TWI710748B - 輪廓精度量測系統及量測方法 - Google Patents

輪廓精度量測系統及量測方法 Download PDF

Info

Publication number
TWI710748B
TWI710748B TW108113117A TW108113117A TWI710748B TW I710748 B TWI710748 B TW I710748B TW 108113117 A TW108113117 A TW 108113117A TW 108113117 A TW108113117 A TW 108113117A TW I710748 B TWI710748 B TW I710748B
Authority
TW
Taiwan
Prior art keywords
shaft
coordinate system
true
contour
true circle
Prior art date
Application number
TW108113117A
Other languages
English (en)
Other versions
TW202040096A (zh
Inventor
曾郁升
吳柏勳
楊宗育
李建毅
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW108113117A priority Critical patent/TWI710748B/zh
Priority to CN201910371251.3A priority patent/CN111823057B/zh
Priority to US16/527,226 priority patent/US11506489B2/en
Publication of TW202040096A publication Critical patent/TW202040096A/zh
Application granted granted Critical
Publication of TWI710748B publication Critical patent/TWI710748B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/402Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for positioning, e.g. centring a tool relative to a hole in the workpiece, additional detection means to correct position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33099Computer numerical control [CNC]; Software control [SWC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37359Contour, to sense corners, edges of surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49111Cutting speed as function of contour, path, curve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

一種輪廓精度量測方法,是利用量測系統擷取工具機之各軸件之位置座標資料,再將該位置座標資料進行演算以獲取斜面上之第一真圓軌跡,供作為參考資訊,之後該量測系統依據該參考資訊之各該軸件之位置座標資料,調整各該軸件之位置之參數,以產生該斜面上之第二真圓軌跡,因而得知各軸件於調整參數後之位置是否符合標準,俾藉由自動量測參數及自動測試運作狀態,以加速整體量測流程。

