TWI711806B - 傳感器、感測器以及偵測條件之存在的方法 - Google Patents

傳感器、感測器以及偵測條件之存在的方法 Download PDF

Info

Publication number
TWI711806B
TWI711806B TW104123686A TW104123686A TWI711806B TW I711806 B TWI711806 B TW I711806B TW 104123686 A TW104123686 A TW 104123686A TW 104123686 A TW104123686 A TW 104123686A TW I711806 B TWI711806 B TW I711806B
Authority
TW
Taiwan
Prior art keywords
sensor
layer
conductive
group
metal
Prior art date
Application number
TW104123686A
Other languages
English (en)
Other versions
TW201617585A (zh
Inventor
萊恩E 吉德
維賈亞 卡亞斯薩
強納森 費瑞
羅伯特 克利斯帝安 寇克斯
Original Assignee
美商布魯爾科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商布魯爾科技公司 filed Critical 美商布魯爾科技公司
Publication of TW201617585A publication Critical patent/TW201617585A/zh
Application granted granted Critical
Publication of TWI711806B publication Critical patent/TWI711806B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Abstract

本發明提供印刷電阻式感測器及傳感器,其包含在介電及/或金屬層結構內之薄電性〝主動〞感測層。主動感測層的電子電阻是在感測器環境中之變化期間所量測。藉由利用在主動感測層周圍的多層結構,可改善感測元件的電子訊號。藉由仔細地選擇環繞主動感測層的架構及材料,可改善感測器偵測環境變化的感測性、穩定性及選擇性。這設計考慮到針對環境感測的許多特定應用領域。

