CN105575768A - 可流动膜固化穿透深度改善和应力调谐 - Google Patents

可流动膜固化穿透深度改善和应力调谐 Download PDF

Info

Publication number
CN105575768A
CN105575768A CN201510706039.XA CN201510706039A CN105575768A CN 105575768 A CN105575768 A CN 105575768A CN 201510706039 A CN201510706039 A CN 201510706039A CN 105575768 A CN105575768 A CN 105575768A
Authority
CN
China
Prior art keywords
substrate
oxygen
dielectric layer
containing gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510706039.XA
Other languages
English (en)
Inventor
梁璟梅
J·C·李
孙颙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN105575768A publication Critical patent/CN105575768A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本文公开了用于沉积和固化可流动电介质层的方法。方法可包括:形成可流动电介质层,将可流动电介质层浸入含氧气体中,净化腔室,以及利用UV辐射来固化所述层。通过在含氧气体预浸透之后固化所述层,可在UV照射期间更完全地固化所述层。

Description

可流动膜固化穿透深度改善和应力调谐
技术领域
本公开的实施例总体涉及增加可流动层中的UV(紫外)穿透。更具体地说,本文所述的实施例总体涉及用于预处理可流动层以增加固化效率的方法。
背景技术
自从几十年前半导体器件的引入以来,半导体器件几何形状的尺寸已显著减小。现代半导体制造设备通常用于生产具有小至28nm和更小的几何形状的器件,并且正不断开发并实现新的设备设计以生产具有甚至更小的几何形状的器件。随着器件的几何形状减小,互连电容对器件性能的影响增加。为了降低互连电容,正在使用较低介电常数的材料(低k材料)来形成传统上由氧化硅形成的层间材料。已使用的一些低k材料包括氟化氧化硅、碳酸氧化硅,以及各种聚合物与气凝胶。这些低k材料的使用通常呈现严峻的可靠性、可制造性和/或集成化挑战。
多年以来,已经开发许多技术来避免使电介质材料阻塞间隙的顶部,或“合拢”(“heal”)已形成的空隙或接缝。已有一种方法是以高度可流动的前体材料开始,所述材料能以液相被施加到旋转的基板表面(例如,旋涂玻璃沉积(spinonglassdeposition)技术)。这些可流动前体可在不形成空隙或弱接缝的情况下流入并填充非常小的基板间隙。然而,一旦沉积了这些高度可流动的材料,则必须将这些材料硬化为固体电介质材料。
在许多情况下,在熔炉转换和致密化之前,为了进一步使材料交联成膜,用于可流动材料的硬化工艺包括在UV光下进行的非热固化。凭借着UV暴露,膜密度和Si-Si键增加。因为表面是膜与UV辐射接触的第一个区域,所以膜的光学性质首先在表面处改变。表面层的反射率和消光系数增加,并且这阻碍或降低了块状膜中的UV强度。
因此,需要用于更好地控制UV固化工艺的装置和方法。
发明内容
本文中所公开的实施例包括沉积可流动电介质层的方法。在一个实施例中,一种沉积层的方法可包括:在基板上形成可流动电介质层,所述基板被定位在工艺腔室的处理区域中;将含氧气体传递至所述基板和所述处理区域,所述可流动电介质层被浸透在所述含氧气体中达一段时间,从而产生经浸透的电介质层;在所述一段时间之后,净化来自所述处理区域的所述含氧气体;以及将所述经浸透的电介质层暴露于UV辐射,其中,所述UV辐射至少部分地固化所述经浸透的电介质层。
