TWI691054B - 半導體元件的電熔絲結構 - Google Patents

半導體元件的電熔絲結構 Download PDF

Info

Publication number
TWI691054B
TWI691054B TW103135016A TW103135016A TWI691054B TW I691054 B TWI691054 B TW I691054B TW 103135016 A TW103135016 A TW 103135016A TW 103135016 A TW103135016 A TW 103135016A TW I691054 B TWI691054 B TW I691054B
Authority
TW
Taiwan
Prior art keywords
fuse link
metal
plug
dummy
fuse
Prior art date
Application number
TW103135016A
Other languages
English (en)
Other versions
TW201528477A (zh
Inventor
崔賢民
前田茂伸
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201528477A publication Critical patent/TW201528477A/zh
Application granted granted Critical
Publication of TWI691054B publication Critical patent/TWI691054B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step

Abstract

本發明提供一種半導體元件之電熔絲結構,所述電熔絲結構可包含:由第一金屬材料形成以連接陰極與陽極的熔絲鏈;覆蓋所述熔絲鏈之頂部表面的罩蓋介電質;以及穿透所述罩蓋介電質並與所述熔絲鏈之一部分接觸的虛設金屬插塞。所述虛設金屬插塞可包含金屬層與插入於所述金屬層與所述熔絲鏈之間的障壁金屬層。所述障壁金屬層可由不同於所述第一金屬材料的第二金屬材料形成。

