TWI673826B - 可流動膜固化穿透深度之改進以及應力調諧 - Google Patents

可流動膜固化穿透深度之改進以及應力調諧 Download PDF

Info

Publication number
TWI673826B
TWI673826B TW104132716A TW104132716A TWI673826B TW I673826 B TWI673826 B TW I673826B TW 104132716 A TW104132716 A TW 104132716A TW 104132716 A TW104132716 A TW 104132716A TW I673826 B TWI673826 B TW I673826B
Authority
TW
Taiwan
Prior art keywords
substrate
oxygen
dielectric layer
nitrogen
layer
Prior art date
Application number
TW104132716A
Other languages
English (en)
Other versions
TW201624612A (zh
Inventor
梁璟梅
李晶粲
孫顒
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW201624612A publication Critical patent/TW201624612A/zh
Application granted granted Critical
Publication of TWI673826B publication Critical patent/TWI673826B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Abstract

在此揭露用於沉積和固化可流動介電層的方法。方法可包括:形成可流動介電層;將可流動介電層浸入含氧氣體中;清除腔室;以及利用UV輻射來固化該層。通過在含氧氣體預浸透後固化該層,可在UV照射期間更完全地固化該層。

Description

可流動膜固化穿透深度之改進以及應力調諧
本公開的實施例總體涉及增加可流動層中的UV(紫外)穿透。更具體地說,本文所述的實施例總體涉及用於預處理可流動層以增加固化效率的方法。
自從幾十年前半導體器件的引入以來,半導體器件幾何形狀的尺寸已顯著減小。現代半導體製造設備通常用於生產具有小至28nm和更小的幾何形狀的器件,並且正不斷開發並實現新的設備設計以生產具有甚至更小的幾何形狀的器件。隨著器件的幾何形狀減小,互連電容對器件性能的影響增加。為了降低互連電容,正在使用較低介電常數的材料(低介電常數材料)來形成傳統上由氧化矽形成的層間材料。已使用的一些低介電常數材料包括氟化氧化矽、碳酸氧化矽,以及各種聚合物與氣凝膠。這些低介電常數材料的使用通常呈現嚴峻的可靠性,可靠度、可製造性和/或集成化挑戰。
多年以來,已經開發許多技術來避免使介電質材料阻塞間隙的頂部,或「合攏」(「heal」)已形 成的孔隙或接縫。已有一種方法是以高度可流動的前驅物材料開始,該材料能以液相被施加到旋轉的基板表面(例如,旋塗玻璃沉積(spin on glass deposition)技術)。這些可流動前驅物可在不形成孔隙或弱接縫的情況下流入並填充非常小的基板間隙。然而,一旦沉積了這些高度可流動的材料,則必須將這些材料硬化為固體介電質材料。
在許多情況下,在熔爐轉換和緻密化之前,為了進一步使材料交聯成膜,用於可流動材料的硬化處理包括在UV光下進行的非熱固化。憑藉著UV暴露,膜密度和Si-Si鍵增加。因為表面是膜與UV輻射接觸的第一個區域,所以膜的光學性質首先在表面處改變。表面層的反射率和消光係數增加,並且這阻礙或降低了塊狀膜中的UV強度。
因此,需要用於更好地控制UV固化處理的裝置和方法。