在另一实施例中,用于处理基板的方法可顺序地包括:在工艺腔室中的基板的基板表面上沉积具有小于约2.5的介电常数的可流动电介质层,所述基板表面具有基板表面积;以每平方毫米的基板表面积约3.1sccm至约10.6sccm之间的流率来使含氧气体流入所述工艺腔室;使所述含氧气体进入UV处理腔室中的流动终止;将基板传递至紫外(ultraviolet;UV)处理腔室;以及将所述可流动电介质层暴露于UV辐射。
在另一实施例中,一种固化层的方法可包括:将无碳硅前体提供给工艺腔室,所述工艺腔室包含处理区域,所述处理区域具有被定位在所述处理区域上的基板,所述基板具有基板表面,所述基板表面具有基板表面积;将自由基氮前体提供给工艺腔室;使所述无碳硅前体和所述自由基氮前体混合并反应,以便在所述基板表面上沉积可流动的含硅氮层,所述可流动的含硅氮层具有小于约2.5的介电常数;以每平方毫米的基板表面积约3.1sccm至约10.6sccm之间的流率来将含氧气体传送进所述基板和所述工艺腔室,所述可流动的含硅氮层被浸透在所述含氧气体中达一段时间,所述含氧气体包含臭氧(O3);使用惰性气体净化来自所述处理区域的所述含氧气体;以及将所述可流动的含硅氮的层暴露于UV辐射,其中,所述UV辐射至少部分地固化所述可流动电介质层。
附图说明
因此,可详细地理解本公开的上述特征的方式,可通过参照实施例来进行上文简要概述的本公开的更特定描述,所述实施例中的一些实施例在附图中示出。然而,应当注意,附图仅示出本公开的典型实施例,并且因此不将附图视为限制本公开的范围,因为本公开可允许其他同等有效的实施例。
图1是根据一个实施例的处理系统的一个实施例的俯视图。
图2是根据一个实施例的工艺腔室的一个实施例的示意性剖视图。
图3是根据一个实施例的沉积可流动层的方法的框图。
图4是根据一个实施例的固化可流动层的方法的框图。
为了便于理解,在尽可能的情况下,已使用完全相同的附图标记来指定诸附图所共用的完全相同的元件。另外,一个实施例的元件可有利地适用于本文所述的其他实施例。
具体实施方式
本发明描述了一种形成电介质层的方法。所述方法首先在基板上沉积初始可流动的层。随后,在通过UV固化进行致密化之前,将所述初始可流动的层暴露于含氧气体预浸透。在UV固化工艺期间,表面的光学吸收率可改变以使得UV对位于下方的诸部分的穿透降低。预浸透工艺降低了光学吸收率的这种改变,从而允许对所沉积层进行更优的固化。
可流动层可通过诸如旋涂玻璃(spin-onglass;SOG)旋涂电介质(spin-ondielectric;SOD)工艺、eHARP工艺(H2O-TEOS-O3)、SACVD(亚常压化学气相沉积)或诸如自由基组份CVD之类的可流动CVD工艺来沉积。相比不可流动的膜,可流动膜可具有降低的密度和升高的蚀刻速率。已发现本文所述的高密度等离子体处理实现了湿法蚀刻速率比率的显著降低,例如,从3-5降低至远低于3。
本文所述的示例将集中于自由基组份CVD硅氮烷膜(即,含硅氮和氢的层)的沉积、已发现能改善所得到的膜的UV固化的含氧的预浸透,以及后续的UV处理。在一些实施例中,膜可包括硅、氢和氮。在进一步的实施例中,膜可包括硅、碳、氧、氢和氮。
可用于沉积根据本文所述的实施例的可流动层的处理腔室可包括高密度等离子体化学气相沉积(high-densityplasmachemicalvapordeposition;HDP-CVD)腔室、等离子体增强化学气相沉积(plasmaenhancedchemicalvapordeposition;PECVD)腔室、亚常压化学气相沉积(sub-atmosphericchemicalvapordeposition;SACVD)腔室,和热化学气相沉积腔室,以及其他类型的腔室。具体示例包括可从美国加利佛尼亚州圣克拉拉市的应用材料公司(AppliedMaterials,Inc.)获得的CENTURAHDP-CVD腔室/系统和PECVD腔室/系统。