Description

半導體元件的電熔絲結構 【對相關申請案之交叉參考】
2013年10月11日申請之美國專利申請案第61/889,911號以及2014年2月26日申請且題為「半導體元件的電熔絲結構(E-Fuse Structure of Semiconductor Device)」的韓國專利申請案第10-2014-0022774號的全文以引用方式併入本文中。
本文中所描述之一或多個實施例是關於半導體元件的電熔絲結構。
熔絲在半導體晶片製造及設計中已用於各種用途。舉例而言,在記憶體元件中,熔絲已用以在修復程序期間用冗餘記憶胞替換缺陷記憶胞。此替換有助於增加製造良率。熔絲亦已用以在晶片識別程序期間記錄晶片的製造歷史。熔絲亦已用以在晶片定製程序之製造後操作中使晶片的特性最佳化。
熔絲可被分類為鐳射熔絲或電熔絲。在鐳射熔絲中,將 鐳射束用以切斷電連接。在電熔絲中,將電流用於此用途。
根據一個實施例,半導體元件之電熔絲結構包含:連接陰極與陽極的第一金屬材料之熔絲鏈;覆蓋所述熔絲鏈之頂部表面的罩蓋介電質;以及穿透所述罩蓋介電質並接觸所述熔絲鏈的虛設金屬插塞(dummy metal plug),所述虛設金屬插塞包含金屬層與所述熔絲鏈之間的障壁金屬層,其中所述障壁金屬層包含不同於所述第一金屬材料的第二金屬材料。第一金屬材料可具有大於第二金屬材料之電導率的電導率。
第一金屬材料可包含鎢、鋁、銅或銅合金中的至少一者,且第二金屬材料可包含Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合中的至少一者。
電熔絲結構為攜載程式化電流的熔絲鏈,且熔絲鏈在程式化狀態下具有介於陽極與虛設金屬插塞之間的空隙。空隙與虛設金屬插塞之間的距離可小於空隙與陽極之間的距離。虛設金屬插塞之下部寬度可小於所述熔絲鏈的上部寬度。
虛設金屬插塞之下部寬度可大於熔絲鏈的上部寬度,且虛設金屬插塞可接觸熔絲鏈的頂部表面及側表面。障壁金屬層可覆蓋金屬層的底部及側表面。在金屬層的底部表面上的障壁金屬層可較在金屬層之所述側表面中之一者或兩者上的障壁金屬層厚。
虛設金屬插塞之底部表面可在熔絲鏈之頂部表面與底部表面之間。金屬層可包含具有第一寬度的接觸部分,及具有大 於第一寬度之第二寬度的互連部分。熔絲鏈可具有實質上等於或小於陽極及陰極之寬度的寬度。
電熔絲結構可包含在虛設金屬插塞之頂部表面上的虛設金屬圖案,且虛設金屬圖案可具有大於熔絲鏈之厚度的厚度。多個虛設熔絲鏈可處於熔絲鏈之各別側處,且虛設金屬圖案可具有小於虛設熔絲鏈之間的距離之寬度。多個虛設金屬插塞可在陽極與陰極之間。
虛設金屬插塞可沿著實質上垂直於熔絲鏈之縱向軸線的方向延伸。陽極及陰極可處於不同層面,且熔絲鏈與虛設金屬插塞可在陽極與陰極之間。陽極及陰極可相對於下伏層之頂部表面處於第一層面,熔絲鏈可相對於下伏層之頂部表面處於第二層面,且第二層面可高於第一層面。
電熔絲結構可包含在半導體基板上之電晶體,且電晶體可包含閘電極,所述閘電極包含第一金屬材料,且電晶體實質上處於與熔絲鏈相同的層面。
電熔絲結構可包含與半導體基板隔開之多個金屬線,且金屬線可包含第一金屬材料並處於與熔絲鏈實質上相同的層面。熔絲鏈可攜載程式化電流,且虛設金屬插塞在程式化電流之供應期間可改變熔絲鏈中的溫度梯度。熔絲鏈可包含與虛設金屬插塞接觸之第一區及與罩蓋介電質接觸的第二區,且在程式化電流之供應期間熔絲鏈之溫度在第二區處可具有最大值。
熔絲鏈可包含與虛設金屬插塞接觸之第一區及與罩蓋介電質接觸的第二區,電熔絲結構可攜載程式化電流,且在程式化電流之供應期間,由熔絲鏈之第一區處之電遷移引起的第一電 驅動力可不同於由熔絲鏈之第二區處的電遷移引起的第二電驅動力。
根據另一實施例,半導體元件之電熔絲結構包含:連接陰極與陽極的第一金屬材料之熔絲鏈;覆蓋陽極、陰極及熔絲鏈的層間絕緣層;在熔絲鏈之頂部表面與層間絕緣層之間的罩蓋介電質,罩蓋介電質包含不同於層間絕緣層的絕緣材料;以及穿透層間絕緣層與罩蓋介電質且接觸熔絲鏈的虛設金屬插塞,虛設金屬插塞包含介於金屬層與熔絲鏈之間的障壁金屬層,其中障壁金屬層包含不同於第一金屬材料的第二金屬材料。第一金屬材料可具有大於第二金屬材料之電導率的電導率。
第一金屬材料可包含鎢、鋁、銅或銅合金中的至少一者,且第二金屬材料可包含Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合中的至少一者。障壁金屬層可覆蓋金屬層的底部表面及側表面。在金屬層的底部表面上的障壁金屬層可較在金屬層之側表面上的障壁金屬層厚。
熔絲鏈可攜載程式化電流,且熔絲鏈在程式化狀態下可具有介於陽極與虛設金屬插塞之間的空隙。空隙與虛設金屬插塞之間的距離可小於空隙與陽極之間的距離。
根據另一實施例,半導體元件之電熔絲結構包含:熔絲鏈,以將陽極連接至陰極且基於程式化電流來程式化;及與熔絲鏈接觸的虛設金屬插塞,其中熔絲鏈包含第一金屬材料,虛設金屬插塞包含不同於第一金屬材料的第二金屬材料,且虛設金屬插塞在程式化電流至熔絲鏈之供應期間改變電及熱驅動力,且其中電及熱驅動力基於熔絲鏈中的電遷移及熱遷移。
虛設金屬插塞可包含介於金屬層與熔絲鏈之間的障壁金屬層,且障壁金屬層可包含第二金屬材料。第一金屬材料可具有大於第二金屬材料之電導率的電導率。總驅動力在程式化電流至熔絲鏈之供應期間可具有在陽極與虛設金屬插塞之間的最大值,且總驅動力可基於電及熱驅動力的總和。
電熔絲結構可包含:覆蓋陽極、陰極及熔絲鏈的層間絕緣層;及介於熔絲鏈之頂部表面與層間絕緣層之間的罩蓋介電質,罩蓋介電質包含不同於層間絕緣層的絕緣材料,其中熔絲鏈包含與虛設金屬插塞接觸的第一區及與罩蓋介電質接觸的第二區。
由熔絲鏈之第一區處的電遷移引起之第一電驅動力可小於由熔絲鏈之第二區處的電遷移引起的第二電驅動力。熔絲鏈的溫度在程式化電流至熔絲鏈之供應期間在第二區處可具有最大值。
根據另一實施例,半導體元件之電熔絲結構包含:連接陰極與陽極的第一金屬材料之熔絲鏈;覆蓋熔絲鏈之頂部表面的罩蓋介電質;以及穿透罩蓋介電質並接觸熔絲鏈的虛設金屬插塞,其中熔絲鏈將攜載程式化電流,且其中虛設金屬插塞將在熔絲鏈攜載程式化電流時改變熔絲鏈中的溫度梯度。
虛設金屬插塞可包含介於金屬層與熔絲鏈之間的障壁金屬層,且障壁金屬層可包含不同於第一金屬材料的第二金屬材料。熔絲鏈可包含與虛設金屬插塞接觸之第一區及與罩蓋介電質接觸的第二區,且熔絲鏈之溫度在熔絲鏈攜載程式化電流時在第二區處可具有最大值。熔絲鏈在程式化狀態下可具有介於陽極與 虛設金屬插塞之間的空隙。空隙與虛設金屬插塞之間的距離可小於空隙與陽極之間的距離。
10‧‧‧下伏層
20‧‧‧金屬層
20a‧‧‧陽極
20c‧‧‧陰極
20d‧‧‧虛設熔絲鏈
20f‧‧‧熔絲鏈
30‧‧‧罩蓋介電質
40‧‧‧層間絕緣層
50‧‧‧虛設金屬插塞
50a‧‧‧第一虛設金屬插塞
50b‧‧‧第二虛設金屬插塞
51‧‧‧障壁金屬層
53‧‧‧金屬層
53a‧‧‧接觸部分
53b‧‧‧互連部分
60a‧‧‧第一接觸插塞
60b‧‧‧第二接觸插塞
65a‧‧‧第一連接圖案
65b‧‧‧第二連接圖案
70‧‧‧第二層間絕緣層
71‧‧‧通孔
73‧‧‧溝槽
80‧‧‧虛設金屬圖案
80a‧‧‧第一虛設金屬圖案
80b‧‧‧第二虛設金屬圖案
81‧‧‧第二障壁金屬層
83‧‧‧第二金屬層
90a‧‧‧第一導電圖案
90b‧‧‧第二導電圖案
100‧‧‧下伏層
110‧‧‧陽極圖案
110a‧‧‧陽極圖案
110b‧‧‧陰極圖案
120‧‧‧第一層間絕緣層
125‧‧‧第一接觸插塞
125a‧‧‧第一接觸插塞
125b‧‧‧第二接觸插塞
130‧‧‧熔絲鏈
135‧‧‧罩蓋介電質
140‧‧‧第二層間絕緣層
150‧‧‧虛設金屬插塞
151‧‧‧障壁金屬層
153‧‧‧金屬層
155‧‧‧第二接觸插塞
160‧‧‧陰極圖案
200‧‧‧下伏層
210‧‧‧陰極圖案
210a‧‧‧第一部分
210b‧‧‧第二部分
215‧‧‧第一接觸插塞
220‧‧‧熔絲鏈
220d‧‧‧虛設熔絲鏈
225‧‧‧第二接觸插塞
230‧‧‧陽極圖案
230a‧‧‧第一部分
230b‧‧‧第二部分
235‧‧‧虛設金屬插塞
240‧‧‧虛設金屬圖案
300‧‧‧半導體基板
301‧‧‧元件隔離層
310‧‧‧第一層間絕緣層
310f‧‧‧熔絲鏈
310g‧‧‧閘電極
315‧‧‧罩蓋介電質
320‧‧‧第一層間絕緣層
321‧‧‧胞接觸插塞
321a‧‧‧第一接觸插塞
321b‧‧‧第二接觸插塞
321d‧‧‧虛設金屬插塞
325‧‧‧第一互連線
325a‧‧‧第一導電圖案
325b‧‧‧第二導電圖案
325d‧‧‧虛設金屬圖案
325f‧‧‧熔絲鏈
327‧‧‧罩蓋介電質
330‧‧‧第二層間絕緣層
331a‧‧‧第一接觸插塞
331b‧‧‧第二接觸插塞
331d‧‧‧虛設金屬插塞
335‧‧‧第二互連線
335a‧‧‧第一導電圖案
335b‧‧‧第二導電圖案
335d‧‧‧虛設金屬圖案
340‧‧‧第三層間絕緣層
345‧‧‧第三互連線
345f‧‧‧熔絲鏈
347‧‧‧罩蓋介電質
351a‧‧‧第一接觸插塞
351b‧‧‧第二接觸插塞
351d‧‧‧虛設金屬插塞
353a‧‧‧第一導電圖案
353b‧‧‧第二導電圖案
353d‧‧‧虛設金屬圖案
1100‧‧‧記憶體系統
1110‧‧‧控制器
1120‧‧‧輸入/輸出元件
1130‧‧‧記憶體
1140‧‧‧介面
1150‧‧‧匯流排
1200‧‧‧記憶卡
1210‧‧‧半導體記憶體元件
1220‧‧‧記憶體控制器
1221‧‧‧靜態隨機存取記憶體(SRAM)
1222‧‧‧處理單元
1223‧‧‧主機介面
1224‧‧‧錯誤校正區塊
1225‧‧‧記憶體介面
1300‧‧‧資訊處理系統
1310‧‧‧記憶體系統
1311‧‧‧半導體元件
1312‧‧‧記憶體控制器
1320‧‧‧數據機
1330‧‧‧中央處理單元(CPU)
1340‧‧‧RAM
1350‧‧‧使用者介面
1360‧‧‧系統匯流排
A‧‧‧曲線
AP‧‧‧陽極
B‧‧‧曲線
C‧‧‧曲線
CP‧‧‧陰極
D‧‧‧間隔
d‧‧‧熔絲鏈FL中的位置
EM‧‧‧電遷移
EM1‧‧‧第一電驅動力
EM2‧‧‧第二電驅動力
FEM‧‧‧電驅動力
FL‧‧‧熔絲鏈
R1‧‧‧第一區
R2‧‧‧第二區
R3‧‧‧第三區
t1‧‧‧厚度
t2‧‧‧第一厚度
t3‧‧‧第二厚度
TM1‧‧‧第一熱遷移
TM2‧‧‧第二熱遷移
V‧‧‧空隙
W1‧‧‧寬度/上部寬度
W2‧‧‧寬度/第一下部寬度
W3‧‧‧寬度
△FTM‧‧‧熱驅動力之差
△FEM‧‧‧電驅動力的差
藉由參看附加圖式詳細地描述例示性實施例,特徵對於熟習此項技術者將變得顯而易見,其中:圖1說明電熔絲結構之一個實施例的程式化程序中的電遷移效應。
圖2說明電熔絲結構之一個實施例的程式化程序中的熱遷移。
圖3說明電熔絲結構之一實施例的程式化程序中的熱遷移及電遷移。
圖4A說明電熔絲結構之第一實施例,且圖4B說明沿著圖4A中之截面線I-I'及II-II'獲得的視圖。
圖5說明電熔絲結構之第一實施例的程式化程序中的電遷移。
圖6說明電熔絲結構之第一實施例的程式化程序中的熱遷移。
圖7說明電熔絲結構之第一實施例的程式化程序中的熱遷移及電遷移。
圖8A至圖8C說明電熔絲結構之第一實施例的修改的截面圖。
圖9A及圖10A說明電熔絲結構之第二實施例,圖9B及圖10B分別說明沿著圖9A及圖10A中之截面線I-I'及II-II'獲得的視 圖,且圖9C及圖10C說明電熔絲結構之第二實施例的修改。
圖11A及圖12A說明電熔絲結構之第二實施例的程式化程序中的熱遷移,且圖11B及圖12B說明電熔絲結構之第二實施例的程式化程序中的熱遷移及電遷移。
圖13A及圖14A說明電熔絲結構之第三實施例,圖13B及圖14B分別說明沿著圖13A及圖14A中之截面線I-I'及II-II'獲得的視圖。
圖15A說明電熔絲結構之第四實施例,且圖15B說明沿著圖15A中之截面線I-I'及II-II'獲得的視圖。
圖16A說明電熔絲結構之第五實施例,且圖16B說明沿著圖16A中之截面線I-I'及II-II'獲得的視圖。
圖17A說明電熔絲結構之第六實施例,且圖17B說明沿著圖17A中之截面線I-I'及II-II'獲得的視圖。
圖18A說明電熔絲結構之第七實施例,且圖18B說明沿著圖18A中之截面線I-I'及II-II'獲得的視圖。
圖19說明電熔絲結構之第七實施例的修改。
圖20A、圖20B、圖21A及圖21B說明電熔絲結構之第七實施例的修改。
圖22及圖23說明電熔絲結構之第八實施例。
圖24A及圖24B說明電熔絲結構之第九實施例。
圖25A至圖25C說明半導體元件的實施例,所述半導體元件中之每一者包含根據前述實施例中之一或多者的電熔絲結構。
圖26說明包含根據前述實施例中之一或多者之半導體元件的記憶體系統。
圖27說明包含根據前述實施例中之一或多者之半導體元件的記憶卡。