本文中所公開的實施例包括沉積可流動介電層的方法。在一個實施例中,一種沉積層的方法可包括:在基板上形成可流動介電層,基板被定位在處理腔室的處理區域中;將含氧氣體傳遞至基板和處理區域,可流動介電層被浸透在含氧氣體中達一段時間,從而產生經浸透的介電層;在一段時間之後,自處理區域清除含氧 氣體;以及將經浸透的介電層暴露於UV輻射,其中,UV輻射至少部分地固化經浸透的介電層。
在另一實施例中,用於處理基板的方法可順序地包括:在處理腔室中的基板的基板表面上沉積具有小於約2.5的介電常數的可流動介電層,該基板表面具有基板表面積;以每平方毫米的基板表面積約3.1sccm至約10.6sccm之間的流率來使含氧氣體流入處理腔室;使含氧氣體進入UV處理腔室中的流動終止;將基板傳遞至紫外(ultraviolet;UV)處理腔室;以及將可流動介電層暴露於UV輻射。
在另一實施例中,一種固化層的方法可包括:將無碳的矽前驅物提供給處理腔室,處理腔室包含處理區域,處理區域具有被定位在處理區域上的基板,基板具有基板表面,基板表面具有基板表面積;將自由基氮前驅物提供給處理腔室;使無碳的矽前驅物和自由基氮前驅物混合並反應,以便在基板表面上沉積可流動的含矽氮層,可流動的含矽氮層具有小於約2.5的介電常數;以每平方毫米的基板表面積約3.1sccm至約10.6sccm之間的流率來將含氧氣體傳送進基板和處理腔室,可流動的含矽氮層被浸透在含氧氣體中達一段時間,含氧氣體包含臭氧(O3);使用惰性氣體自處理區域清除含氧氣體;以及將可流動的含矽氮的層暴露於UV輻射,其中UV輻射至少部分地固化可流動介電層。
100‧‧‧系統
102‧‧‧前開式晶圓盒
104‧‧‧機械臂
106‧‧‧低壓力保存區
108a‧‧‧處理腔室
108b‧‧‧處理腔室
108c‧‧‧處理腔室
108d‧‧‧處理腔室
108e‧‧‧處理腔室
108f‧‧‧處理腔室
110‧‧‧第二機械臂
200‧‧‧基板處理腔室
210‧‧‧遠端電漿系統
211‧‧‧進氣口組件
212‧‧‧第一通道
213‧‧‧第二通道
220‧‧‧腔室電漿區域
221‧‧‧蓋
224‧‧‧絕緣環
250‧‧‧開口
251‧‧‧體積
253‧‧‧噴頭
255‧‧‧小孔
256‧‧‧通孔
270‧‧‧基板處理區域
300‧‧‧方法
302‧‧‧步驟
304‧‧‧步驟
306‧‧‧步驟
400‧‧‧方法
402‧‧‧步驟
404‧‧‧步驟
406‧‧‧步驟
408‧‧‧步驟
因此,可詳細地理解本公開的上述特徵的方式,可通過參照實施例來進行上文簡要概述的本公開的更特定描述,所述實施例中的一些實施例在附圖中示出。然而,應當注意,附圖僅示出本公開的典型實施例,並且因此不將附圖視為限制本公開的範圍,因為本公開可允許其他同等有效的實施例。
第1圖是根據一個實施例的處理系統的一個實施例的俯視圖。
第2圖是根據一個實施例的處理腔室的一個實施例的示意性剖視圖。
第3圖是根據一個實施例的沉積可流動層的方法的框圖。
第4圖是根據一個實施例的固化可流動層的方法的框圖。
為了便於理解,在盡可能的情況下,已使用完全相同的附圖標記來指定諸附圖所共用的完全相同的元件。另外,一個實施例的元件可有利地適用於本文所述的其他實施例。
本發明描述了一種形成介電層的方法。該方法首先在基板上沉積初始可流動的層。隨後,在通過UV固化進行緻密化之前,將初始可流動的層暴露於含氧氣 體預浸透。在UV固化處理期間,表面的光學吸收率可改變以使得UV對位於下方的諸部分的穿透降低。預浸透處理降低了光學吸收率的這種改變,從而允許對所沉積層進行更優的固化。
可流動層可通過諸如旋塗玻璃(spin-on glass;SOG)旋塗介電質(spin-on dielectric;SOD)處理、eHARP處理(H2O-TEOS-O3)、SACVD(亞常壓化學氣相沉積)或諸如自由基組分CVD之類的可流動CVD處理來沉積。相比不可流動的膜,可流動膜可具有降低的密度和升高的蝕刻速率。已發現本文所述的高密度電漿處理實現了濕法蝕刻速率比率的顯著降低,例如,從3-5降低至遠低於3。