处理腔室可被并入较大的制造系统以便产生集成电路芯片。图1示出具有沉积、烘烤和固化腔室的一个此类系统100。在此图中,一对前开式晶片盒(frontopeningunifiedpod;FOUP)102供应基板(例如,300mm直径的晶片),所述基板在被放入处理腔室108a、108b、108c、108d、108e和108f中的一个腔室之前,由机械臂104接收并放入低压力保存区106中。第二机械臂110可用于将基板晶片从保存区106输送到处理腔室108a、108b、108c、108d、108e和108f,并且返回。
处理腔室108a、108b、108c、108d、108e和108f可包括用于在基板晶片上沉积、退火、固化和/或蚀刻可流动电介质膜的一个或多个系统部件。在一个配置中,两对处理腔室(例如,108c和108d与108e和108f)可用于在基板上沉积可流动的电介质材料,而第三对处理腔室(例如,108a和108b)可用于对所沉积的电介质进行退火。在另一配置中,同样的这两对处理腔室(例如,108c和108d与108e和108f)可配置成在基板上既沉积可流动电介质膜又对可流动电介质膜退火,而第三对腔室(例如,108a和108b)可用于对所沉积的膜进行UV固化或电子束固化。在又一配置中,所有三对腔室(例如,108a和108b、108c和108d,与108e和108f)可配置成在基板上沉积并固化可流动电介质膜。在再一配置中,两对处理腔室(例如,108c和108d与108e和108f)可用于既沉积又UV固化或电子束固化可流动电介质质,而第三对处理腔室(例如,108a和108b)可用于对电介质膜退火。所述的任何一个或多个工艺可对与不同实施例中所示的制造系统分开的腔室来实施。
此外,一个或多个处理腔室108a、108b、108c、108d、108e和108f可配置为湿法处理腔室。这些工艺腔室包括在包含湿气的气氛中加热可流动电介质膜。因此,系统100的实施例可包括作为湿法处理腔室的处理腔室108a和108b以及作为退火处理腔室的处理腔室108c和108d,以对所沉积的电介质膜执行湿法和干法退火两者。
图2是根据一个实施例的基板处理腔室200。远程等离子体系统210可处理气体,所述气体随后穿过进气口组件211。在进气口组件211中可见两个不同的气体供应通道。第一通道212携带通过远程等离子体系统210的气体,而第二通道213绕过远程等离子体系统210。盖221和喷头253示出为在所述盖221和喷头253之间具有绝缘环224,所述绝缘环224允许AC(交流)电位相对于喷头253而施加于盖221。工艺气体穿过第一通道212进入腔室等离子体区域220,并且可单独由腔室等离子体区域220中的等离子体,或由腔室等离子体区域220中的等离子体组合远程等离子体系统210中的等离子体来激发工艺气体。在本文中,可将腔室等离子体区域220和/或远程等离子体系统210的组合称为远程等离子体系统。可由远程等离子体系统将含氩和氧的气体转换为含氩和氧的等离子体流出物(effluent)。喷头253将腔室等离子体区域220与喷头253下方的基板处理区域270分开。喷头253允许存在于腔室等离子体区域220中的等离子体避免在基板处理区域270中直接激发气体,这样仍然允许诸如等离子体流出物之类的激发物质从腔室等离子体区域220进入基板处理区域270。
