點的二維座標資訊包含在基板上(或凹槽中)所對應沉積的膜層。可依據所需的預定電容值來決定平坦化製程的終止位置。在本實施例中,終止線812的位置即代表平坦化製程的終止位置。
請參照圖8B,可在凹槽801中設置第一深寬比調制結構815。在本實施例中,由於深寬比調制結構815的置入,因此改變凹槽801的幾何邊界以及部分區域的深寬比,進而改變所沉積膜層的圖案。在本實施例中,可使用與基板800相同的材料作為深寬比調制結構815的材料。
請參照圖8C,增加深寬比調制結構815的大小,以使得所沉積的膜層的圖案變化加大。
請參照圖8D以及圖8E,可進一步在凹槽801中設置第二深寬比調制結構815A,並可改變第二深寬比調制結構815A的大小進一步改變凹槽的幾何邊界以及部分區域的深寬比,進而改變所沉積膜層的圖案。在本實施例中,可使用與基板800相同的材料作為深寬比調制結構815A的材料。
在此要說明的是,每一個凹槽的幾何邊界的改變(藉由改變深寬比調制結構的數目或改變深寬比調制結構的大小)皆可得到一個可能的電極的連接位置。若判定電極的連接位置符合預設條件時,則保留所述電極的連接位置。若所述電極的連接位置未滿足預設條件時,則重新改變多層電容元件中的凹槽的幾何邊界(即改變深寬比調制結構的數目或改變深寬比調制結構的大小)。以圖8A至圖8D的結構為例,依據平坦化製程終止處所產生的平面截面,所有可能的電極的連接位置皆無法滿足預設條件(即未符合所需的預定電容值以及預定連接面積)。
請參照圖8E至8H,可改變第二深寬比調制結構815A的位置,以改變凹槽的幾何邊界以及部分區域的深寬比,進而改變所沉積膜層的圖案。如圖8H所示,依據平坦化製程終止處所產生的平面截面,由數字6的格子點所構成的區域D符合所需的預定電容值且具有較大的連接面積,因此可作為適合的電極的連接位置。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
10、20、30、40、70、80:電容元件 100、200、300、400、700、800:基板 101、201、301、401、501、701、801:凹槽 102、202、302、402a、402b:深寬比調制結構 101a、201a、301a、401a:第一區域 101b、201b、301b、401b、401d:調制區域 301c:第二區域 401c:第三區域 401e:第四區域 104a、104b、104c、104d、204a、204b、204c、204d、304a、304b、304c、304d、404a、404b、404c、404d:導電層 106a、106b、106c、206a、206b、206c、306a、306b、306c、406a、406b、406c:介電層 510:第一層 710、730、750、810、830、850、870、890:導電層 715、815、815A:深寬比調制結構 720、740、820、840、860、880:介電層 812:終止線 A:寬度 B、B’、C、D:區域 G:格子點 H:深度 dHt、dHb、dAs:膜厚 X、Y、Z:方向
圖1為本發明一實施例的電容元件的剖面圖。 圖2為本發明一實施例的電容元件的上視圖。 圖3為本發明另一實施例的電容元件的上視圖。 圖4為本發明又一實施例的電容元件的上視圖。 圖5是用以說明本發明第一實施例的多層電容元件的設計方法的流程圖。 圖6為凹槽在X-Z平面下的剖面圖。 圖7A及圖7B為本發明的實施例的模擬的多層電容元件的上視圖。 圖8A至圖8H為本發明的實施例的模擬的多層電容元件的剖視圖。
10:電容元件
100:基板
101:凹槽
102:深寬比調制結構
101a:第一區域
101b:調制區域
104a、104b、104c、104d:導電層
106a、106b、106c:介電層
X、Y、Z:方向

Claims (18)