Description

輪廓精度量測系統及量測方法
本發明有關於一種量測系統與方法,尤指一種能自動調整工具機參數之輪廓精度量測系統及量測方法。
隨著工具機自動化的快速發展,利用輸入相關參數以進行相關加工之作業已成為現今的主流,故目前工具機已廣泛採用電腦數值控制(Computer Numerical Control,簡稱CNC)的方式進行加工作業。
再者,隨著先進製造技術的發展,對切削加工的穩定性、可靠性提出更高的要求。在實際切削加工中,刀具失效常影響切削加工之效率、精度、品質、穩定性與可靠性等,故於切削加工過程中選取適當的切削參數對於提高加工精度及品質極為重要。
此外,習知五軸加工機於進行切削加工作業前,通常會進行標準加工件之切削測試(如空跑作業),當切削精度不如預期時,需對於該五軸加工機之控制器對應伺服馬達之參數進行調整。
惟,習知調整參數,例如驅動馬達控制參數之過程中,是以人工方式將調整過程中之參數一一輸入,再一一測試運作狀態,以量測出符合標準之參數,故整體流程十分耗時,且需耗費大量之測試用之加工件,因而不符合量測成本。
因此,如何採用一個能降低量測成本且能準確反映出工具機加工精密度的量測系統,實已成為目前業界亟待克服之難題。
鑑於上述習知技術之種種缺失,本發明提供一種輪廓精度量測系統,用於連接具有控制器與複數軸件之工具機,該量測系統包括:擷取部,用於擷取該控制器指示各該軸件運動之加工路徑之回授訊號,並計算各該軸件於機械座標系中之位置;轉換部,通訊連接該擷取部,以令各該軸件之位置於該機械座標系與工件座標系之間進行轉換;處理部,通訊連接該轉換部,以演算出該加工路徑於該工件座標系中所呈現出之斜面上之第一真圓軌跡,供作為參考資訊;以及調整部,通訊連接該處理部,以依據該參考資訊之各該軸件由該工件座標系轉換回該機械座標系中之位置,調整各該軸件之位置之參數,俾產生目標資訊,其中,該目標資訊包含有該斜面上之第二真圓軌跡。
本發明亦提供一種輪廓精度量測方法,應用於具有控制器及複數軸件之工具機,包括:藉由一電子裝置擷取該控制器指示各該軸件運動之加工路徑之回授訊號,以令該電子裝置計算各該軸件於機械座標系中之位置;進行第一次座標轉換作業,以令該電子裝置將各該軸件於該機械座標系中之位置轉換成於工件座標系之位置;進行演算作業,以演算出該加工路徑於該工件座標系中所呈現出之斜面上之第一真圓軌跡,供作為參考資訊;進行第二次座標轉換作業,以令該電子裝置將該參考資訊之工件座標系轉換成該機械座標系,使各該軸件於該工件座標系中之位置還原成於該機械座標系中之位置;以及依據該參考資訊之各該軸件於該機械座標系中之位置,調整各該軸件之位置之參數,以產生目標資訊,其中,該目標資訊包含有該斜面上之第二真圓軌跡。
由上可知,本發明之量測系統及量測方法中,主要藉由將該量測系統之擷取部所擷取之座標數據經該轉換部轉換後傳輸至該處理部,以演算出該參考資訊,再藉由該參考資訊即時運作該工具機之第一至第五軸件,以得知該第一至第五軸件於調整參數後之位置是否符合標準,因而能即時量測出該工具機之刀具之切削精準度,故相較於習知技術,使用者可利用該量測系統自動量測參數及自動測試運作狀態之方式,立刻得知該工具機之刀具需符合標準之參數(或加工精密度),使整體量測流程快速,且無需耗費測試用之加工件,因而能降低量測成本。
以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。
須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」及「一」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當視為本發明可實施之範疇。
第1A圖為本發明之量測系統1之架構配置示意圖。如第1A圖所示,該量測系統1舉例包括:一擷取部10、一轉換部11、一處理部12以及一調整部13,惟本發明並不限制上述架構配置之各組成之可能整合、替換或增減配置。
請配合參閱第1B及1C圖,於本實施例中,該量測系統1應用於一電腦數值控制(CNC)的工具機9(如第1C圖所示之五軸型工具機),且該工具機9配置有一控制器90及可由該控制器90操控之第一至第五軸件91,92,93,94,95,並於其中一軸件92架設一刀具9a,而該量測系統1配置於例如為該工具機9的標準或獨立(如遠端電腦、個人電腦、平板或手機等)之電子裝置1a中,其具有運算與顯示量測結果及調整結果之功能,而且該電子裝置1a是以有線或無線方式連接控制器90。
再者,該五軸(5-axis)型工具機9復包括一基座9b、一支撐架9c及一加工平台9d,該支撐架9c立設於該基座9b上,且該刀具9a與該加工平台9d藉由各該軸件91~95架設於該支撐架9c上,以令該第一至第五軸件91~95分別定義出X軸、Y軸、Z軸、A軸及C軸。具體地,該第三軸件93可移動地設於該支撐架9c上,以沿相對該基座9b之垂直方向(如Z軸方向Z)移動;該第一軸件91可移動地設於該第三軸件93上,並設置有該加工平台9d,以沿相對該基座9b之水平面之其中一方向(如X軸方向X)移動該加工平台9d;該第二軸件92可移動地設於該支撐架9c上,並設置有該刀具9a,以沿相對該基座9b之水平面之另一方向(如Y軸方向Y)移動該刀具9a;該第四軸件94設於該第一軸件91上,並軸接該加工平台9d,以沿該第四軸件94之軸心翻轉(如旋轉方向A)該加工平台9d;該第五軸件95為可相對該加工平台9d沿該第五軸件95之軸心自轉(如旋轉方向C)之旋軸盤,其架設於該加工平台9d上以承載加工件(圖略)。因此,藉由該第一至第五軸件91~95之運動能推知該刀具9a相對該加工件(即第五軸件95)之位置。