圖28說明包含根據前述實施例中之一或多者之半導體元件的資訊處理系統。
下文中參看隨附圖式更充分地描述實例實施例;然而,實例實施例可以不同形式來體現,且不應解釋為限於本文中所闡述的實施例。確切而言,此等實施例經提供,使得本發明將為透徹且完整的,且將把例示性實施充分地傳達至熟習此項技術者。
在圖式諸圖中,層及區的尺寸可為了說明清楚而經誇示。亦應理解,當層或器件被稱作「在另一層或基板上」時,所述層或器件可直接在另一層或基板上,或亦可存在介入層。另外,應理解,當將層稱作在另一層「下方」時,所述層可直接在另一層下方,且亦可存在一或多個介入層。此外,亦應理解,當將層稱作在兩個層「之間」時,所述層可為兩個層之間的唯一層,或亦可存在一或多個介入層。相同參考數字始終指代相同器件。
又,應理解,當器件被稱作「連接」或「耦接」至另一器件時,所述器件可直接連接或耦接至另一器件,或可存在介入器件。相比之下,當器件被稱作「直接連接」或「直接耦接」至另一器件時,不存在任何介入器件。相同數字始終指示相同器件。如本文中所使用,術語「及/或」包含相關聯的所列項目中之一或多者的任一及所有組合。用以描述器件或層之間的關係的其他詞語應以相似方式解釋(例如,「在......之間」相對於「直接在...... 之間」、「鄰近」相對於「直接鄰近」、「在......上」相對於「直接在......上」)。
又,應理解,當器件被稱作「連接」或「耦接」至另一器件時,所述器件可直接連接或耦接至另一器件,或可存在介入器件。相比之下,當器件被稱作「直接連接」或「直接耦接」至另一器件時,不存在任何介入器件。如本文中所使用,術語「及/或」包含相關聯的所列項目中之一或多者的任一及所有組合。用以描述器件或層之間的關係的其他詞語應以相似方式解釋(例如,「在......之間」相對於「直接在......之間」、「鄰近」相對於「直接鄰近」、「在......上」相對於「直接在......上」)。
本文中參看橫截面說明來描述本發明概念之實例實施例,所述橫截面說明為實例實施例的理想化實施例(及中間結構)的示意性說明。因此,應預期到由於(例如)製造技術及/或公差而引起的相對於說明之形狀的變化。因此,本發明概念的實例實施例不應解釋為限於本文中所說明之區的特定形狀,而是將包含由(例如)製造產生的形狀偏差。舉例而言,被說明為矩形之植入區可具有圓形或彎曲特徵及/或在植入區之邊緣處的植入濃度梯度,而非自植入區至非植入區之二元改變。同樣,藉由植入形成之埋入區可在埋入區與植入藉以發生之表面之間的區中導致某植入。因此,諸圖中所說明之區本質上為示意性的,且其形狀不意欲說明元件之區的實際形狀且不意欲限制實例實施例的範疇。
如本發明實體所瞭解的,根據本文中所描述之各種實施例的元件及形成元件之方法可體現於諸如積體電路的微型電子元件中,其中根據本文中所描述之各種實施例的多個元件整合於同 一微型電子元件中。因此,可在微型電子元件中在不需要為正交的兩個不同方向上複製本文中所說明之橫截面圖。因此,體現根據本文中所描述之各種實施例之元件的微型電子元件之平面圖可包含呈陣列及/或二維圖案的多個元件,所述陣列及/或二維圖案是基於微型電子元件的功能性。
視微型電子元件之功能性而定,根據本文中所描述之各種實施例的元件可分散於其他元件間。此外,根據本文中所描述之各種實施例的微型電子元件可在可正交於所述兩個不同方向的第三方向上複製,以提供三維積體電路。
因此,本文中所說明的橫截面圖提供對根據本文中所描述之各種實施例之多個元件的支援,所述多個元件在平面圖中沿著兩個不同方向及/或在透視圖中在三個不同方向上延伸。舉例而言,當在元件/結構之橫截面圖中說明單一主動區時,元件/結構可包含多個主動區及其上的電晶體結構(或在對於所述狀況適當時的記憶胞結構、閘結構等),如藉由元件/結構之平面圖將說明。
圖1說明電熔絲結構之一個實施例的程式化程序中的電遷移效應。圖2說明圖,所述圖說明電熔絲結構之一個實施例的程式化程序中之熱遷移效應。
參看圖1及圖2,電熔絲結構包含連接陰極CP與陽極AP的熔絲鏈FL。程式化此電熔絲結構之程序可包含形成陰極CP與陽極AP之間的電壓差,以便將程式化電流提供至熔絲鏈FL。
舉例而言,在電熔絲結構之程式化程序期間,負電壓可施加至陰極CP,且正電壓可施加至陽極AP。因此,電子自陰極CP通過熔絲鏈FL朝向陽極AP流動。隨著電子流動通過熔絲鏈 FL,電子可與熔絲鏈FL的原子碰撞,從而導致稱作電遷移EM的現象。如圖1中所展示,由電遷移引起之驅動力(例如,電驅動力FEM)可為完全恆定的而不考慮在熔絲鏈FL中的位置。
當程式化電流供應至由金屬性材料(例如,鎢、鋁及銅)形成的熔絲鏈FL時,熔絲鏈FL之溫度可藉由焦耳加熱而增加。如圖2中所展示,焦耳加熱可產生熔絲鏈FL的非均一溫度分佈。舉例而言,熔絲鏈FL之溫度在中心部分處可最高。此非均一溫度分佈可引起熔絲鏈FL的熱遷移。舉例而言,熔絲鏈FL之原子可自中心部分朝向陽極AP遷移(下文中稱作第一熱遷移TM1)或朝向陰極CP遷移(下文中稱作第二熱遷移TM2)。
圖3說明電熔絲結構之實施例的程式化程序中的熱遷移及電遷移效應。在圖3中,曲線A表示由電遷移引起之驅動力的實例,所述驅動力可在電熔絲結構經程式化時發生。曲線B表示由熱遷移引起之驅動力,所述熱遷移可在電熔絲結構經程式化時發生。曲線C呈現由熱及電遷移引起之兩個驅動力的總驅動力或合力。
參看圖3,由電遷移引起的驅動力(例如,電驅動力FEM)可恆定而無關於熔絲鏈FL中的部分。相比之下,由非均一溫度分佈引起的驅動力(例如,熱驅動力FTM)可自熔絲鏈FL的中心部分在相反方向上施加。
在陽極AP與熔絲鏈FL之中心部分之間,電遷移EM與第一熱遷移TM1可在同一方向上發生。結果,施加於熔絲鏈FL上的總驅動力FEM+TM可基於電驅動力與熱驅動力的總和。相比之下,電遷移EM及第二熱遷移TM2可在陰極CP與熔絲鏈FL之中 心部分之間在相反方向上發生。結果,施加於熔絲鏈FL上的總驅動力FEM+TM可基於熱驅動力與電驅動力之間的差。
在熔絲鏈FL中,熱及電驅動力可因此導致非均一原子流動速率或非零通量發散(flux divergence),如圖3中所展示。另外,可取決於通量發散的量值而發生原子之耗盡或累積。舉例而言,若在熔絲鏈FL的特定區中流出通量大於流入通量,則原子可被耗盡以形成空隙。相比之下,若在熔絲鏈FL的特定區中流入通量大於流出通量,則原子可被累積以建立小丘構造(hillock formation)。空隙可增加熔絲鏈FL的電阻,藉此使電熔絲結構程式化。
根據以上方法,熔絲鏈FL中的通量發散愈大,則形成空隙愈快。下文中,將描述用於增加熔絲鏈FL中之通量發散的各種結構及方法。
圖4A說明電熔絲結構之第一實施例,且圖4B說明沿著圖4A中之截面線I-I'及II-II'獲得的視圖。參看圖4A及圖4B,電熔絲結構之第一實施例包含下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及罩蓋介電質30上的層間絕緣層40。金屬層20可形成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。另外,電熔絲結構可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50。
下伏層10可為絕緣薄膜。舉例而言,下伏層10可為以下兩者中的一者:元件隔離層,其可形成於半導體基板上以定義主動區,或層間絕緣層40,其形成於電晶體上以支撐金屬線。
金屬層20可為薄膜。在一個實施例中,金屬層20可由 第一金屬材料形成。舉例而言,金屬層20可由以下各者中的至少一者製成:鎢(W)、鋁(Al)、銅(Cu)或銅合金。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
可藉由將金屬層20沈積於下伏層10上且圖案化金屬層20而形成陽極20a、陰極20c及熔絲鏈20f。替代地,陽極20a、陰極20c及熔絲鏈20f可藉由鑲嵌(damascene)製程形成,所述鑲嵌製程包含在絕緣層中形成溝槽,且用金屬性材料填充溝槽。在一個實施例中,熔絲鏈20f可沿著特定方向延伸,陽極20a可連接至熔絲鏈20f的末端部分,且陰極20c可連接至熔絲鏈20f的相對末端部分。陽極20a及陰極20c可具有大於熔絲鏈20f之寬度的寬度。如諸圖中所展示,可對稱地形成陽極20a及陰極20c。然而,在替代性實施例中,可非對稱地形成陽極20a及陰極20c。
在一個實施例中,熔絲鏈20f可包含第一區R1、第二區R2及第三區R3。在第一區R1中,虛設金屬插塞50及熔絲鏈20f彼此接觸。在第二區R2中,罩蓋介電質30及熔絲鏈20f在陽極20a與虛設金屬插塞50之間彼此接觸。在第三區R3中,罩蓋介電質30及熔絲鏈20f在陰極20c與虛設金屬插塞50之間彼此接觸。
罩蓋介電質30可在層間絕緣層40與熔絲鏈20f的頂部表面之間。罩蓋介電質30可由不同於下伏層10及層間絕緣層40的絕緣材料形成。罩蓋介電質層30亦可(例如)以均一厚度保形地覆蓋熔絲鏈20f的頂部表面,但此情形並非在所有實施例中有必要。罩蓋介電質30可由(例如)SiO2、SiON、Si3N4、SiCN、 SiC或SiCN形成。層間絕緣層40可由氧化矽、氮化矽、氮氧化矽或低k材料形成。
虛設金屬插塞50可藉由以下程序形成,所述程序包含形成虛設接觸孔以透過罩蓋介電質30及層間絕緣層40暴露熔絲鏈20f的一部分,且接著用金屬性材料填充虛設接觸孔。在一個實施例中,虛設金屬插塞50可形成於熔絲鏈20f的中心部分上,且可與熔絲鏈20f的頂部表面接觸。虛設金屬插塞50的下部寬度可大於熔絲鏈20f的上部寬度,且虛設金屬插塞50的上部寬度可大於虛設金屬插塞50的下部寬度。
在一個實施例中,虛設金屬插塞50可包含金屬層53,與插入於金屬層53與熔絲鏈20f之間的障壁金屬層51。障壁金屬層51可經提供以覆蓋金屬層53的底部及側表面。在一個實施例中,障壁金屬層51在金屬層53之側表面及底部表面上可具有均一厚度。障壁金屬層51可由一種材料形成,所述材料能夠防止構成金屬層53之金屬材料擴散至與其相鄰的層間絕緣層40中。
在一個實施例中,障壁金屬層51可由第二金屬材料形成,所述第二金屬材料可不同於熔絲鏈20f的第一金屬材料,且其具有小於第一金屬材料之電導率的電導率。形成障壁金屬層51之材料的實例包含Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合中的至少一者。
在一個實施例中,金屬層53可由第三金屬材料形成,所述金屬材料可不同於障壁金屬層51的第二金屬材料。金屬層53之第三金屬材料可與熔絲鏈20f的第一金屬材料相同或不同。舉例而言,金屬層53可由以下各者中的至少一者製成:鎢(W)、 鋁(Al)、銅(Cu)或銅合金。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
圖5說明電熔絲結構之第一實施例的程式化程序中可發生的電遷移。圖6說明電熔絲結構之第一實施例的程式化程序中可發生的熱遷移。圖7說明電熔絲結構之第一實施例的程式化程序中可發生的熱及電遷移。
參看圖5,電熔絲結構之程式化程序可使用程式化電流來執行。可藉由在陰極20c與陽極20a之間形成電壓差來產生程式化電流。在一個實施例中,在程式化程序期間,負電壓可施加至陰極20c,正電壓可施加至陽極20a,且虛設金屬插塞50可處於電浮動狀態。陰極20c與陽極20a之間的電壓差產生程式化電流,所述程式化電流使得電子自陰極20c通過熔絲鏈20f朝向陽極20a流動。
在此電子流期間,電子可與構成熔絲鏈20f的原子碰撞,藉此引起電遷移。電遷移可主要沿著金屬層之表面發生。電遷移引起之驅動力可視與熔絲鏈20f接觸之材料而改變。換言之,如上文所描述,熔絲鏈20f可包含以下各者:第一區R1,其中虛設金屬插塞50與熔絲鏈20f彼此接觸;第二區R2,其中罩蓋介電質30與熔絲鏈20f在陽極20a與虛設金屬插塞50之間彼此接觸;及第三區R3,其中罩蓋介電質30與熔絲鏈20f在陰極20c與虛設金屬插塞50之間彼此接觸。
由電遷移引起之驅動力在第一區R1與第二區R2之間且在第一區R1與第三區R3之間可不同。舉例而言,金屬層及介電 質層彼此接觸所在的第二區R2與第三區R3上之第一電驅動力EM1可小於第一區R1上的第二電驅動力EM2,在第一區R1處,不同金屬性材料彼此接觸。
參看圖6,在電熔絲結構經程式化時可發生焦耳熱。焦耳熱可產生熔絲鏈20f之溫度的非零梯度。在一個實施例中,最大量之焦耳熱可產生於熔絲鏈20f的中心部分處。然而,第一區R1之溫度可降低,此是因為此熱之相當大的部分可經由虛設金屬插塞50與熔絲鏈20f彼此接觸所在的部分耗散。舉例而言,虛設金屬插塞50與熔絲鏈20f之間的實體接觸可導致熔絲鏈20f之溫度梯度的改變。舉例而言,在程式化期間,熔絲鏈20f之溫度可由於虛設金屬插塞50之存在而在兩個分離部分處具有最大值。舉例而言,熔絲鏈20f之溫度可在第二區R2與第三區R3中為最大值,第二區R2與第三區R3位於虛設金屬插塞50的各別側處。
