TWI625400B - Copper-gallium alloy sputtering target - Google Patents

Copper-gallium alloy sputtering target Download PDF

Info

Publication number
TWI625400B
TWI625400B TW105108862A TW105108862A TWI625400B TW I625400 B TWI625400 B TW I625400B TW 105108862 A TW105108862 A TW 105108862A TW 105108862 A TW105108862 A TW 105108862A TW I625400 B TWI625400 B TW I625400B
Authority
TW
Taiwan
Prior art keywords
plane
sputtering target
copper
gallium
phase
Prior art date
Application number
TW105108862A
Other languages
English (en)
Other versions
TW201638348A (zh
Inventor
Masatoshi Eto
Original Assignee
Jx Nippon Mining & Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Metals Corp filed Critical Jx Nippon Mining & Metals Corp
Publication of TW201638348A publication Critical patent/TW201638348A/zh
Application granted granted Critical
Publication of TWI625400B publication Critical patent/TWI625400B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Abstract

提供一種高強度的柱狀晶銅-鎵(Cu-Ga)合金的濺射靶材,其含有含量為25.0原子%以上且29.5原子%以下的鎵,且餘量由銅和不可避免的雜質構成,ζ相的(112)面的取向率為25%~60%。

Description

銅-鎵合金濺射靶材
本發明涉及一種銅-鎵合金濺射靶材。尤其是,本發明涉及一種在形成作為薄膜太陽能電池層的光吸收層的銅-銦-鎵-硒(Cu-In-Ga-Se,以下,記為CIGS)四元合金薄膜時所使用的銅-鎵合金濺射靶材。
近年,作為薄膜太陽能電池的高光電轉換效率的CIGS系太陽能電池在量產上正有所進展。CIGS系薄膜太陽能電池通常具有將背電極、光吸收層、緩衝層以及透明電極等順次積層的結構。作為該光吸收層的製造方法、蒸鍍法和硒化法是公知的。以蒸鍍法製造的太陽能電池具有高轉換效率的優點,但具有成膜速度低、成本高、低生產性的缺點,硒化法則適用於產業上的大規模生產。
硒化法的簡要工序如下。首先,在鹼石灰玻璃基板上形成鉬電極層,在其上濺射沉積銅-鎵層和銦層後,通過硒化氫氣體下的高溫處理形成CIGS層。在由該硒化法形成CIGS層的形成工序中濺射沉澱銅-鎵層時,使用了銅-鎵合金濺射靶材。
作為濺射靶材的形狀,有平板形和圓筒形狀。圓筒形靶材,由於通過以圓柱軸線為中心進行旋轉而使整個表面被侵蝕,因此材料的利用率比平板形靶材高,而且由於通過連續改變電漿照射表面而能夠有效冷卻,因此可維持高輸出,提高量產性。然而,圓筒形靶材與平板形靶材相比,由於形狀複雜而製造難度高,製造時發生開裂和缺損的危險性變高。如果在濺射中發生開裂或缺損,由此產生的碎片和裂紋而成為顆粒和異常放電發生的原因。此外,具有在運輸或濺射過程中不易破損的高強度也是對平板形靶材的額外要求。