本文所述的示例將集中於自由基組分CVD矽氮烷膜(即,含矽氮和氫的層)的沉積、已發現能改善所得到的膜的UV固化的含氧的預浸透,以及後續的UV處理。在一些實施例中,膜可包括矽、氫和氮。在進一步的實施例中,膜可包括矽、碳、氧、氫和氮。
可用于沉積根據本文所述的實施例的可流動層的處理腔室可包括高密度電漿化學氣相沉積(high-density plasma chemical vapor deposition;HDP-CVD)腔室、電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition;PECVD)腔室、亞常壓化學氣相沉積(sub-atmospheric chemical vapor deposition; SACVD)腔室,和熱化學氣相沉積腔室,以及其他類型的腔室。具體示例包括可從美國加利佛尼亞州聖克拉拉市的應用材料公司(Applied Materials,Inc.)獲得的CENTURA ULTIMA® HDP-CVD腔室/系統和PRODUCER® PECVD腔室/系統。
處理腔室可被併入較大的製造系統以便產生積體電路晶圓。第1圖示出具有沉積、烘烤和固化腔室的一個此類系統100。在此圖中,一對前開式晶圓盒(front opening unified pod;FOUP)102供應基板(例如,300mm直徑的晶圓),基板在被放入處理腔室108a、108b、108c、108d、108e和108f中的一個腔室之前,由機械臂104接收並放入低壓力保存區106中。第二機械臂110可用於將基板晶圓從保存區106輸送到處理腔室108a、108b、108c、108d、108e和108f,並且返回。
處理腔室108a、108b、108c、108d、108e和108f可包括用於在基板晶圓上沉積、退火、固化和/或蝕刻可流動介電質膜的一個或多個系統部件。在一個配置中,兩對處理腔室(例如,108c和108d與108e和108f)可用於在基板上沉積可流動的介電質材料,而第三對處理腔室(例如,108a和108b)可用於對所沉積的介電質進行退火。在另一配置中,同樣的這兩對處理腔室(例如,108c和108d與108e和108f)可配置成在基板上既沉積可流動介電質膜又對可流動介電質膜 退火,而第三對腔室(例如,108a和108b)可用於對所沉積的膜進行UV固化或電子束固化。在又一配置中,所有三對腔室(例如,108a和108b、108c和108d,與108e和108f)可配置成在基板上沉積並固化可流動介電質膜。在再一配置中,兩對處理腔室(例如,108c和108d與108e和108f)可用於既沉積又UV固化或電子束固化可流動介電質,而第三對處理腔室(例如,108a和108b)可用於對介電質膜退火。所述的任何一個或多個處理可對與不同實施例中所示的製造系統分開的腔室來實施。
此外,一個或多個處理腔室108a、108b、108c、108d、108e和108f可配置為濕法處理腔室。這些處理腔室包括在包含濕氣的氛圍中加熱可流動介電質膜。因此,系統100的實施例可包括作為濕法處理腔室的處理腔室108a和108b以及作為退火處理腔室的處理腔室108c和108d,以對所沉積的介電質膜執行濕法和幹法退火兩者。
第2圖是根據一個實施例的基板處理腔室200。遠端電漿系統210可處理氣體,該氣體隨後穿過進氣口組件211。在進氣口組件211中可見兩個不同的氣體供應通道。第一通道212攜帶通過遠端電漿系統210的氣體,而第二通道213繞過遠端電漿系統210。蓋221和噴頭253示出為在蓋221和噴頭253之間具有絕緣環224,絕緣環224允許AC(交流)電位相對於噴 頭253而施加於蓋221。處理氣體穿過第一通道212進入腔室電漿區域220,並且可單獨由腔室電漿區域220中的電漿,或由腔室電漿區域220中的電漿組合遠端電漿系統210中的電漿來激發處理氣體。在本文中,可將腔室電漿區域220和/或遠端電漿系統210的組合稱為遠端電漿系統。可由遠端電漿系統將含氬和氧的氣體轉換為含氬和氧的電漿流出物(effluent)。噴頭253將腔室電漿區域220與噴頭253下方的基板處理區域270分開。噴頭253允許存在於腔室電漿區域220中的電漿避免在基板處理區域270中直接激發氣體,這樣仍然允許諸如電漿流出物之類的激發物質從腔室電漿區域220進入基板處理區域270。
