TWI673826B - 可流動膜固化穿透深度之改進以及應力調諧 - Google Patents

可流動膜固化穿透深度之改進以及應力調諧 Download PDF

Info

Publication number
TWI673826B
TWI673826B TW104132716A TW104132716A TWI673826B TW I673826 B TWI673826 B TW I673826B TW 104132716 A TW104132716 A TW 104132716A TW 104132716 A TW104132716 A TW 104132716A TW I673826 B TWI673826 B TW I673826B
Authority
TW
Taiwan
Prior art keywords
substrate
oxygen
dielectric layer
nitrogen
layer
Prior art date
Application number
TW104132716A
Other languages
English (en)
Chinese (zh)
Other versions
TW201624612A (zh
Inventor
梁璟梅
Jingmei Liang
李晶粲
Jung Chan Lee
孫顒
Yong Sun
Original Assignee
美商應用材料股份有限公司
Applied Materials, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司, Applied Materials, Inc. filed Critical 美商應用材料股份有限公司
Publication of TW201624612A publication Critical patent/TW201624612A/zh
Application granted granted Critical
Publication of TWI673826B publication Critical patent/TWI673826B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • H10P95/90
    • H10P14/69215
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • H10P14/60
    • H10P14/6336
    • H10P14/6526
    • H10P14/6529
    • H10P14/6538
    • H10P14/6682
    • H10P14/6687
    • H10P14/6927
    • H10P72/0431
    • H10P72/0468
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
TW104132716A 2014-10-29 2015-10-05 可流動膜固化穿透深度之改進以及應力調諧 TWI673826B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462072217P 2014-10-29 2014-10-29
US62/072,217 2014-10-29
US14/577,943 2014-12-19
US14/577,943 US9570287B2 (en) 2014-10-29 2014-12-19 Flowable film curing penetration depth improvement and stress tuning

Publications (2)

Publication Number Publication Date
TW201624612A TW201624612A (zh) 2016-07-01
TWI673826B true TWI673826B (zh) 2019-10-01

Family

ID=55853458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104132716A TWI673826B (zh) 2014-10-29 2015-10-05 可流動膜固化穿透深度之改進以及應力調諧

Country Status (5)

Country Link
US (1) US9570287B2 (enExample)
JP (1) JP6688588B2 (enExample)
KR (2) KR101810087B1 (enExample)
CN (1) CN105575768A (enExample)
TW (1) TWI673826B (enExample)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655396B1 (ko) * 2015-02-23 2024-04-04 어플라이드 머티어리얼스, 인코포레이티드 고품질 얇은 필름들을 형성하기 위한 사이클식 순차 프로세스들
US11017998B2 (en) 2016-08-30 2021-05-25 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
US10468244B2 (en) 2016-08-30 2019-11-05 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
KR102579245B1 (ko) * 2017-04-07 2023-09-14 어플라이드 머티어리얼스, 인코포레이티드 비정질 실리콘 갭충전을 개선하기 위한 표면 개질
KR102271768B1 (ko) 2017-04-07 2021-06-30 어플라이드 머티어리얼스, 인코포레이티드 반응성 어닐링을 사용하는 갭충전
WO2018212999A1 (en) 2017-05-13 2018-11-22 Applied Materials, Inc. Cyclic flowable deposition and high-density plasma treatment proceses for high quality gap fill solutions
TWI722292B (zh) * 2017-07-05 2021-03-21 美商應用材料股份有限公司 氮含量高的氮化矽膜
US20200003937A1 (en) * 2018-06-29 2020-01-02 Applied Materials, Inc. Using flowable cvd to gap fill micro/nano structures for optical components
US10483099B1 (en) * 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
CN111128850A (zh) * 2018-10-30 2020-05-08 长鑫存储技术有限公司 沟槽隔离结构的形成方法及介电膜的形成方法
TWI894152B (zh) * 2019-07-02 2025-08-21 美商應用材料股份有限公司 形成積體電路結構的方法、整合系統與電腦可讀媒介
US11348784B2 (en) 2019-08-12 2022-05-31 Beijing E-Town Semiconductor Technology Co., Ltd Enhanced ignition in inductively coupled plasmas for workpiece processing
US11658026B2 (en) 2020-10-23 2023-05-23 Applied Materials, Inc. Conformal silicon oxide film deposition
US12094709B2 (en) 2021-07-30 2024-09-17 Applied Materials, Inc. Plasma treatment process to densify oxide layers
CN118186373A (zh) * 2022-12-06 2024-06-14 拓荆科技股份有限公司 通过cvd方法形成高质量膜的方法
US20240363337A1 (en) * 2023-04-26 2024-10-31 Applied Materials, Inc. Methods for forming low-k dielectric materials
CN116607122A (zh) * 2023-06-07 2023-08-18 拓荆科技(上海)有限公司 一种硅氮聚合物的固化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018319A1 (en) * 2001-09-14 2004-01-29 Carlo Waldfried Ultraviolet curing processes for advanced low-k materials
US20120003840A1 (en) * 2010-01-07 2012-01-05 Applied Materials Inc. In-situ ozone cure for radical-component cvd