其中,作為銅-鎵合金靶材的製造方法,熔解鑄造法和粉末 燒結法是公知的。粉末燒結法中存在不可避免的空孔。空孔不僅造成異常放電,也使高密度化變得困難,成為在切削或濺射時產生開裂和缺損的原因。日本專利公開第2008-138232號公報(專利文獻1)中揭露了為防止造成開裂的偏析,將高濃度鎵粉末和低濃度鎵粉末混合並燒結、形成兩相組織的方法,但工藝複雜且成本高。
另一方面,關於熔解鑄造法,日本專利公開第2000-073163號公報(專利文獻2)中記載了:通過熔解法將鎵的組成分設為15重量%-70重量%而鑄造的銅-鎵合金;還記載了作為該銅-鎵合金的製造方法,利用具有加熱單元和冷卻單元的鑄型,控制溫度使其達到不產生脆性開裂和偏析的冷卻速度,通過熔解法進行鑄造的方法。由於通過該方法得到的銅-鎵合金不具有脆性和偏析,因此成型容易且能夠加工成任意形狀。
日本專利公開第2013-76129號公報(專利文獻3)中記載了:通過熔解鑄造形成為圓筒的、鈣(Ca)濃度為27wt%以上且30wt%以下的銅-鎵合金的濺射靶材。也記載了該濺射靶材的組織在平行地切割所述濺射靶材的凝固面的切面中為等軸狀的特徵。還記載了該濺射靶材品質高且可量產。
【先前技術文獻】
【專利文獻】
【專利文獻1】日本專利公開第2008-138232號公報
【專利文獻2】日本專利公開第2000-73163號公報
【專利文獻3】日本專利公開第2013-76129號公報
基於製造圓筒形靶材,考慮到熔解鑄造法比粉末燒結法更適用,但上述任何文獻中關於靶材的強度的研究都不充分。
專利文獻2中雖然記載了控制溫度使其達到不產生脆性開裂和偏析的冷卻速度,但僅對冷卻速度的控制,不能控制引起濺射時的異常放電的縮孔的產生。因為,在澆鑄金屬液體的鑄造方法中,在凝固過程中保持一定的凝固速度是困難的,即使使其從鑄型底部定向凝固,在鑄型 上部,由於釋放的凝固潛熱使凝固速度變小,也會產生較多縮孔。而且,專利文獻2中記載了將冷卻速度控制在1.0×10-1℃/sec~1.5×10-2℃/sec的範圍內,但由於冷卻速度慢,以該冷卻速度得到的結晶組織為等軸晶。等軸晶不具有高的強度。此外,專利文獻2中沒有關於圓筒形靶材的記載。
專利文獻3中雖然具體地記載了圓筒形靶材,但是由於其與專利文獻2相同,結晶組織為等軸晶,不能得到具有足夠強度的靶材。
本發明是鑒於上述情況而產生的,將提供一種具有高強度的鈣比例高的銅-鎵合金濺射靶材作為課題。此外,特別是將提供一種為圓筒形的高強度的銅-鎵合金濺射靶材作為課題。
本發明人為解決上述課題進行了深入研究,發現了銅-鎵合金為柱狀晶,且通過將ζ相的(112)面的取向率控制在25%~60%內,即使是鎵比例高的銅-鎵合金也易於表現出高強度,從而完成了本發明。
因此,本發明的一個態樣為,一種柱狀晶的銅-鎵合金濺射靶材,其含有含量為25.0原子%以上且29.5原子%以下的鎵,且餘量由銅和不可避免的雜質構成,其特徵在於,用X射線衍射中的ζ相的(100)面、(002)面、(101)面、(102)面、(110)面、(200)面、(112)面、(201)面和(004)面的各衍射峰的測定強度分別除以JCPDS卡片編號44-1117中所記載的所述各衍射峰對應的結晶面的標準強度後得到的值的總和作為(A),並且,用通過X射線衍射的ζ相的(112)面的衍射峰強度除以JCPDS卡片編號44-1117中所記載的(112)面的衍射峰標準強度後的值作為(B)時,通過(B)/(A)求得的ζ相的(112)面的取向率為25%~60%。
本發明所涉及的濺射靶材的另一個態樣,相對密度為99.0~100%。
本發明所涉及的濺射靶材的另一個態樣,所述不可避免的雜質的含氧量為50質量ppm以下,所述不可避免的雜質的含碳量為30質量ppm以下。
進一步地,本發明所涉及的濺射靶材的另一個方態樣,為板狀或圓筒形狀。
進一步地,本發明所涉及的濺射靶材的另一個態樣,為圓 筒形狀。
進一步地,在本發明所涉及的濺射靶材的另一個態樣,通過鑄造來形成。
