TWI720642B - 小分子氣泡水的製作方法及小分子氣泡水 - Google Patents

小分子氣泡水的製作方法及小分子氣泡水 Download PDF

Info

Publication number
TWI720642B
TWI720642B TW108136171A TW108136171A TWI720642B TW I720642 B TWI720642 B TW I720642B TW 108136171 A TW108136171 A TW 108136171A TW 108136171 A TW108136171 A TW 108136171A TW I720642 B TWI720642 B TW I720642B
Authority
TW
Taiwan
Prior art keywords
water
small molecule
small
molecule
bubble water
Prior art date
Application number
TW108136171A
Other languages
English (en)
Other versions
TW202114949A (zh
Inventor
陳冠宏
陳冠豪
Original Assignee
名牌食品股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 名牌食品股份有限公司 filed Critical 名牌食品股份有限公司
Priority to TW108136171A priority Critical patent/TWI720642B/zh
Application granted granted Critical
Publication of TWI720642B publication Critical patent/TWI720642B/zh
Publication of TW202114949A publication Critical patent/TW202114949A/zh

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)

Abstract

本發明關於一種小分子氣泡水的製作方法及小分子氣泡水,該小分子氣泡水的製作方法包含步驟(a):自一泉水水源取得一原水,令該原水沉澱以分離該原水中的雜質;步驟(b):將沉澱後的該原水通過一形成有一磁場的螺旋管,該磁場將該原水的分子團分解為小分子團而得到一小分子水;以及步驟(c):將一氣體通入該小分子水,並使該氣體溶入並混合至該小分子水中,形成一小分子氣泡水。藉此,本發明的氣泡水以小分子團的水所組成,有利於人體吸收。