在圖7中,曲線A展示由電遷移引起之驅動力,所述電遷移可在電熔絲結構經程式化時發生。曲線B展示由熱遷移引起之驅動力,所述熱遷移可在電熔絲結構經程式化時發生。曲線C展示由熱及電遷移引起之兩個驅動力的總驅動力或合力。
在一個實施例中,因為虛設金屬插塞50之存在,熔絲鏈20f之溫度可在兩個分離部分處具有最大值。結果,熔絲鏈20f的在虛設金屬插塞50下方的部分可具有低於熔絲鏈20f之其他部分之溫度的溫度。另外,歸因於虛設金屬插塞50之存在,熔絲鏈20f的在虛設金屬插塞50下方之部分中的電驅動力可降低。
總驅動力可在熔絲鏈20f之第一區R1中或附近急劇改變。舉例而言,相較於在參看圖3描述之電熔絲結構中,在具有 虛設金屬插塞50的電熔絲結構中總驅動力FEM+TM之改變速率可更大。舉例而言,因為通量發散在與虛設金屬插塞50接觸的第一區R1處增加,所以電熔絲結構在相同條件下(例如在相同電壓下)可經更快速地程式化。此情形使得有可能以減小之程式化電壓程式化電熔絲結構。
如圖7中所展示,總驅動力FEM+TM在相鄰於陽極20a且在虛設金屬插塞50之一側的熔絲鏈20f的一部分處可具有最大值。因為流出通量急劇增加,所以在熔絲鏈20f的相鄰於虛設金屬插塞50的第二區R2處可發生耗盡或空隙。因此,在程式化程序之後,電熔絲結構可具有在陽極20a與虛設金屬插塞50之間的空隙V。空隙V與虛設金屬插塞50之間的距離可小於空隙V與陽極20a之間的距離。
圖8A至圖8C說明電熔絲結構之第一實施例的修改。參看圖8A至圖8C,如參看圖4B所描述,電熔絲結構包含陰極20c、陽極20a、熔絲鏈20f及虛設金屬插塞50。熔絲鏈20f包含以下各者:第一區R1,其中虛設金屬插塞50及熔絲鏈20f彼此接觸;第二區R2,其中罩蓋介電質30及熔絲鏈20f在陽極20a與虛設金屬插塞50之間彼此接觸;及第三區R3,其中罩蓋介電質30與熔絲鏈20f在陰極20c與虛設金屬插塞50之間彼此接觸。
參看圖8A至圖8C,虛設金屬插塞50可包含如上文所描述之障壁金屬層51及金屬層53,且可具有低於熔絲鏈20f之頂部表面的底部表面。虛設金屬插塞50之底部表面可與下伏層10的頂部表面隔開。換言之,相較於在第二區R2及第三區R3上,熔絲鏈20f之厚度在第一區R1上可較小。另外,如圖8A及圖8B 中所展示,虛設金屬插塞50可具有低於熔絲鏈20f之上部寬度的下部寬度。在一個實施例中,如圖8B中所展示,在金屬層53之底部表面上的障壁金屬層51之厚度相較於在金屬層53之側表面上的障壁金屬層51之厚度可更大。
在一個實施例中,如圖8C中所展示,虛設金屬插塞50可具有圓形下部拐角。又,虛設金屬插塞50之下部寬度可大於熔絲鏈20f的上部寬度。因此,虛設金屬插塞50可覆蓋熔絲鏈20f的頂部表面,及側表面的一部分。換言之,障壁金屬層51可與熔絲鏈20f之頂部表面及側表面直接接觸。
圖9A及圖10A說明電熔絲結構之第二實施例,圖9B及圖10B說明分別沿著圖9A及圖10A中之截面線I-I'及II-II'獲得的視圖,且圖9C及圖10C說明電熔絲結構之第二實施例的修改。
在第二實施例中,電熔絲結構包含虛設金屬插塞50的至少一層及連接至熔絲鏈20f之虛設金屬圖案80。虛設金屬圖案80之體積可經調整以控制電熔絲結構的熔融效能。
參看圖9A、圖9B、圖10A及圖10B,電熔絲結構之第二實施例包含在下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。金屬層20可形成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。此外,電熔絲結構可包含虛設金屬插塞50,及連接至熔絲鏈20f之一部分的虛設金屬圖案80。第一接觸插塞60a及第一導電圖案90a可連接至陽極20a。第二接觸插塞60b及第二導電圖案90b可連接至陰極20c。
在一個實施例中,熔絲鏈20f可沿著特定方向延伸,陽極20a可連接至熔絲鏈20f的末端部分,且陰極20c可連接至熔絲鏈20f的相對末端部分。陽極20a及陰極20c可具有大於熔絲鏈20f之寬度的寬度。在一個實施例中,金屬層20可由第一金屬材料形成。舉例而言,金屬層20可由以下各者中的至少一者製成:鎢(W)、鋁(Al)、銅(Cu)或銅合金。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
罩蓋介電質30及第一層間絕緣層40可依序形成於下伏層10上,在所述下伏層10上,提供陽極20a、陰極20c及熔絲鏈20f。罩蓋介電質30可由不同於下伏層10及第一層間絕緣層40的絕緣材料形成。罩蓋介電質可保形地覆蓋熔絲鏈20f之頂部表面,且可由(例如)SiO2、SiON、Si3N4、SiCN、SiC或SiCN形成。
虛設金屬插塞50之形成可包含:形成穿透罩蓋介電質30及第一層間絕緣層40的虛設接觸孔,及暴露熔絲鏈20f的一部分。接著,可用金屬性材料填充虛設接觸孔。形成第一接觸插塞60a可包含:形成穿透罩蓋介電質30及第一層間絕緣層40的第一接觸孔並暴露陽極20a的一部分,及接著用金屬性材料填充第一接觸孔。
形成第二接觸插塞60a可包含:形成穿透罩蓋介電質30及第一層間絕緣層40的第二接觸孔並暴露陰極20c的一部分,及接著用金屬性材料填充第二接觸孔。在一個實施例中,虛設金屬插塞50可與第一接觸插塞60a及第二接觸插塞60b同時形成。另 外,虛設金屬插塞50可包含與第一接觸插塞60a及第二接觸插塞60b中之至少一者相同的金屬性材料。
在一個實施例中,虛設金屬插塞50以及第一金屬接觸插塞60a及第二金屬接觸插塞60b中的每一者可包含第一障壁金屬層51及第一金屬層53。第一障壁金屬層51可經形成以在虛設接觸孔之側表面及底部表面上具有均一厚度。在一個實施例中,第一障壁金屬層51可由第二金屬材料形成,所述第二金屬材料可不同於熔絲鏈20f的第一金屬材料,且第一障壁金屬層51可具有小於第一金屬材料之電導率的電導率。舉例而言,第一障壁金屬層51可由Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合形成。
第一金屬層53可由第三金屬材料形成,所述金屬材料可不同於第一障壁金屬層51的第二金屬材料。第一金屬層53之第三金屬材料可與熔絲鏈20f的第一金屬材料相同或不同。舉例而言,第一金屬層53可由以下各者中的至少一者製成:鎢(W)、鋁(Al)、銅(Cu)或銅合金。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
第二層間絕緣層70可形成於具備虛設金屬插塞50以及第一接觸插塞60a及第二接觸插塞60b的第一層間絕緣層40上。第一導電圖案90a及第二導電圖案90b以及虛設金屬圖案80可形成於第二層間絕緣層70中。虛設金屬圖案80可連接至虛設金屬插塞50。第一導電圖案90a及第二導電圖案90b可分別連接至第一接觸插塞60a及第二接觸插塞60b。
虛設金屬圖案80可包含第二金屬層83,與插入於第二金屬層83與虛設金屬插塞50之間的第二障壁金屬層81。形成虛設金屬圖案80可包含:在第二層間絕緣層70中形成溝槽以暴露虛設金屬插塞50的頂部表面,且接著依序形成第二障壁金屬層81及第二金屬層83以填充溝槽。第二障壁金屬層81可由(例如)Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合形成。
第二金屬層83可由不同於構成虛設金屬插塞50之第一金屬層51之金屬材料的金屬材料形成。第一導電圖案90a及第二導電圖案90b可與虛設金屬圖案80同時形成。舉例而言,第一導電圖案90a及第二導電圖案90b可由與虛設金屬圖案80相同的金屬材料形成。
根據圖9A及圖9B中的實施例,虛設金屬插塞50之寬度W2可小於熔絲鏈20f的寬度W1。虛設金屬圖案80之寬度W3可大於熔絲鏈20f的寬度W1。此外,虛設金屬圖案80可具有小於熔絲鏈20f之厚度t1的第一厚度t2。
根據圖10A及圖10B中的實施例,虛設金屬插塞50之寬度W2可小於熔絲鏈20f的寬度W1。虛設金屬圖案80之寬度W3可大於熔絲鏈20f的寬度W1。此外,虛設金屬圖案80可具有大於熔絲鏈20f之厚度t1的第二厚度t3。
根據第二實施例,圖9A及圖9B中之虛設金屬圖案80可具有不同於圖10A及圖10B中之虛設金屬圖案80之體積的體積。舉例而言,圖9A及圖9B中虛設金屬圖案80的體積可小於圖10A及圖10B中之虛設金屬圖案80之體積。
根據圖9C及圖1OC中的實施例,電熔絲結構可包含在 下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的第一層間絕緣層40及第二層間絕緣層70。金屬層20可形成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。在一個實施例中,陽極20a及陰極20c可具有大於熔絲鏈20f之寬度的寬度。金屬層20可由(例如)第一金屬材料(例如,鎢(W)、鋁(Al)、銅(Cu)或銅合金的至少一者)形成。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
根據此實施例,電熔絲結構可包含與虛設熔絲鏈20f之一部分接觸的虛設金屬插塞50。虛設金屬插塞50可包含障壁金屬層51、接觸部分53a及互連部分53b。障壁金屬層51可由導電材料形成,所述材料能夠防止構成接觸部分53a及互連部分53b之金屬材料擴散至其相鄰的第一層間絕緣層40及第二層間絕緣層70中。障壁金屬層51可由不同於第一金屬材料且具有小於第一金屬材料之導電率的第二金屬材料形成。舉例而言,障壁金屬層51可由Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合形成。
在一個實施例中,接觸部分53a可通過第一層間絕緣層40連接至熔絲鏈20f。互連部分53b可安置於第二層間絕緣層70中,且可連接至接觸部分53a。互連部分53b可具有大於接觸部分53a之寬度的寬度。接觸部分53a及互連部分53b可由第三金屬材料形成,所述第三金屬材料可不同於第二金屬材料。舉例而言,接觸部分53a及互連部分53b可由鎢(W)、鋁(Al)、銅(Cu)或銅合金製成。銅合金之實例包含銅基材料,在所述銅基材料中 以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
在展示於圖9C中之一個實施例中,虛設金屬插塞50之下部寬度W2可小於熔絲鏈20f的寬度W1。虛設金屬插塞50之上部寬度W3可大於熔絲鏈20f的寬度W1。此外,在虛設金屬插塞50中,互連部分53b可具有小於熔絲鏈20f之厚度t1的第一厚度t2。
替代地,如圖10C中所展示,虛設金屬插塞50之下部寬度W2可小於熔絲鏈20f的寬度W1。虛設金屬插塞50之上部寬度W3可大於熔絲鏈20f的寬度W1。又,虛設金屬插塞50之互連部分53b可具有大於熔絲鏈20f之厚度t1的第二厚度t3。舉例而言,圖9C中虛設金屬插塞50之互連部分53b的體積可小於圖10C中虛設金屬插塞50的互連部分53b。
形成虛設金屬插塞50可包含:依序形成第一層間絕緣層40及第二層間絕緣層70,形成通過第一層間絕緣層40及第二層間絕緣層70的通孔,圖案化第二層間絕緣層70以形成連接至通孔的溝槽,及在通孔及溝槽中依序形成障壁金屬層及金屬層。在一個實施例中,可在形成虛設金屬插塞50期間形成第一連接圖案65a及第二連接圖案65b。第一連接圖案65a可連接至陽極20a,且第二連接圖案65b可連接至陰極20c。
類似於虛設金屬插塞50,第一連接圖案65a及第二連接圖案65b中的每一者可包含通路部分、互連部分,及覆蓋其底部表面及側表面的障壁金屬層。
圖11A及圖12A說明在電熔絲結構之第二實施例的程 式化程序中熱遷移可如何取決於虛設金屬圖案之體積的實例。
根據第二實施例,在程式化程序期間,負電壓可施加至陰極20c,正電壓可施加至陽極20a,且虛設金屬插塞50可處於電浮動狀態。因為陰極20c與陽極20a之間的電壓差及隨之發生的程式化電流,電子自陰極20c通過熔絲鏈20f朝向陽極20a流動。
根據第二實施例,如圖11A及圖12A中所展示,在程式化期間,可藉由調整虛設金屬插塞50之體積來控制熔絲鏈20f之溫度梯度。在圖11A中,虛設金屬插塞50之互連部分53b可具有小於熔絲鏈20f之厚度t1的第一厚度t2。在圖12A中,虛設金屬插塞50之互連部分53b可具有大於熔絲鏈20f之厚度t1的第二厚度t3。舉例而言,圖12A中虛設金屬插塞50的互連部分53b之體積可大於展示於圖11A中虛設金屬插塞50的互連部分53b。
隨著虛設金屬插塞50之體積增加,熔絲鏈20f之第一區R1可被更有效地冷卻。舉例而言,與相鄰區相比較,熔絲鏈20f之第一區R1的溫度可被更有效地降低。相較於在圖11A中之電熔絲結構中,在圖12A中之電熔絲結構中第一區R1之溫度減小可較大。結果,相較於圖11A中之電熔絲結構,在圖12A之電熔絲結構中熔絲鏈20f之溫度分佈的非均一性可較高。