噴頭253可以是雙區域噴頭,該雙區域噴頭允許諸如在電漿區域220之內產生的含氬和氧的電漿流出物經由穿過多個通孔256而進入基板處理區域270,多個通孔256穿過噴頭253的厚度。每一個通孔256可具有面向電漿區域220的開口250,並且開口250可具有比通孔256的直徑更小的直徑。噴頭253還具有一個或多個中空的體積251,該中空的體積251可填充有蒸汽或氣體形式的前驅物(諸如,含碳前驅物氣體),並且該前驅物穿過小孔255進入基板處理區域270,而不是直接進入電漿區域220。
在所示示例中,當在腔室電漿區域220中由電漿激發之後,噴頭253可(經由通孔256)分配含氧、 氫、氮的處理氣體和/或此類處理氣體的電漿流出物。在一些實施例中,通過第一通道212被引入遠端電漿系統210和/或腔室電漿區域220的處理氣體可包含氧(O2)、臭氧(O3)、N2O、NO、NO2、NH3和NxHy中的一種或多種氣體,NxHy包括N2H4,矽烷、乙矽烷、TSA和DSA。處理氣體也可包括載氣(carrier gas),諸如氦、氬、氮(N2),等等。第二通道213也可傳遞處理氣體、載氣和/或膜固化氣體,該膜固化氣體用於從正在生長或所沉積的膜中去除不需要的成分。電漿流出物可包括處理氣體的離子化或中性的衍生物,並且在本文中,可參照引入的處理氣體的原子組分而將電漿流出物稱為自由基氧前驅物和/或自由基氮前驅物。
通孔256的數目可在約60與約2000之間。通孔256可具有各種形狀,但多數情況下是易於製成的圓形。開口250的直徑可在約0.5mm與約20mm之間,或可在約1mm與約6mm之間。在選擇通孔256的橫截面形狀時還存在著自由度,該形狀可製造為圓錐形、圓柱形或這兩種形狀的組合。在不同實施例中,用於將氣體引入到基板處理區域270中的小孔255的數目可在約100與約5000之間或在約500與約2000之間。小孔255的直徑可在約0.1mm與約2mm之間。
第3圖是流程圖,該流程圖示出製造根據本文所述的實施例的諸如氮化矽膜之類的可流動膜的方法300中的所選步驟。方法300包括:在302處,將無碳 的矽前驅物提供給反應腔室。無碳的矽前驅物可以是例如矽氮前驅物、矽氫前驅物,或含矽氮氫的前驅物,以及其他類別的矽前驅物。這些前驅物的特定示例可包括甲矽烷基胺,該甲矽烷基胺諸如,H2N(SiH3)、HN(SiH3)2,和N(SiH3)3,以及其他甲矽烷基胺。這些甲矽烷基胺可與可充當載氣、反應氣體,或兩者的附加氣體混合。附加氣體的示例可包括H2、N2、NH3、He和Ar,以及其他氣體。無碳的矽前驅物的示例也可單獨包括矽烷(SiH4),或包括與其他含矽氣體(例如,N(SiH3)3)、含氫氣體(例如H2)和/或含氮氣體(例如,N2、NH3)混合的矽烷(SiH4)。無碳的矽前驅物也可單獨包括乙矽烷、丙矽烷、高階矽烷和氯矽烷,或包括與彼此組合或與先前提及的無碳的矽前驅物組合的乙矽烷、丙矽烷、高階矽烷和氯矽烷。
除了是無碳的之外,矽前驅物還可以是無氧的。氧的缺乏導致由前驅物形成的矽氮層中的矽烷醇(Si-OH)基的較低濃度。所沉積的膜中的過多/聚矽烷醇部分在後沉積步驟期間會產生增加的孔隙度和收縮,該後沉積步驟從所沉積的層中去除羥基(-OH)部分。
在304處,也將自由基氮前驅物提供給反應腔室。自由基氮前驅物是含氮自由基的物質,該含氮自由基的物質在反應腔室外部由更穩定的氮前驅物生成。例如,可在反應腔室外部的電漿單元中啟動諸如NH3和/或聯胺(N2H4)之類的相對穩定的氮前驅物以形成自由 基氮前驅物,然後將該自由基氮前驅物輸送到反應腔室中。在不同的實施例中,穩定的氮前驅物也可以是包含NH3和N2、NH3和H2、NH3和N2和H2以及N2和H2的混合物。在具有N2和H2的混合物中,可替代NH3來使用聯胺,或可與NH3結合來使用聯胺。所產生的自由基氮前驅物可以是N、NH、NH2等中的一個或多個,並且也可伴隨有在電漿中形成的離子化物質。