Description

傳感器、感測器以及偵測條件之存在的方法 相關申請案
本申請案主張在2014年7月22日所提申之美國臨時專利申請案第62/027,753號的優先權,其名稱為「用於語音及健康分析器的超快濕度偵測器」,以及主張在2015年6月8日所提申之美國臨時專利申請案第62/172,546號的優先權,其名稱為「薄膜電阻式感測器」,其每一者將被併入於本文中以作為參考。
本發明大體上有關於薄膜的電阻式感測器。
可以偵測環境變化的感測器在許多應用中是有需要的。偵測與感測器接觸的溫度、壓力或許多分析物(包含在空氣中的濕度或氣體等等)在諸如室內及室外氣候偵測及控制、製程控制、生物識別、醫學應用及更多領域的應用是有需求的。然而,這些感測器在許多應用的效用是不只受限於它們對於精準地及準確地測量刺激的能力,也受限於它們對於偵測及 測量那些短期及長期刺激的能力。當嘗試在有必要立即偵測的應用中(例如呼吸感測器)來測量濕度時,反應時間以及安定時間是非常重要的規格。感測器的反應時間是感測器對無負載至負載的步階變化作出反應所需的時間。安定時間是當感測器打開時達至穩定輸出所需的時間。感測器亦必需能夠維持長期的穩定及測量,且應展示低遲滯性。
環境感測器可偵測在大氣中物理性的變化,諸如溫度、濕度、氣體或氣流。透過感測元件,感測器經由轉換元件轉換變異量為可被傳送且測量的電性訊號。在許多實例中,〝主動〞感測層的電子電阻是在感測器環境變化期間所測量。假如此測量值是單一值、穩定及可再現性的,則此測量值可被校準及被使用作為代表環繞感測器的環境訊號。
環境感測器的結構及組成有幾種不同的方式。這些方式追求增強以下一或多個特性的有效感測能力:穩定性、感測性、低遲滯性、可靠性及/或精確性。最基本的印刷及/或薄膜電阻式感測器通常包含被印刷在介電基板上的薄電子式〝主動〞感測層,其具有印刷在頂部表面上的鈍化層或保護覆蓋層。
由於非常高遲滯性、低穩定性及低精確性,許多屬於先前技術的直流電阻式感測器一直都有效能不良的問題。因為這些裝置時常使用以聚合物為基的材料或不可預知的材料,高遲滯性及低穩定性及精確性的問題是時常歸因於使用於在薄膜結構中的感測元件的材料選擇。
電容、電感、光學及基於物理性質且利用已制定的材料的其它感測器技術一般不會有這種效能不良困擾。然而,這些感測器是緩慢的,即便這些感測器更有可靠性。
本發明提供一種傳感器,其包含:阻障層;主動感測層,其與至少兩個電極接觸;以及介電層,其在主動層及阻障層之間且具有第一及第二側。該至少兩個電極均鄰近於該介電層第二側,並且該傳感器是電阻式傳感器。
本發明進一步提供一種感測器,其包含傳感器,該傳感器包含:阻障層;主動感測層,其與至少兩個電極接觸;以及介電層,其在主動層及阻障層之間且具有第一及第二側。該至少兩個電極均鄰近於該介電層第二側,該傳感器是電阻式傳感器。
最後,本發明提供一種偵測條件之存在的方法。該方法包含將傳感器引進環境中,其中該分析物是在場的。該傳感器包含:阻障層;主動感測層,其與至少兩個電極接觸;以及介電層,其在主動層及阻障層之間且具有第一及第二側。該至少兩個電極均鄰近於該介電層第二側。該方法亦包含觀察該傳感器是否指出該條件之存在,其中該存在是藉由電阻變化所指出。
10:傳感器
10a~10e:傳感器
12:阻障層
14:阻障層的第一側
16:阻障層的第二側
18:介電層
20:介電層的第一側
22:介電層的第二側
24a~24b:電極
26a~26b:電極的側壁
28a~28b:電極的上表面
30:主動感測層
32:主動感測層的第一側
34:主動感測層的第二側
36:介面
38:基板
40:訊號強化層
42:訊號強化層的第一側
44:訊號強化層的第二側
46:過濾層
48:過濾層的第一側
50:過濾層的第二側
圖1是例示本發明的傳感器之一實施例的示意圖;圖2是例示本發明的傳感器之進一步實施例的示意圖,其中主動感測層延伸在電極上方且橫跨電極; 圖3是本發明的傳感器之另一實施例的示意圖解,其中傳感器是支撐於基板上;圖4是例示訊號強化層在主動感測層上之進一步實施例的示意圖解;圖5是例示相似於圖4之傳感器的又另一實施例,但傳感器具有鄰近於訊號強化層的過濾層;圖6是例示相似於圖5之傳感器的另一實施例的示意圖,但傳感器具有鄰近於主動感測層的過濾層;圖7是例示當說出〝測試,1、2、3〞時的濕度及聲音訊號的圖形;圖8是例示傳感器對於1秒脈衝的濕空氣作出反應的圖形;圖9是描繪與圖8中所示相同的傳感器對於10分鐘脈衝的濕空氣作出反應的圖形;圖10是傳感器對於緩慢變化的濕度濃度作出反應的圖形;圖11是範例3之整合式溫度及分析物傳感器的頂部及側視圖;圖12是在聚亞醯氨基板上的溫度/分析物傳感器的照片;圖13是範例6之簡單傳感器結構的頂部及側視圖;圖14是在PET基板上的分散式溫度傳感器的照片;圖15示意性的例示掃描器系統的陣列操作,該掃描器系統測量具有施加至待測件(“device under test”(“DUT”))的電壓V的電流;圖16是例示在環境腔室內的平均的相對濕度及溫度圖表的圖形;圖17是來自範例5的溫度傳感器的遲滯圖形;圖18是來自範例3的溫度傳感器的遲滯圖形;圖19是例示來自範例5的14個溫度傳感器的精確度及遲滯的圖形; 圖20是例示來自範例4的13個溫度傳感器的精確度及遲滯的圖形;圖21是來自範例5的濕度傳感器的遲滯圖形;圖22是來自範例3的濕度傳感器的遲滯圖形;圖23是來自範例5的14個濕度傳感器的精確度及遲滯的圖形;圖24是在固定溫度及RH之下溫度傳感器之電阻對時間的圖形;圖25是60天內在室內條件之下8個溫度傳感器之電阻對時間的圖形;圖26是在固定溫度及RH之下濕度傳感器之電流對時間的圖形;圖27是60天內在室內條件下8個濕度傳感器之電阻對時間的圖形;圖28示意性的例示用以決定分析物傳感器的反應及回復時間的實驗性設置;圖29是例示溫度傳感器對於來自手指的熱度的反應及回復時間的圖形;圖30是以PEDOT:PSS為基的溫度傳感器的反應的圖形;圖31在說出〝哈囉,1、2、3〞期間對於熱擾動的反應的圖形;圖32是以PEDOT:PSS為基的溫度傳感器的反應的圖形;圖33是例示溫度/分析物感測器的低電壓I-V表現的圖形;圖34是描繪溫度/分析物傳感器在回應於人類呼吸時的低功率(<30pW)操作的圖形;圖35是例示對於不同揮發有機蒸氣的反應及回復時間的圖表的圖形;圖36是以Zeon CNT為基的溫度傳感器的遲滯圖形;圖37是例示感測器對於RH變化及T變化的反應的圖形;圖38是以半導體的CNT為基的溫度傳感器的遲滯圖形;以及 圖39是例示感測器對於RH變化及T變化的反應的圖形。
本發明大體上有關於可被併入於習知的感測器技術之新穎傳感器,以及使用那些傳感器以偵測特定條件之存在的方法,諸如溫度變化或分析物之存在。可偵測的典型分析物包含選自由以下所組成之群組:濕度、氣體、氣流、揮發性有機化合物(volatile organic compound,VOC;諸如醯胺類、醛類、醚類、酮類、酯類及醇類)以及前述之組合。有利地是,本發明是特別地有用於偵測極性VOC。
1.圖1~2的實施例
參照圖1,根據本發明的傳感器的第一實施例是被更詳細地例示。傳感器10包含阻障層12,其具有第一側14以及第二側16。傳感器10進一步包含鄰近於阻障層12的介電層18。介電層18具有第一側20以及第二側22。如所示地,介電層18的第一側20較佳地是靠著阻障層12的第二側16。
傳感器10亦包含至少兩個電極24a及24b。每一個電極24a及24b具有各自的側壁26a及26b以及各自的上部表面28a及28b。電極24a及24b位於介電層18的第二側22上,而上部表面28a及28b是遠離第二側22。傳感器10另外包含主動感測層30,其具有第一側32及第二側34。主動感測層30鄰近於介電層18,且如所示地,主動感測層30的第一側32較佳地是接觸介電層18的第二側22,從而形成介面36。
重要地是,主動感測層30亦接觸每一個電極24a及24b。參 照圖1,值得注意的是主動感測層30接觸電極24a的側壁26b以及電極24b的側壁26a。在另一實施例中,主動感測層30順應於電極24a及24b。也就是說,主動感測層30接觸電極24a及24b的各自側壁26a及26b及上部表面28a及28b(見圖2的傳感器10a)。在另一實施例中,倘若仍可達成接觸,電極24a及24b可定位於主動感測層30的頂部上而不是在主動感測層30下方(亦即,它們的順序可以是“翻轉的”)。因此,可使主動感測層30接觸電極24a及24b的任何配置皆是可接受的。
阻障層12
如圖所示的阻障層12具有隔離層的功能。阻障層12是設計以將主動(亦即,感測)層30隔離於任何基板的可能存在的化學及物理性質(如下所示),以及避免環境刺激影響主動感測層30。阻障層12的材料及性質依據所製造的傳感器的類型而定。阻障層12可為(但不限於)金屬、陶瓷、聚合物、組成物或它們的混合物。該層12可為傳導性或電性絕緣的。再者,阻障層12可藉由任何適合的技術沉積,包含選自由以下所組成的群組:網版印刷、噴霧塗覆、氣溶膠噴塗印刷(Aerosol Jet®)、噴墨印刷、柔版印刷、凹版印刷、蝕刻技術、旋轉塗覆、蒸鍍、濺鍍、積層法、ALD、CVD及PECVD。阻障層12的平均厚度較佳地是大約50nm至大約50μm,更佳地是從大約100nm至4μm,且甚至更佳地是從大約100nm至大約2μm。
當傳感器是分析物傳感器時,阻障層12不應該與分析物起化學地或物理地反應。因此,在由ASTM method D-570所測量時,較佳地是該阻障層12具有小於大約0.02%的分析物溶解度,更佳地是小於大約0.001%,且甚至更佳地是大約0。在由ASTM method F1249所測量時,分析 物通過阻障層12的擴散速率應小於大約1g/m2/day,較佳地是小於大約0.01g/m2/day,且更佳地是大約0.001g/m2/day。對濕度傳感器而言,阻障層12較佳地是疏水性的,且不允許水蒸氣停留在傳感器結構中或是以任一方向通過。
介電層18
如圖所示的介電層18具有訊號強化層的功能,且是位於傳感器電極24a及24b以及阻障層12之間。改變形成介電層18的材料可大幅地增加來自傳感器10之輸出訊號的訊雜比。介電層18較佳地是具有小於大約10-11S/m的導電率,更佳地是小於大約10-21S/m,且甚至更佳地是從大約10-25S/m至大約10-23S/m。介電層18的片電阻值應該是至少大約1016Ω/□,較佳地是至少大約1026Ω/□,且更佳地是從大約1029Ω/□至大約1031Ω/□。介電層18可藉由任何合適的技術沉積,其可包含選自以下所組成的群組:網版印刷、噴霧塗覆、氣溶膠噴塗印刷、噴墨印刷、柔版印刷、凹版印刷、拖桿塗覆(drawbar coating)、浸漬塗覆、蝕刻技術、旋轉塗覆、蒸鍍、濺鍍、積層法、ALD、CVD及PECVD。
介電層18的平均厚度較佳地是從大約1μm至大約10μm,更佳地是從大約1μm至大約8μm,且甚至更佳地是從大約1μm至大約3μm。在使用傳導性阻障層12的實施例中,介電層18應該大致上不具有針孔(pinhole),且較佳地是沒有針孔。
在一實施例中,介電層18可與所偵測的條件或刺激起反應。舉例而言,在分析物傳感器中,介電層18可在當被分析物接觸時經歷化學或物理變化或反應。該化學或物理變化或反應在當曝露於分析物時可 進一步增強或擴大來自主動感測層30的輸出訊號。舉例而言,假如介電層18是由可溶解於醇類的材料所製成的,則裝置不僅會對擴散通過主動感測層的醇類起反應,而且亦會對介電層18的形態改變起反應,從而大幅地增加整體的感測性。在此例中,在介電層18中的可逆反應是較不可逆反應為佳,因為在介電層18中的不可逆反應是造成在傳感器內的遲滯的主要原因。