Description

小分子氣泡水的製作方法及小分子氣泡水
本發明關於一種氣泡水的製作方法,尤指一種小分子氣泡水的製作方法,以及一種由上述製作方法製成之小分子氣泡水。
水對於人體而言是不可或缺的物質,每人每天均須適度地補充水分才能滿足正常的生理需求並維持健康。由於水相較於茶類、有糖飲料等飲品較無味,因此有人不愛喝水而有水分攝取不足之問題,或長期飲用含咖啡因和糖類之飲品而對身體產生負擔。對此,氣泡水可提升口感針對不喜歡喝水的人可增加喝水意願,甚至可有效降低喝飲料的慾望,藉此不僅可以補充足夠水分,亦可避免飲用過多含糖飲料,對人體較為健康。除此之外,氣泡水還有促進新陳代謝、中和乳酸、幫助消化等功效。
一般而言,氣泡水是將二氧化碳通入水中而製成,而根據二氧化碳的化學特性,水中礦物質的含量會影響二氧化碳的溶解率,因此,目前市面上的氣泡水多為不含礦物質之純水或僅含低礦物質含量的水。然而,對人體而言,飲用水除須確保水中有害雜質已完全去除外,水中礦物質等微量元素的含量亦十分重要,鈣離子與鎂離子含量過低或是低到零,會增加心血管疾病的發生率,鎂攝取量並不充足,增加高血壓、糖尿病、心血管疾病、骨質疏鬆的風險。據此,台灣專利公告第TWI585046號揭露一種高鎂含量濃縮液,具有改善骨質疏鬆或抗疲勞之效果。除此之外,硬度適中的飲用水,味道較佳且口感較好。
據此,為提升飲水品質,如何在製造氣泡水的同時保留水中足夠的礦物質為當前須解決之問題。
本發明的目的在於解決習知氣泡水的礦物質含量低的問題。
為達到上述目的,本發明提供一小分子氣泡水的製作方法,包含以下步驟:
步驟(a):自一泉水水源取得一含礦物質的原水,令該原水沉澱以分離該原水中的雜質;
步驟(b):將沉澱後的該原水通過一形成有一磁場的螺旋管,該磁場將該原水的分子團分解為小分子團而得到一小分子水;以及
步驟(c):將一氣體通入該小分子水,並使該氣體溶入並混合至該小分子水中,形成一小分子氣泡水。
於一實施例中,步驟(c)進一步包含有以下步驟:
步驟(c1):對該小分子水進行脫氧,降低該小分子水中的氧氣含量;
步驟(c2):將脫氧後的該小分子水注入一溫度介於2℃至4℃的環境中;以及
步驟(c3):對該小分子水施予一高壓,並將該氣體通入該小分子水中。
於一實施例中,該高壓介於2kg/cm 2至5 kg/cm 2之間。
於一實施例中,步驟(b)後更包含有以下步驟:
步驟(d):將該小分子水通過至少一過濾件;以及
步驟(e):對該小分子水照射一紫外光。
於一實施例中,該過濾件為一孔徑介於0.01µM至1.5µM之間的濾心。
於一實施例中,該過濾件為一超過濾膜。
於一實施例中,於步驟(e)中,對該小分子水照射該紫外光至少2秒以上。
於一實施例中,該氣體為二氧化碳。
於一實施例中,該小分子氣泡水具有一不大於7的pH值。
為達到前述目的,本發明另提供一小分子氣泡水,該小分子氣泡水是根據上述製作方法所製作,且該小分子氣泡水含礦物質並具有一不大於7的pH值。
據此,本發明將該含有礦物質的原水通入形成有該磁場的螺旋管,利用磁力將該原水的分子團分解為小分子團而得到該小分子水。相較於一般大分子水,小分子水對二氧化碳有較高的溶解率,因此可彌補水中礦物質造成二氧化碳溶解率降低的問題,換句話說,本發明透過先將水處理成小分子水,進而達到在保有高礦物質含量的同時,維持小分子水具有足夠的二氧化碳吸收量,得到具高礦物質含量的氣泡水。此外,由小分子團所構成之氣泡水,對人體而言更容易被吸收和代謝,且加入氣泡後可提升該小分子水的口感,增加使用者喝水的意願。
有關本發明的詳細說明及技術內容,現就配合圖式說明如下:
本發明提供一種小分子氣泡水的製作方法,請參閱『圖1』,該製作方法包含:步驟(a),自一泉水水源取得一含礦物質的原水,令該原水沉澱以分離該原水中的雜質;步驟(b),將沉澱後的該原水通過一形成有一磁場的螺旋管,該磁場將該原水的分子團分解為小分子團而得到一小分子水;以及,步驟(c),將一氣體通入該小分子水,使該氣體溶入並混合至該小分子水中,形成一小分子氣泡水。
本發明於步驟(a)中,自該泉水水源取得該原水,令該原水沉澱以分離該原水中的雜質。由於該泉水水源的該原水含有複數雜質,為確保飲用品質,先將該原水導引至一儲存槽並靜置一段時間,該原水中的該些雜質受重力而沉澱至該儲存槽底部,即對該原水進行固液分離,使位在該儲存槽上層的該原水的雜質含量降低而完成初步淨化,再將上層的該原水取出,取出的該原水具有高含量之礦物質。
接著進行步驟(b),將沉澱後的該原水通過一形成有一磁場的螺旋管10,藉由磁力斷開該原水中水分子之間的鍵結,使該原水中的大分子團被分解成小分子團。請參閱圖2,為本發明一實施例中,該螺旋管10的結構示意圖,該螺旋管10是由一直的金屬管扭曲後所形成,該螺旋管10的高度介於100 mm至130 mm之間。該螺旋管10具有一圍出一空間的螺旋管狀本體11、一進水通道12以及一出水通道13,該進水通道12和該出水通道13分別為該螺旋管10扭曲前的兩端,該進水通道12朝一第一方向延伸,而該出水通道13則先朝該螺旋管狀本體11彎折90˚並跨過該螺旋管狀本體11的該空間的一底部,再垂直彎折90˚以沿著該螺旋管狀本體11的該空間的內壁朝該第一方向延伸,也就是說,該進水通道12和該出水通道13相互平行且朝同一方向延伸。