喷头253可以是双区域喷头,所述双区域喷头允许诸如在等离子体区域220之内产生的含氩和氧的等离子体流出物经由穿过多个通孔256而进入基板处理区域270,所述多个通孔256穿过喷头253的厚度。每一个通孔256可具有面向等离子体区域220的开口250,并且开口250可具有比通孔256的直径更小的直径。喷头253还具有一个或多个中空的体积251,所述中空的体积251可填充有蒸汽或气体形式的前体(诸如,含碳前体气体),并且所述前体穿过小孔255进入基板处理区域270,而不是直接进入等离子体区域220。
在所示示例中,当在腔室等离子体区域220中由等离子体激发之后,喷头253可(经由通孔256)分配含氧、氢、氮的工艺气体和/或此类工艺气体的等离子体流出物。在一些实施例中,通过第一通道212被引入远程等离子体系统210和/或腔室等离子体区域220的工艺气体可包含氧(O2)、臭氧(O3)、N2O、NO、NO2、NH3和NxHy中的一种或多种气体,所述NxHy包括N2H4,硅烷、乙硅烷、TSA和DSA。工艺气体也可包括载气(carriergas),所述载气诸如氦、氩、氮(N2),等等。第二通道213也可传递工艺气体、载气和/或膜固化气体,所述膜固化气体用于从正在生长或所沉积的薄膜中去除不需要的成分。等离子体流出物可包括工艺气体的离子化或中性的衍生物,并且在本文中,可参照引入的工艺气体的原子组分而将等离子体流出物称为自由基氧前体和/或自由基氮前体。
通孔256的数目可在约60与约2000之间。通孔256可具有各种形状,但多数情况下是易于制成的圆形。开口250的直径可在约0.5mm与约20mm之间,或可在约1mm与约6mm之间。在选择通孔256的横截面形状时还存在着自由度,所述形状可制造为圆锥形、圆柱形或所述两种形状的组合。在不同实施例中,用于将气体引入到基板处理区域270中的小孔255的数目可在约100与约5000之间或在约500与约2000之间。小孔255的直径可在约0.1mm与约2mm之间。
图3是流程图,所述流程图示出制造根据本文所述的实施例的诸如氮化硅膜之类的可流动膜的方法300中的所选步骤。方法300包括:在302处,将无碳硅前体提供给反应腔室。无碳硅前体可以是例如硅氮前体、硅氢前体,或含硅氮氢的前体,以及其他类别的硅前体。这些前体的特定示例可包括甲硅烷基胺,所述甲硅烷基胺诸如,H2N(SiH3)、HN(SiH3)2,和N(SiH3)3,以及其他甲硅烷基胺。这些甲硅烷基胺可与可充当载气、反应气体,或两者的附加气体混合。附加气体的示例可包括H2、N2、NH3、He和Ar,以及其他气体。无碳硅前体的示例也可单独包括硅烷(SiH4),或包括与其他含硅气体(例如,N(SiH3)3)、含氢气体(例如H2)和/或含氮气体(例如,N2、NH3)混合的硅烷(SiH4)。无碳硅前体也可单独包括乙硅烷、丙硅烷、高阶硅烷和氯硅烷,或包括与彼此组合或与先前提及的无碳硅前体组合的乙硅烷、丙硅烷、高阶硅烷和氯硅烷。
除了是无碳的之外,硅前体还可以是无氧的。氧的缺乏导致由前体形成的硅氮层中的硅烷醇(Si-OH)基的较低浓度。所沉积的膜中的过多的硅烷醇部分在后沉积步骤期间会产生增加的孔隙度和收缩,所述后沉积步骤从所沉积的层中去除羟基(-OH)部分。
在304处,也将自由基氮前体提供给反应腔室。自由基氮前体是含氮自由基的物质,所述含氮自由基的物质在反应腔室外部由更稳定的氮前体生成。例如,可在反应腔室外部的等离子体单元中激活诸如NH3和/或联胺(N2H4)之类的相对稳定的氮前体以形成自由基氮前体,然后将所述自由基氮前体输送到反应腔室中。在不同的实施例中,稳定的氮前体也可以是包含NH3和N2、NH3和H2、NH3和N2和H2以及N2和H2的混合物。在具有N2和H2的混合物中,可替代NH3来使用联胺,或可与NH3结合来使用联胺。所产生的自由基氮前体可以是N、NH、NH2等中的一个或多个,并且也可伴随有在等离子体中形成的离子化物质。