所述之擷取部10用於擷取該控制器90對應該第一至第五軸件91~95(或該刀具9a)之加工路徑之回授訊號,並計算該第一至第五軸件91~95於機械座標系中之位置。
於本實施例中,該機械座標系之定義是以該基座9b為基準平面,如第1C圖所示之原點Om(Xm,Ym,Zm)之座標定義。
所述之轉換部11通訊連接(如無線或有線訊號傳輸方式)該擷取部10,以令該第一至第五軸件91~95之位置於該機械座標系與工件座標系之間進行轉換。
於本實施例中,該工件座標系之定義是將該工具機9分解為複數座標系,以描述該工具機之每一個軸件之間的相對位移及姿態。例如,以該加工件作為初始座標(其定義出該加工件與該第五軸件95的位置)、第五子座標為該第五軸件95(旋轉盤)與該加工平台9d的相對位置關係、第四子座標為該第四軸件94與該加工平台9d的相對位置關係、第三子座標為該第三軸件93與該第一軸件91的相對位置關係、第二子座標為該第二軸件92與該支撐架9c的相對位置關係、第一子座標為該第一軸件91與該第四軸件94的位置關係、垂直座標為該支撐架9c與該第三軸件93的相對位置關係、基底座標為該基座9b與該支撐架9c的相對位置關係、刀具座標為該刀具9a與該第二軸件92的相對位置關係等。
所述之處理部12通訊連接(如無線或有線訊號傳輸方式)該轉換部11,以演算出該加工路徑於該工件座標系中所呈現出之斜面上之第一真圓軌跡,供作為參考資訊。
於本實施例中,該處理部12利用三點求圓方式演算出該斜面上之第一真圓軌跡。
再者,該參考資訊為量測結果,其包含該第一真圓軌跡之真圓度之估測值,並顯示於該電子裝置1a之螢幕上。
所述之調整部13通訊連接(如無線或有線訊號傳輸方式)該處理部12,以依據該參考資訊之該第一至第五軸件91~95轉換回該機械座標系中之位置,調整該控制器90對應該第一至第五軸件91~95之位置之參數,俾產生目標資訊,其中,該目標資訊包含有該斜面上之第二真圓軌跡。
於本實施例中,該第一真圓軌跡之輪廓不同於該第二真圓軌跡之輪廓,例如,該第一真圓軌跡之真圓度不同於該第二真圓軌跡之真圓度。
再者,該目標資訊為調整結果,其包含該第二真圓軌跡之真圓度之估測值,並顯示於該電子裝置1a之螢幕上。
第2圖所示為本發明之量測方法之流程示意圖。如第2圖所示,該量測方法採用該量測系統1進行運作。
首先,於步驟S21中,使用者啟動該工具機9與該量測系統1(或電子裝置1a),並輸入參數至該控制器90中,以令伺服馬達作動該第一至第五軸件91~95,使該刀具9a進行加工作業前之空跑作業(即該第五軸件95上沒有加工件),再令該量測系統1(或電子裝置1a)之擷取部10藉由通訊傳輸方式(如網路)擷取該控制器90(或該伺服馬達)對應該刀具9a(或該第一至第五軸件91~95移動)之加工路徑之回授訊號,以令該擷取部10計算該第一至第五軸件91~95於該機械座標系中之位置(如移動路徑之第一座標數據)。
於本實施例中,該擷取部10擷取資料之方式可為內部直接傳輸(例如,該工具機9具有該量測系統1或電子裝置1a之配置)、應用程式介面(例如用以取得該工具機9之數位控制器的內部資訊)、用於該控制器90內外訊號傳遞及暫存的可程式控制器(Programmable Logic Controller,簡稱PLC)、外部裝置直接傳輸(例如編碼器傳輸座標訊號、光學尺傳輸座標訊號、資料擷取卡傳輸座標、NC碼行號或G碼類型)。
再者,於該工具機9運作時,該量測系統1可從多種來源取得並記錄該工具機9之刀具9a之移動路徑的座標資料,例如,該工具機9之控制器90之位置控制器、速度控制器、該工具機9之伺服馬達上之編碼器、或該工作平台9d上之光學尺。
接著,於步驟S22中,進行第一次座標轉換作業,以令該電子裝置1之轉換部11將該第一至第五軸件91~95於該機械座標系中之位置轉換成於工件座標系之位置。
於本實施例中,該轉換部11依據順向運動學(Forward Kinematics)將該第一至第五軸件91~95的實際位置由該機械座標系中之位置轉換為工件座標系之位置(如移動路徑之第二座標數據)。
接著,於步驟S23中,該電子裝置1a藉由該處理部12進行演算作業,以演算出該刀具9a(或該第一至第五軸件91~95移動)之加工路徑於該工件座標系中所呈現出之斜面E上之第一真圓軌跡S1,如第3圖所示之刀具座標(O T,X T,Y T,Z T),供作為參考資訊,其將該第一真圓軌跡S1之真圓度之估測值(如22um)顯示於該電子裝置1a之螢幕上。