圖11B及圖12B說明電熔絲結構之第二實施例的程式化程序中的熱遷移及電遷移效應。在圖11B及圖12B中,曲線A表示由電遷移引起之驅動力,所述電遷移可在電熔絲結構經程式化時發生。曲線B表示由熱遷移引起之驅動力,所述熱遷移可在電熔絲結構經程式化時發生。在圖11B及圖12B中,曲線C表示由熱及電遷移引起之兩個驅動力的總驅動力或合力。
參看圖11B,在熔絲鏈20f之第一區R1中,電驅動力之差△FEM可大於熱驅動力的差△FTM。舉例而言,熔絲鏈20f之第一區R1中的總驅動力可主要取決於電驅動力的差△FEM。
參看圖12B,在熔絲鏈20f之第一區R1中,熱驅動力之差△FTM可大於電驅動力的差△FEM。舉例而言,熔絲鏈20f之第一區R1中的總驅動力可主要取決於熱驅動力的差△FTM
根據本實施例,熱驅動力愈強,則熔絲鏈20f中之第一區R1中的總驅動力愈強。此情形可允許在給定電壓條件下更快速程式化電熔絲結構或減小程式化電熔絲結構所要求的電壓。
圖13A及圖14A說明電熔絲結構之第三實施例,且圖13B及圖14B說明分別沿著圖13A及圖14A中之截面線I-I'及II-II'獲得的視圖。
參看圖13A、圖13B、圖14A及圖14B,電熔絲結構包含在下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。在一個實施例中,金屬層20可由第一金屬材料形成,且可構成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。另外,電熔絲結構可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50,及提供於虛設金屬插塞50上的虛設金屬圖案80。第一接觸插塞60a及第一導電圖案90a可連接至陽極20a,且第二接觸插塞60b及第二導電圖案90b可連接至陰極20c。
類似於展示於圖9C及圖10C中的虛設金屬插塞50,虛設金屬插塞50及虛設金屬圖案80可使用鑲嵌製程同時形成。舉例而言,障壁金屬層81可不形成於虛設金屬插塞50之金屬層53 與虛設金屬圖案80的金屬層83之間。
根據第三實施例,虛設金屬插塞50與熔絲鏈20f之間的接觸區域可經改變以控制電熔絲結構之程式化程序中熔絲鏈的溫度梯度。舉例而言,如圖13A及圖13B中所展示,虛設金屬插塞50可具有小於熔絲鏈20f之上部寬度W1的第一下部寬度W2。虛設金屬圖案80之下部寬度可大於熔絲鏈20f的上部寬度W1。替代地,如圖14A及圖14B中所展示,虛設金屬插塞50可具有大於熔絲鏈20f之上部寬度W1的第二下部寬度W3。虛設金屬圖案80之下部寬度可大於熔絲鏈20f的上部寬度W1。根據第三實施例,在圖13A及圖13B中之電熔絲結構與圖14A及圖14B中之電熔絲結構之間,程式化程序中熔絲鏈20f的溫度梯度可不同。
圖15A說明電熔絲結構之第四實施例,且圖15B說明沿著圖15A中之截面線I-I'及II-II'獲得的視圖。參看圖15A及圖15B,電熔絲結構可包含在下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。金屬層20可用以形成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。
另外,電熔絲結構可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50,及在虛設金屬插塞50上的虛設金屬圖案80。第一接觸插塞60a及第一導電圖案90a可連接至陽極20a。第二接觸插塞60b及第二導電圖案90b可連接至陰極20c。類似於圖9C及圖10C中的虛設金屬插塞50,虛設金屬插塞50及虛設金屬圖案80可同時形成。舉例而言,障壁金屬層81可不形成於虛設金屬插塞50之金屬層53與虛設金屬圖案80的金屬層83之間。
在本實施例中,虛設金屬插塞50及虛設金屬圖案80的位置可相對於陽極20a及陰極20c而改變。舉例而言,在圖15A中,虛設金屬插塞50與陽極20a之間的距離可大於虛設金屬插塞50與陰極20c之間的距離。虛設金屬插塞50之位置可經改變以控制空隙的位置,空隙將在電熔絲結構的程式化程序中形成。
圖16A說明電熔絲結構之第五實施例,且圖16B說明沿著圖16A中之截面線I-I'及II-II'獲得的視圖。參看圖16A及圖16B,電熔絲結構可包含在下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。在一個實施例中,金屬層20可由第一金屬材料形成,且可形成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。
電熔絲結構亦可包含與熔絲鏈20f之一部分接觸的第一虛設金屬插塞50a及第二虛設金屬插塞50b。第一虛設金屬圖案80a及第二虛設金屬圖案80b可分別提供於第一虛設金屬插塞50a及第二虛設金屬插塞50b上。第一虛設金屬插塞50a及第二虛設金屬插塞50b可在陽極20a與陰極20c之間,且彼此隔開。第一虛設金屬插塞50a及第二虛設金屬插塞50b中之每一者可包含障壁金屬層51及金屬層53。障壁金屬層51可由不同於第一金屬材料且具有小於第一金屬材料之導電率的第二金屬材料形成。第一接觸插塞60a及第一導電圖案90a可連接至陽極20a。第二接觸插塞60b及第二導電圖案90b可連接至陰極20c。
在其他實施例中,類似於圖9C及圖10C中的虛設金屬插塞50,第一虛設金屬插塞50a及第一虛設金屬圖案80a可同時 形成。類似地,第二虛設金屬插塞50b及第二虛設金屬圖案80b可同時形成。
圖17A說明電熔絲結構之第六實施例,且圖17B說明沿著圖17A中之截面線I-I'及II-II'獲得的視圖。參看圖17A及圖17B,電熔絲結構可包含在下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。金屬層20可形成陰極20c、陽極20a及連接陰極20c與陽極20a的熔絲鏈20f,以及安置於熔絲鏈20f之各別側處的虛設熔絲鏈20d。虛設熔絲鏈20d可具有(例如)與熔絲鏈20f實質上相同的線寬度,且可平行於熔絲鏈20f延伸。虛設熔絲鏈20d可與陽極20a、陰極20c及熔絲鏈20c隔開。
電熔絲結構可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50,及在虛設金屬插塞50上的虛設金屬圖案80。虛設金屬圖案80之寬度可小於與虛設金屬圖案80相鄰之一對虛設熔絲鏈20d之間的間隔D。類似於圖9C及圖10C中的虛設金屬插塞50,虛設金屬插塞50及虛設金屬圖案80可同時形成。舉例而言,障壁金屬層81可不形成於虛設金屬插塞50之金屬層53與虛設金屬圖案80的金屬層83之間。
圖18A說明電熔絲結構之第七實施例,且圖18B說明沿著圖18A之線I-I'及II-II'獲得的截面圖。電熔絲結構之第七實施例包含形成於下伏層10中之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。金屬層20可由(例如)第一金屬材料形成,且可構成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。
另外,電熔絲結構可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50,及在虛設金屬插塞50上的虛設金屬圖案80。虛設金屬插塞50可沿著實質上垂直於熔絲鏈20f之縱向軸線的方向延伸。如上文所描述,虛設金屬插塞50可包含障壁金屬層51及金屬層53。障壁金屬層51可由不同於第一金屬材料的第二金屬材料形成,且金屬層53可由不同於第二金屬材料的第三金屬材料形成。
另外,第一接觸插塞60a及第一導電圖案90a可連接至陽極20a。第二接觸插塞60b及第二導電圖案90b可連接至陰極20c。在本實施例中,第一接觸插塞60a及第二接觸插塞60b可平行於虛設金屬插塞50延伸。
另外,在本實施例中,第一導電圖案90a及第二導電圖案90b可藉由以下操作而形成:在具備第一接觸插塞60a及第二接觸插塞60b以及虛設金屬插塞50的第一層間絕緣層40上形成第二層間絕緣層70,在第二層間絕緣層70中形成通孔71及溝槽73,以及在通孔71及溝槽73中依序形成第二障壁金屬層及第二金屬層。虛設金屬插塞50之頂部表面可(例如)藉由第二層間絕緣層70覆蓋。
圖19說明電熔絲結構之第七實施例的修改。參看圖19,電熔絲結構可包含在下伏層10上之金屬層20、覆蓋金屬層20之頂部表面的罩蓋介電質30,及在罩蓋介電質30上的層間絕緣層40。金屬層20可由(例如)第一金屬材料形成,且可構成陰極20c、陽極20a,及連接陰極20c與陽極20a的熔絲鏈20f。陽極20a及陰極20c的寬度可大於熔絲鏈20f之寬度。電熔絲結構亦 可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50,及在虛設金屬插塞50上的虛設金屬圖案80。
在本實施例中,多個第一接觸插塞60a可連接至陽極20a。第一導電圖案90a可共同地連接至多個第一接觸插塞60a。類似地,多個第二接觸插塞60b可連接至陰極20c,且第二導電圖案90b可共同連接至多個第二接觸插塞60b。
圖20A、圖20B、圖21A及圖21B說明電熔絲結構之第七實施例的額外修改。參看圖20A、圖20B、圖21A及圖21B,此電熔絲結構可包含陽極20a、陰極20c,及連接陰極20c與陽極20a的熔絲鏈20f。陽極20a、陰極20c及熔絲鏈20f可具有實質上相同的均一線寬度。
另外,電熔絲結構可包含與熔絲鏈20f之一部分接觸的虛設金屬插塞50。虛設金屬插塞50可沿著實質上垂直於熔絲鏈20f之縱向軸線的方向延伸。虛設金屬插塞50可包含障壁金屬層51及金屬層53。障壁金屬層51可由不同於第一金屬材料的第二金屬材料形成,且金屬層53可由不同於第二金屬材料的第三金屬材料形成。
根據圖20A及圖20B中的實施例,多個第一接觸插塞60a可連接至陽極20a之頂部表面,且多個第二接觸插塞60b可連接至陰極20c的頂部表面。第一接觸插塞60a及第二接觸插塞60b中的每一者可具有(例如)桿形狀,從而具有垂直於熔絲鏈20f之軸線的縱向軸線。第一接觸插塞60a及第二接觸插塞60b可由與虛設金屬插塞50相同的材料形成。
第一導電圖案90a可共同地連接至第一接觸插塞60a。 第二導電圖案90b可共同地連接至第二接觸插塞60b。第一導電圖案90a可藉由以下操作形成:在第二層間絕緣層70中形成多個通孔71及連接至通孔71的溝槽73,及接著在通孔71及溝槽73中依序形成障壁金屬層及金屬層。通孔71可形成於各別第一接觸插塞60a上,且可(例如)在彼此交叉之第一方向及第二方向上彼此隔開。第二導電圖案90b可以與第一導電圖案90a相同的方式形成。
根據圖21A及圖21B中的實施例,多個第一接觸插塞60a可連接至陽極20a,且多個第二接觸插塞60b可連接至陰極20c。第一導電圖案90a可共同地連接至多個第一接觸插塞60a。第二導電圖案90b可共同地連接至多個第二接觸插塞60b。在本實施例中,第一接觸插塞60a及第二接觸插塞60b可實質上平行於虛設金屬插塞50。舉例而言,第一接觸插塞60a及第二接觸插塞60b可沿著實質上垂直於熔絲鏈20f之縱向軸線的方向延伸。
第一導電圖案90a及第二導電圖案90b可藉由以下操作形成:在第二層間絕緣層70中形成多個通孔71及連接至通孔71的溝槽73,及接著在通孔71及溝槽73中依序形成障壁金屬層及金屬層。第一導電圖案90a之通孔71可經形成以暴露相鄰於彼此的第一接觸插塞60a。第二導電圖案90b之通孔71可經形成以暴露相鄰於彼此的第二接觸插塞60b。
圖22及圖23說明電熔絲結構的第八實施例,所述電熔絲結構包含陽極圖案110a、陰極圖案110b、熔絲鏈130、連接陽極圖案110a與熔絲鏈130的第一接觸插塞125a、連接陰極圖案110b與熔絲鏈130的第二接觸插塞125b,及與熔絲鏈130之一部 分接觸的虛設金屬插塞150。在此實施例中,熔絲鏈130可與陽極圖案110a及陰極圖案110b處於不同的層面。
陽極圖案110a及陰極圖案110b可(例如)藉由鑲嵌製程形成於下伏層100中,且可彼此隔開。第一接觸插塞125a可通過第一層間絕緣層120連接至陽極圖案110a。第二接觸插塞125b可通過第一層間絕緣層120連接至陰極圖案110b。
熔絲鏈130可藉由圖案化由第一金屬材料製成的金屬層而形成,且可提供於第一層間絕緣層120上。熔絲鏈130可連接至第一接觸插塞125a及第二接觸插塞125b。第二層間絕緣層140可在具備熔絲鏈130的第一層間絕緣層120上。罩蓋介電質135可插入於第二層間絕緣層140與熔絲鏈130之間。