一般而言,不包括氮的自由基前驅物也將允許形成含矽氮層。如果自由基前驅物包括隨上述前驅物供應到遠端電漿區域的氮,那麼自由基前驅物可以是自由基氮前驅物。自由基前驅物是在反應腔室的、與沉積區域隔開的部分中生成的,在沉積區域處,前驅物混合並反應以在沉積基板(例如,半導體晶圓)上沉積矽氮層。在自由基前驅物是自由基氮前驅物的實施例中,使穩定的氮前驅物流入遠端電漿區域,並且由電漿激發穩定的氮前驅物。穩定的氮前驅物(和自由基氮前驅物)也可伴隨有載氣,諸如,氫(H2)、氮(N2)、氬、氦等。還發現了生成所公開的實施例中的有益的膜的、由輸入氣體形成的自由基氮前驅物,輸入氣體基本上由氮(N2)(具有或不具有額外的惰性載氣)組成。在含矽前驅物包含氮的實施例中,自由基氮前驅物也可由基本上由氫(H2)(和可選的惰性載氣)組成的輸入氣體所形成的自由基前驅物替代。
在306處,在反應腔室中,無碳的矽前驅物和自由基氮前驅物混合並反應,以便在基板上沉積含矽氮膜。所沉積的含矽氮膜可利用實施例中的一些配方(recipe)組合來共形地沉積。在其他實施例中,所沉積的含矽氮膜具有與常規的氮化矽(Si3N4)膜沉積技術不同的流動特性。形成(formation)的可流動本質允許膜流入基板的沉積表面上的狹窄間隙、溝槽及其他結構。
流動性可能是由於將自由基氮前驅物與無碳的矽前驅物混合而導致的各種性質而產生的。這些性質可包括在所沉積的膜中的大量的氫成分和/或短鏈聚矽氨烷聚合物的存在。在形成膜期間或之後,這些短鏈生長並成網以形成更緻密的介電質材料。例如,所沉積的膜可具有矽氮烷型、Si-NH-Si主鏈(即,Si-N-H膜)。當矽前驅物和自由基氮前驅物兩者都是無碳的時候,所沉積的含矽氮膜基本上也是無碳的。當然,「無碳」未必意指膜缺乏甚痕量的碳。碳污染物可存在於設法進入所沉積的矽氮前驅物中的前驅物材料之中,前驅物材料通過材料自身的方式到達所沉積的矽氮前驅物中。然而,這些碳雜質的量相比將在具有碳部分的矽前驅物(例如,TEOS、TMDSO等)中發現的量少得多。
第4圖公開了根據實施例的用於固化可流動介電層的方法400。方法400包括:在402處,在基板上形成可流動介電層,基板被定位於處理腔室的處理區 域中;在404處,將含氧氣體傳送至基板和處理區域,可流動介電層被浸透在含氧氣體中達一段時間,從而產生經浸透的介電層;在406處,在一段時間之後,自處理區域清除含氧氣體;以及在408處,將經浸透的介電層暴露於UV輻射,其中,UV輻射至少部分地固化經浸透的介電層。方法400通過在固化之前將可流動層預浸透在富氧的氛圍中來允許更完全的固化。預浸透通過在UV固化處理期間防止在層表面處的折射率(refractive index;RI)增加來增加UV固化的深度。
在402處,方法400以在基板上形成可流動介電層開始。首先,將基板定位在處理腔室的處理區域中。處理腔室可以是如上文中參見第2圖所述的處理腔室。基板可以是金屬、塑膠、有機材料、矽、玻璃、石英,或聚合物材料的薄板材,等等。在一個實施例中,基板是將在其上沉積含矽層的矽基板。在其他實施例中,基板可以是摻雜的或以其他方式修改的矽基板。基板可具有針對在基板上形成的器件部件(例如,電晶體)的間隔和結構的多個間隙。間隙可具有限定高度與寬度(即,H/W)的高寬比(aspect ratio;AR)的高度和寬度,該高寬比顯著地大於1:1(例如,5:1或更大、6:1或更大、7:1或更大、8:1或更大、9:1或更大、10:1或更大、11:1更大、12:1或更大,等等)。在許多情況下,高的AR是由於從約90nm至約22nm或更小的 範圍的小間隙寬度(例如,約90nm、65nm、45nm、32nm、22nm、16nm,等等)而造成的。