通過本發明,可提供一種具有高強度的鎵比例高的銅-鎵合金濺射靶材。此外,特別是可提供一種為圓筒形之由銅-鎵合金製成具有高強度的銅-鎵合金濺射靶材。具體地,可提供一種在鎵含量為25.0原子%~29.5原子%的銅-鎵合金中抗彎強度高的濺射靶材。本發明所涉及的濺射靶材為圓筒形時,其效果被更顯著地表現出來。本發明所涉及的濺射靶材搬運或濺射時不易破損,實用性優異。
20‧‧‧鑄型
30‧‧‧立式連續鑄造裝置
31‧‧‧坩堝
32‧‧‧鑄芯
33‧‧‧水冷銅套
34‧‧‧引錠
36‧‧‧冷卻介質探針插入口
38‧‧‧熔融金屬
39‧‧‧鑄件(空心坯)
42‧‧‧惰性氣體導入裝置
43‧‧‧熔融金屬溫度測定用熱電偶
44‧‧‧坩堝溫度測定用熱電偶
45‧‧‧加熱裝置
46‧‧‧冷卻介質探針
47‧‧‧拉拔裝置
48‧‧‧夾送輥
50‧‧‧重力鑄造裝置
51‧‧‧坩堝
52‧‧‧中間包
53‧‧‧鑄型
第1圖是銅-鎵系合金的狀態圖。
第2圖是本發明所涉及的銅-鎵合金濺射靶材剖面的微觀組織的一個例子。
第3圖是現有技術中銅-鎵合金濺射靶材剖面的微觀組織的一個例子。
第4圖是由EPMA得到的本發明所涉及的銅-鎵合金濺射靶剖面的背散射電子像(COMPO像)的一個例子(倍率:50倍)。
第5圖是由EPMA得到的現有技術中銅-鎵合金濺射靶剖面的背散射電子像(COMPO像)的一個例子(倍率:50倍)。
第6圖是由X射線衍射測得的本發明所涉及的銅-鎵合金濺射靶剖面的衍射峰的一個例子(倍率:50倍)。
第7圖是由X射線衍射測得的現有技術中銅-鎵合金濺射靶剖面的衍射峰的一個例子(倍率:50倍)。
第8圖是示出實施例中使用的立式連續鑄造裝置的結構的示意圖。
第9圖是示出比較例中使用的重力鑄造裝置的結構的示意圖。
從第1圖的銅-鎵系合金的狀態圖可知,銅(α)相鎵含量為0~20.6原子%、β相鎵含量為19.3原子%~27.5原子%、ζ相鎵含量為20.5%~22.5原子%、γ相鎵含量為29.5原子%~34.7原子%、γ 1相鎵含量為29.8原子%~37.4原子%、γ 2相鎵含量為33.9原子%~37.7原子%、γ 3相鎵含量為37.5原子%~42.7原子%等。
(組成分)
本發明所涉及的銅-鎵合金濺射靶材在一個實施方式中,其組成分為:含有25.0原子%以上且29.5原子%以下的鎵,且餘量由銅和不可避免的雜質構成。鎵的含量雖然是根據形成製造CIGS系太陽能電池時所必需的銅-鎵合金濺射膜的要求而確定的,但是本發明的一個特徵在於,較高地設定鎵的含量。從銅-鎵系的狀態圖可看出,隨著鎵的含量變高,ζ相中γ相的比例增加,但由於γ相比ζ相脆,因此難以確保強度。本發明中,由於適當控制晶體結構和這兩相中具有較高延展性的ζ相的(112)面的取向率,即使鎵的含量較高,也能成功地得到高的強度。通過銅-鎵系的狀態圖,鎵的含量為27.5原子%以上時,γ相佔據優勢,因此,根據本發明,特別是當鎵的含量為27.5原子%以上時,明顯地表現出強度提高的效果。
本發明所涉及的銅-鎵合金濺射靶材在另一個實施方式中,不可避免的雜質的氧含量為50質量ppm以下,較佳為30質量ppm以下。基於這樣的構成,通過減少成為濺射靶材的開裂起點的氧化物、以及含碳微粒與碳元素的化合物等,能夠提高濺射靶材的強度。
(晶體結構)
本發明所涉及的銅-鎵合金濺射靶材的特徵在於,其為柱狀晶。在一個實施方式中,可具有由鈣固溶於銅中的γ相或ζ相混合組成的柱狀晶。由於形成柱狀晶,與等軸晶相比能夠具有更高的強度。通過第2圖及第3圖所示出的金相組織的宏觀觀察,可看見線狀的晶界,由此可確認柱狀晶。此外,本發明所涉及的銅-鎵合金為γ相和ζ相的混合相,這是可從銅-鎵系的狀態圖得到的。僅為γ相時硬而脆,通過與相對韌性的ζ相混合成為混合相,可得到韌性組織。
(組織)
利用EPMA的背散射電子像(COMPO像)觀察本發明所涉 及的銅-鎵合金濺射靶材的剖面的微觀組織,可確認如第4圖及第5圖所示的兩相組織(第4圖及第5圖中,銅-鎵合金的鎵濃度為28原子%)。第4圖及第5圖的黑色部分為ζ相,白色部分為γ相。
(晶體取向及晶體面的取向率)