當介電層18是反應性時,其在由ASTM method F1249量測下應具有至少約50g/m2/day的分析物擴散速率,較佳地是至少約500g/m2/day,且甚至更佳地是從約2000g/m2/day至約5000g/m2/day。當介電層18是反應性時,其在由ASTM method D-570量測下在該層中的分析物溶解度應至少大約0.8%,較佳地是至少大約2.0%,且甚至更佳地是從大約5.0%至大約20%。介電層18可由包含選自以下所組成的群組的任何一個或多個非傳導材料所製成:聚合物(諸如聚脂及聚甲基丙烯酸甲脂(PMMA))、光阻、陶瓷、金屬組成物、金屬氧化物或它們的混合物;而依據所關注的分析物而定。
在另一實施例中,介電層18不與所偵測的刺激起反應。在此例中,介電層18在當被分析物接觸時不應經歷化學或物理變化或反應。在這樣的方式下,介電層18可表現如同隔離層,其使基板(假如存在;見如下所示)或阻障層12隔離於環境訊號及/或使主動感測層30隔離於基板及/或阻障層12的影響。當介電層是非反應性時,其在由ASTM method F1249測量下應具有小於大約4g/m2/day的分析物擴散速率,較佳地是小於大約1g/m2/day,且甚至更佳地是從大約0g/m2/day至大約0.001g/m2/day。當介電層18是非反應性時,其在由ASTM method D-570量測下在該層中的分析物溶 解度應小於大約0.02%,較佳地是小於大約0.001%,且甚至更佳地是大約0%。非反應性介電層18可由包含選自由以下所組成的群組的任何一個或多個非傳導材料所製成:聚合物(諸如聚四氟乙烯(PTFE)矽氧介電材料、環烯烴共聚物、聚偏二氟乙烯(PVDF)以及聚苯乙烯)、光阻、陶瓷、金屬氮化物(諸如氮化矽)、金屬氧化物(諸如氧化鋁)、金屬組成物或它們的組合。
電極24a及24b
電極24a及24b較佳地是平面電極,但亦可為交叉指形電極。較佳地是,電極24a及24b具有高電子或電洞遷移率及高載子濃度。形成電極24a及24b的合適材料包含選自以下所組成的群組:銀、聚乙烯二氧噻吩(PEDOT)、金、高摻雜的矽、傳導性奈米碳管(CNT)、石墨烯墨水、鉑、銅、鋁、任何傳導性聚合物以及奈米碳管/石墨烯傳導性聚合物組成物。較佳的材料對於主動感測層30而言具有低肖特基能障(Sckottky barrier)且具有低接觸電阻。
電極可藉由任何合適的技術形成,其可包含選自由以下所組成的群組:網版印刷、噴霧塗覆、氣溶膠噴塗印刷、噴墨印刷、柔版印刷、凹版印刷、蝕刻技術、旋轉塗覆、蒸鍍、濺鍍及雷射燒蝕。
主動感測層30
主動感測層30提供對於環境變化會成比例地改變的電子電阻訊號。任何會回應於目標環境變化而改變其電子電阻的材料可用在主動感測層30中。此電子電阻的改變可以為其電子結構、缺陷態或電子載子密度的改變結果。較佳地是,主動感測層30的電阻是從大約50kΩ至大約10MΩ,更佳地是從大約100kΩ至大約5MΩ,甚至更佳地是從大約500kΩ至 大約2MΩ。當曝露於環境刺激時,主動感測層30的電阻對於環境刺激的變化應該成比例地改變。較佳地是,電阻的改變應該致使輸出訊號的改變是每一℃或%RH的改變為至少大約0.1%,且更佳地是每一℃或%RH的改變為至少約0.5%(分別針對溫度及相對濕度傳感器)。
較佳地是,用於形成主動感測層30的材料是平面材料,其可提供以作為薄膜或織物,而對比於引線、窄橋、桿、個別的奈米碳管或類似者。除此之外,主動感測層30包含具有大量缺陷態以及薄板或薄膜形態的無序性導體(disordered conductor)而引起不規律的傳導路徑。此無序性或不規律性致使所使用的特定組成物間的「接合」,並且這些接合對於主動感測層30的適當運行是重要的。主動感測層的合適材料包含選自由以下所組成的群組:奈米碳管(金屬的或半導體的)、官能基化或非官能基化的奈米碳管(CNT)織物、非晶質碳膜、熱分解碳、石墨、石墨烯、碳纖維、富勒稀碳灰、碳黑、矽、離子植入及其他傳導聚合物(諸如PEDOT:PSS、聚苯胺、聚茀、聚亞苯基、聚芘、聚薁、萘聚合物、聚吡咯類、聚咔唑、聚吲哚、聚氮呯、聚乙炔、聚對苯乙炔以及聚噻吩)、金屬粒子摻雜的CNT或石墨烯及組成物及它們的組合。當主動感測層30是由CNT所形成時,以上所述的接合可在導管之間產生。在傳導聚合物中,高度地傳導結晶區域以及低傳導性非晶質區域合作以形成接合。在其他的材料中,在材料內的「平板(plate)」於主動感測層30之薄片或織物中合作以形成接合。
主動感測層30是選擇為非常薄(如同非常薄的「表層」)而達成二維的薄片或薄膜。因此,主動感測層30應該具有小於大約1000nm的平均厚度,較佳地是小於大約200nm,更佳地是小於大約100nm,且甚 至更佳地是從大約10nm至大約100nm。在特別佳的實施例中,主動感測層30具有小於大約30nm的平均厚度,並且較佳地是從大約1nm至大約30nm。在如此低厚度下,主動感測層30具有可忽略的體塊性質,諸如質量、體積及熱容量。因此,主動感測層30承擔周圍疊層的化學、物理及生物特性,從而使得對於所感測的特定目標或條件而言介電層18的選擇是重要的。主動感測層30可藉由任何合適的技術沉積,包含選自由以下所組成的群組:網版印刷、噴霧塗覆、氣溶膠噴塗印刷、噴墨印刷、浸漬塗覆、噴刷技術、柔版印刷、凹版印刷、蝕刻技術、旋轉塗覆、蒸鍍、濺鍍、積層法、ALD、CVD及PECVD。
介面36
介電層18及主動感測層30之間的介面36是被視為「阻塞區域」。介面36不是個別的材料或分離的疊層,但介面36的特性可藉由改變介面36的本質而調整。在某些實施例中,阻塞區域/介面36操作以反射一些入射的環境訊號回至主動感測層30中。在其他實施例中,介面36可藉由處理主動感測層30之第一側32及介電層18之第二側22之一者或二者而改變,諸如藉由熱處理、幅射、氟化作用、UV固化或離子植入。
2.圖3的實施例
此實施例及以下的實施例提供當中有附加疊層存在的情形。這些疊層可被添加至圖1或2的實施例中。然而,為了簡化的緣故,這些疊層是藉由圖2的實施例示範。與圖1及2實施例相似的符號代表相似的部件,並且是以如上述所討論的為參考依據而並非每一個實施例重複一次。
參照圖3,其例示傳感器10b。傳感器10b是與先前的實施例有所不同,在於傳感器10b進一步包含靠著阻障層12之第一側14的基板38。基板38可形成自任何數目的材料,其包含選自由以下所組成的群組:金屬、聚合物、陶瓷、矽或單晶體。較佳地是,材料是選自由以下所組成的群組:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、紙類以及有機聚合物。合適的金屬包含選自由以下所組成的群組:矽、鋁以及不銹鋼。合適的金屬氧化物包含選自由以下所組成的群組:鋁氧化物以及矽氧化物。合適的金屬氮化物包含選自由以下所組成的群組:氮化矽以及氮化鈦。合適的有機聚合物包含選自由以下所組成的群組:聚醯亞胺(例如聚醯亞胺膜(Kapton® film))、聚醯胺、聚碸、聚醚碸、聚醚酮(PEEK)、聚對苯二甲酸(PET)、聚四氟乙烯(PTFE,例如鐵氟龍)、丙烯酸酯、甲基丙烯酸酯、苯乙烯、環烯烴聚合物(例如Zeonor)、環烯烴共聚物、聚酯、聚萘二甲酸乙二酯。基板可以為電性傳導的、絕緣的、可撓曲的或堅固的。
3.圖4的實施例
參照圖4,其以傳感器10c的形式例示進一步實施例。傳感器10c類似於圖2所示的傳感器,除了該傳感器10c進一步包含訊號強化層40之外。訊號強化層40具有第一側42以及第二側44。訊號強化層40之第一側42是鄰近於全部或部份的主動感測層30,並且較佳地是靠著主動感測層30之第二側34。
訊號強化層40較佳地是介電材料。亦即,訊號強化層40較佳地是具有小於大約10-11S/m的導電率,更佳地是小於大約10-21S/m,且甚至更佳地是從大約10-25S/m至大約10-23S/m。訊號強化層40的片電阻值應至 少是大約1016Ω/□,較佳地是至少大約1026Ω/□,且更佳地是從大約1029Ω/□至大約1031Ω/□。訊號強化層40可藉由任何合適的技術沉積,其可包含選自由以下所組成的群組:網版印刷、噴霧塗覆、氣溶膠噴塗印刷、噴墨印刷、柔版印刷、凹版印刷、拖桿塗覆(drawbar coating)、浸漬塗覆、蝕刻技術、旋轉塗覆、蒸鍍、濺鍍、積層法、ALD、CVD及PECVD。訊號強化層40的厚度較佳地是從大約50nm至大約50μm,更佳地是從大約100nm至大約4μm,且甚至更佳地是從大約100nm至大約2μm。訊號強化層40在由ASTM method F1249量測下應具有至少大約50g/m2/day的分析物擴散速率,較佳地是至少大約500g/m2/day,且更佳地是至少從大約2000g/m2/day至大約5000g/m2/day。在此實施例中,訊號強化層40在由ASTM method D-570量測下應具有小於大約1g/m2/day的非分析物擴散速率,較佳地是小於大約0.01g/m2/day,且甚至更佳地是從大約0g/m2/day至大約0.001g/m2/day。
在一實施例中,訊號強化層40可與所偵測的刺激起反應。舉例而言,在分析物傳感器中,訊號強化層40可在當被目標分析物接觸時經歷化學或物理變化或反應。此化學或物理變化或反應在當曝露於分析物時可進一步增強或擴大來自主動感測層30的輸出訊號。當訊號強化層40是反應性時,其在由ASTM method D-570量測下在該層中的分析物溶解度應至少大約0.8%,較佳地是至少大約2.0%,且更佳地是從大約5.0%至大約10%。反應性的訊號強化層40可由任何一個或多個非傳導性材料所製成,其包含選自由以下所組成的群組:聚合物(例如聚酯或聚甲基丙烯酸甲酯(PMMA))、光阻、陶瓷、或金屬組成物、或它們的混合物。
在另一實施例中,訊號強化層40較佳地是不與所偵測的刺 激反應。在此例中,訊號強化層40在當被分析物接觸時不應經歷化學或物理變化或反應。以此方式,訊號強化層40可表現如同隔離層,從而將主動感測層30隔離於有害的環境影響。當訊號強化層40是非反應性時,其在由ASTM method D-570量測下在該層中的分析物溶解度應小於大約0.02%,較佳地是小於大約0.001%,且更佳地是大約0%。非反應性的訊號強化層40可由任何一個或多個非傳導性材料所製成,其包含選自由以下所組成的群組:聚合物(例如聚四氟乙烯(PTFE)、矽氧介電材料、環烯烴共聚物、聚偏氟乙烯(PVDF)、聚苯乙烯)、光阻、陶瓷、或金屬組成物、金屬氧化物、金屬氮化物(例如氮化矽)或它們的混合物。
4.圖5~6的實施例
參照圖5,其例示傳感器10d。傳感器10d類似於圖4的傳感器10c,除了該傳感器10d進一步包含過濾層46之外。過濾層46包含第一側48及第二側50,且鄰近於訊號強化層40,並且較佳地是第一側48倚靠訊號強化層40的第二側44。
在圖6的傳感器10e所例示的進一步實施例中,訊號強化層40是不存在的,因此過濾層46的第一側48是鄰近於主動感測層30。更佳地是,在此實施例中過濾層46的第一側48是靠著主動感測層30的第二側34。
不論是參考傳感器10d或是10e的情形下,過濾層46是位於一些或全部的傳感器電極24a及24b以及環境之間。過濾層46是經設計以隔離主動感測層30與一些或全部的環境刺激。亦即,過濾層46可藉由僅允許想要的環境訊號與主動感測層30接觸及反應而增強傳感器的功能或選 擇性。過濾層46的材料及性質取決於所製造的傳感器的類型。過濾層46較佳地是由選自以下所組成的群組的材料所製成:金屬薄膜、聚合性薄膜、陶瓷薄膜、單晶體薄膜、離子選擇性薄膜、化學選擇性薄膜、生物選擇性薄膜、金屬氧化物薄膜、金屬氮化物薄膜、有機金屬薄膜以及前述之組合。
過濾層46可為傳導性的或電性絕緣的。再者,過濾層46可藉由任何合適的技術沉積,其可包含選自由以下所組成的群組:網版印刷、噴霧塗覆、氣溶膠噴塗印刷、噴墨印刷、柔版印刷、凹版印刷、拖桿塗覆、浸漬塗覆、蝕刻技術、旋轉塗覆、蒸鍍、濺鍍、積層法、雷射燒蝕、ALD、CVD及PECVD。過濾層46的厚度較佳地是從大約10nm至大約150μm,更佳地是從大約50nm至大約100μm,且甚至更佳地是從大約100nm至大約2μm。