可在基板上沉積可流動介電層,諸如,可流動的含矽氮層。因為層是可流動的,所以該層能以高的高寬比來填充間隙,而不會圍繞填充材料的中心產生孔隙或弱接縫。例如,在間隙被完全填充以在間隙的中間留下孔隙之前,可流動材料較不可能過早地阻塞間隙的頂部。
在404處,將含氧氣體傳遞至基板和處理區域,從而產生含氧氣體氛圍。隨後,可在含氧的氣體氛圍中預浸透所沉積的含矽氮層。含氧氣體可包括以原子氧(O)、分子氧(O2)、臭氧(O3)、氮氧化物(NO、NO2等)和上述氣體的組合的形式的基本上純淨的氧。該氛圍也可包含氧和水蒸氣(H2O)的組合或過氧化氫(H2O2)。例如,可在包含臭氧(O3)和水蒸氣(H2O)的氛圍中預浸透所沉積的矽氮層。
可將可流動介電層浸沒在含氧氣體中達一段時間,從而產生經浸透的介電層。以允許含氧氣體穿透進入可流動介電層同時避免過早地固化基板或超過基板的熱預算的溫度和壓力來維持具有可流動介電層的基板。在一個或多個實施例中,該溫度小於約150攝氏度,諸如,小於約100攝氏度。例如,該溫度可在約10攝氏度與約60攝氏度之間。在一個或多個實施例中,壓力大於100托(Torr),諸如,大於200托。例如,壓力可 在約500托與600托之間。對於300mm直徑的圓形基板,能以約3slm與約10slm之間的流率來傳送含氧氣體。在一個實施例中,以在基板的被暴露表面(也被稱為沉積表面)上測得的、每平方毫米的基板表面積約3.1sccm至約10.6sccm之間的流率來傳送含氧氣體。
如上所述,將可流動介電層被浸沒在含氧氣體中達一段時間。一段時間可以是足以使在該氛圍中和在可流動介電層中的含氧氣體的交換速率達到平衡的時間段。在一個實施例中,一段時間小於約300秒,諸如,在約40秒與約240秒之間。
實施例可包括以不同的溫度、壓力和氛圍進行的多個預浸透階段。例如可在包括水蒸氣(H2O)的氛圍中,在較低的第一溫度下執行第一預浸透階段,而可在基本上缺乏水蒸氣的幹澡含氧氛圍中,在較高的第二溫度下執行第二預浸透階段。在一些實施例中,多個預浸透階段包含不使用含氧氛圍的一個或多個預浸透階段。例如,也可在非含氧氛圍(例如,乾燥的N2、He、Ar等)中實施第三預浸透階段。在預浸透完成之後,也可將可流動介電層也稱為經浸透的介電層。
在406處,在一段時間之後,可自處理區域清除含氧氣體。清除可包括將惰性氣體傳遞至處理腔室。惰性氣體包括不與含氧氣體、基板和/或可流動介電層反應的任何氣體。惰性氣體可包括N2、Ar、He,或 上述氣體的組合。在此處理期間,可如上所述維持溫度和壓力。
在408處,將經浸透的介電層暴露於UV輻射。UV輻射至少部分地固化經浸透的介電層。固化階段涉及將經浸透的介電層暴露於UV輻射。沉積基板可保持在基板處理區域中以便固化,或者可將基板傳遞到其中引入UV輻射的不同的腔室中。UV輻射在預浸透處理期間形成的Si-O、含自由氧的氣體以及經浸透的介電層中的矽和氮之間產生交聯。
據信,在可流動介電層的UV固化期間,UV輻射首先固化層的最高部分。在固化處理期間,最高部分的折射率改變,從而防止紫外線的進一步穿透,並且同時導致可流動介電層中增加的應力。先前在經浸透的介電層中形成的Si-O鍵防止可流動介電層的最高部分的折射率的改變,這樣增加了固化穿透並由此導致增加的固化深度。換言之,RI在不在含氧氣體中接收預浸透的可流動介電層之上的經浸透的介電層中保持更均勻。
先前描述的實施例具有許多優點。利用含氧氣體預浸透來處理的可流動介電層具有以高的高寬比特徵來沉積的流動性,同時維持使用低溫UV輻射被完全固化的能力。因此,此方法可用於以低熱預算和高的高寬比特徵以在器件上實現良好的填充。此外,與預先存在的可流動介電層沉積方法相比,經浸透的介電層允許新 穎的拉伸應力/壓縮應力調製。上述優點是說明性的而不是限制性的。不一定所有的實施例都具有所有這些優點。
雖然前述內容是針對所公開的裝置、方法和系統的實施例,但是可設計所公開的裝置、方法和系統的其他和進一步的實施例而不背離所公開的裝置、方法和系統的基本範圍,並且所公開的裝置、方法和系統的範圍由所附權利要求書確定。