用X射線衍射中的ζ相的(100)面、(002)面、(101)面、(102)面、(110)面、(200)面、(112)面、(201)面和(004)面的各衍射峰的測定強度分別除以JCPDS卡片編號44-1117中所記載的所述各峰對應的結晶面的標準強度後得到的值的總和作為(A),並且,用通過X射線衍射的ζ相的(112)面的衍射峰強度除以JCPDS卡片編號44-1117中記載的(112)面的衍射峰標準強度後的值作為(B)時,通過(B)/(A)求得的ζ相的(112)面的取向率為25%~60%。以下示出該取向率的計算公式。
(112)面的取向率:(B)/(A)={(112)面測定強度/(112)面標準強度}/{(100)面測定強度/(100)面標準強度+(002)面測定強度/(002)面標準強度+(101)面測定強度/(101)面標準強度+(102)面測定強度/(102)面標準強度+(110)面測定強度/(110)面標準強度+(200)面測定強度/(200)面標準強度+(112)面測定強度/(112)面標準強度+(201)面測定強度/(201)面標準強度+(004)面測定強度/(004)面標準強度}×100%。
若ζ相的(112)面的取向率小於25%,則產生濺射靶材的抗彎強度降低的問題。此外,本發明中ζ相的(112)面的取向率典型地為60%以下。
第6圖示出了通過X射線衍射測定本發明所涉及的銅-鎵合金濺射靶材剖面的衍射峰的一個例子。此外,第7圖示出了通過X射線衍射測定現有技術的銅-鎵合金濺射靶剖面的衍射峰的一個例子。
(相對密度)
通常,使燒結件的相對密度在95%以上為目標。這是由於,如果相對密度低,濺射過程中內部空孔露出時,則由以空孔周邊為起點的飛濺和異常放電會對膜引起粉塵粒子的產生和提前產生表面凹凸化,就容易引起以表面突起(Nodule)為起點的異常放電等。鑄件的相對密度大致可達到100%,其結果是,具有能夠抑制產生濺射中的不同的粒子的效果。 這是鑄件的一個主要優點。由於本發明所涉及的銅-鎵合金濺射靶材可通過鑄造來製造,因此能夠具有高的相對密度。例如,本發明所涉及的銅-鎵合金濺射靶材在一個實施方式中,其相對密度能夠達到99.0%以上,較佳99.5%以上,進一步較佳100%,例如能夠達到99~100%。
(抗彎強度)
本發明所涉及的銅-鎵合金濺射靶材在一個實施方式中,遵從JIS R1601:2008標準測得的3點彎曲強度為350MPa以上。本發明所涉及的銅-鎵合金濺射靶材在一個較佳的實施方式中,遵從JIS R1601:2008標準測得的3點彎曲強度為360MPa以上。本發明所涉及的銅-鎵合金濺射靶材在一個更佳的實施方式中,遵從JIS R1601:2008標準測得的3點彎曲強度為370MPa以上。本發明所涉及的銅-鎵合金濺射靶材在一個更佳的實施方式中,遵從JIS R1601:2008標準測得的3點彎曲強度為380MPa以上。本發明所涉及的銅-鎵合金濺射靶材在典型的實施方式中,遵從JIS R1601:2008標準測得的3點彎曲強度為350~410MPa以上。
本發明所涉及的銅-鎵合金濺射靶材,例如可作為板狀或圓筒形狀而提供。此外,由於具有高強度,易於加工成所要求的形狀。
(鑄造法)
對本發明所涉及的銅-鎵合金濺射靶材的合適的製造方法的例子進行說明。本發明所涉及的銅-鎵合金濺射靶材,例如可使用如第8圖所示之具有高頻感應加熱裝置、石墨坩堝和水冷探針的結構的立式連續鑄造裝置30進行製造。在石墨坩堝31內熔化靶材原料,將熔融金屬38澆鑄到設置於坩堝底部、與引錠34一起拉拔的鑄型20內,並進行連續冷卻,由此可連續製造銅-鎵合金的鑄件(空心坯)39。根據引錠34的形狀,可使鑄件39的形狀變化。例如,如果將引錠設為圓筒形狀,則可得到圓筒形的鑄件39。如果將引錠34設為平板狀,則可得到平板狀的鑄件39。對得到的鑄件39進一步進行機械加工和拋光,也可得到所要求的形狀的銅-鎵合金濺射靶材。
水冷銅套33作為使鑄造空間從外周側冷卻的冷卻部,被設置於坩堝31的外周側。此時,由於形成了冷卻介質不直接與熔融金屬38接觸的結構,即使發生金屬液洩露也不會存在水蒸氣爆炸的危險。坩堝31中設置有導入惰性氣體的惰性氣體導入部42,使熔融金屬38內的氧分壓降低。