一般而言,不包括氮的自由基前体也将允许形成含硅氮层。如果自由基前体包括随上述前体供应到远程等离子体区域的氮,那么所述自由基前体可以是自由基氮前体。自由基前体是在反应腔室的、与沉积区域隔开的部分中生成的,在所述沉积区域处,前体混合并反应以在沉积基板(例如,半导体晶片)上沉积硅氮层。在自由基前体是自由基氮前体的实施例中,使稳定的氮前体流入远程等离子体区域,并且由等离子体激发所述稳定的氮前体。稳定的氮前体(和自由基氮前体)也可伴随有载气,所述载气诸如,氢(H2)、氮(N2)、氩、氦等。还发现了生成所公开的实施例中的有益的膜的、由输入气体形成的自由基氮前体,所述输入气体基本上由氮(N2)(具有或不具有额外的惰性载气)组成。在含硅前体包含氮的实施例中,自由基氮前体也可由基本上由氢(H2)(和可选的惰性载气)组成的输入气体所形成的自由基前体替代。
在306处,在反应腔室中,无碳硅前体和自由基氮前体混合并反应,以便在基板上沉积含硅氮膜。所沉积的含硅氮膜可利用实施例中的一些配方(recipe)组合来共形地沉积。在其他实施例中,所沉积的含硅氮膜具有与常规的氮化硅(Si3N4)膜沉积技术不同的流动特性。所述形成(formation)的可流动本质允许膜流入基板的沉积表面上的狭窄间隙、沟槽及其他结构。
流动性可能是由于将自由基氮前体与无碳硅前体混合而导致的各种性质而产生的。这些性质可包括在所沉积的膜中的大量的氢成分和/或短链聚硅氨烷聚合物的存在。在形成膜期间或之后,这些短链生长并成网以形成更致密的电介质材料。例如,所沉积的膜可具有硅氮烷型、Si-NH-Si主链(即,Si-N-H膜)。当硅前体和自由基氮前体两者都是无碳的时候,所沉积的含硅氮膜基本上也是无碳的。当然,“无碳”未必意指膜缺乏甚痕量的碳。碳污染物可存在于设法进入所沉积的硅氮前体中的前体材料之中,所述前体材料通过所述材料自身的方式到达所沉积的硅氮前体中。然而,这些碳杂质的量相比将在具有碳部分的硅前体(例如,TEOS、TMDSO等)中发现的量少得多。
图4公开了根据实施例的用于固化可流动电介质层的方法400。方法400包括:在402处,在基板上形成可流动电介质层,所述基板被定位于工艺腔室的处理区域中;在404处,将含氧气体传送至基板和处理区域,可流动电介质层被浸透在含氧气体中达一段时间,从而产生经浸透的电介质层;在406处,在所述一段时间之后,净化来自处理区域的含氧气体;以及在408处,将经浸透的电介质层暴露于UV辐射,其中,UV辐射至少部分地固化经浸透的电介质层。方法400通过在固化之前将可流动层预浸透在富氧的气氛中来允许更完全的固化。预浸透通过在UV固化工艺期间防止在层表面处的折射率(refractiveindex;RI)增加来增加UV固化的深度。
在402处,方法400以在基板上形成可流动电介质层开始。首先,将基板定位在工艺腔室的处理区域中。所述工艺腔室可以是如上文中参见图2所述的工艺腔室。基板可以是金属、塑料、有机材料、硅、玻璃、石英,或聚合物材料的薄板,等等。在一个实施例中,基板是将在其上沉积含硅层的硅基板。在其他实施例中,基板可以是掺杂的或以其他方式修改的硅基板。基板可具有针对在所述基板上形成的器件部件(例如,晶体管)的间隔和结构的多个间隙。间隙可具有限定高度与宽度(即,H/W)的高宽比(aspectratio;AR)的高度和宽度,所述高宽比显著地大于1:1(例如,5:1或更大、6:1或更大、7:1或更大、8:1或更大、9:1或更大、10:1或更大、11:1更大、12:1或更大,等等)。在许多情况下,高的AR是由于从约90nm至约22nm或更小的范围的小间隙宽度(例如,约90nm、65nm、45nm、32nm、22nm、16nm,等等)而造成的。
可在基板上沉积可流动电介质层,诸如,可流动的含硅氮层。因为层是可流动的,所以所述层能以高的高宽比来填充间隙,而不会围绕填充材料的中心产生空隙或弱接缝。例如,在间隙被完全填充以在所述间隙的中间留下空隙之前,可流动材料较不可能过早地阻塞间隙的顶部。