  1. 一種多層電容元件,包括:基板,具有凹槽;第一深寬比調制結構,位於所述凹槽中,以將所述凹槽定義為第一區域以及第一調制區域,其中所述第一調制區域的深寬比與所述第一區域的深寬比不同;以及多個導電層及多個介電層,交替地堆疊於所述凹槽中,其中所述多個導電層中的最上導電層填滿所述凹槽的空間。
  2. 如請求項1所述的多層電容元件,其中所述多個導電層中的至少一導電層自所述第一區域延伸至所述第一調制區域。
  3. 如請求項2所述的多層電容元件,其中自所述第一區域延伸至所述第一調制區域的所述至少一導電層中的最上導電層填滿所述調制區域的所述凹槽的空間。
  4. 如請求項1所述的多層電容元件,其中所述第一深寬比調制結構將所述凹槽定義為所述第一區域、所述第一調制區域以及第二區域,其中所述第一調制區域位於所述第一區域以及所述第二區域之間,且所述第一調制區域的深寬比與所述第一區域的深寬比以及所述第二區域的深寬比不同。
  5. 如請求項4所述的多層電容元件,其中所述多個導電層中的至少一導電層自所述第一區域延伸至所述第一調制區域及所述第二區域。
  6. 如請求項5所述的多層電容元件,其中自所述第一區域延伸至所述調制區域及所述第二區域的所述至少一導電層中的最上導電層填滿所述第一調制區域的所述凹槽的空間。
  7. 如請求項2所述的多層電容元件,更包括第二深寬比調制結構,位於所述第一區域中,以將所述第一區域定義為第三區域、第二調制區域以及第四區域,其中所述第二調制區域的深寬比與所述第三區域的深寬比及所述第四區域的深寬比不同。
  8. 如請求項7所述的多層電容元件,其中所述多個導電層中的至少一導電層自所述第三區域延伸至所述第二調制區域以及所述第四區域。
  9. 如請求項8所述的多層電容元件,其中自所述第三區域延伸至所述第二調制區域以及所述第四區域的所述至少一導電層中的最上導電層填滿所述第二調制區域的所述凹槽的空間。
  10. 如請求項1所述的多層電容元件,其中所述第一深寬比調制結構的材料與所述基板的材料相同。
  11. 如請求項7所述的多層電容元件,其中所述第二深寬比調制結構的材料與所述基板的材料相同。
  12. 如請求項1所述的多層電容元件,其中所述多個導電層及所述多個介電層中的最下層為所述導電層。
  13. 如請求項1所述的多層電容元件,其中所述多個導電層及所述多個介電層中的最下層為所述介電層。
  14. 一種多層電容元件的設計方法,包括: 步驟a),決定多層電容元件所需的預定電容值;步驟b),定義所述多層電容元件中的凹槽的起始的幾何邊界;步驟c),將所述凹槽的空間分割為多個格子點;步驟d),計算每一個格子點的最大允許沉積層數;以及步驟e),依據所述預定電容值決定電極的連接位置。
  15. 如請求項14所述的多層電容元件的設計方法,其中計算每一個格子點的所述最大允許沉積層數包括:計算每一個格子點在X-Z平面上的第一允許沉積層數,其中X方向平行於所述凹槽的底表面,Z方向垂直於所述凹槽的所述底表面;計算每一個格子點在Y-Z平面上的第二允許沉積層數,其中Y方向平行於所述凹槽的所述底表面且垂直於所述X方向以及所述Z方向;以及計算每一個格子點在Z方向上因預定平坦化製程的終止位置所得的第三允許沉積層數。 決定每一個格子點的所述第一允許沉積層數、所述第二允許沉積層數及所述第三允許沉積層數中的最小值作為每一個格子點的所述最大允許沉積層數。
  16. 如請求項14所述的多層電容元件的設計方法,更包括步驟f):檢測所述電極的所述連接位置是否滿足一預設條件,其中當所述電極的所述連接位置滿足所述預設條件時,則保 留所述電極的所述連接位置,以及當所述電極的所述連接位置未滿足所述預設條件時,重新改變所述多層電容元件中的所述凹槽的幾何邊界,並重複所述步驟c)、所述步驟d)以及所述步驟e)。
  17. 如請求項16所述的多層電容元件的設計方法,其中所述預設條件包括所述電容元件的電容值滿足所述預定電容值,且所述電極的所述連接位置的面積大於一預定面積。
  18. 如請求項16所述的多層電容元件的設計方法,其中改變所述多層電容元件中的所述凹槽的所述幾何邊界包括使用調制結構改變所述凹槽的所述幾何邊界,藉此改變所述凹槽中的部分區域的深寬比。
TW109115357A 2020-05-08 2020-05-08 多層電容元件以及多層電容元件的設計方法 TWI720886B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109115357A TWI720886B (zh) 2020-05-08 2020-05-08 多層電容元件以及多層電容元件的設計方法
CN202010472946.3A CN113629188A (zh) 2020-05-08 2020-05-29 多层电容元件以及多层电容元件的设计方法
US16/905,926 US11688761B2 (en) 2020-05-08 2020-06-19 Multilayer capacitive element having aspect ratio modulation structure and design method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109115357A TWI720886B (zh) 2020-05-08 2020-05-08 多層電容元件以及多層電容元件的設計方法

Publications (2)

Publication Number Publication Date
TWI720886B true TWI720886B (zh) 2021-03-01
TW202143265A TW202143265A (zh) 2021-11-16

Family

ID=76035875

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115357A TWI720886B (zh) 2020-05-08 2020-05-08 多層電容元件以及多層電容元件的設計方法