進一步,該螺旋管10設置於一金屬線圈20內,並與該金屬線圈20共同設置於一中空環狀殼體30中。該金屬線圈20具有至少一金屬線21電性連接一電路板40,該電路板40啟動並提供該金屬線圈20一電流,藉此產生一圍繞在該螺旋管10和該金屬線圈20的磁場。
於進行步驟(b)時,將沉澱後的該原水由該螺旋管10的進水通道12進入該螺旋管10,並循該螺旋管10的路徑流動後由該出水通道13流出。在該原水流經該螺旋管10的路徑時,該金屬線圈20通電並產生該磁場,對位於該螺旋管10中的該原水產生分解分子團的作用力,令該原水由原本12至16個水分子簇集的分子團分解成只含6至8的水分子的小分子團,進而生成該小分子水。該小分子水由該出水通道13離開該螺旋管10。
接著進入步驟(c),將一氣體通入於步驟(b)取得之該小分子水,並使該氣體溶入並混合至該小分子水中,以形成該小分子氣泡水,其中,該氣體為二氧化碳,且該小分子氣泡水具有一不大於7的pH值。請一併參閱圖3,於一實施例中,步驟(c)更包含有:步驟(c1),對該小分子水進行脫氧,降低該小分子水中的氧氣含量;步驟(c2),將該小分子水注入一溫度介於2℃至4℃的環境中;步驟(c3):對該小分子水施予一高壓,並將該氣體通入該小分子水中。詳細而言,於步驟(c1)中,將該小分子水通過一脫氧機進行脫氧,降低該小分子水中的氧氣含量,以提供後續二氧化碳有較多的溶解空間。舉例來說,透過該脫氧機使真空度為-0.32Pa,且使該小分子水中的溶氧量降至5 mg/L以下。另外,由於氣體在低溫且高壓環境下溶解於水的能力較佳,本發明進一步於步驟(c2)將該小分子水通過一板式交換器,該板式交換器是由複數板片疊設而成,而該些板片的表面具有特定波紋且彼此間具有空隙,藉此當該小分子水流經該些板片時可有效地進行熱量交換,降低該小分子水的溫度。於本發明中,在水溫介於2℃至4℃之間時對該氣體有較佳的溶解效果。再者,於步驟(c3)中,將該小分子水通過一氣水混合機中,該氣水混合機對該小分子水加壓以形成高壓環境,加壓後該小分子水的壓力介於2kg/cm 2至5 kg/cm 2之間,其中,壓力為4kg/cm 2時有較佳的氣體溶解效果。據此,本發明透過步驟(a)、步驟(b)和步驟(c)的方法將該原水製成具有小分子水團及氣體的該小分子氣泡水。
續參閱圖3,於一實施例中,該小分子氣泡水的製作方法於步驟(b)後更包括:步驟(d),將該小分子水通過至少一過濾件;以及步驟(e),對該小分子水照射一紫外光。於步驟(d),該過濾件為一孔徑介於0.01µM至1.5µM之間的濾心以及/或一超過濾膜,且可以結合多個具有不同孔徑的過濾件實施。舉例而言,該小分子水可依序通過一第一濾心、一超過濾膜、一第二濾心及一第三濾心,該第三濾心的孔徑尺寸不大於該第二濾心,該第二濾心的孔徑尺寸不大於該第一濾心,具體來說,該第一濾心的孔徑為1.2µM以去除雜質,該第二濾心和該第三濾心的孔徑為0.2µM以去除雜質及微生物,而該超過濾膜的孔徑為0.03µM,以去除該小分子水中微生物、有機物等細微雜質,同時可保留水中礦物質。而步驟(e),對該小分子水照射該紫外光以消滅該小分子水中對於人體有害之細菌、病毒或微生物等,其中,波長介於200nm至315nm之紫外光具殺菌效果,且又以波長介於200nm至280nm之紫外光殺菌效果較佳,以波長為254nm之紫外光有最佳的殺菌效果。為確保完全消滅該小分子氣泡水中的細菌、病毒或微生物,至少對該小分子水照射2秒以上紫外光,以產生較佳的殺菌效果。
本發明另提供一種小分子氣泡水,該小分子氣泡水是透過上述製作方法製成,且該小分子氣泡水含礦物質並具有一不大於7的pH值。具體而言,該小分子氣泡水是透過通入二氧化碳所製成,而二氧化碳在水中的溶解度會受酸鹼性影響,在鹼度越高的水中,由於水中的鹼度會與二氧化碳反應,故水中的二氧化碳會被消耗而無法提供氣泡感。於一實施例中,該小分子氣泡水具有一不大於7的pH值,即該小分子氣泡水呈中性或弱酸,可溶解一定量的二氧化碳而產生氣泡感。舉例來說,若該小分子氣泡水具有7的pH值,其對於二氧化碳的溶解度稍低,產生的氣泡感較為細緻;又,若該小分子氣泡水具有介於5至6的pH值,其對於二氧化碳的溶解度稍高,產生的氣泡感則較為強烈。除此之外,水中所含的離子濃亦會影響二氧化碳的溶解度,在離子濃度較高的水(如礦泉水),因離子會與二氧化碳競爭與水之結合,故對二氧化碳之溶解度較低。
綜上,本發明的小分子氣泡水相較於習知氣泡水有下列優點:
(1)   藉由將該原水處理成小分子水,使該小分子氣泡水對二氧化碳的溶解度增加;
(2)   由於該小分子氣泡水已提升二氧化碳的溶解度,可彌補水中礦物質對二氧化碳溶解度的影響,故該小分子氣泡水具有含量較高的礦物質;
(3)   該小分子氣泡水的水分子較小,而提供較佳的口感,提升使用者的喝水意願。
10:螺旋管 11:螺旋管狀本體 12:進水通道 13:出水通道 20:金屬線圈 21:金屬線 30:中空環狀殼體 40:電路板
『圖1』,為本發明一實施例中小分子氣泡水的製作方法的流程圖。 『圖2』,為本發明一實施例中,螺旋管的結構示意圖。 『圖3』,為本發明另一實施例中小分子氣泡水的製作方法的流程圖。