在404处,将含氧气体传递至基板和处理区域,从而产生含氧气体气氛。随后,可在含氧的气体气氛中预浸透所沉积的含硅氮层。含氧气体可包括以原子氧(O)、分子氧(O2)、臭氧(O3)、氮氧化物(NO、NO2等)和上述各项的组合的形式的基本上纯净的氧。所述气氛也可包含氧和水蒸气(H2O)的组合或过氧化氢(H2O2)。例如,可在包含臭氧(O3)和水蒸气(H2O)的气氛中预浸透所沉积的硅氮层。
可将可流动电介质层浸没在含氧气体中达一段时间,从而产生经浸透的电介质层。以允许含氧气体穿透进入可流动电介质层同时避免过早地固化基板或超过基板的热预算的温度和压力来维持具有可流动电介质层的基板。在一个或多个实施例中,所述温度小于约150摄氏度,诸如,小于约100摄氏度。例如,所述温度可在约10摄氏度与约60摄氏度之间。在一个或多个实施例中,所述压力大于100托(Torr),诸如,大于200托。例如,所述压力可在约500托与600托之间。对于300mm直径的圆形基板,能以约3slm与约10slm之间的流率来传送含氧气体。在一个实施例中,以在基板的被暴露表面(也被称为沉积表面)上测得的、每平方毫米的基板表面积约3.1sccm至约10.6sccm之间的流率来传送含氧气体。
如上所述,将可流动电介质层被浸没在含氧气体中达一段时间。所述一段时间可以是足以使在所述气氛中和在可流动电介质层中的含氧气体的交换速率达到平衡的时间段。在一个实施例中,所述一段时间小于约300秒,诸如,在约40秒与约240秒之间。
实施例可包括以不同的温度、压力和气氛进行的多个预浸透阶段。例如可在包括水蒸气(H2O)的气氛中,在较低的第一温度下执行第一预浸透阶段,而可在基本上缺乏水蒸气的干澡含氧气氛中,在较高的第二温度下执行第二预浸透阶段。在一些实施例中,多个预浸透阶段包含不使用含氧气氛的一个或多个预浸透阶段。例如,也可在非含氧气氛(例如,干燥的N2、He、Ar等)中实施第三预浸透阶段。在预浸透完成之后,也可将可流动电介质层也称为经浸透的电介质层。
在406处,在所述一段时间之后,可净化来自处理区域的含氧气体。所述净化可包括将惰性气体传递至工艺腔室。惰性气体包括不与含氧气体、基板和/或可流动电介质层反应的任何气体。惰性气体可包括N2、Ar、He,或上述气体的组合。在此工艺期间,可如上所述维持温度和压力。
在408处,将经浸透的电介质层暴露于UV辐射。所述UV辐射至少部分地固化经浸透的电介质层。固化阶段涉及将经浸透的电介质层暴露于UV辐射。沉积基板可保持在基板处理区域中以便固化,或者可将基板传递到其中引入UV辐射的不同的腔室中。UV辐射在预浸透工艺期间形成的Si-O、含自由氧的气体以及经浸透的电介质层中的硅和氮之间产生交联。
据信,在可流动电介质层的UV固化期间,UV辐射首先固化层的最高部分。在固化工艺期间,最高部分的折射率改变,从而防止紫外线的进一步穿透,并且同时导致可流动电介质层中增加的应力。先前在经浸透的电介质层中形成的Si-O键防止可流动电介质层的最高部分的折射率的改变,这样增加了固化穿透并由此导致增加的固化深度。换言之,RI在不在含氧气体中接收预浸透的可流动电介质层之上的经浸透的电介质层中保持更均匀。
先前描述的实施例具有许多优点。利用含氧气体预浸透来处理的可流动电介质层具有以高的高宽比特征来沉积的流动性,同时维持使用低温UV辐射被完全固化的能力。因此,此方法可用于以低热预算和高的高宽比特征以在器件上实现良好的填充。此外,与预先存在的可流动电介质层沉积方法相比,经浸透的电介质层允许新颖的拉伸应力/压缩应力调制。上述优点是说明性的而不是限制性的。不一定所有的实施例都具有所有这些优点。
虽然前述内容是针对所公开的装置、方法和系统的实施例,但是可设计所公开的装置、方法和系统的其他和进一步的实施例而不背离所公开的装置、方法和系统的基本范围,并且所公开的装置、方法和系统的范围由所附权利要求书确定。