在一實施例中,當傳感器10d或10e是分析物傳感器時,過濾層46優先地允許想要的分析物通過而同時阻隔任何不想要的環境訊號。較佳地是,過濾層46應該具有高的分析物穿透率以及低的分析物吸收及反射率。過濾層46在由ASTM method F1249量測下應具有至少大約50g/m2/day的分析物擴散速率,較佳地是至少大約500g/m2/day,且更佳地是至少從大約2000g/m2/day至大約5000g/m2/day。例如,對於濕度傳感器而言,過濾層46是水可滲透的薄膜材料,諸如選自由以下所組成的群組:紙類、纖維素紙、GoreTex材料、PVDF及PTFE,以及任何多孔的水分可滲透層。
在另一實施例中,當傳感器10d或10e欲偵測諸如溫度或力的物理性刺激時以及當環境中來自分析物濃度的影響是不需要時,過濾層46較佳地是防止諸如水分或化學物的任何分析物穿透過濾層46的封裝物。 舉例而言,就溫度傳感器而言,過濾層46將會是具有高熱傳導性的封裝物,其防止除了熱的任何環境訊號與主動感測層反應。在此例中,用於過濾層46的較佳材料包含選自由以下所組成的群組:金屬、金屬氧化物(諸如氧化鋁或氧化鈹)、金屬氮化物、結晶性非金屬(諸如鑽石或石英)、矽氧類、聚丙烯酸酯、聚甲基丙烯酸酯、聚氨基甲酸酯、多糖類以及苯乙烯。對非分析物而言,過濾層46在由ASTM method F1249量測下應具有小於大約1g/m2/day的非分析物擴散速率,較佳地是小於大約0.01g/m2/day,且更佳地是小於大約0.001g/m2/day。當傳感器10d或10e是溫度傳感器時,過濾層46應具有至少大約10W/m‧K的熱傳導率,較佳地是至少大約100W/m‧K,且更佳地是至少大約400W/m‧K。
形成
有利地是,本發明的傳感器的製造可藉由印刷電子技術來完成。因為成本較低、速度較快以及基板與形狀因素(form factor)的多樣性的緣故,使用印刷技術以製造感測器是有需求的。然而,將瞭解的是,假如感測的材料以及尺寸是經適當地選擇,則感測器可使用標準的光微影技術以及材料製成。
在一實施例中,傳感器是經封裝至裝置(例如感測器)中,該裝置包含傳感器以及控制器單元。控制器單元能夠解讀傳感器的電阻變化,並且基於橫跨傳感器的電阻變化而計算環境刺激的濃度。如以上所述,裝置可選擇性地包含溫度感測器,以補償在裝置中及在裝置周圍的溫度擾動。
在一實施例中,裝置包含電子設備以及軟體讀出及分析系 統,其能夠以足夠的帶通放大來自傳感器的訊號,以測量感測器所產生的高速電性電阻擾動。這些訊號一旦經放大後,將被轉換成後續資料分析的數位訊號於控制器單元中,諸如微控制器、微處理器或邏輯陣列系統。
較佳地是,控制器單元包含硬體部,其包含放大器以及訊號調節電路,其可具有或不具有硬體濾波器或者是類比或數位訊號處理階段,而後數位轉換至微處理器、微控制器或邏輯陣列,以用於進一步的訊號分析、儲存以及結果的視覺呈現。換句話說,本發明的傳感器可被併入於需要藉由採用習知製程的傳感器的習知感測器以及其他裝置。
應用
當利用本發明的傳感器而當作濕度、氣體或VOC感測器時,主動感測層的電阻亦是些微地與溫度相關。選擇性地,為了更佳的精確度,氣密封的溫度感測器可被使用為溫度補償器元件而與濕度、氣體或VOC感測器整合。此溫度補償器元件可被直接地併入於裝置結構上或各別的結構中。由於補償器元件是經氣密封的,所以補償器元件僅對於溫度靈敏,並且可使用減法模式以去除在所有的濕度、氣體或VOC感測器訊號上的溫度效應。
當本發明的傳感器可被用以產生濕度感測器時,濕度傳感器較佳地是具有小於大約5msec的平衡時間,更佳地是小於大約1.0msec,甚至更佳地是從大約0.5msec至大約1.0msec。濕度傳感器亦具有非常低的反應時間。濕度傳感器在大氣條件下應具有小於大約50msec的反應(或上升)時間,較佳地是小於大約20msec,更佳地是小於大約10msec,且甚至更佳地是從大約5msec至大約10msec。濕度傳感器在大氣條件下應具有小於大 約100msec的下降時間,較佳地是小於大約90msec,更佳地是小於大約50msec,且甚至更佳地是從大約20msec至大約50msec。
濕度傳感器是基於在電極結構內與表面濕度改變相關的電阻變化。較佳的變化是於室溫下在30%的濕度變化下有至少20%的電阻變化。感測器所需要的電流較佳地是從大約500nA至大約200μA,更佳地是從大約500pA至大約200nA,甚至更佳地是從大約50pA至大約200pA。
傳感器的速度可促進許多種應用,諸如語音探測及辨識。舉例而言,圖7例示當說出“測試,1、2、3”的措辭時來自其中一個傳感器的即時濕度訊號(頂部面板)以及即時聲音訊號(底部面板)。每一音節具有獨自的濕度訊符(humidity signature)並且與聲音訊號耦合,其可透過振幅資訊指出說話者的水分含量(hydration)以及藉由頻率資訊指出說話者的身份。
揮發程度感測器可藉由利用高速的傳感器而產生。在一實施例中,傳感器以及相關的電子設備可被用以在當極性溶劑的濃度超出或低於預先決定的設定值程度時開燈及關燈。以此方式,乾燥器可在當散發自物體的極性溶劑氣體掉至乾燥器所期望的乾燥程度時被控制或關掉。
傳感器的效能
圖8例示當曝露至經增加的相對濕度(RH)的一秒脈衝時特定的基本感測器的形為。傳感器在100ms內迅速地反應以及回復。形成在以CNT為基的主動感測層以及PET訊號強化層之間的介面處的阻塞區域在這些速度之下佔有支配的地位。這些濕度傳感器具有小於10ms的超快反應時間以及大約40ms的回復時間。非常相似的形為在包含醇類以及酮類的其他成分的快速脈衝可觀察到,而主要差異在於實際的反應以及回復時間, 但它們全都在250ms以內。
圖9例示當曝露在較高相對濕度下達一延長的時間(10minutes)時,相同的基本傳感器的反應。在這較長的時間期間,阻塞區域並未完全地阻隔水分擴散進入訊號強化層。此效應減緩感測器的回復時間,因為擴聚進入訊號強化層的濕氣現在必須在感測器可完全回復至它的平衡狀況下之前流出。這是訊號強化層或介電層所造成的裝置的遲滯,而不是主動層。
在圖10中,相對濕度是以在密封環境腔室中以三角形波的形式下緩慢地變化大約4小時的時間,並且與圖8及9相同的傳感器的生成訊號是被例示的。在圖中的實線例示隨著時間的輸入濃度變化,而虛線例示來自濕度傳感器的讀取。當曝露至慢得多的濃度變化時,感測器活動在甚至數小時後也不能回到平衡。
在圖10中的反應例示感測器在尖峰處對於水氣的環境濃度變化迅速地反應。這是具有較高濃度變化頻率的區域,並且傳感器的運作就如同高通濾波器並且對於此濃度擾動較快速地反應。
傳感器遲滯的計算
當一環境刺激上升且下落時,來自傳感器的電流輸出是以固定施加電壓記錄。電流輸出數值是利用以下方程式轉換為電阻數值:電阻=(施加電壓)/(電流輸出)
電阻輸出對溫度的圖表是被繪出,並且繪出最適線(best-fit line)。利用最適線的斜率以及y軸截距數值,在前進以及回返週期的每一記錄資料點處的每一電阻數值在當被經校正的基準測量時是利用以下方程式轉換成經 計算的溫度數值:Xcal=((R-c))/m
其中,「R」為電阻輸出、「c」為最適線的y軸截距、「m」為最適線的斜率以及「Xcal」為經計算的數值。在每一實際的記錄資料點處,在前進以及回返週期期間計算數值自實際資料點的差異是被計算的。在前進以及回返週期期間在每一記錄點處的差異是經添加的。這是被實行於每一資料點。在整個範圍中經計算數值與實際數值的最大偏離是被當作裝置的遲滯。
溫度感測器精確度的計算
為了計算傳感器的精確度,如以上所計算的實際數值以及計算數值之間的差異是在一給定的刺激週期下被發現。傳感器的精確度是當傳感器在計算數值以及實際數值之間的最大差異之下被計算。
範例
以下幾個範例列舉根據本發明的較佳方法。然而將瞭解的是,這些範例是以示範的方式提供並且它們不應被視作對於本發明之範圍的限制。
範例1
奈米碳管墨水的製備1
Brewer Science® CNTRENE® 1020材料是被使用作為CNT墨水的來源。為了促進印刷,二甲基甲醯胺(DMF)(來自Sigma-Aldrich公司,部件編號D158550)與去離子水的1:1溶液是被使用以藉由將原始的CNT墨水(24的等效OD)以DMF以及DI水稀釋至約1:12並且搖晃約30秒而將墨水稀釋至2.0的光學密度,用以噴濺至裝置上。
範例2
奈米碳管墨水的製備2
Brewer Science® CNTRENE® 1020材料是被使用作為CNT墨水的來源。為了促進印刷,去離子水是被用以藉由將原始的CNT墨水(24的等效OD)以DI水稀釋並且搖晃約30秒而將墨水稀釋至2.0的光學密度,用以噴濺至裝置上。
範例3
在PET上的整合式溫度/分析物傳感器的製造
在此範例中,32個整合式溫度/分析物傳感器是在可撓式Melinex® ST730 PET基板(Tekra公司,地址:WI 53151,新柏林,16700西林肯大道)上製成。傳感器的結構是例示於圖11。首先,基板是以10”/min的速度在130℃下於傳送帶烤箱(conveyor oven)中烘烤。接著,底部金屬層(AG-800銀導電墨水;來自NH州,哈德森鎮的Conductive Compounds公司)是利用AT-60PD網版印刷機而利用以下參數網版印刷在基板上:網版:聚脂(230 threads/inch);溢流/刮板速度:225mm/s;溢流大氣壓力:10psi;刮板壓力:25psi。然後,基板是以10”/min的速度在130℃下於傳送帶烤箱中固化。經固化的銀薄膜具有5μm的厚度。底部絕緣層(來自Brewer Science公司的實驗性的環烯烴聚合物)是利用與金屬層相同的參數而網版印刷在金屬層的頂部上,並且以10”/min的速度在130℃下於傳送帶烤箱中固化。該薄膜厚度大約8μm。銀電極接著是利用與金屬層相同的網版印刷以及固化參數而被網版印刷在底部絕緣層的頂部上。來自範例1的材料是接著利用具有Sono-Tek噴塗頭的訂製噴霧式塗佈機利用135℃的平台溫度、2mm的 掃描寬度、10ml/hr的流動速率、60mm/s的掃描速度以及Sono-Tek model 048-00214噴塗頭來噴霧塗覆而橫跨於電極區域。CNT膜厚近似於20nm。頂部絕緣層(其材料與底部絕緣層相同)是利用相同的網版印刷參數而網版印刷在溫度傳感器區域上的CNT上方,並且以10”/min的速度在130℃下於傳送帶烤箱中固化,並且利用來自Fusion UV systems公司的LC-6B Benchtop Conveyor以52”/min的傳送帶速度進一步UV固化。最後,頂部金屬層(AG-800銀導電墨水)是利用與底部金屬層相同的網版印刷參數而網版印刷在溫度傳感器上,並且以10”/min的速度在130℃下於傳送帶烤箱中固化。這些頂部疊層的膜厚以及網版印刷參數皆與各自的底部疊層相同。
範例4
在聚亞醯胺上的整合式溫度/分析物傳感器的製造
一薄板的整合式溫度/分析傳感器是利用與範例3中的相同條件而製備,除了聚亞醯胺薄板(來自美國的Dupont公司)是使用作為基板。圖12例示所產生的傳感器的薄板。
範例5
比較性整合式溫度及濕度傳感器的製造
整合式的溫度及濕度傳感器是利用印刷電子技術而合成為相對大的傳感器(約1.5cm2)。電極是利用奈米銀導電墨水(來Conductive Compounds公司的AG-800)網版印刷在來自Tekra公司的聚對苯二甲酸(PET)基板上,並且在傳送帶烤箱中於110℃下固化約10分鐘。所使用的感測元件是利用來自範例2的材料而塗覆,並且是藉由以50nm的厚度噴霧塗覆橫跨於兩個電極而沉積於電極之間。最後,DuPont 5036聚合性封裝材料是被 網版印刷在溫度電極上方的CNT感測元件的頂部上。
範例6
分散溫度傳感器的製造
分散溫度傳感器是利用與範例3中相同的印刷參數而製造。在此設計中,僅印刷兩個電極,並且不存在濕度電極。傳感器的結構是例示於圖13中。圖14例示所產生的傳感器的薄板。
範例7
傳感器測試設備的配置