坩堝31的外周設置有加熱裝置45。坩堝31的壁部設置有坩堝溫度控制用熱電偶44。用來測定從坩堝31向鑄造空間供給熔融金屬38的熔融金屬供給部位的熔融金屬溫度的熔融金屬溫度測定用熱電偶43,在收納於特定的保護管內的狀態下,設置成通過貫通柱狀的鑄芯32的上表面而形成的熱電偶保護管插入口,並到達熔融金屬供給部位。用於從內周側冷卻鑄造空間的水等多根冷卻介質探針46,從冷卻介質探針插入口36呈同心圓狀插入到鑄芯32的內部。立式連續鑄造裝置30通過使直接從金屬熔化爐供給到鑄型20及配置於鑄型20內側的鑄芯32之間的熔融金屬38冷卻並凝固,形成鑄件39,利用拉拔裝置47從鑄型20及鑄芯32拉拔引錠34,從而進行連續鑄造得到鑄件。
其中,在控制晶體結構和晶體生長方向、進一步防止縮孔、確保強度的基礎上,控制鑄件的拉拔速度及凝固介面上的冷卻速度[℃/sec]是很重要的。通過提高拉拔速度,促進定向凝固,可生長柱狀晶。此外,ζ相也受到冷卻速度的影響,當定向凝固中的冷卻速度高時,通過細長且微小的ζ相的急速生長,可獲得晶體不易開裂之優點。
具體地,較佳將拉拔速度設置為30~120mm/min,更佳設置為60~120mm/min,進一步較佳設置為90~120mm/min。此外,將銅-鎵合金的凝固溫度±50℃的冷卻速度平均設置為1.7~14.5℃/sec。較佳將該冷卻速度設置為3.3~14.5℃/sec,更佳設置為5.0~14.5℃/sec。
可以一邊重複拉拔裝置的驅動和停止一邊進行拉拔操作。本發明中,拉拔速度是指從相對於驅動和停止的全部時間、拉拔後的鑄件的長度算出的值。可通過控制拉拔裝置內的夾送輥48的旋轉速度來使拉拔速度變化。當驅動和停止的平衡差時,即使以相同的拉拔速度,也可能得不到所要求的組織,因此驅動時間和停止時間可被設置為,例如驅動時間/停止時間=0.1~0.5,典型地可以設置為0.15~0.4。此外,可改變拉拔速度來控制冷卻速度。凝固介面的冷卻速度(℃/sec)=[溫度梯度(℃/mm)]×[拉拔速度(mm/min)]/60(sec)。該式的含義為,在溫度梯度為一定時,冷卻速度與拉拔速度成比例增大。溫度梯度由鑄型和鑄芯中插入的熱電偶的測溫距離和它們的溫度差求得。具體為,用直線連接測量點進行插補,製作曲線圖(橫軸:熱電偶位置;縱軸:溫度),求得熔點±50℃範圍的溫度梯 度。
[實施例]
以下,舉出實施例以更好地理解本發明及其優點,但本發明不受這些實施例的限定。
(1.立式連鑄鑄造:實施例1~6、比較例1)
使用如第8圖所示之具有高頻感應加熱線圈、石墨坩堝和水冷探針的結構的立式連續鑄造裝置,製造了外徑159mm、厚度14mm、高度650mm的圓筒形銅-鎵合金濺射靶材。
將各組成分的銅-鎵合金原料35kg導入坩堝內,在氬氣氣氛中將坩堝內加熱到1100℃。該高溫加熱的目的是使設置於坩堝底部的圓筒狀的引錠與銅-鎵合金熔融金屬熔接。
原料熔化後,將熔融金屬溫度降低到960℃,當熔融金屬溫度與坩堝溫度穩定時,開始拉拔引錠。通過拉出引錠,連續地拉出了凝固的圓筒狀的鑄件。拉拔模式為,對拉拔裝置驅動0.5秒、停止2.5秒,如此反復地運行,通過使頻率變化,而使拉拔速度變化,從而使冷卻速度變化。表1示出了冷卻速度。拉拔時,為防止在凝固介面附近產生縮孔,將拉拔速度限制在120mm/min以下以使冷卻速度不會過大。此外,該冷卻速度(℃/sec)可通過公式:溫度梯度(℃/mm)×拉拔速度(mm/min)/60(sec)而變得清楚,求得該溫度梯度時,連接圖表中凝固溫度+50℃的點和凝固溫度-50℃的點,除以它們之間的位置差(mm),從而求得。表1示出得到的銅-鎵合金的各鎵含量(原子%)。
<晶體結構>
拋光與凝固方向和圓筒的中心軸方向平行的剖面,用硝酸和鹽酸腐蝕,通過目視及實體顯微鏡進行了觀察。如第2圖及第3圖所示,從圓筒狀鑄錠的外周側及內周側的散熱部分凝固並生長的晶界在板厚度的中央附近相互碰撞的位置判斷為柱狀晶,晶界呈斑點狀分佈的位置判斷為等軸晶。(這裡,散熱部分指與鑄錠接觸的鑄型、鑄芯以及冷卻空間。)