Claims (9)

  1. 一種小分子氣泡水的製作方法,包含以下步驟:步驟(a):自一泉水水源取得一含礦物質的原水,令該原水沉澱以分離該原水中的雜質;步驟(b):將沉澱後的該原水通過一形成有一磁場的螺旋管,該磁場將該原水的分子團分解為小分子團而得到一小分子水;以及步驟(c):將一氣體通入該小分子水,並使該氣體溶入並混合至該小分子水中,形成一小分子氣泡水;其中,該步驟(c)包含有步驟(c1):對該小分子水進行脫氧至真空度為-0.32Pa,並降低該小分子水中的氧氣含量至5mg/以下。
  2. 如請求項1所述之小分子氣泡水的製作方法,其中步驟(c)於步驟(c1)後進一步包含有以下步驟:步驟(c2):將該小分子水注入一溫度介於2℃至4℃之間的環境中;以及步驟(c3):對該小分子水施予一高壓,並將該氣體通入該小分子水中。
  3. 如請求項2所述之小分子氣泡水的製作方法,其中,該高壓介於2kg/cm2至5kg/cm2之間。
  4. 如請求項1所述之小分子氣泡水的製作方法,其中步驟(b)後更包含有以下步驟:步驟(d):將該小分子水通過至少一過濾件;以及步驟(e):對該小分子水照射一紫外光。
  5. 如請求項4所述之小分子氣泡水的製作方法,其中該過濾件為一孔徑介於0.01μM至1.5μM之間的濾心。
  6. 如請求項4所述之小分子氣泡水的製作方法,其中該過濾件為一超過濾膜。
  7. 如請求項4所述之小分子氣泡水的製作方法,其中,於步驟(e)中,對該小分子水照射該紫外光至少2秒以上。
  8. 如請求項1所述之小分子氣泡水的製作方法,其中,該氣體為二氧化碳。
  9. 如請求項1所述之小分子氣泡水的製作方法,其中,該小分子氣泡水具有一不大於7的pH值。
TW108136171A 2019-10-05 2019-10-05 小分子氣泡水的製作方法及小分子氣泡水 TWI720642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108136171A TWI720642B (zh) 2019-10-05 2019-10-05 小分子氣泡水的製作方法及小分子氣泡水