Country Status (3)

Country Link
US (1) US11688761B2 (zh)
CN (1) CN113629188A (zh)
TW (1) TWI720886B (zh)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879985A (en) 1997-03-26 1999-03-09 International Business Machines Corporation Crown capacitor using a tapered etch of a damascene lower electrode
TW410402B (en) 1998-02-06 2000-11-01 Sony Corp Dielectric capacitor and method of manufacturing same, and dielectric memeory using same
US6259149B1 (en) * 1998-07-07 2001-07-10 Agere Systems Guardian Corp. Fully isolated thin-film trench capacitor
US6436787B1 (en) 2001-07-26 2002-08-20 Taiwan Semiconductor Manufacturing Company Method of forming crown-type MIM capacitor integrated with the CU damascene process
US6992344B2 (en) * 2002-12-13 2006-01-31 International Business Machines Corporation Damascene integration scheme for developing metal-insulator-metal capacitors
TWI467610B (zh) 2009-07-23 2015-01-01 Ind Tech Res Inst 電容結構
US8513723B2 (en) * 2010-01-19 2013-08-20 International Business Machines Corporation Method and structure for forming high performance MOS capacitor along with fully depleted semiconductor on insulator devices on the same chip
US9196672B2 (en) * 2012-01-06 2015-11-24 Maxim Integrated Products, Inc. Semiconductor device having capacitor integrated therein
CN103412667B (zh) * 2013-04-12 2015-04-08 深圳欧菲光科技股份有限公司 触控面板及触控显示装置
US9105759B2 (en) * 2013-11-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitive device and method of making the same
US9412806B2 (en) * 2014-06-13 2016-08-09 Invensas Corporation Making multilayer 3D capacitors using arrays of upstanding rods or ridges
US10008558B1 (en) * 2017-01-05 2018-06-26 International Business Machines Corporation Advanced metal insulator metal capacitor
US10276651B2 (en) * 2017-09-01 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Low warpage high density trench capacitor
US10446325B2 (en) * 2017-09-29 2019-10-15 Advanced Semiconductor Engineering, Inc. Capacitor structures
DE112019003024T5 (de) * 2018-06-15 2021-03-18 Murata Manufacturing Co., Ltd. Kondensator und verfahren zu dessen herstellung
JP7178187B2 (ja) * 2018-06-27 2022-11-25 太陽誘電株式会社 トレンチキャパシタ
US10693019B2 (en) * 2018-08-27 2020-06-23 Taiwan Semiconductor Manufacturing Co., Ltd. Film scheme for a high density trench capacitor
US11329125B2 (en) * 2018-09-21 2022-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit including trench capacitor
US11088239B2 (en) * 2018-11-30 2021-08-10 Taiwan Semiconductor Manufacturing Company, Ltd. Cap structure for trench capacitors

Also Published As

Publication number Publication date
TW202143265A (zh) 2021-11-16
US20210351267A1 (en) 2021-11-11
US11688761B2 (en) 2023-06-27
CN113629188A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
JP6987876B2 (ja) メモリデバイスおよび方法
JP2020513225A (ja) 3次元メモリデバイスのジョイント開口構造、およびそれを形成するための方法
JP4794118B2 (ja) 半導体メモリ素子及びその製造方法
TW202010108A (zh) 半導體結構暨其形成方法
TW202205638A (zh) 三維儲存單元陣列
CN112563285A (zh) 垂直半导体器件
CN115332251A (zh) 半导体结构及其制造方法
TWI575714B (zh) 三維記憶體
TWI564996B (zh) 半導體裝置及其製造方法
US20210111259A1 (en) Semiconductor devices having variously-shaped source/drain patterns
TWI720886B (zh) 多層電容元件以及多層電容元件的設計方法
CN116130414A (zh) 半导体结构的制造方法和半导体结构
CN115425006A (zh) 深沟槽电容器及其制造方法
CN114758989A (zh) 电容阵列结构及其制备方法、半导体结构
KR20160067445A (ko) 반도체 소자용 액티브 구조물 및 이의 형성 방법
CN115064539A (zh) 半导体结构及其制造方法
CN113539954A (zh) 半导体结构及其制作方法
KR20130023994A (ko) 반도체 소자 및 이의 제조방법
TW202147576A (zh) 三維記憶體元件的接觸墊結構及其形成方法
CA3033042C (en) Semiconductor capacitor
KR20210014444A (ko) 반도체 소자
CN110828371B (zh) 垂直存储器件
TWI807991B (zh) 半導體裝置及其製作方法
KR20110130865A (ko) 3차원 스택 구조를 갖는 상변화 메모리 장치
CN110875331B (zh) 三维叠层半导体元件