<晶體取向>
用水砂紙對試料進行濕式拋光至#2400,進行乾燥成為測定試料。用理學電機(株)社製RINT-2200,在管球:銅,管電壓:40kV,管 電流:40mA,掃描範圍(2θ):20°~100°,狹縫大小:發散(DS)[mm]、防散射(SS)[mm]、接收(RS)[mm],測定步驟(2θ):0.02°,掃描速度:4°/min的條件下進行了X射線衍射。
<微觀組織>
用EPMA(日本電子製,裝置名:XJA-8500F)的背散射電子像(COMPO像)觀察了與圓筒的中心軸方向垂直的剖面的微觀組織。黑色部分為ζ相,白色部分為γ相。
<不可避免的雜質中氧、碳含量>
對於得到的構成濺射靶材的銅-鎵合金,通過紅外吸收法(LECO社製,裝置名:CS6000)測定O的濃度,通過紅外吸收法(LECO社制,裝置名:CS844)測定C的濃度。
<相對密度>
通過阿基米德法測定得到的濺射靶材的密度,求出相對於由組成分確定的理論密度的百分比(%),作為相對密度。
<抗彎強度>
遵從JIS R1601:2008標準測定了得到的濺射靶材的3點彎曲強度。將試驗夾具設置為3p-30。從各靶材切出5個試驗片進行抗彎強度測定。將沿靶材的長度方向切出的板材作為試驗片,沿與長度方向垂直的方向施加壓力進行測定。長度方向是指靶材的安裝方向,即背板和背襯管的方向。
(2.重力鑄造:比較例2~5)
利用如第9圖所示之具有石墨坩堝51、中間包52以及鑄型53的重力鑄造裝置50,製造外徑為162mm、厚度為18mm、高度為630mm的圓筒形的銅-鎵合金濺射靶材。將44kg的銅-鎵合金原料(銅的純度為4N、鎵的純度為4N)導入坩堝51中,將鑄造裝置50內設為10Pa左右的真空氣氛,加熱至1300℃。之後,經過中間包52將坩堝51內的熔融金屬澆入鑄型中。
由於從中間包52澆入鑄型的熔融金屬在鑄型底部飛濺,鑄錠的下部會殘留空孔。此外,由於隨著從鑄型底部散熱在上方凝固的推進,被釋放的凝固潛熱積累,導致鑄錠上部也多有發生縮孔的傾向。因此,評 價質量時,從距鑄錠的底部100~350mm的位置取樣。
比較例2~5中,冷卻速度通過監測插入鑄型的熱電偶(設置在距底面300mm和600mm的位置)的溫度變化並繪製溫度vs時間的曲線圖而求得。在澆鑄的熔融金屬的溫度下降的過程,釋放凝固潛熱,圖上的溫度梯度變緩,隨著該潛熱的散去溫度梯度再次變陡。將示出了如上所述變化的曲線的拐點的切線斜率作為該熱電偶位置的冷卻速度[℃/sec]。因此,冷卻速度是各熱電偶位置的測定值。表1中記載的冷卻速度記載了得到的測定值的平均值。
關於得到的圓筒形的濺射靶材,與之前同樣,評價了其晶體結構、晶體取向、相對密度以及抗彎強度。
(3.驗證)
表1示出了試驗條件及評價結果。此外,由X射線衍射測定的ζ相的各面的取向率示於表2。表2中記載的ζ相的(112)面的取向率是,用X射線衍射中的ζ相的(100)面、(002)面、(101)面、(102)面、(110)面、(200)面、(112)面、(201)面和(004)面的各衍射峰的測定強度分別除以JCPDS卡片編號44-1117中所記載的所述各峰對應的結晶面的標準強度後得到的值的總和作為(A),並且,用通過X射線衍射的ζ相的(112)面的衍射峰強度除以JCPDS卡片編號44-1117中所記載的(112)面的衍射峰標準強度後的值作為(B)時,通過(B)/(A)求得的值。
ζ相的(112)面的取向率與比較例相比,其值較大的實施例1~6的濺射靶材的抗彎強度高。金屬組織中的ζ相聚集在特定的面取向,同時擴散深入到其外部存在的γ相中,由此可得到單相中所得不到的強度的提高。即通過韌性組織連接脆性組織,或通過相反的情況,利用ζ相的韌性來彌補γ相的脆性的效果,單相時的脆性和硬度低很難反映在抗彎強度上。此外,由於比較例2~5重力鑄造中冷卻速度較低,其雖然柱狀晶,但是ζ相的(112)面的取向率小,因此不能得到高的抗彎強度。
[表1]