於本實施例中,該演算作業為輪廓精度估測作業,其將轉換後的工件座標系之資訊(如移動路徑之第二座標數據)利用三點求圓公式,求得一個平均中心點,再以此中心點計算出最大半徑與最小半徑的差值。如第3A至3C圖所示,先選擇三個座標點a(X a,Y a,Z a), b(X b,Y b,Z b), c(X c,Y c,Z c),以得到第一線段ab與第二線段bc,再將該第一線段ab之垂直平分線與第二線段bc之垂直平分線相交,以得到圓心O。具體地,圓心O之座標(X O,Y O,Z O)如下: X O=X m1+K 1α 1=X m2+K 2α 2; Y O=Y m1+K 1β 1=Y m2+K 2β 2; Z O=Z m1+K 1γ 1=Z m2+K 2γ 2,其中,(X m1,Y m1,Z m1)代表第一線段ab之中間點m 1的座標,(X m2,Y m2,Z m2)代表第二線段bc中間點m 2的座標,𝛼 1, 𝛽 1, 𝛾 1, 𝛼 2, 𝛽 2, 𝛾 2是垂直平分線的單位向量,中間點m 1, m 2座標之計算式為: m 1=½(X a+X bY a+Y bZ a+Z b); m 2=½(X b+X cY b+Y cZ b+Z c) ,以推測出最大與最小半徑R 1,R 2,如下所示: R 1=[X m1(i)+Y m1(j)+Z m1(k)]+K 11(i)+β 1(j)+γ 1(k)]; R 2=[X m2(i)+Y m2(j)+Z m2(k)]+K 22(i)+β 2(j)+γ 2(k)] ,其中,i, j, k代表向量的三個維度,且中心點K 1, K 2計算式如下: K 1=[ 𝛽 2(X m2-X m1)+ 𝛼 2(Y m1-Y m2)]/( 𝛼 1𝛽 2-𝛼 2𝛽 1); K 2=(X m1+ K 1𝛼 1-X m2)/𝛼 2
之後,於步驟S24中,進行第二次座標轉換作業,以令該電子裝置1a之轉換部11將該參考資訊之工件座標系轉換成該機械座標系,如逆向運動學(Inverse Kinematics),使該第一至第五軸件91~95於該工件座標系中之位置還原成於該機械座標系中之位置(如移動路徑之第三座標數據)。
最後,於步驟S25中,該電子裝置1a之調整部13依據該參考資訊之該第一至第五軸件91~95於該機械座標系中之位置,同動調整該控制器90對應該第一至第五軸件91~95之位置之參數,以產生目標資訊(如移動路徑之第四座標數據),其中,該目標資訊包含有可顯示於該電子裝置1a上之該斜面E上之第二真圓軌跡S2,如第4圖所示。
於本實施例中,由於該控制器90同步調整該第一至第五軸件91~95之位置,使該電子裝置1a(量測系統1)之擷取部10能再次擷取該控制器90對該第一至第五軸件91~95之伺服馬達之調整訊號,以經由上述步驟S21~S24再次演算出該真圓度之估測值(如第4圖所示之8.1um),故該調整部13能不斷演算出調機後之參數所呈現之真圓軌跡狀態,因而能即時產生動態效應參數,俾供作為該目標資訊,故該電子裝置1a能即時得知調整該參數對於真圓度之誤差之關係。具體地,該動態效應參數之資料量化數據表,其包含積分時間常數𝑇𝑖、位置增益𝐾𝑝𝑝、速度增益𝐾𝑣𝑝與穩態效應對於輪廓誤差(真圓度)之對應表,如第5圖所示之控制器90之架構、第6圖所示之位置增益𝐾𝑝𝑝之對應關係、第7A及7B圖之速度與積分時間常數𝑇𝑖之對應關係等。
如第5圖所示,該控制器90之控制系統係作為位置閉迴路架構,其除了驅動器及馬達(如第5圖所示之AC伺服馬達5a)之外,也包含整台工具機9的整體模型5b(如聯軸器、導螺桿50及移動平台等構件)及軸件對應至工件的連接機構等,故在控制中,會將整個工具機9之模態一併列入考慮,如總慣性力矩(𝐽)及粘滯阻尼比(𝐶),其中,該位置增益 K pp 是將位置命令轉變為速度命令的比例增益值,而於速度迴路中,該速度增益 K vp 為速度轉扭矩的比例增益值, T i 為補償誤差值的積分時間常數,f為馬達在運轉中受到外部干擾時所需克服的摩擦力,G為工具機所需克服的重力,J為馬達至機構(如第一至第五軸件91~95)的總慣性力矩,C為黏滯阻尼比, l為滾珠螺桿的導程,s為常數。
具體地,對於控制迴路而言,最為重要的條件係機台的精度,故控制迴路設計係為位置封閉迴路控制。對於驅動器及控制馬達(如第5圖所示之AC伺服馬達5a)而言,主要進行控制電壓驅使馬達轉動,故在迴路設計中,需將位置迴路對應速度迴路,最後找出電壓迴路的參數。於PID控制中,單純於比例控制,若有誤差值存在,將無法達到穩態收斂。因此,於速度迴路中,設計微比例增益P且加上積分增益數值I,並將其化減為積分時間常數𝑇𝑖,最後,於下達電壓時一併加入摩擦補償,並由馬達的位置邊碼器或光學尺,以完成整體位置閉迴路控制。
於第5圖中,由於馬達與機台架構及滾珠螺桿(導螺桿50)係依據該工具機9規格制定,而對於物品加工的真圓度主要係由位置以及速度迴路決定,故位置迴路的調整將影響位置命令轉換為速度時的反應,增益數值(如該位置增益 K pp )之高低將決定命令響應,且速度迴路參數會對於誤差進行反應。
第6圖係為機台之回授分析圖,其橫軸為時間(s),縱軸為外部裝置擷取訊號(編碼器座標訊號或光學尺座標訊號)計算出之位置(mm),且透過原本參數對於真圓度的影響,針對該控制器90之位置迴路,如果縱軸的各軸擷取訊號有明顯偏移分岔,則代表同動位置具有明顯誤差,因而需調整該位置增益 K pp 之數值,以改善該工具機9之加工同動匹配。
第7A圖與第7B圖係為5個軸件之位置回授分析圖,其橫軸為時間(秒),縱軸為外部裝置擷取訊號計算出的位置值(mm),且透過第6圖改善真圓度位置的匹配,且對於加減速段細小誤差(如進刀點或各軸換向變化),需對該速度增益 K vp 與積分時間常數 T i 調整。第7A圖係表示各軸位置變化趨勢不一,且改變比例增加,趨使回授曲線貼近命令,再調整積分時間常數 T i 達到快速收斂。於第7B圖所示之位置回授的訊號圖中,各軸的變化趨勢相仿,使得真圓度提升。