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093135A1 (en) * 2007-10-04 2009-04-09 Asm Japan K.K. Semiconductor manufacturing apparatus and method for curing material with uv light
US7803722B2 (en) * 2007-10-22 2010-09-28 Applied Materials, Inc Methods for forming a dielectric layer within trenches
US8466067B2 (en) * 2009-10-05 2013-06-18 Applied Materials, Inc. Post-planarization densification
US8927388B2 (en) * 2012-11-15 2015-01-06 United Microelectronics Corp. Method of fabricating dielectric layer and shallow trench isolation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018319A1 (en) * 2001-09-14 2004-01-29 Carlo Waldfried Ultraviolet curing processes for advanced low-k materials
US20120003840A1 (en) * 2010-01-07 2012-01-05 Applied Materials Inc. In-situ ozone cure for radical-component cvd

Also Published As

Publication number Publication date
JP6688588B2 (ja) 2020-04-28
KR102301006B1 (ko) 2021-09-09
US9570287B2 (en) 2017-02-14
KR20170097593A (ko) 2017-08-28
CN105575768A (zh) 2016-05-11
US20160126089A1 (en) 2016-05-05
KR20160052357A (ko) 2016-05-12
JP2016096331A (ja) 2016-05-26
KR101810087B1 (ko) 2018-01-18
TW201624612A (zh) 2016-07-01

Similar Documents

Publication Publication Date Title
TWI673826B (zh) 可流動膜固化穿透深度之改進以及應力調諧
JP5455626B2 (ja) ボトムアップギャップ充填のための誘電堆積プロセスとエッチバックプロセス
CN103477422B (zh) 低温氧化硅转换
US8445075B2 (en) Method to minimize wet etch undercuts and provide pore sealing of extreme low k (k<2.5) dielectrics
US8765573B2 (en) Air gap formation
US10041167B2 (en) Cyclic sequential processes for forming high quality thin films
WO1998008249A1 (en) Method and apparatus for depositing a planarized dielectric layer on a semiconductor substrate
CN113707542A (zh) 使用远程等离子体处理使碳化硅膜致密化
CN102754193A (zh) 使用氧化物衬垫的可流动电介质
CN101319312A (zh) 形成无机硅氮烷基电介质膜的方法
KR20150022677A (ko) 유기아미노실란 어닐링을 이용한 SiOCH 막의 형성 방법
CN103154102A (zh) 胺硬化的硅-氮-氢薄膜
KR20140010449A (ko) 손상된 저 k 필름들의 복구 및 기공 밀봉을 위한 자외선 보조형 시릴화
JP2004320005A (ja) 有機シリカ多孔性膜製造のための化学気相成長方法
CN104593747A (zh) 使用含氧前体的介电阻挡层沉积
KR20160003226A (ko) 응력 조절을 위한 저온 유동성 경화
US9312167B1 (en) Air-gap structure formation with ultra low-k dielectric layer on PECVD low-k chamber
JP2008147644A (ja) ウェットエッチングアンダカットを最小にし且つ超低k(k<2.5)誘電体をポアシーリングする方法
TWI851635B (zh) 在溝槽上面形成低k可流動介電膜的方法
TW202105513A (zh) 微波輻射後處理介電膜的方法