Claims (5)

  1. 一種柱狀晶的銅-鎵合金的濺射靶材,其含有含量為25.0原子%以上且29.5原子%以下的鎵,且餘量由銅和不可避免的雜質構成,其特徵在於,用X射線衍射中的ζ相的(100)面、(002)面、(101)面、(102)面、(110)面、(200)面、(112)面、(201)面以及(004)面的各衍射峰的測定強度分別除以JCPDS卡片編號44-1117中所記載的各該衍射峰對應的結晶面的標準強度後得到的值的總和作為(A),並且,用通過X射線衍射的ζ相的(112)面的衍射峰強度除以JCPDS卡片編號44-1117中所記載的(112)面的衍射峰標準強度後的值作為(B)時,通過(B)/(A)求得的ζ相的(112)面的取向率為25%~60%,其中,該濺射靶材的相對密度為99.0~100%。
  2. 如專利申請範圍第1項所述的濺射靶材,其中,該不可避免的雜質的含氧量為50質量ppm以下,該不可避免的雜質的含碳量為30質量ppm以下。
  3. 如專利申請範圍第1項所述的濺射靶材,其中,該濺射靶材為板狀或圓筒形狀。
  4. 如專利申請範圍第3項所述的濺射靶材,其中,該濺射靶材為圓筒形狀。
  5. 如專利申請範圍第1項至第4項中任一項所述的濺射靶材,其中,該濺射靶材係通過鑄造來形成。
TW105108862A 2015-03-26 2016-03-22 Copper-gallium alloy sputtering target TWI625400B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015065008A JP6147788B2 (ja) 2015-03-26 2015-03-26 Cu−Ga合金スパッタリングターゲット