所述之真圓度與控制器90之調整方法係包括以下步驟,具體如下:
步驟(1):首先,依據機台加工結果,量測判定該控制器90是否需要調整,如需調整,將進行步驟(2)之作業。
步驟(2):將加工結果的訊號進行分析,以判斷五個運動軸(該第一至第五軸件91~95)於位置圖中變化是否趨勢相同(如第6圖所示之曲線L91~L95,其分別對應該第一至第五軸件91~95)。如果其中一軸件在移動中先到達終點位置,則代表其它軸件之移動命令過慢而無法同步,故先調整該控制器90中各軸件的K pp 參數,將其數值調大,使各軸件相匹配;如果於調整中發現軸件於位置圖中發生縱軸資料呈現上、下振盪的情況,則代表此軸件的K pp 已達到飽和,故需以此軸件作為基準,而將其它軸件之K pp 調小,以達到位置相匹配。
步驟(3):於K pp 調整完成後 ,對速度資料進行分析(如第6圖之第一區域L1所對應之第7A圖及第二區域L2所對應之第7B圖所示),於加速段中確認各軸件之變化是否符合命令。於相同速度變化中,若其中一軸件之速度變化與其它軸件之速度變化無法吻合,則代表需調整該控制器90中之各軸件的K vp 參數,如同步驟(2)所述之針對第6圖中之縱軸較低之軸件,將其K vp 調大;若其中一軸件發生振盪現象(如第7A圖所示之曲線L95),則將其K vp 調低,使各軸件之曲線調整至大致吻合(如第7B圖所示之曲線L95),且基於最初的加速及後斷的減速,調整Ti數值;若各軸件於加速段前、後變化過大,則需將Ti數值調大,反之,若於加速段前、後變化過小,則需將Ti數值調小(補足),以達到匹配狀態。
步驟(4):再次進行加工作業,以確定上述各步驟之調整已成功輸入至該控制器90中。
因此,本發明之量測系統1所進行之量測方法針對模擬該刀具9a之尖點位置以向量演算法不斷演算出該斜面E上之真圓度之最大及最小誤差(即估測值越小越好),以判斷該第一至第五軸件91~95於該機械座標系中之位置之參數是否符合需求,因而可用來估測該工具機9之伺服馬達之參數對機台多軸同動輪廓精度(如第4圖所示之斜面E上之第二真圓軌跡S2)的影響。
再者,調整機台多軸同動參數,可透過已建立的量化數據表進行速度增益、速度積分時間常數或其它等參數之調整作業。
綜上所述,本發明之量測系統1及其量測方法,藉由將該擷取部10所擷取之座標數據經該轉換部11傳輸至該處理部12,以演算出參考資訊,再藉由該參考資訊即時運作該工具機9之第一至第五軸件91~95,以得知該第一至第五軸件91~95於調整參數後之位置是否符合標準,因而能即時量測出該刀具9a之切削精準度,故相較於習知技術,使用者可利用該量測系統1(電子裝置1a)自動量測參數及自動測試運作狀態之方式,立刻得知該工具機9之刀具9a需符合標準之參數(或加工精密度),使整體量測流程快速,且無需耗費測試用之加工件,因而能降低量測成本。
另外,該量測系統1及量測方法可應用於各種工具機,並不限於上述五軸加工機型。
上述實施例用以例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修改。因此本發明之權利保護範圍,應如後述之申請專利範圍所列。
1               量測系統 1a             電子裝置 10             擷取部 11             轉換部 12             處理部 13             調整部 9               工具機 9a             刀具 9b             基座 9c             支撐架 9d             工作平台 90             控制器 91             第一軸件 92             第二軸件 93             第三軸件 94             第四軸件 95             第五軸件 E               斜面 L91,L92,L93,L94,L95   曲線 L1             第一區域 L2             第二區域 S1             第一真圓軌跡 S2             第二真圓軌跡 S21~S25   步驟
第1A圖為本發明之輪廓精度量測系統之架構配置示意圖。
第1B圖為本發明之量測系統所應用之工具機之架構配置示意圖。
第1C圖為第1B之工具機之立體示意圖。
第2圖為本發明之輪廓精度量測方法之流程示意圖。
第3圖為本發明之量測方法之參考資料之內容圖。
第3A至3C圖為第3圖之參考資料之演算過程。
第4圖為本發明之量測方法之目標資料之內容圖。
第5圖為本發明之量測系統所應用之工具機之工具機之控制器之架構配置示意圖。
第6圖為本發明之量測方法之機台之回授分析圖。
第7A及7B圖為本發明之量測方法之軸件之位置回授分析圖。
1            量測系統 10          擷取部 11          轉換部 12          處理部 13          調整部 9            工具機 90          控制器