傳感器是利用客製化的掃描器系統在環境腔室(Espec BTL-433 model)內部以經控制的相對濕度以及溫度來測試。該掃描器板系統(scanner board system)含有掃描器板,其具有96個彈簧負載的頂針,以及含有夾嵌系統,用以將測試下的32個整合式傳感器電連接至系統的電子設備,而用於電壓供應以及電流/電壓輸出量測。掃描器亦含有四個經校正標準的感測器(兩個Honeywell NIH-400濕度感測器以及兩個Texas Instruments LM335溫度感測器),用以測量在環境腔室內部的相對濕度以及溫度。電子系統使用Keithley的617靜電計以對標準感測器以及DUT提供電壓,並且測量來自DUT的電流輸出。Keithley的195A數位萬用表是被用來測量來自標準感測器的電壓輸出。掃描器盒(scanner box)利用掃描器繼電器板、掃描器控制器以及多工器以同時地測試32個整合式溫度/分析物傳感器。對該測試來說,每一個DUT皆是正向偏壓的,而所有其他裝置被推送至零電位以去除漏電流。一部分電路的示意圖是例示於圖15,其例示以一個DUT的施加電壓測試電流的陣例操作。該資料取得是利用Lab View 2011 program來執 行。該掃描器系統一次提供電壓至一個DUT。取得資料的穩定時間是設定為1秒,而資料取得週期是15分鐘長。
在圖15中所示的電路是用以藉由選擇列(R11-R42)繼電器的一者以及行(C1-C8)繼電器的一者以測量在距陣中的每一個電阻。舉例而言,電阻Ri可藉由關閉繼電器C5以及繼電器R22測量。在關閉C5以及R22之下,在第5行的全部電阻皆以一端連接至功率供應HI終端。在其他行中的所有其他電阻的兩端是連接至的功率供應LO終端(透過繼電器的關閉接觸)或在有效的LO電壓下(沿著列R22)的電流計HI+終端。因為全部的這些電阻皆不具有橫跨它們的電壓因而沒有流通過它們的電流,所以可自功率供應流動的電流僅可流通過在第5行中的電阻。但是流通過電流計的僅有電流是沿著列22流通的電流。因為除了Ri之外的所有其他電阻是連接至除了行5外的行並且沒有電流流通過它們,所以由電子電流計所測量到的電流僅是流通過Ri的電流。Ri的電阻等於功率供應電壓除以由電子電流計所測量的電流。
對於溫度/分析物傳感器的遲滯以及精確度測試而言,在腔室內部的相對濕度是在固定溫度(25℃)下自25%上升至80%且接著返回至25%。對於溫度傳感器的遲滯及精確度測試而言,溫度是自20℃上升至90℃且返回至20℃,而固定相對濕度至35%。對於每一個測試而言,來自每一個傳感器的輸出電流是在0.5V的固定電壓下量測。四個標準經校正的感測器是使用以測量在腔室內部的相對濕度以及溫度。由經校正的標準感測器所記錄之腔室的相對濕度以及溫度圖表是例示於圖16。
範例8
以奈米碳管為基的溫度傳感器的溫度遲滯與精確度
在範例3及5中所製的傳感器的遲滯測試是藉由將傳感器置放在範例7所述的測試設備中來執行。溫度是如同範例7中所述的從20℃至90℃至20℃來循環,並且來自感測器的電流輸出是在0.5V的固定施加電壓下記錄。電阻輸出對溫度的圖表是被繪出,並且繪出最適線。利用最適線的斜率以及y軸截距數值,在經校正的溫度感測器所記錄的每一溫度下的每一電阻數值是轉換成經計算的溫度數值。在前進以及回返週期期間,每一經計算的溫度與實際溫度的偏離是被計算的,並且在前進以及回返溫度週期的每一記錄的溫度的溫度差是被疊加一起。在整個範圍下經計算的溫度與實際溫度的最大偏差是該裝置的遲滯數值。來自範例5的傳感器(其並未使用訊號強化層或隔離層)的遲滯是近似於16℃並且是例示於圖17。來自範例3的傳感器的遲滯由於隔離以及過濾層的添加而大幅地改善,並且是大約2℃,如圖18所示。
每一溫度傳感器的精確度亦在如上所述的過程期間藉由找出在每一記錄溫度下在經計算以及實際溫度之間的差異而被計算。最大的差值為該裝置的精確度。來自範例5的傳感器薄板的精確度是例示於圖19。來自範例3的傳感器薄板的精確度是大幅地改善且例示於圖20。
範例9
以奈米碳管為基的濕度傳感器的濕度遲滯與精確度
在範例3及5中所製的傳感器的遲滯測試是藉由將傳感器置放在範例7所述的測試設備中來執行。在腔室內部的相對濕度是自25%上升至80%,並且如範例7中所示的在固定溫度下(25℃)返回至25%,並且來 自感測器的電流輸出是在0.5V的固定施加電壓下記錄。電阻輸出對相對濕度的圖表是被繪出,並且繪出最適線。利用最適線的斜率以及y軸截距數值,在經校正的濕度感測器所記錄的每一濕度點下的每一電阻數值是轉換成經計算的濕度數值。在前進以及回返濕度週期期間,每一經計算的相對濕度與實際相對濕度的偏離是被計算的,並且在前進以及回返濕度週期的每一記錄的濕度的濕度差是被疊加一起。整個範圍中經計算的濕度與實際濕度的最大偏差是該裝置的遲滯數值。來自範例5的傳感器(其並未使用訊號強化層或隔離層)的遲滯是例示於圖21。來自範例3的傳感器的遲滯是例示於圖22。
每一濕度傳感器的精確度亦在如上所述的過程期間藉由找出在每一記錄濕度下在經計算以及實際濕度之間的差異而被計算。最大的差值為該裝置的精確度。來自範例5的傳感器薄板的精確度是例示於圖23。
範例10
隨時間的裝置穩定性
來自範例5的溫度傳感器是在固定溫度以及相對濕度下(25℃/50%RH)在環境腔室中測試一延長的時間期間,以測試隨時間的裝置穩定性。圖24例示在環境腔室中8個代表性溫度傳感器於72小時期間的輸出電流。圖25例示當在室溫條件下由數位萬用表量測60天的8個溫度傳感器的電阻輸出。如所示,裝置顯示隨時間的極穩定效能。
來自範例5的濕度傳感器是在固定溫度以及相對濕度下(25℃/50%RH)在環境腔室中測試一延長的時間期間,以測試隨時間的裝置穩定性。圖26例示在環境腔室中8個代表性濕度傳感器於72小時間的輸出電 流。圖27例示當在室溫條件下由數位萬用表量測60天的8個濕度傳感器的電阻輸出。如所示,裝置顯示隨時間的極穩定效能。
範例11
整合式溫度及分析物傳感器的速度測量
於範例5中所製的傳感器在濕空氣的引入下測試它的反應以及回復時間。用以量測反應以及回復時間的實驗性設置是例示於圖28。乾及濕(30%的相對濕度)空氣是利用電磁閥(Ingersoll-Rand P251SS120-A-G)以一秒的脈衝被引入至傳感器。當濕空氣被引入至傳感器時的反應時間(1/e)以及當濕空氣在1秒後被替換成乾空氣時的回復時間是例示於圖8。反應時間為小於10毫秒且該回復時間為大約40毫秒。
範例12
整合式溫度傳感器的速度測量
為了評估來自範例5的傳感器對於熱改變的感測性以及速度,傳感器是與手指接觸並且接著放掉,並且電流輸出資料是利用Keithley的4200-SCS半導體分析器而即時的記錄。傳感器對來自人類手指的熱度的反應是例示於圖29。如所示,溫度傳感器在當接觸時對於來自手指的甚至非常小的熱度可以快速地反應,並且當釋放時非常快速地回復。溫度傳感器的反應時間為小於50毫秒且回復時間為小於150毫秒。
範例13
利用有機聚合物的比較性薄膜溫度傳感器
薄膜溫度傳感器是如同範例5所製造,除了10nm的導電聚合物(PEDOT:PSS;來自Sigma Aldrich公司,產品號655201)疊層是被用以取 代CNT墨水而作為主動感測層。圖30例示在範例7的環境腔室中在前進以及回返溫度週期期間的4個代表性的以PEDOT:PSS為基的溫度傳感器的反應。傳感器具有小於4℃的遲滯。傳感器亦具備極快的速度,其具有小於50毫秒的反應時間。圖31例示當以聚合物基的溫度傳感器在當在被喊出“哈囉,1、2、3”的人於1.5吋遠的地方所持有時對於熱擾動的反應。
範例14
利用有機聚合物的薄膜溫度傳感器
薄膜溫度傳感器是如同範例3所製造,除了10nm的導電聚合物(PEDOT:PSS;來自Sigma Aldrich公司,產品號655201)疊層是被用以取代CNT墨水而作為主動感測層。圖32例示在範例7的環境腔室中在前進以及回返溫度週期期間的4個代表性的以PEDOT:PSS為基的溫度傳感器的反應。
範例15
整合式傳感器的低功率操作
整合式溫度/分析物傳感器可在極低的功率(幾個pW)下操作,使得它們適於低電池消耗操作以及長期的過程/環境監測應用。於範例5中所製造的溫度/分析物傳感器利用Keithley的SCS4200半導體分析器在-2.5mV至+2.5mV的電壓範圍中的I-V表現是例示於圖33。如所示,它們顯現出向下至極低的電壓下的線性行為。圖34例示溫度/分析物傳感器被操作在1μV下對於人類呼吸的反應。傳感器在此呼吸監控操作期間耗費小於30pW的功率。
範例16
揮發性有機化合物(VOC)蒸氣偵測傳感器
整合式溫度/分析物傳感器是如同範例5所製造。用於測量反應以及回復時間的實驗性設置是例示於圖28,其中溶劑蒸氣是藉由將乾空氣吹過溶劑池上方代替濕氣而被引入至空氣流。含有溶劑的空氣在到達傳感器之前先經過玻璃熔塊。針對反應以及回復時間測試而言,感測器是以乾空氣沖洗1分鐘,接著管線以含有溶劑的空氣沖洗5秒,並且接著利用電磁閥(Ingersoll-Rand P251SS120-A-G)將含有溶劑的空氣的一秒脈衝引入傳感器。反應時間是以在脈衝上升邊緣以及在反應達底線訊號與訊號最大值間之間距的63.2%之間的時間來計算。同樣地,回復時間是以在脈衝下降邊緣以及在反應達起始底線的63.2%之間的時間來計算。因為電壓輸出是指數地改變,所以達到最大值輸出的63.2%的時間是使用作為工業標準以計算反應時間。這些傳感器不僅對於濕度靈敏,也對於好幾種的極性揮發性有機物靈敏而具有非常快的反應以及回復時間,如圖35以及表1所示。
Figure 104123686-A0305-02-0033-1
範例17
濕度傳感器的聲音辨識
來自範例5的整合式溫度/濕度傳感器是藉由改變嘴巴與感測器之間的距離以測試獲得聲音產生的相對濕度(RH)訊號的效率,並且在 室內以及室外作測試。在室內,感測器在一個人在距離傳感器超過20cm的距離處說出“1-2-3”時給出清楚的RH訊號(實驗室溫度=23℃,RH=55%)。訊號可以使用合適的電子設備以及放大器而放大,以使得用於聲音辨識的感測器裝置可以使用甚至較長的時間。
相同的感測器在露天(風速近似於9miles/hr)的室外下測試,而感測器在距離嘴巴5公分的距離處。當沒有微風吹動時,有清楚的聲音產生的RH訊號。然而,在有相對大的風時則沒有RH訊號。
範例18
以奈米碳管為基的溫度傳感器的溫度遲滯與精確度
溫度傳感器是如同範例6所製成,除了主動層使用含有Zeon CNT的墨水而具有2的光學密度。主動層被噴霧塗覆成三個疊層以形成主動層。溫度傳感器如同範例7所測試。
所有感測器的遲滯以及精確度是分別低於3℃以及2.5℃,如同圖36所示。電阻的溫度係數(每一度的溫度變化下的電阻百分比(%)變化)是大約0.55%/℃。如同圖37所示,感測器對於RH改變(1.25hr至7.25hr)完全沒有反應,但顯示出對於T改變的反應(9hr至15hr)。
範例19
奈米碳管墨水的製備3
在此程序中,20毫克的SWeNT SG65的CNT原料在去離子水中與200毫升的0.5%的十二烷苯磺酸鈉(SDBS)(重量百分比)混合。該漿料利用微流化裝置(型號:M10Y,柱尺寸(column size):87μm)分散20分鐘。所產生的分散物在離心機中以22.5rpm的速度轉動30分鐘。墨水的最終OD 為1.90。
範例20
以半導體的奈米碳管為基的溫度傳感器的溫度遲滯與精確度
溫度傳感器是如同範例6所製成,除了主動層使用來自範例19的墨水。主動層被噴霧塗覆至傳感器上,並且介面活性劑是藉由異丙醇浸洗以及後續的去離子水浸洗而從主動層去除。溫度傳感器如同範例7測試。
所有感測器的遲滯以及精確度是低於1.5℃,如同圖38所示。電阻的溫度係數是大約0.55%/℃。如同圖39所示,感測器對於RH改變(1.25hr至7.25hr)完全沒有反應,但顯示出對於T改變的反應(9hr至15hr)。
10:傳感器
12:阻障層
14:阻障層的第一側
16:阻障層的第二側
18:介電層
20:介電層的第一側
22:介電層的第二側
24a~24b:電極
26a~26b:電極的側壁
28a~28b:電極的上表面
30:主動感測層
32:主動感測層的第一側
34:主動感測層的第二側