Publications (2)

Publication Number Publication Date
TW201638348A TW201638348A (zh) 2016-11-01
TWI625400B true TWI625400B (zh) 2018-06-01

Family

ID=57082828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105108862A TWI625400B (zh) 2015-03-26 2016-03-22 Copper-gallium alloy sputtering target

Country Status (4)

Country Link
JP (1) JP6147788B2 (zh)
KR (1) KR20160115724A (zh)
CN (1) CN106011755B (zh)
TW (1) TWI625400B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183277A (ja) * 2018-04-04 2019-10-24 三菱マテリアル株式会社 Cu−Ga合金スパッタリングターゲット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073163A (ja) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
TW201510256A (zh) * 2013-04-15 2015-03-16 Mitsubishi Materials Corp 濺鍍靶材及其製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811660B2 (ja) 2006-11-30 2011-11-09 三菱マテリアル株式会社 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法
JP2012017481A (ja) * 2010-07-06 2012-01-26 Mitsui Mining & Smelting Co Ltd Cu−Ga合金およびCu−Ga合金スパッタリングターゲット
US20140001039A1 (en) * 2011-08-29 2014-01-02 Jx Nippon Mining & Metals Corporation Cu-Ga Alloy Sputtering Target and Method for Producing Same
JP2013076129A (ja) 2011-09-30 2013-04-25 Hitachi Cable Ltd スパッタリングターゲット及びその製造方法
JP5907428B2 (ja) * 2012-07-23 2016-04-26 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
CN104704139B (zh) * 2012-11-13 2017-07-11 吉坤日矿日石金属株式会社 Cu‑Ga合金溅射靶及其制造方法
JP6120076B2 (ja) * 2013-08-01 2017-04-26 三菱マテリアル株式会社 Cu−Ga合金スパッタリングターゲット及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073163A (ja) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
TW201510256A (zh) * 2013-04-15 2015-03-16 Mitsubishi Materials Corp 濺鍍靶材及其製造方法

Also Published As

Publication number Publication date
TW201638348A (zh) 2016-11-01
JP6147788B2 (ja) 2017-06-14
KR20160115724A (ko) 2016-10-06
CN106011755A (zh) 2016-10-12
CN106011755B (zh) 2019-03-29
JP2016183394A (ja) 2016-10-20

Similar Documents

Publication Publication Date Title
JP5519800B2 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
TWI390067B (zh) Indium target and its manufacturing method
JP5459004B2 (ja) サファイア単結晶の製造方法
JP5622012B2 (ja) 円筒型スパッタリングターゲット及びその製造方法
JP5847207B2 (ja) チタンインゴット、チタンインゴットの製造方法及びチタンスパッタリングターゲットの製造方法
JP5960282B2 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
TWI625400B (zh) Copper-gallium alloy sputtering target
JP5750393B2 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
JP6634750B2 (ja) スパッタリングターゲット及びその製造方法
US20170169998A1 (en) In-Cu Alloy Sputtering Target And Method For Producing The Same
JP6390432B2 (ja) Cu−Ga合金円筒型スパッタリングターゲット、Cu−Ga合金円筒型鋳塊、Cu−Ga合金円筒型スパッタリングターゲットの製造方法及びCu−Ga合金円筒型鋳塊の製造方法
JP2012051766A (ja) シリコンインゴットの連続鋳造方法
JP6060755B2 (ja) サファイア単結晶育成用坩堝およびその製造方法
TWI606129B (zh) Cu-Ga alloy sputtering target
JP2013079411A (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
JP6678528B2 (ja) インジウムターゲット部材及びその製造方法
CN110295349A (zh) 溅射靶材及其制造方法
WO2016047556A1 (ja) スパッタリングターゲット及びその製造方法
JP2008074691A (ja) 単結晶の製造方法
JP2013086154A (ja) 鋳造装置
JP2018031074A (ja) 円筒形シリコンターゲット
JP2016141876A (ja) Cu−Ga合金スパッタリングターゲット、及び、Cu−Ga合金鋳塊
JP2013086155A (ja) 鋳造装置