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108136171A TWI720642B (zh) 2019-10-05 2019-10-05 小分子氣泡水的製作方法及小分子氣泡水

Publications (2)

Publication Number Publication Date
TWI720642B true TWI720642B (zh) 2021-03-01
TW202114949A TW202114949A (zh) 2021-04-16

Family

ID=76035845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108136171A TWI720642B (zh) 2019-10-05 2019-10-05 小分子氣泡水的製作方法及小分子氣泡水

Country Status (1)

Country Link
TW (1) TWI720642B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101744336A (zh) * 2010-01-19 2010-06-23 乌鲁木齐古得亚科技开发有限公司 矿化苏打水
CN104230091A (zh) * 2013-08-29 2014-12-24 吉林天士力矿泉饮品有限公司 一种制备稳定小分子团水的水处理方法及系统
CN104803541A (zh) * 2015-05-13 2015-07-29 昆明水啸科技有限公司 矿化小分子水中温逆变式脱氧增氢的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101744336A (zh) * 2010-01-19 2010-06-23 乌鲁木齐古得亚科技开发有限公司 矿化苏打水
CN104230091A (zh) * 2013-08-29 2014-12-24 吉林天士力矿泉饮品有限公司 一种制备稳定小分子团水的水处理方法及系统
CN104803541A (zh) * 2015-05-13 2015-07-29 昆明水啸科技有限公司 矿化小分子水中温逆变式脱氧增氢的方法

Also Published As

Publication number Publication date
TW202114949A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
JP2009125654A (ja) 飲料用水素含有水の製造方法
US20210114909A1 (en) Drinking strontium-rich mineral water prepared from salt-making distilled water, and method and system thereof
KR20110003952A (ko) 미네랄 탄산수의 제조방법 및 제조장치
JP2008149245A (ja) 機能水及びその製法
CN106186490A (zh) 一种凉白开生产工艺
JP6437511B2 (ja) 高濃度マグネシウムイオン濃縮液
TWI720642B (zh) 小分子氣泡水的製作方法及小分子氣泡水
US11530150B2 (en) Method and system for preparing drinking weak alkali water and strontium-rich electrolyte raw water from salt-making distilled water
TWI308061B (zh)
JP2009106164A (ja) 飲料および飲料の製造方法
CN112794542A (zh) 小分子气泡水的制作方法及小分子气泡水
CN207958041U (zh) 高浓度溶氧水的合成装置
AU2009290885B2 (en) Water treatment method including powdered activated carbon recycling
JP2008512112A (ja) 飲料
JP2013006124A (ja) セラミックボール処理飲料水製造方法及び製造装置
CN102603123B (zh) 对热碱泉水进行处理的方法
EP1857415A1 (en) Method and apparatus for the production of drinking waters
JP2008017778A (ja) アルコール飲料の処理方法
TWM559318U (zh) 高濃度溶氧水之合成裝置
JP2007319083A (ja) アルカリ還元水を利用した焼酎の製造方法
TWI794739B (zh) 適於咖啡用水之水質處理裝置
KR20160047085A (ko) 무균기반의 수증기 희석을 통한 고기능성 나노버블기체수 제조장치 시스템 및 방법
WO2019004277A1 (ja) 液状製品の製造方法、液状製品の製造装置
RU2118357C1 (ru) Способ производства водки "золотое кольцо"
CN113003840B (zh) 一种整合水及其制备方法