虛設金屬插塞150可穿透第二層間絕緣層140及罩蓋介電質135,且可接觸熔絲鏈130的一部分。虛設金屬插塞150可包含障壁金屬層151及金屬層153。障壁金屬層151可由不同於構成熔絲鏈130之第一金屬材料的第二金屬材料形成。金屬層130可由不同於第二金屬材料的第三金屬材料形成。
參看圖23,陽極圖案110可提供於下伏層100上,熔絲鏈130可提供於相對於下伏層100的第一層面處,且陰極圖案160可提供於相對於下伏層100的第二層面處。第二層面可高於第一層面。
舉例而言,第一層間絕緣層120可在具備陽極圖案110之下伏層100上。第一接觸插塞125可通過第一層間絕緣層120連接至陽極圖案110。熔絲鏈130可提供於第一接觸插塞125上。熔絲鏈130可由第一金屬材料形成。第一接觸插塞125可連接至 熔絲鏈130的末端部分。熔絲鏈130可(例如)藉由鑲嵌製程形成於第一層間絕緣層120中。
罩蓋介電質135及第二層間絕緣層140可依序形成於熔絲鏈130上。第二接觸插塞155可連接至熔絲鏈130的另一末端部分。虛設金屬插塞150可提供於第二層間絕緣層140的一部分中,虛設金屬插塞150與第二接觸插塞155隔開。虛設金屬插塞150可與第二接觸插塞155同時形成。虛設金屬插塞150及第二接觸插塞155中的每一者可包含障壁金屬層151及金屬層153。
障壁金屬層151可由不同於第一金屬材料的第二金屬材料形成。金屬層153可由不同於第二金屬材料的第三金屬材料形成。此外,陰極圖案160可提供於第二層間絕緣層140中,且可連接至第二接觸插塞155。虛設金屬插塞150可包含接觸部分及互連部分。
圖24A及圖24B說明具有三維結構之電熔絲結構的第九實施例。電熔絲結構可包含陰極圖案210、熔絲鏈220及陽極圖案230。陰極圖案210可在下伏層200上,熔絲鏈220可處於相對於下伏層200之頂部表面的第一層面,且陽極圖案230可提供於相對於下伏層200之頂部表面的第二層面。第二層面可高於第一層面。此外,虛設熔絲鏈220d可提供於與熔絲鏈220相同的層面。
在此實施例中,為了在程式化操作期間有效地收集熱,陰極圖案210可包含在第一(例如,x軸)方向上延伸的第一部分210a,及在第二(例如,y軸)方向上延伸的第二部分210b。第一接觸插塞215可將陰極圖案210連接至熔絲鏈220。
類似於陰極圖案210,陽極圖案230可包含沿著第一(例 如,x軸)方向延伸的第一部分230a,及沿著第二(例如,y軸)方向延伸的第二部分230b。第二接觸插塞225可將熔絲鏈220連接至陽極圖案230。自平面圖看出,第一接觸插塞215及第二接觸插塞225可不彼此重疊。
陰極圖案210、熔絲鏈220及陽極圖案230可由第一金屬材料形成,所述第一金屬材料包含(例如)鎢(W)、鋁(Al)、銅(Cu)或銅合金中的至少一者。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
電熔絲結構可包含虛設金屬插塞235及虛設金屬圖案240。虛設金屬插塞235可接觸陽極圖案230的一部分。根據圖24A中的實施例,虛設金屬插塞235可連接至陽極圖案230的第一部分230a,且自平面圖看來,可鄰近於第二接觸插塞225而安置。相比之下,在圖24B中,自平面圖之觀點,虛設金屬插塞235可與第二接觸插塞225隔開。
虛設金屬插塞235可包含障壁金屬層及金屬層。障壁金屬層可由不同於陽極圖案230之第一金屬材料的第二金屬材料形成。金屬層可由不同於障壁金屬層的第三金屬材料形成。第二金屬材料可具有低於第一金屬材料之電導率的電導率。此外,虛設金屬圖案240可連接至虛設金屬插塞235的頂部表面。
使用圖24A及圖24B中之三維電熔絲結構使得有可能在程式化程序期間更有效地收集熱,藉此改良程式化程序的效能。在程式化程序期間,負電壓可施加至陰極圖案210,正電壓可施加至陽極圖案230,且虛設金屬插塞235及虛設金屬圖案240可處於 電浮動狀態。
陰極圖案210與陽極圖案230之間的電壓差產生程式化電流。結果,電子自陰極圖案210通過熔絲鏈220朝向陽極圖案230流動。電流可改變虛設金屬插塞235下方的陽極圖案230處的電及熱驅動力。因此,空隙可形成於相鄰於虛設金屬插塞235的陽極圖案230的一部分處。
圖25A至圖25C說明半導體元件的實施例,所述半導體元件中之每一者包含根據前述實施例中之任一者的至少一電熔絲結構。參看圖25A至圖25C,半導體基板300包含記憶胞區及熔絲區。MOS電晶體形成於半導體基板300的記憶胞區上,且電熔絲結構形成於半導體基板300的熔絲區上。
元件隔離層301可形成於半導體基板300上以定義主動區,且閘電極310g可經形成以跨過主動區。雜質區可形成於半導體基板300的在閘電極310g的各別側處的部分中。第一層間絕緣層320可在具備MOS電晶體及電熔絲結構之半導體基板300上。胞接觸插塞321可經由第一層間絕緣層310電連接至MOS電晶體。
第一互連線325可提供於記憶胞區之第一層間絕緣層320上。第一互連線325中的每一者可電連接至胞接觸插塞321中的至少一者。第二層間絕緣層330可安置於第一層間絕緣層上。第二互連線335可安置於第二層間絕緣層330中。第二互連線335可具有大於第一互連線325之線寬度的線寬度。
此外,第三層間絕緣層340可提供於第二層間絕緣層330上。第三互連線345可安置於第三層間絕緣層340中。第三互連線345可具有大於第二互連線335之線寬度的線寬度。
根據圖25A中的實施例,熔絲鏈310f可形成於熔絲區的元件隔離層301上,且熔絲鏈310f之頂部表面可藉由罩蓋介電質315覆蓋。熔絲鏈310f可與記憶胞區之閘電極310g同時形成,且可由第一金屬材料形成。第一金屬材料可由以下各者中的至少一者形成:鎢(W)、鋁(Al)、銅(Cu)或銅合金。銅合金之實例包含銅基材料,在所述銅基材料中以小量或預定量含有C、Ag、Co、Ta、In、Sn、Zn、Mn、Ti、Mg、Cr、Ge、Sr、Pt、Al或Zr中的至少一者。
在熔絲區中,第一接觸插塞321a及第二接觸插塞321b以及虛設金屬插塞321d可經由第一層間絕緣層320連接至熔絲鏈310f。虛設金屬插塞321d可包含障壁金屬層及金屬層。障壁金屬層可由不同於第一金屬材料的第二金屬材料形成。金屬層可由第三金屬材料形成。虛設金屬插塞321d可與記憶胞區的接觸插塞321同時形成。
第一導電圖案325a及第二導電圖案325b以及虛設金屬圖案325d可提供於熔絲區的第一層間絕緣層320上。第一導電圖案325a可電連接至第一接觸插塞321a,且第二導電圖案325b可電連接至第二接觸插塞321b。虛設金屬圖案325d可接觸虛設金屬插塞321d的頂部表面。第一導電圖案325a及第二導電圖案325b以及虛設金屬圖案325d可與記憶胞區的第一互連線325同時形成。
根據圖25B中的實施例,熔絲區的電熔絲結構可與記憶胞區的第一互連線325同時形成。電熔絲結構之熔絲鏈325f可形成於第一層間絕緣層320上,且與半導體基板300的頂部表面隔 開。第一互連線325及熔絲鏈325f可由第一金屬材料形成,且熔絲鏈325f的頂部表面可由罩蓋介電質327覆蓋。
在熔絲區中,第一接觸插塞331a及第二接觸插塞331b以及虛設金屬插塞331d可經由第二層間絕緣層330及罩蓋介電質327連接至熔絲鏈310f。虛設金屬插塞331d可包含障壁金屬層及金屬層。障壁金屬層由不同於第一金屬材料的第二金屬材料形成。金屬層由第三金屬材料形成。
第一導電圖案335a及第二導電圖案335b以及虛設金屬圖案335d可提供於熔絲區的第二層間絕緣層330上。第一導電圖案335a可電連接至第一接觸插塞331a,且第二導電圖案335b可電連接至第二接觸插塞331b。
根據圖25C中的實施例,熔絲區的電熔絲結構可與記憶胞區的第三互連線345同時形成。電熔絲結構可包含與半導體基板300之頂部表面隔開的熔絲鏈345f。第三互連線345及熔絲鏈345f可由第一金屬材料形成,且熔絲鏈345f的頂部表面可由罩蓋介電質347覆蓋。
在熔絲區中,第一接觸插塞351a及第二接觸插塞351b以及虛設金屬插塞351d可經由第三層間絕緣層340及罩蓋介電質347連接至熔絲鏈345f。虛設金屬插塞351d可包含以下兩者:障壁金屬層,其由不同於第一金屬材料之第二金屬材料形成;及金屬層,其由第三金屬材料形成。
第一導電圖案353a及第二導電圖案353b以及虛設金屬圖案353d可提供於熔絲區的第三層間絕緣層340上。第一導電圖案353a可電連接至第一接觸插塞351a,且第二導電圖案353b可 電連接至第二接觸插塞351b。
圖26說明包含根據前述實施例中之任一者之半導體元件的記憶體系統1100的實施例。參看圖26,記憶體系統1100可應用至(例如)PDA(個人數位助理)、攜帶型電腦、網頁平板電腦、無線電話、行動電話、數位音樂播放器、記憶卡及/或可在無線通信環境中傳輸及/或接收資料的所有元件。
記憶體系統1100包含控制器1110、輸入/輸出元件1120(例如,小鍵盤及/或顯示元件)、記憶體1130、介面1140及匯流排1150。記憶體1130及介面1140可經由匯流排1150彼此通信。
控制器1110可包含微處理器、數位信號處理器、微控制器及/或類似於微處理器、數位信號處理器及微控制器的其他處理元件。記憶體1130可用以儲存由控制器1110執行的指令。輸入/輸出元件1120可自系統外部1100接收資料及/或信號,及/或傳輸資料及/或信號到系統1100外部。舉例而言,輸入/輸出元件1120可包含鍵盤、小鍵盤及/或顯示器。
記憶體1130可包含根據前述實施例中之任一者的半導體元件。記憶體1130可更包含不同種類之記憶體,例如,諸如隨機存取記憶體的揮發性記憶體元件,及/或其他種類的記憶體。介面1140可將資料傳輸至通信網路及/或可自通信網路接收資料。
圖27說明包含根據前述實施例中之任一者之半導體元件的記憶卡1200的實施例。參看圖27,記憶卡1200可具有大型或其他預定容量儲存能力,且可包含根據前述實施例中之任一者的半導體記憶體元件1210。記憶卡1200可包含可控制主機與半導體記憶體元件1210之間的資料交換之記憶體控制器1220。
靜態隨機存取記憶體(SRAM)1221可用作(例如)處理單元1222的操作記憶體。主機介面1223可包含可連接至記憶卡1200的主機之資料交換協定。錯誤校正區塊1224可偵測及/或校正自多位元半導體記憶體元件1210讀出的資料中之錯誤。
記憶體介面1225可與半導體記憶體元件1210介接。處理單元1222可執行控制操作從而交換記憶體控制器1220的資料。記憶卡1200可包含(例如)用於儲存程式碼、指令或用於與主機介接之其他資訊的ROM。
圖28說明包含根據前述實施例中之任一者之半導體元件的資訊處理系統1300的實施例。參看圖28,資訊處理系統1300包含具有半導體元件之記憶體系統1310。
記憶體系統1310可安裝至資訊處理系統,所述資訊處理系統(例如)可為行動元件及/或桌上型電腦。資訊處理系統1300可包含數據機1320、中央處理單元(CPU)1330、RAM 1340,及電連接至系統匯流排1360的使用者介面1350。記憶體系統1310可以類似於圖20之方式組態,且可包含半導體元件1311及記憶體控制器1312。
記憶體系統1310可為(例如)固態碟機SSD,且可儲存待由CPU 1330處理或已由CPU 1330處理的資料,及/或自外部源輸入的資料。資訊處理系統1300可將大量或預定量資料可靠地儲存於記憶體系統1310中。記憶體系統1310可節省用於錯誤校正的資源,且亦可提供高速度資料交換功能。在一個實施例中,資訊處理系統1300可包含應用晶片集、攝影機影像處理器(CIS),及/或輸入/輸出元件。
根據前述實施例中之一或多者,電熔絲結構包含附接至熔絲鏈的虛設金屬插塞。熔絲鏈可由第一金屬材料形成,且虛設金屬插塞可包含第二金屬材料。因此,在電熔絲結構之程式化程序期間,由電遷移引起的熔絲鏈之溫度梯度以及驅動力可經控制以增加施加至熔絲鏈的總驅動力。結果,可用減小之操作電壓程式化電熔絲結構。
根據前述實施例中之一或多者,可藉由調整虛設金屬插塞之體積或接觸區域及/或虛設金屬插塞的數目來控制施加至熔絲鏈之總驅動力。此外,虛設金屬插塞之位置可經調整以控制將在電熔絲結構的程式化程序中形成的空隙的位置。
本文中已揭露實例實施例,且儘管使用特定術語,但僅以一般且描述性含義且並非為了限制目的來使用且解釋所述特定術語。在一些情況下,如對於熟習此項技術者將顯而易見,在本申請案之申請時,結合特定實施例描述之特徵、特性及/或器件可被單個使用或組合結合其他實施例描述之特徵、特性及/或器件來使用,除非另有指示。因此,熟習此項技術者將理解,可進行形式及細節之各種改變而不偏離如在以下申請專利範圍中闡述的本發明之精神及範疇。
20a‧‧‧陽極
20c‧‧‧陰極
20f‧‧‧熔絲鏈
50‧‧‧虛設金屬插塞
R1‧‧‧第一區
R2‧‧‧第二區
R3‧‧‧第三區