Claims (27)

  1. 一種傳感器,其包含:阻障層,其具有大約50nm至大約50μm的平均厚度;主動感測層,其與至少兩個電極接觸,其中該主動感測層是選自由以下所組成之群組:奈米碳管、奈米碳管織物、非晶質碳膜、石墨、石墨烯、熱分解碳、碳纖維、碳黑、矽、傳導聚合物、富勒稀碳灰(fullerenes carbon soot)以及前述之組成物與混合物;以及介電層,其在該主動層及該阻障層之間且具有第一側及第二側,該至少兩個電極均鄰近於該介電層的第二側,該傳感器是電阻式傳感器。
  2. 如申請專利範圍第1項的傳感器,其中該阻障層包含選自由以下所組成之群組的材料:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、有機聚合物及前述之混合物。
  3. 如申請專利範圍第1項的傳感器,其中該主動感測層具有小於大約1000nm的厚度。
  4. 如申請專利範圍第1項的傳感器,其中該主動感測層是碳質材料。
  5. 如申請專利範圍第1項的傳感器,其中該介電層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金組成物及它們的混合物。
  6. 如申請專利範圍第1項的傳感器,該主動感測層具有第一側及第二側,而該主動感測層的第一側靠著該介電層的第二側。
  7. 如申請專利範圍第1項的傳感器,其中該阻障層具有第一側及第二側,該介電層鄰近於該阻障層的第二側,且進一步包含靠著該阻障層的第 一側的基板。
  8. 如申請專利範圍第7項的傳感器,其中該基板是選自由以下所組成的之群組:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、紙、有機聚合物及前述之混合物。
  9. 如申請專利範圍第5項的傳感器,進一步包含訊號強化層,其靠著該主動感測層的第二側。
  10. 如申請專利範圍第9項的傳感器,其中該訊號強化層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金組成物及它們的混合物。
  11. 如申請專利範圍第9項的傳感器,進一步包含過濾層,其鄰近於該訊號強化層。
  12. 如申請專利範圍第11項的傳感器,其中該過濾層是選自由以下所組成之群組:金屬薄膜、聚合性薄膜、陶瓷薄膜、單晶體薄膜、離子選擇性薄膜、化學選擇性薄膜、生物選擇性薄膜、金屬氧化物薄膜、金屬氮化物薄膜、有機金屬薄膜及前述之組合。
  13. 如申請專利範圍第1項的傳感器,其中:該阻障層包含選自由以下所組成之群組的材料:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、有機聚合物及前述之混合物;以及該介電層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金屬組成物及它們的混合物。
  14. 如申請專利範圍第1項的傳感器,其中該主動感測層具有第一側及 第二側,且該主動感測層的第一側靠著該介電層的第二側,進一步包含:訊號強化層,其靠著該主動感測層的第二側;以及過濾層,其鄰近於該訊號強化層。
  15. 如申請專利範圍第14項的傳感器,其中:該阻障層包含選自由以下所組成之群組的材料:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、有機聚合物及前述之混合物;該介電層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金屬組成物及它們的混合物;該訊號強化層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金屬組成物及它們的混合物;以及該過濾層是選自由以下所組成之群組:金屬薄膜、聚合性薄膜、陶瓷薄膜、單晶體薄膜、離子選擇性薄膜、化學選擇性薄膜、生物選擇性薄膜、金屬氧化物薄膜、金屬氮化物薄膜、有機金屬薄膜及前述之組合。
  16. 如申請專利範圍第1項的傳感器,該傳感器在大氣條件下具有小於大約50msec的反應時間及小於約100msec的下降時間。
  17. 一種包含如申請專利範圍第1項的傳感器的感測器。
  18. 如申請專利範圍第17項的感測器,進一步包含控制器單元,其操作性地耦合於該傳感器。
  19. 如申請專利範圍第17項的感測器,該控制器單元操作性地耦合於該傳感器,以使得在該傳感器曝露至分析物時所遇到的電阻變化被該控制 器單元所偵測及分析。
  20. 如申請專利範圍第18項的感測器,其中:該阻障層包含選自由以下所組成之群組的材料:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、有機聚合物及前述之混合物;以及該介電層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金屬組成物及它們的混合物。
  21. 如申請專利範圍第17項的感測器,其中該主動感測層具有第一側及第二側,且該主動感測層的第一側靠著該介電層的第二側,該傳感器進一步包含:訊號強化層,其靠著該主動感測層的第二側;以及過濾層,其鄰近於該訊號強化層。
  22. 如申請專利範圍第21項的感測器,其中:該阻障層包含選自由以下所組成之群組的材料:金屬、金屬氧化物、金屬氮化物、半導體、玻璃、有機聚合物及前述之混合物;該介電層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金屬組成物及它們的混合物;該訊號強化層包含選自由以下所組成之群組的材料:非傳導聚合物、非傳導光阻、非傳導陶瓷、非傳導金屬氮化物、非傳導金屬氧化物、非傳導金屬組成物及它們的混合物;以及該過濾層是選自由以下所組成之群組:金屬薄膜、聚合性薄膜、陶瓷 薄膜、單晶體薄膜、離子選擇性薄膜、化學選擇性薄膜、生物選擇性薄膜、金屬氧化物薄膜、金屬氮化物薄膜、有機金屬薄膜及前述之組合。
  23. 如申請專利範圍第17項的感測器,該傳感器在大氣條件下具有小於大約50msec的反應時間及小於大約100msec的下降時間。
  24. 一種偵測條件之存在的方法,該方法包含:將傳感器引入其中可能存在該分析物的環境中,該傳感器包含:阻障層,其具有大約50nm至大約50μm的平均厚度;主動感測層,其與至少兩個電極接觸,其中該主動感測層是選自由以下所組成之群組:奈米碳管、奈米碳管織物、非晶質碳膜、石墨、石墨烯、熱分解碳、碳纖維、碳黑、矽、傳導聚合物、富勒稀碳灰(fullerenes carbon soot)以及前述之組成物與混合物;以及介電層,其在該主動層及該阻障層之間且具有第一側及第二側,該至少兩個電極均鄰近於該介電層的第二側;以及觀察該傳感器是否指出該條件之存在,其中該存在是藉由電阻變化所指出。
  25. 如申請專利範圍第24項的方法,其中該存在是選自由以下所組成之群組中之一者:分析物之存在、溫度之改變或兩者皆是。
  26. 如申請專利範圍第25項的方法,其中該分析物是選自由以下所組成之群組:濕度、氣體、氣流、揮發性有機化合物(VOC)及前述之組合。
  27. 如申請專利範圍第24項的方法,該傳感器在大氣條件下具有小於大約50msec的反應時間及小於大約100msec的下降時間。
TW104123686A 2014-07-22 2015-07-22 傳感器、感測器以及偵測條件之存在的方法 TWI711806B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462027753P 2014-07-22 2014-07-22
US62/027,753 2014-07-22
US201562172546P 2015-06-08 2015-06-08
US62/172,546 2015-06-08