Claims (20)

1.一种沉积层的方法,所述方法包含:
在基板上形成可流动电介质层,所述基板被定位在工艺腔室的处理区域中;
将含氧气体传送至所述基板和所述处理区域,所述可流动电介质层被浸没在所述含氧气体中达一段时间,从而产生经浸透的电介质层;
在所述一段时间之后,净化来自所述处理区域的所述含氧气体;以及
将所述经浸透的电介质层暴露于UV辐射,其中,所述UV辐射至少部分地固化所述经浸透的电介质层。
2.如权利要求1所述的方法,其中,所述可流动电介质层是含硅和氮的层。
3.如权利要求1所述的方法,其中,所述含氧气体包含原子氧(O)、臭氧(O3)、分子氧(O2)、氮氧化物、水(H2O)或上述各项的组合。
4.如权利要求1所述的方法,其中,所述基板的温度被维持在小于150摄氏度。
5.如权利要求1所述的方法,其中,所述处理区域中的压力被维持在大于100托。
6.如权利要求1所述的方法,其中,在将所述经浸透的电介质层暴露于UV辐射之前,将所述基板传递至第二工艺腔室。
7.如权利要求1所述的方法,其中,以每平方毫米的基板表面积约3.1sccm至约10.6sccm之间的流率来将所述含氧气体传递至所述基板和所述处理区域。
8.如权利要求1所述的方法,其中,所述形成所述可流动电介质层包含:
将无碳硅前体提供给所述处理区域;
将自由基氮前体提供给所述处理区域;以及
使所述无碳硅前体和所述自由基氮前体混合并反应,以便在所述基板上沉积可流动电介质层。
9.如权利要求1所述的方法,其中,在惰性气体气氛中,将所述经浸透的电介质层暴露于UV辐射。
10.一种用于处理基板的方法,所述方法顺序地包含:
在工艺腔室中的基板的基板表面上沉积具有小于约2.5的介电常数的可流动电介质层,所述基板表面具有基板表面积;
以每平方毫米的基板表面积约3.1sccm至约10.6sccm之间的流率来使含氧气体流入所述工艺腔室;
使所述含氧气体进入所述工艺腔室的流动终止;
将所述基板传递至紫外(ultraviolet;UV)处理腔室;以及
将所述可流动电介质层暴露于UV辐射。
11.如权利要求10所述的方法,其中,所述可流动电介质层是含硅和氮的层。
12.如权利要求10所述的方法,其中,所述含氧气体包含原子氧(O)、臭氧(O3)、分子氧(O2)、氮氧化物、水(H2O)或上述各项的组合。
13.如权利要求10所述的方法,其中,所述基板的温度被维持在小于150摄氏度。
14.如权利要求10所述的方法,其中,所述处理区域中的压力被维持在大于100托。
15.如权利要求10所述的方法,进一步包含:在将所述基板传递至UV处理腔室之前,净化来自所述工艺腔室的所述含氧气体。
16.如权利要求10所述的方法,其中,在惰性气体气氛中,将所述可流动电介质层暴露于UV辐射。
17.如权利要求10所述的方法,其中,所述沉积所述可流动电介质层包含:
将无碳硅前体提供给所述工艺腔室;
将自由基氮前体提供给所述工艺腔室;以及
使所述无碳硅前体和所述自由基氮前体混合并反应,以便在所述基板上沉积可流动电介质层。
18.一种沉积层的方法,所述方法包含:
将无碳硅前体提供给工艺腔室,所述工艺腔室包含处理区域,所述处理区域具有被定位在所述处理区域中的基板,所述基板具有基板表面,所述基板表面具有基板表面积;
将自由基氮前体提供给所述工艺腔室;
使所述无碳硅前体和所述自由基氮前体混合并反应,以便在所述基板表面上沉积可流动的含硅氮层,所述可流动的含硅氮层具有小于约2.5的介电常数;
以每平方毫米的基板表面积约3.1sccm至约10.6sccm之间的流率来将含氧气体传送至所述基板和所述工艺腔室,所述可流动含硅氮层被浸没在所述含氧气体中达一段时间,所述含氧气体包含臭氧(O3);
使用惰性气体净化来自所述处理区域的所述含氧气体;以及
将所述可流动的含硅氮层暴露于UV辐射,其中,所述UV辐射至少部分地固化所述可流动电介质层。
19.如权利要求18所述的方法,其中,所述基板的温度被维持在小于150摄氏度。
20.如权利要求18所述的方法,其中,所述处理区域中的压力被维持在大于100托。
CN201510706039.XA 2014-10-29 2015-10-27 可流动膜固化穿透深度改善和应力调谐 Pending CN105575768A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462072217P 2014-10-29 2014-10-29
US62/072,217 2014-10-29
US14/577,943 US9570287B2 (en) 2014-10-29 2014-12-19 Flowable film curing penetration depth improvement and stress tuning
US14/577,943 2014-12-19