Claims (13)

  1. 一種輪廓精度量測系統,用於連接具有控制器與複數軸件之工具機,該量測系統包括: 擷取部,用於擷取該控制器指示各該軸件運動之加工路徑之回授訊號,並計算各該軸件於機械座標系中之位置; 轉換部,通訊連接該擷取部,以令各該軸件之位置於該機械座標系與工件座標系之間進行轉換; 處理部,通訊連接該轉換部,以演算出該加工路徑於該工件座標系中所呈現出之於斜面上之第一真圓軌跡,供作為參考資訊;以及 調整部,通訊連接該處理部,以依據該參考資訊之各該軸件由該工件座標系轉換回該機械座標系中之位置,調整該控制器對應各該軸件之位置之參數,俾產生目標資訊,其中,該目標資訊包含有於該斜面上之第二真圓軌跡。
  2. 如申請專利範圍第1項所述之輪廓精度量測系統,其中,該處理部是利用三點求圓方式演算出該第一真圓軌跡。
  3. 如申請專利範圍第1項所述之輪廓精度量測系統,其中,該第一真圓軌跡之輪廓不同於該第二真圓軌跡之輪廓。
  4. 如申請專利範圍第3項所述之輪廓精度量測系統,其中,該第一真圓軌跡之真圓度不同於該第二真圓軌跡之真圓度。
  5. 如申請專利範圍第1項所述之輪廓精度量測系統,其中,該參考資訊包含該第一真圓軌跡之真圓度之估測值。
  6. 如申請專利範圍第1項所述之輪廓精度量測系統,其中,該目標資訊包含該第二真圓軌跡之真圓度之估測值。
  7. 一種輪廓精度量測方法,應用於具有控制器及複數軸件之工具機,該量測方法包括: 藉由一電子裝置擷取該控制器指示各該軸件運動之加工路徑之回授訊號,以令該電子裝置計算各該軸件於機械座標系中之位置; 進行第一次座標轉換作業,以令該電子裝置將各該軸件於該機械座標系中之位置轉換成於工件座標系之位置; 進行演算作業,以演算出該加工路徑於該工件座標系中所呈現出之於斜面上之第一真圓軌跡,供作為參考資訊; 進行第二次座標轉換作業,以令該電子裝置將該參考資訊之工件座標系轉換成該機械座標系,使各該軸件於該工件座標系中之位置還原成於該機械座標系中之位置;以及 依據該參考資訊之各該軸件於該機械座標系中之位置,調整該控制器對應各該軸件之位置之參數,以產生目標資訊,其中,該目標資訊包含有於該斜面上之第二真圓軌跡。
  8. 如申請專利範圍第7項所述之輪廓精度量測方法,其中,該演算作業是利用三點求圓方式。
  9. 如申請專利範圍第7項所述之輪廓精度量測方法,其中,該第一真圓軌跡之輪廓不同於該第一真圓軌跡之輪廓。
  10. 如申請專利範圍第9項所述之輪廓精度量測方法,其中,該第一真圓軌跡之真圓度不同於該第一真圓軌跡之真圓度。
  11. 如申請專利範圍第7項所述之輪廓精度量測方法,其中,該第二真圓軌跡之演算過程與該第一真圓軌跡之演算過程相同。
  12. 如申請專利範圍第7項所述之輪廓精度量測方法,其中,該參考資訊包含該第一真圓軌跡之真圓度之估測值。
  13. 如申請專利範圍第7項所述之輪廓精度量測方法,其中,該目標資訊包含該第二真圓軌跡之真圓度之估測值。
TW108113117A 2019-04-15 2019-04-15 輪廓精度量測系統及量測方法 TWI710748B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW108113117A TWI710748B (zh) 2019-04-15 2019-04-15 輪廓精度量測系統及量測方法
CN201910371251.3A CN111823057B (zh) 2019-04-15 2019-05-06 轮廓精度量测系统及量测方法
US16/527,226 US11506489B2 (en) 2019-04-15 2019-07-31 Contour accuracy measuring system and contour accuracy measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108113117A TWI710748B (zh) 2019-04-15 2019-04-15 輪廓精度量測系統及量測方法