Claims (20)

  1. 一種沉積一層的方法,該方法包含以下步驟:在一基板上形成一可流動介電層,該基板被定位在一處理腔室的一處理區域中;將一含氧氣體傳送至該基板和該處理區域,該可流動介電層被浸沒在該含氧氣體中達一段時間,從而產生一經浸透的介電層,其中在該含氧氣體穿透進入該可流動介電層的同時避免過早地固化該可流動介電層;在該一段時間之後,自該處理區域清除該含氧氣體;以及在清除該含氧氣體之後,將該經浸透的介電層暴露於UV輻射,其中,該UV輻射至少部分地固化該經浸透的介電層。
  2. 如請求項1所述的方法,其中該可流動介電層是一含矽和氮的層。
  3. 如請求項1所述的方法,其中該含氧氣體包含原子氧(O)、臭氧(O3)、分子氧(O2)、氮氧化物、水(H2O)或上述的組合。
  4. 如請求項1所述的方法,其中該基板的溫度被維持在小於150攝氏度。
  5. 如請求項1所述的方法,其中該處理區域中的壓力被維持在大於100Torr。
  6. 如請求項1所述的方法,其中在將該經浸透的介電層暴露於UV輻射之前,將該基板傳遞至第二處理腔室。
  7. 如請求項1所述的方法,其中以每平方毫米的基板表面積3.1sccm至10.6sccm之間的流率來將該含氧氣體傳送至該基板和該處理區域。
  8. 如請求項1所述的方法,其中該形成該可流動介電層之步驟包含以下步驟:將一無碳的矽前驅物提供給該處理區域;將一自由基氮前驅物提供給該處理區域;以及使該無碳的矽前驅物和該自由基氮前驅物混合並反應,以便在該基板上沉積一可流動介電層。
  9. 如請求項1所述的方法,其中在一惰性氣體氛圍中,將該經浸透的介電層暴露於UV輻射。
  10. 一種用於處理一基板的方法,該方法順序地包含以下步驟:在一處理腔室中的一基板的一基板表面上沉積具有小於2.5的一介電常數的一可流動介電層,該基板表面具有一基板表面積;以每平方毫米的基板表面積3.1sccm至10.6sccm之間的一流率來使一含氧氣體流入該處理腔室以產生一經浸透的介電層,其中在該含氧氣體穿透進入該可流動介電層的同時避免過早地固化該可流動介電層;使該含氧氣體進入該處理腔室的流動終止;將該基板傳遞至一UV處理腔室;以及在該UV處理腔室中,將該經浸透的介電層暴露於UV輻射。
  11. 如請求項10所述的方法,其中該可流動介電層是一含矽和氮的層。
  12. 如請求項10所述的方法,其中該含氧氣體包含原子氧(O)、臭氧(O3)、分子氧(O2)、氮氧化物、水(H2O)或上述的組合。
  13. 如請求項10所述的方法,其中該基板的溫度被維持在小於150攝氏度。
  14. 如請求項10所述的方法,其中一處理區域中的壓力被維持在大於100Torr。
  15. 如請求項10所述的方法,進一步包含以下步驟:在將該基板傳遞至該UV處理腔室之前,自該處理腔室清除該含氧氣體。
  16. 如請求項10所述的方法,其中在一惰性氣體氛圍中,將該經浸透的介電層暴露於UV輻射。
  17. 如請求項10所述的方法,其中該沉積該經浸透的介電層之步驟包含以下步驟:將一無碳的矽前驅物提供給該處理腔室;將一自由基氮前驅物提供給該處理腔室;以及使該無碳的矽前驅物和該自由基氮前驅物混合並反應,以便在該基板上沉積該經浸透的介電層。
  18. 一種沉積一層的方法,該方法包含以下步驟:將一無碳的矽前驅物提供給一處理腔室,該處理腔室包含一處理區域,該處理區域具有被定位在該處理區域中的一基板,該基板具有一基板表面,該基板表面具有一基板表面積;將一自由基氮前驅物提供給該處理腔室;使該無碳的矽前驅物和該自由基氮前驅物混合並反應,以便在該基板表面上沉積一可流動的含矽氮層,該可流動的含矽氮層具有小於2.5的一介電常數;以每平方毫米的基板表面積3.1sccm至10.6sccm之間的一流率來將一含氧氣體傳送至該基板上之可流動的含矽氮層和該處理腔室,該可流動含矽氮層被浸沒在該含氧氣體中達一段時間,從而產生一經浸透的含矽氮層,該含氧氣體包含臭氧(O3),其中在該含氧氣體穿透進入該可流動的含矽氮層的同時避免過早地固化該可流動的含矽氮層;使用一惰性氣體自該處理區域清除該含氧氣體;以及在清除該含氧氣體之後,將該經浸透的含矽氮層暴露於UV輻射,其中,該UV輻射至少部分地固化該經浸透的含矽氮層。
  19. 如請求項18所述的方法,其中該基板的溫度被維持在小於150攝氏度。
  20. 如請求項18所述的方法,其中該處理區域中的壓力被維持在大於100Torr。
TW104132716A 2014-10-29 2015-10-05 可流動膜固化穿透深度之改進以及應力調諧 TWI673826B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462072217P 2014-10-29 2014-10-29
US62/072,217 2014-10-29
US14/577,943 2014-12-19
US14/577,943 US9570287B2 (en) 2014-10-29 2014-12-19 Flowable film curing penetration depth improvement and stress tuning