Publications (2)

Publication Number Publication Date
TW201617585A TW201617585A (zh) 2016-05-16
TWI711806B true TWI711806B (zh) 2020-12-01

Family

ID=55163709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104123686A TWI711806B (zh) 2014-07-22 2015-07-22 傳感器、感測器以及偵測條件之存在的方法

Country Status (9)

Country Link
US (1) US10352726B2 (zh)
EP (1) EP3172582A4 (zh)
JP (1) JP2017531163A (zh)
KR (1) KR20170033865A (zh)
CN (1) CN106716152A (zh)
SG (2) SG11201700395XA (zh)
TW (1) TWI711806B (zh)
WO (1) WO2016014689A1 (zh)
ZA (1) ZA201700388B (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016081513A1 (en) * 2014-11-17 2016-05-26 The Regents Of The University Of Colorado, A Body Corporate Catalyst, structures, reactors, and methods of forming same
US20170003238A1 (en) * 2015-06-30 2017-01-05 GM Global Technology Operations LLC Multiple non-conductive polymer substrates and conductive coatings and methods for detecting voc
EP3332225B1 (en) 2015-08-07 2020-10-28 Brewer Science, Inc. Environmental sensor system and signal processor
US20170179199A1 (en) * 2015-12-18 2017-06-22 Dpix, Llc Method of screen printing in manufacturing an image sensor device
EP3465189A1 (en) * 2016-05-27 2019-04-10 Carrier Corporation Gas detection device and method of manufacturing the same
JP6792141B2 (ja) * 2016-06-23 2020-11-25 富士通株式会社 ガスセンサ及びその使用方法
WO2018045377A1 (en) 2016-09-05 2018-03-08 Brewer Science Inc. Energetic pulse clearing of environmentally sensitive thin-film devices
CN109906373A (zh) * 2016-09-21 2019-06-18 盛思锐股份公司 用含氟聚合物过滤器涂覆的电阻金属氧化物气体传感器
CH714339B1 (de) 2016-09-21 2020-06-30 Sensirion Ag Gassensor.
CN107966165B (zh) 2016-10-19 2020-12-22 华邦电子股份有限公司 电阻式环境传感器及电阻式环境传感器阵列
US10836639B1 (en) 2016-10-26 2020-11-17 Air Stations Llc/Elevated Analytics Llc Joint Venture Air quality measurement system
US10768158B2 (en) 2016-11-30 2020-09-08 City University Of Hong Kong Electrochemical detector
CN108614013B (zh) 2016-12-12 2023-12-08 华邦电子股份有限公司 传感装置、哺乳内衣及其制造方法
US10866226B1 (en) 2017-02-07 2020-12-15 Air Stations Llc/Elevated Analytics Llc Joint Venture Multi-point ground emission source sensor system
CN108426602B (zh) * 2017-02-13 2020-12-22 华邦电子股份有限公司 多功能传感器
US10928371B1 (en) 2017-03-31 2021-02-23 Air Stations Llc/Elevated Analytics Llc Joint Venture Hand-held sensor and monitor system
EP3401674B1 (en) * 2017-05-09 2020-07-15 ams International AG Capacitive-type humidity sensor with superhydrophobic top surface and corresponding fabrication method
JP6958258B2 (ja) * 2017-11-08 2021-11-02 富士通株式会社 センサデバイス及びその製造方法、ガスセンサ、情報処理システム
US11214500B2 (en) 2018-01-15 2022-01-04 Ddp Specialty Electronic Materials Us, Llc Spiral wound assembly with integrated flow restrictor and sensor
JP7046357B2 (ja) * 2018-04-04 2022-04-04 国立大学法人山形大学 温度センサおよびその製造方法
JP7217488B2 (ja) * 2018-04-04 2023-02-03 国立大学法人山形大学 湿度センサおよびその製造方法
JP7046356B2 (ja) * 2018-04-04 2022-04-04 国立大学法人山形大学 温度センサおよびその製造方法
KR102007446B1 (ko) * 2018-05-21 2019-10-21 해성디에스 주식회사 센서 유닛, 이를 포함하는 온도 센서, 센서 유닛의 제조방법 및 이를 이용하여 제조된 온도 센서
CN109060891A (zh) * 2018-06-25 2018-12-21 江苏双良低碳产业技术研究院有限公司 一种石墨烯基气体传感探头及其制备与应用
TWI665416B (zh) * 2018-08-07 2019-07-11 捷騰光電股份有限公司 Sensing method of temperature and humidity sensing module
JP7021756B2 (ja) * 2018-08-10 2022-02-17 フィガロ技研株式会社 ガス検出器
US11280685B2 (en) * 2018-10-01 2022-03-22 Goodrich Corporation Additive manufactured resistance temperature detector
KR102240943B1 (ko) 2019-06-07 2021-04-15 영남대학교 산학협력단 종이 기반 탄소나노튜브-전이금속 디칼코게나이드 하이브리드 가스 센서의 제조 방법
JP7313678B2 (ja) 2019-09-10 2023-07-25 国立研究開発法人物質・材料研究機構 アルデヒド検知センサ、および、それを用いたシステム
IT201900018611A1 (it) * 2019-10-11 2021-04-11 Univ Degli Studi Di Salerno Dispositivo e sistema per la misurazione di concentrazioni di sostanze chimiche di una soluzione e relativo metodo
CN111513686B (zh) * 2020-04-30 2023-11-07 业成科技(成都)有限公司 温度感测组件、温度检测器及穿戴装置
TWI788671B (zh) * 2020-06-02 2023-01-01 晶極光電科技股份有限公司 多孔壓力感測器的製造方法及其裝置
WO2021262457A2 (en) 2020-06-12 2021-12-30 Analog Devices International Unlimited Company Self-calibrating polymer nano composite (pnc) sensing element
KR102426908B1 (ko) 2020-06-29 2022-07-29 중앙대학교 산학협력단 가스 감지 센서의 제조방법 및 이에 의하여 제조된 가스 감지 센서를 이용한 가스 감지 키트
EP4036565A1 (en) * 2021-01-27 2022-08-03 Université Libre de Bruxelles Device and method for detecting the formation of ice
CN113588730A (zh) * 2021-08-05 2021-11-02 广州钰芯智能科技研究院有限公司 一种半导体式气敏传感器及其在呼气式酒精检测中的应用
CN113960845B (zh) * 2021-11-04 2023-08-29 业成科技(成都)有限公司 变色膜及其制备方法、窗户和显示屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556814A (en) * 1984-02-21 1985-12-03 Ngk Spark Plug Co., Ltd. Piezoelectric ultrasonic transducer with porous plastic housing
US20080221806A1 (en) * 2005-05-19 2008-09-11 Nanomix, Inc. Sensor having a thin-film inhibition layer, nitric oxide converter and monitor
EP2230507A1 (en) * 2009-03-17 2010-09-22 Nxp B.V. Humidity or gas sensor
TWI340485B (en) * 2006-03-20 2011-04-11 Wolfson Microelectronics Plc Mems process and device
US20110146398A1 (en) * 2009-12-18 2011-06-23 Honeywell International Inc. Flow sensors having nanoscale coating for corrosion resistance
US20140167791A1 (en) * 2012-12-19 2014-06-19 Robert Bosch Gmbh Resistive MEMS Humidity Sensor