Publications (1)

Publication Number Publication Date
CN105575768A true CN105575768A (zh) 2016-05-11

Family

ID=55853458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510706039.XA Pending CN105575768A (zh) 2014-10-29 2015-10-27 可流动膜固化穿透深度改善和应力调谐

Country Status (5)

Country Link
US (1) US9570287B2 (zh)
JP (1) JP6688588B2 (zh)
KR (2) KR101810087B1 (zh)
CN (1) CN105575768A (zh)
TW (1) TWI673826B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832109A (zh) * 2017-07-05 2020-02-21 应用材料公司 氮含量高的氮化硅膜
CN111128850A (zh) * 2018-10-30 2020-05-08 长鑫存储技术有限公司 沟槽隔离结构的形成方法及介电膜的形成方法
TWI715082B (zh) * 2018-06-29 2021-01-01 美商應用材料股份有限公司 使用可流動cvd對用於光學部件之微米/奈米結構所進行之隙縫填充

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137606A1 (en) * 2015-02-23 2016-09-01 Applied Materials, Inc. Cyclic sequential processes for forming high quality thin films
US11017998B2 (en) 2016-08-30 2021-05-25 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
US10468244B2 (en) 2016-08-30 2019-11-05 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
KR102579245B1 (ko) * 2017-04-07 2023-09-14 어플라이드 머티어리얼스, 인코포레이티드 비정질 실리콘 갭충전을 개선하기 위한 표면 개질
CN110476239B (zh) 2017-04-07 2023-10-13 应用材料公司 使用反应性退火的间隙填充
JP7168586B2 (ja) * 2017-05-13 2022-11-09 アプライド マテリアルズ インコーポレイテッド 高品質のボイド充填法のための流動性堆積及び高密度プラズマ処理工程サイクル
US11348784B2 (en) 2019-08-12 2022-05-31 Beijing E-Town Semiconductor Technology Co., Ltd Enhanced ignition in inductively coupled plasmas for workpiece processing
US11658026B2 (en) 2020-10-23 2023-05-23 Applied Materials, Inc. Conformal silicon oxide film deposition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756085B2 (en) * 2001-09-14 2004-06-29 Axcelis Technologies, Inc. Ultraviolet curing processes for advanced low-k materials
US20090093135A1 (en) * 2007-10-04 2009-04-09 Asm Japan K.K. Semiconductor manufacturing apparatus and method for curing material with uv light
US7803722B2 (en) * 2007-10-22 2010-09-28 Applied Materials, Inc Methods for forming a dielectric layer within trenches
US8466067B2 (en) * 2009-10-05 2013-06-18 Applied Materials, Inc. Post-planarization densification
CN102714156A (zh) * 2010-01-07 2012-10-03 应用材料公司 自由基成分cvd的原位臭氧固化
US8927388B2 (en) * 2012-11-15 2015-01-06 United Microelectronics Corp. Method of fabricating dielectric layer and shallow trench isolation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832109A (zh) * 2017-07-05 2020-02-21 应用材料公司 氮含量高的氮化硅膜
CN110832109B (zh) * 2017-07-05 2022-02-08 应用材料公司 氮含量高的氮化硅膜
TWI715082B (zh) * 2018-06-29 2021-01-01 美商應用材料股份有限公司 使用可流動cvd對用於光學部件之微米/奈米結構所進行之隙縫填充
CN111128850A (zh) * 2018-10-30 2020-05-08 长鑫存储技术有限公司 沟槽隔离结构的形成方法及介电膜的形成方法

Also Published As

Publication number Publication date
JP6688588B2 (ja) 2020-04-28
US20160126089A1 (en) 2016-05-05
KR20170097593A (ko) 2017-08-28
KR20160052357A (ko) 2016-05-12
KR102301006B1 (ko) 2021-09-09
JP2016096331A (ja) 2016-05-26
TW201624612A (zh) 2016-07-01
US9570287B2 (en) 2017-02-14
TWI673826B (zh) 2019-10-01
KR101810087B1 (ko) 2018-01-18

Similar Documents

Publication Publication Date Title
CN105575768A (zh) 可流动膜固化穿透深度改善和应力调谐
US11708634B2 (en) Films of desired composition and film properties
US9984868B2 (en) PEALD of films comprising silicon nitride
EP1149934B1 (en) CVD synthesis of silicon nitride materials
CN103477422B (zh) 低温氧化硅转换
US8765573B2 (en) Air gap formation
US8084105B2 (en) Method of depositing boron nitride and boron nitride-derived materials
US20010029114A1 (en) Method of forming polymeric layers of silicon oxynitride
US20140273530A1 (en) Post-Deposition Treatment Methods For Silicon Nitride
US8921235B2 (en) Controlled air gap formation
US20070031598A1 (en) Method for depositing silicon-containing films
JP2009135450A (ja) トレンチ内に誘電層を形成する方法
US6905939B2 (en) Process for forming silicon oxide material
WO2004010467A2 (en) Low temperature dielectric deposition using aminosilane and ozone
KR20140009170A (ko) 실리콘­질화물­수소화물 필름들의 아민 큐어링
CN103348456A (zh) 自由基蒸汽化学气相沉积
WO2011005433A2 (en) Boron film interface engineering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160511