Publications (2)

Publication Number Publication Date
TW201624612A TW201624612A (zh) 2016-07-01
TWI673826B true TWI673826B (zh) 2019-10-01

Family

ID=55853458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104132716A TWI673826B (zh) 2014-10-29 2015-10-05 可流動膜固化穿透深度之改進以及應力調諧

Country Status (5)

Country Link
US (1) US9570287B2 (zh)
JP (1) JP6688588B2 (zh)
KR (2) KR101810087B1 (zh)
CN (1) CN105575768A (zh)
TW (1) TWI673826B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655396B1 (ko) * 2015-02-23 2024-04-04 어플라이드 머티어리얼스, 인코포레이티드 고품질 얇은 필름들을 형성하기 위한 사이클식 순차 프로세스들
US11017998B2 (en) 2016-08-30 2021-05-25 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
US10468244B2 (en) 2016-08-30 2019-11-05 Versum Materials Us, Llc Precursors and flowable CVD methods for making low-K films to fill surface features
CN110431660B (zh) * 2017-04-07 2023-09-29 应用材料公司 表面改性以改进非晶硅间隙填充
US11011384B2 (en) 2017-04-07 2021-05-18 Applied Materials, Inc. Gapfill using reactive anneal
KR20230130177A (ko) * 2017-05-13 2023-09-11 어플라이드 머티어리얼스, 인코포레이티드 고품질 갭 충전 솔루션들을 위한 순환식 유동성 증착 및 고-밀도 플라즈마 처리 프로세스들
TWI722292B (zh) * 2017-07-05 2021-03-21 美商應用材料股份有限公司 氮含量高的氮化矽膜
US20200003937A1 (en) * 2018-06-29 2020-01-02 Applied Materials, Inc. Using flowable cvd to gap fill micro/nano structures for optical components
CN111128850A (zh) * 2018-10-30 2020-05-08 长鑫存储技术有限公司 沟槽隔离结构的形成方法及介电膜的形成方法
US11348784B2 (en) 2019-08-12 2022-05-31 Beijing E-Town Semiconductor Technology Co., Ltd Enhanced ignition in inductively coupled plasmas for workpiece processing
US11658026B2 (en) 2020-10-23 2023-05-23 Applied Materials, Inc. Conformal silicon oxide film deposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018319A1 (en) * 2001-09-14 2004-01-29 Carlo Waldfried Ultraviolet curing processes for advanced low-k materials
US20120003840A1 (en) * 2010-01-07 2012-01-05 Applied Materials Inc. In-situ ozone cure for radical-component cvd

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093135A1 (en) * 2007-10-04 2009-04-09 Asm Japan K.K. Semiconductor manufacturing apparatus and method for curing material with uv light
US7803722B2 (en) * 2007-10-22 2010-09-28 Applied Materials, Inc Methods for forming a dielectric layer within trenches
US8466067B2 (en) * 2009-10-05 2013-06-18 Applied Materials, Inc. Post-planarization densification
US8927388B2 (en) * 2012-11-15 2015-01-06 United Microelectronics Corp. Method of fabricating dielectric layer and shallow trench isolation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018319A1 (en) * 2001-09-14 2004-01-29 Carlo Waldfried Ultraviolet curing processes for advanced low-k materials
US20120003840A1 (en) * 2010-01-07 2012-01-05 Applied Materials Inc. In-situ ozone cure for radical-component cvd

Also Published As

Publication number Publication date
KR20160052357A (ko) 2016-05-12
TW201624612A (zh) 2016-07-01
KR20170097593A (ko) 2017-08-28
JP2016096331A (ja) 2016-05-26
KR102301006B1 (ko) 2021-09-09
KR101810087B1 (ko) 2018-01-18
JP6688588B2 (ja) 2020-04-28
CN105575768A (zh) 2016-05-11
US9570287B2 (en) 2017-02-14
US20160126089A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
TWI673826B (zh) 可流動膜固化穿透深度之改進以及應力調諧
JP5455626B2 (ja) ボトムアップギャップ充填のための誘電堆積プロセスとエッチバックプロセス
US8445075B2 (en) Method to minimize wet etch undercuts and provide pore sealing of extreme low k (k<2.5) dielectrics
US5521126A (en) Method of fabricating semiconductor devices
US8765573B2 (en) Air gap formation
CN113707542A (zh) 使用远程等离子体处理使碳化硅膜致密化
US10041167B2 (en) Cyclic sequential processes for forming high quality thin films
WO1998008249A1 (en) Method and apparatus for depositing a planarized dielectric layer on a semiconductor substrate
JP2004320005A (ja) 有機シリカ多孔性膜製造のための化学気相成長方法
KR20140010449A (ko) 손상된 저 k 필름들의 복구 및 기공 밀봉을 위한 자외선 보조형 시릴화
JP2011109086A (ja) 膜の少なくとも一部を酸化シリコンに変換し、および/または、蒸気内紫外線硬化を利用して膜の品質を改善し、および、アンモニア内紫外線硬化を利用して膜を高密度化するシステムおよび方法
WO2007118026A2 (en) Step coverage and pattern loading for dielectric films
JP5174435B2 (ja) ウェットエッチングアンダカットを最小にし且つ超低k(k<2.5)誘電体をポアシーリングする方法
KR20160003226A (ko) 응력 조절을 위한 저온 유동성 경화
KR20160106751A (ko) 경도 및 모듈러스를 증가시키기 위한 저 k 막들의 탄소 이산화물 및 탄소 일산화물 매개성 경화
JPH05102040A (ja) 成膜方法
US9312167B1 (en) Air-gap structure formation with ultra low-k dielectric layer on PECVD low-k chamber
US11133177B2 (en) Oxidation reduction for SiOC film
US11469100B2 (en) Methods of post treating dielectric films with microwave radiation