Claims (18)

  1. 一種半導體元件之電熔絲結構,其包括:連接陰極與陽極的第一金屬材料之熔絲鏈;覆蓋所述熔絲鏈之頂部表面的罩蓋介電質;以及穿透所述罩蓋介電質並接觸所述熔絲鏈的虛設金屬插塞,所述虛設金屬插塞包含金屬層和位於所述金屬層的底表面與所述熔絲鏈的頂表面之間的障壁金屬層,其中所述障壁金屬層包含不同於所述第一金屬材料的第二金屬材料,且所述金屬層包含具有第一寬度的接觸部分,及具有大於所述第一寬度之第二寬度的互連部分。
  2. 如申請專利範圍第1項所述之電熔絲結構,其中所述第一金屬材料具有大於所述第二金屬材料之電導率的電導率。
  3. 如申請專利範圍第1項所述之電熔絲結構,其中:所述第一金屬材料包含鎢、鋁、銅或銅合金中的至少一者,且所述第二金屬材料包含Ta、TaN、TaSiN、Ti、TiN、TiSiN、W、WN或其組合中的至少一者。
  4. 如申請專利範圍第1項所述之電熔絲結構,其中:所述熔絲鏈用於攜載程式化電流,且所述熔絲鏈在程式化狀態下具有介於所述陽極與所述虛設金屬插塞之間的空隙。
  5. 如申請專利範圍第4項所述之電熔絲結構,其中所述空隙與所述虛設金屬插塞之間的距離小於所述空隙與所述陽極之間的距離。
  6. 如申請專利範圍第1項所述之電熔絲結構,其中所述虛設金屬插塞的下部寬度小於所述熔絲鏈的上部寬度。
  7. 如申請專利範圍第1項所述之電熔絲結構,其中:所述虛設金屬插塞之下部寬度大於所述熔絲鏈的上部寬度,且所述虛設金屬插塞接觸所述熔絲鏈的頂部表面及側表面。
  8. 如申請專利範圍第1項所述之電熔絲結構,其中所述障壁金屬層覆蓋所述金屬層的底部表面及側表面。
  9. 如申請專利範圍第8項所述之電熔絲結構,其中在所述金屬層的所述底部表面上的所述障壁金屬層較在所述金屬層之所述側表面中之一者或兩者上的所述障壁金屬層厚。
  10. 如申請專利範圍第1項所述之電熔絲結構,其中所述虛設金屬插塞的底部表面在所述熔絲鏈的頂部表面與底部表面之間。
  11. 如申請專利範圍第1項所述之電熔絲結構,其更包括:在所述虛設金屬插塞之頂部表面上的虛設金屬圖案,其中所述虛設金屬圖案具有大於所述熔絲鏈之厚度的厚度。
  12. 如申請專利範圍第1項所述之電熔絲結構,其中:所述陽極及所述陰極處於不同層面,且所述熔絲鏈與所述虛設金屬插塞在所述陽極與所述陰極之間。
  13. 如申請專利範圍第1項所述之電熔絲結構,其中:所述陽極及所述陰極相對於下伏層之頂部表面處於第一層面, 所述熔絲鏈相對於所述下伏層之所述頂部表面處於第二層面,且所述第二層面高於所述第一層面。
  14. 一種半導體元件之電熔絲結構,其包括:連接陰極與陽極的第一金屬材料之熔絲鏈;覆蓋所述陽極、所述陰極及所述熔絲鏈的層間絕緣層;介於所述熔絲鏈之頂部表面與所述層間絕緣層之間的罩蓋介電質,所述罩蓋介電質包含不同於所述層間絕緣層的絕緣材料;以及穿透所述層間絕緣層與所述罩蓋介電質且接觸所述熔絲鏈的虛設金屬插塞,所述虛設金屬插塞包含金屬層和位於所述金屬層的底表面與所述熔絲鏈的頂表面之間的障壁金屬層,其中所述障壁金屬層包含不同於所述第一金屬材料的第二金屬材料,且所述金屬層包含具有第一寬度的接觸部分,及具有大於所述第一寬度之第二寬度的互連部分。
  15. 如申請專利範圍第14項所述之電熔絲結構,其中所述第一金屬材料具有大於所述第二金屬材料之電導率的電導率。
  16. 一種半導體元件之電熔絲結構,其包括:連接陰極與陽極的第一金屬材料之熔絲鏈;覆蓋所述熔絲鏈之頂部表面的罩蓋介電質;以及穿透所述罩蓋介電質並接觸所述熔絲鏈的虛設金屬插塞,所述虛設金屬插塞包含金屬層和位於所述金屬層的底表面與所述熔絲鏈的頂表面之間的障壁金屬層,且所述障壁金屬層包含不同於所述第一金屬材料的第二金屬材料,其中所述熔絲鏈用於攜載程 式化電流,且其中所述虛設金屬插塞用於在所述熔絲鏈攜載所述程式化電流時改變所述熔絲鏈中的溫度梯度,且所述金屬層包含具有第一寬度的接觸部分,及具有大於所述第一寬度之第二寬度的互連部分。
  17. 如申請專利範圍第16項所述之電熔絲結構,其中:所述熔絲鏈包含與所述虛設金屬插塞接觸的第一區,及與所述罩蓋介電質接觸的第二區,且所述熔絲鏈的溫度在所述熔絲鏈攜載所述程式化電流時在所述第二區處具有最大值。
  18. 如申請專利範圍第16項所述之電熔絲結構,其中所述熔絲鏈在程式化狀態下具有介於所述陽極與所述虛設金屬插塞之間的空隙。
TW103135016A 2013-10-11 2014-10-08 半導體元件的電熔絲結構 TWI691054B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361889911P 2013-10-11 2013-10-11
US61/889,911 2013-10-11
KR1020140022774A KR102096614B1 (ko) 2013-10-11 2014-02-26 반도체 장치의 이-퓨즈 구조체
KR10-2014-0022774 2014-02-26