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584552A (en) * 1982-03-26 1986-04-22 Pioneer Electronic Corporation Hall element with improved composite substrate
WO1998041822A1 (en) 1997-03-20 1998-09-24 Crotzer David R Dust sensor apparatus
DE10011562C2 (de) 2000-03-09 2003-05-22 Daimler Chrysler Ag Gassensor
US20040093928A1 (en) * 2002-11-20 2004-05-20 Dimeo Frank Rare earth metal sensor
JP4460000B2 (ja) * 2004-03-31 2010-04-28 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 試験材料のガス透過率を測定するためのセンサ
US20060201247A1 (en) 2004-05-06 2006-09-14 Honeywell International, Inc. Relative humidity sensor enclosed with formed heating element
JP4881554B2 (ja) 2004-09-28 2012-02-22 日立オートモティブシステムズ株式会社 流量センサ
US20060213251A1 (en) * 2005-03-24 2006-09-28 University Of Florida Research Foundation, Inc. Carbon nanotube films for hydrogen sensing
CN100420021C (zh) * 2005-04-07 2008-09-17 中国科学院电子学研究所 基于聚合物材料的单片集成温度、湿度、压力传感器芯片
JP4008456B2 (ja) * 2005-04-27 2007-11-14 Tdk株式会社 磁界検出センサ、薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、およびハードディスク装置
US20070039385A1 (en) 2005-08-18 2007-02-22 Mujie Yang Resistive thin film humidity sensitive device based on silicone-containing copolymer and its preparation method
EP1790977A1 (en) 2005-11-23 2007-05-30 SONY DEUTSCHLAND GmbH Nanoparticle/nanofiber based chemical sensor, arrays of such sensors, uses and method of fabrication thereof, and method of detecting an analyte
US20080022180A1 (en) * 2006-07-06 2008-01-24 Innovative Sonic Limited Method and apparatus for handling transmission errors in a wireless communications system
JP4925835B2 (ja) 2007-01-12 2012-05-09 日東電工株式会社 物質検知センサ
US20110127446A1 (en) 2009-05-21 2011-06-02 Alexander Star Nanostructure systems and methods for sensing an analyte
US9013102B1 (en) 2009-05-23 2015-04-21 Imaging Systems Technology, Inc. Radiation detector with tiled substrates
US9017867B2 (en) 2009-08-10 2015-04-28 Battelle Memorial Institute Self assembled multi-layer nanocomposite of graphene and metal oxide materials
WO2011082178A1 (en) * 2009-12-29 2011-07-07 Nanosense Inc. Fet - based nanotube sensor array
US9134270B2 (en) 2010-03-25 2015-09-15 Stichting Imec Nederland Amorphous thin film for sensing
WO2011159480A1 (en) 2010-06-15 2011-12-22 3M Innovative Properties Company Variable capacitance sensors and methods of making the same
US9007593B2 (en) 2010-07-20 2015-04-14 The Regents Of The University Of California Temperature response sensing and classification of analytes with porous optical films
WO2012035494A1 (en) 2010-09-13 2012-03-22 University Of Cape Town Printed temperature sensor
EP2622334B1 (en) 2010-09-30 2016-05-25 3M Innovative Properties Company Sensor element, method of making the same, and sensor device including the same
IT1402406B1 (it) 2010-10-22 2013-09-04 St Microelectronics Srl Metodo di fabbricazione di un dispositivo sensore di una sostanza gassosa di interesse.
WO2013009875A2 (en) 2011-07-12 2013-01-17 University Of Pittsburgh----Of The Commonwealth System Of Higher Education pH SENSOR SYSTEMS AND METHODS OF SENSING pH
US8759153B2 (en) 2011-09-06 2014-06-24 Infineon Technologies Ag Method for making a sensor device using a graphene layer
US8581400B2 (en) 2011-10-13 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Post-passivation interconnect structure
EP2810033B1 (en) 2012-01-30 2018-06-20 PST Sensors (Pty) Limited Large area temperature sensor
EP2623969B1 (en) 2012-01-31 2014-05-14 Nxp B.V. Integrated circuit and manufacturing method
KR102131314B1 (ko) 2012-06-25 2020-07-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 센서 요소, 이의 제조 방법 및 사용 방법
US20140016779A1 (en) * 2012-07-12 2014-01-16 Raytheon Bbn Technologies Corp. Tamper resistant electronic packages with quantum interconnects

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556814A (en) * 1984-02-21 1985-12-03 Ngk Spark Plug Co., Ltd. Piezoelectric ultrasonic transducer with porous plastic housing
US20080221806A1 (en) * 2005-05-19 2008-09-11 Nanomix, Inc. Sensor having a thin-film inhibition layer, nitric oxide converter and monitor
TWI340485B (en) * 2006-03-20 2011-04-11 Wolfson Microelectronics Plc Mems process and device
EP2230507A1 (en) * 2009-03-17 2010-09-22 Nxp B.V. Humidity or gas sensor
US20110146398A1 (en) * 2009-12-18 2011-06-23 Honeywell International Inc. Flow sensors having nanoscale coating for corrosion resistance
US20140167791A1 (en) * 2012-12-19 2014-06-19 Robert Bosch Gmbh Resistive MEMS Humidity Sensor

Also Published As

Publication number Publication date
EP3172582A4 (en) 2018-02-28
TW201617585A (zh) 2016-05-16
US10352726B2 (en) 2019-07-16
ZA201700388B (en) 2019-05-29
CN106716152A (zh) 2017-05-24
US20160025517A1 (en) 2016-01-28
JP2017531163A (ja) 2017-10-19
EP3172582A1 (en) 2017-05-31
SG11201700395XA (en) 2017-02-27
KR20170033865A (ko) 2017-03-27
WO2016014689A1 (en) 2016-01-28
SG10201900469PA (en) 2019-02-27

Similar Documents

Publication Publication Date Title
TWI711806B (zh) 傳感器、感測器以及偵測條件之存在的方法
US9784631B2 (en) Platform unit for combined sensing of pressure, temperature and humidity
Niu et al. Ultrafast-response/recovery capacitive humidity sensor based on arc-shaped hollow structure with nanocone arrays for human physiological signals monitoring
Pandey et al. Pd-doped reduced graphene oxide sensing films for H2 detection
Kinkeldei et al. An electronic nose on flexible substrates integrated into a smart textile
Chen et al. Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification
Naama et al. CO2 gas sensor based on silicon nanowires modified with metal nanoparticles
US20060263255A1 (en) Nanoelectronic sensor system and hydrogen-sensitive functionalization
KR101447788B1 (ko) 미결정 셀레늄으로 이루어지는 가스 감수성 재료 및 그것을 이용한 가스 센서
KR102397729B1 (ko) 환경 민감성 박막 장치의 에너지 펄스 제거
Laville et al. Interdigitated humidity sensors for a portable clinical microsystem
Packirisamy et al. A polyimide based resistive humidity sensor
KR20150079147A (ko) 플로팅 전극을 이용한 탄소나노튜브 기반 바이오센서, 이의 제조방법 및 이를 이용하여 비부착성 세포의 전기생리학적 반응을 측정하는 방법
Botsialas et al. A miniaturized chemocapacitor system for the detection of volatile organic compounds
Stankova et al. Sputtered and screen-printed metal oxide-based integrated micro-sensor arrays for the quantitative analysis of gas mixtures
Dissanayake et al. Conducting absorbent composite for parallel plate chemicapacitive microsensors with improved selectivity
CN107966586B (zh) 基于石墨烯氧化物的气流传感器及其制备方法与应用
Thompson Pencil-on-paper capacitors for Hand-Drawn RC circuits and capacitive sensing
Banerjee et al. Chemocapacitive detection of ethylene using potassium permanganate/polyimide composite thin-films
US20230065235A1 (en) Printable carbon nanotube-based carbon dioxide sensor
Ivanov et al. SOI-CMOS compatible low-power gas sensor using sputtered and drop-coated metal-oxide active layers
Dwivedi et al. Selective acetone electrical detection using functionalized nano-porous silicon
Chegini et al. Ti/PEDOT: PSS/Ti pressure sensor
US20230003684A1 (en) Is-fet nitrate sensor and method of use
Yue et al. Electronic-Nose: An Array of 16 MOS-Gas Sensors Integrated With Temperature and Moisture Sensing Capabilities