Publications (2)

Publication Number Publication Date
TW202040096A TW202040096A (zh) 2020-11-01
TWI710748B true TWI710748B (zh) 2020-11-21

Family

ID=72748979

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113117A TWI710748B (zh) 2019-04-15 2019-04-15 輪廓精度量測系統及量測方法

Country Status (3)

Country Link
US (1) US11506489B2 (zh)
CN (1) CN111823057B (zh)
TW (1) TWI710748B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116604399B (zh) * 2023-07-20 2023-10-31 通用技术集团机床工程研究院有限公司 轮廓测量方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235233B (en) * 2004-06-10 2005-07-01 Nat Huwei Inst Of Technology Miniature arbor revolving precision measurement device
EP1686348A1 (en) * 2003-10-10 2006-08-02 Universitat Politecnica de Catalunya Optical metrology method which is used to determine the three-dimensional topography of a hole
TW200928288A (en) * 2007-12-25 2009-07-01 Metal Ind Res Anddevelopment Ct Contact optical measurement method for work-piece profile

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975856A (en) * 1986-02-18 1990-12-04 Robotics Research Corporation Motion controller for redundant or nonredundant linkages
US4698572A (en) * 1986-04-04 1987-10-06 Westinghouse Electric Corp. Kinematic parameter identification for robotic manipulators
US4791575A (en) * 1986-10-31 1988-12-13 The Pratt & Whitney Company, Inc. Method for generating axis control data for use in controlling a grinding machine and the like and system therefor
US4772831A (en) * 1986-11-20 1988-09-20 Unimation, Inc. Multiaxis robot control having improved continuous path operation
JPH0820894B2 (ja) * 1987-07-01 1996-03-04 株式会社日立製作所 産業用ロボツトの動作制御方法
US5038089A (en) * 1988-03-23 1991-08-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Synchronized computational architecture for generalized bilateral control of robot arms
JP2676793B2 (ja) * 1988-06-30 1997-11-17 トヨタ自動車株式会社 倣い制御ロボット
US5434489A (en) * 1993-07-30 1995-07-18 Fanuc Robotics North America, Inc. Method and system for path planning in cartesian space
US5453933A (en) * 1993-09-08 1995-09-26 Hurco Companies, Inc. CNC control system
US5768137A (en) * 1995-04-12 1998-06-16 American Research Corporation Of Virginia Laser aligned robotic machining system for use in rebuilding heavy machinery
US5896297A (en) * 1996-04-15 1999-04-20 Valerino, Sr.; Fred M. Robotube delivery system
US6470225B1 (en) 1999-04-16 2002-10-22 Siemens Energy & Automation, Inc. Method and apparatus for automatically tuning feedforward parameters
GB2363861A (en) * 2000-06-19 2002-01-09 Robotic Technology Systems Plc Processing an object, eg a workpiece, by a tool
JP3592628B2 (ja) * 2000-12-06 2004-11-24 恒彦 山崎 数値制御方法
CN101871775B (zh) * 2009-04-21 2012-09-19 鸿富锦精密工业(深圳)有限公司 三坐标测量机编程系统及方法
CN101615024A (zh) 2009-07-23 2009-12-30 哈尔滨工业大学 具有nurbs插补功能的五坐标数控机床运动控制器
JP5448634B2 (ja) 2009-08-11 2014-03-19 オークマ株式会社 機械の誤差同定方法およびプログラム
JP4980453B2 (ja) 2010-09-06 2012-07-18 ファナック株式会社 加工を高精度化するサーボ制御システム
CN101976055B (zh) 2010-11-19 2012-09-05 上海交通大学 五轴数控加工进给率控制系统
US8694134B2 (en) * 2011-05-05 2014-04-08 Harris Corporation Remote control interface
US8639386B2 (en) * 2011-05-20 2014-01-28 Harris Corporation Haptic device for manipulator and vehicle control
TW201326742A (zh) 2011-12-29 2013-07-01 Prec Machinery Res Dev Ct 五軸工具機之幾何誤差評估方法
CN102528553B (zh) 2012-02-06 2014-04-09 电子科技大学 五轴联动数控铣床伺服动态参数快速调整方法
JP5731463B2 (ja) 2012-10-10 2015-06-10 ファナック株式会社 サーボ軸の反転位置の表示機能を備えた数値制御装置
CN103722449B (zh) * 2012-10-16 2016-06-29 西门子股份有限公司 工具机加工定位方法及其装置
CN103962889A (zh) * 2013-02-04 2014-08-06 鸿富锦精密工业(深圳)有限公司 加工机探针测量系统及方法
CN105269406B (zh) 2014-07-23 2018-01-26 沈阳机床(集团)设计研究院有限公司上海分公司 双转台五轴联动机床旋转轴的误差补偿方法
JP6407812B2 (ja) * 2015-07-14 2018-10-17 ファナック株式会社 ワーク原点を取得可能な工作機械制御システムおよびワーク原点設定方法
TW201800178A (zh) 2016-06-24 2018-01-01 友嘉實業股份有限公司 五軸工具機誤差檢測方法
CN106325207B (zh) 2016-10-08 2019-03-12 南京工业大学 一种五轴数控制齿机床几何误差实际逆向运动学补偿方法
CN107885159B (zh) * 2017-11-10 2020-05-19 广东工业大学 一种平面加工路径动态可视化的方法及系统
CN109108734B (zh) * 2018-09-25 2023-07-18 四川明日宇航工业有限责任公司 铣削类数控机加工刀具主动防错系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686348A1 (en) * 2003-10-10 2006-08-02 Universitat Politecnica de Catalunya Optical metrology method which is used to determine the three-dimensional topography of a hole
TWI235233B (en) * 2004-06-10 2005-07-01 Nat Huwei Inst Of Technology Miniature arbor revolving precision measurement device
TW200928288A (en) * 2007-12-25 2009-07-01 Metal Ind Res Anddevelopment Ct Contact optical measurement method for work-piece profile