Publications (2)

Publication Number Publication Date
TW201528477A TW201528477A (zh) 2015-07-16
TWI691054B true TWI691054B (zh) 2020-04-11

Family

ID=53037021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103135016A TWI691054B (zh) 2013-10-11 2014-10-08 半導體元件的電熔絲結構

Country Status (3)

Country Link
KR (1) KR102096614B1 (zh)
CN (2) CN104576604B (zh)
TW (1) TWI691054B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786364A (zh) * 2017-11-14 2019-05-21 中芯国际集成电路制造(上海)有限公司 熔断结构及其形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713543A (en) * 2005-09-05 2007-04-01 United Microelectronics Corp Fuse structure for a semiconductor device
US20090039480A1 (en) * 2007-08-07 2009-02-12 Kyoung-Woo Lee Semiconductor device and methods of forming the same
US20110248378A1 (en) * 2010-04-12 2011-10-13 Hynix Semiconductor Inc. Semiconductor device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135039B2 (ja) * 1995-11-15 2001-02-13 日本電気株式会社 半導体装置
JP2003115535A (ja) * 2001-10-04 2003-04-18 Hitachi Ltd 半導体集積回路装置
US20070252238A1 (en) * 2006-04-27 2007-11-01 Charles Lin Tungstein plug as fuse for IC device
JP5132162B2 (ja) * 2006-08-11 2013-01-30 ルネサスエレクトロニクス株式会社 半導体集積回路
JP5230105B2 (ja) * 2007-01-10 2013-07-10 ルネサスエレクトロニクス株式会社 半導体装置
US7411818B1 (en) * 2007-02-07 2008-08-12 International Business Machines Corporation Programmable fuse/non-volatile memory structures using externally heated phase change material
JP2008277412A (ja) * 2007-04-26 2008-11-13 Renesas Technology Corp ヒューズ素子
US20090243032A1 (en) * 2008-03-27 2009-10-01 Shi-Bai Chen Electrical fuse structure
JP2010040904A (ja) * 2008-08-07 2010-02-18 Nec Electronics Corp 半導体装置及びその製造方法
CN101752344B (zh) * 2008-12-08 2012-11-21 联华电子股份有限公司 接触插塞电熔丝结构及制造接触插塞电熔丝装置的方法
CN101771021B (zh) * 2008-12-29 2013-07-24 联华电子股份有限公司 电熔丝结构及其制作方法
US8890260B2 (en) * 2009-09-04 2014-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. Polysilicon design for replacement gate technology
KR20110135501A (ko) * 2010-06-11 2011-12-19 주식회사 하이닉스반도체 퓨즈부를 구비한 반도체 장치
CN102347269B (zh) * 2010-07-30 2014-03-12 上海丽恒光微电子科技有限公司 熔丝结构以及形成熔丝结构的方法
US20120154102A1 (en) * 2010-12-16 2012-06-21 Shi-Bai Chen Electrical fuse structure
US8716831B2 (en) * 2011-09-29 2014-05-06 Broadcom Corporation One time programmable structure using a gate last high-K metal gate process
CN103208456B (zh) * 2013-03-22 2016-12-28 上海华虹宏力半导体制造有限公司 半导体结构的形成方法
CN104681422B (zh) * 2013-11-27 2018-09-07 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713543A (en) * 2005-09-05 2007-04-01 United Microelectronics Corp Fuse structure for a semiconductor device
US20090039480A1 (en) * 2007-08-07 2009-02-12 Kyoung-Woo Lee Semiconductor device and methods of forming the same
US20110248378A1 (en) * 2010-04-12 2011-10-13 Hynix Semiconductor Inc. Semiconductor device

Also Published As

Publication number Publication date
KR102096614B1 (ko) 2020-04-03
CN108305867A (zh) 2018-07-20
KR20150044789A (ko) 2015-04-27
CN104576604B (zh) 2018-04-24
CN104576604A (zh) 2015-04-29
TW201528477A (zh) 2015-07-16
CN108305867B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
US9099469B2 (en) E-fuse structure of semiconductor device
EP2313921B1 (en) Metal wiring structure for integration with through substrate vias
JP6548377B2 (ja) 集積回路素子及びその製造方法
KR100918161B1 (ko) 수직 방향 나노-회로 및 수직 방향 나노-회로 형성 방법
JP5153162B2 (ja) 集積回路用のヒューズ及びその製造方法(異なる高さで存在する端子部分を有する電気的にプログラム可能なヒューズ構造及びその製造方法)
US9679903B2 (en) Anti-fuse of semiconductor device, semiconductor module and system each including the semiconductor device, and method for forming the anti-fuse
US20160163643A1 (en) E-fuse devices and method for fabricating the same
US9935049B2 (en) E-fuse structure of semiconductor device
TW201915794A (zh) 多版本庫單元處理及由其所製造的積體電路結構
TW201222909A (en) Planar phase-change memory cell with parallel electrical paths
TWI691054B (zh) 半導體元件的電熔絲結構
US20120098141A1 (en) Semiconductor device and method for forming the same
US9196527B2 (en) Fuse structure for high integrated semiconductor device
KR100483201B1 (ko) 반도체 소자의 금속 배선 형성 방법
KR100954417B1 (ko) 반도체 소자의 퓨즈 형성 방법
TW202247253A (zh) 具有熱積存增強的埋入式電源軌的半導體架構及其製造方法
CN104103623A (zh) 电熔丝结构及其形成方法
CN110556380A (zh) 熔丝单元、熔丝位单元结构及其制造方法
JP2013058581A (ja) 相変化メモリ及びその製造方法