Also Published As

Publication number Publication date
CN111823057A (zh) 2020-10-27
CN111823057B (zh) 2022-06-14
TW202040096A (zh) 2020-11-01
US20200326185A1 (en) 2020-10-15
US11506489B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
CN104972362B (zh) 智能力控机器人磨削加工系统和方法
JP5911565B2 (ja) 工作機械の干渉判定方法および干渉判定装置
CN107081787B (zh) 基于工业机器人内置传感器信号的运动特性检测方法
CN102207731B (zh) 具有工件的测量基准点设定功能的机床
CN109366220B (zh) 一种工件定位方法与系统
CN106383495B (zh) 基于非线性双闭环控制的曲面轮廓恒力跟踪方法及应用装置
JP4612086B2 (ja) ワークの計測基準点設定機能を有する工作機械
JP2015051493A (ja) 工作機械および工作機械の回転軸の測定方法
KR20100090458A (ko) 비젼시스템을 구비한 씨엔씨 공작기계
CN114454060B (zh) 一种机器人自适应曲面跟踪恒力磨抛方法及系统
TWI710748B (zh) 輪廓精度量測系統及量測方法
CN114310540B (zh) 一种机匣流道焊缝机器人自动磨削的装备及方法
KR20220044506A (ko) 정밀 지그 연삭 공정 중 가공오차 보정 시스템 및 방법
Sato et al. Finished surface simulation method to predicting the effects of machine tool motion errors
CN113399685B (zh) 一种双摆动金刚石刀具切削装置和切削方法
CN105929791A (zh) 平面直角坐标运动系统的直接轮廓控制方法
Liu et al. Kinematics of a 5-axis hybrid robot near singular configurations
CN113182932B (zh) 基于工件外形扫描数据调整工件角度的复合机床
Ding et al. Dynamic performance test under complicated motion states for five-axis machine tools based on double ballbar
CN106774166B (zh) 一种数控机床摩擦误差形态预测及形态特征参数确定方法
CN110977612B (zh) Cnc数控加工在线测量误差修正方法及系统
TWI389764B (zh) 具有工作件之量測基準點設定功能的工具機
TW201822971A (zh) 機械手臂教導控制系統
Hasegawa et al. Influences of geometric and dynamic synchronous errors onto machined surface in 5-axis machining center
CN113721548B (zh) 一种数控铣头热误差补偿方法及系统