TWI546298B - 旋轉酶及拓樸異構酶iv抑制劑 - Google Patents

旋轉酶及拓樸異構酶iv抑制劑 Download PDF

Info

Publication number
TWI546298B
TWI546298B TW101101534A TW101101534A TWI546298B TW I546298 B TWI546298 B TW I546298B TW 101101534 A TW101101534 A TW 101101534A TW 101101534 A TW101101534 A TW 101101534A TW I546298 B TWI546298 B TW I546298B
Authority
TW
Taiwan
Prior art keywords
compound
infection
pharmaceutically acceptable
acceptable salt
resistant
Prior art date
Application number
TW101101534A
Other languages
English (en)
Other versions
TW201309677A (zh
Inventor
尤塞夫 拉費列 伯納尼
保羅S 查瑞弗森
安 羅林 葛瑞洛
堤蘭 亞諾德 勒
哈德溫 歐多
艾曼紐 裴洛拉
Original Assignee
維泰克斯製藥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 維泰克斯製藥公司 filed Critical 維泰克斯製藥公司
Publication of TW201309677A publication Critical patent/TW201309677A/zh
Application granted granted Critical
Publication of TWI546298B publication Critical patent/TWI546298B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Endocrinology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Reproductive Health (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

旋轉酶及拓樸異構酶IV抑制劑 相關申請案之交叉參考
本申請案根據35 U.S.C. § 119主張2011年1月14日申請之美國臨時專利申請案第61/432,965號、2011年8月4日申請之美國臨時專利申請案第61/515,174號、2011年8月4日申請之美國臨時專利申請案第61/515,249號、及2011年6月20日申請之美國臨時專利申請案第61/499,134號的權益;各申請案之全部內容據此以引用方式併入本文中。
細菌之抗生素抗性早已被識別,且當今認為其為世界範圍內嚴重之健康問題。一些細菌感染因抗性而難以用抗生素治療或甚至不可治療。此問題隨著某些細菌菌株最近顯現多藥物抗性而變得尤其嚴重,該等細菌諸如有肺炎鏈球菌(Streptococcus pneumoniae,SP)、結核分枝桿菌(Mycobacterium tuberculosis)及腸球菌(Enterococcus)。萬古黴素(Vancomycin)抗性腸球菌之出現尤其令人擔憂,因為萬古黴素原先為唯一能有效治療此感染之抗生素,且對於許多感染而言已將其視作「最終採用(last resort)」之藥物。雖然許多其他藥物抗性細菌不會引起危急生命之疾病(諸如腸球菌),但仍擔心誘導抗性之基因可能波及較具致命性之生物體,諸如金黃色葡萄球菌(Staphylococcus aureus),其中二甲氧苯青黴素(methicillin)抗性已很普遍(De Clerq等人,Current Opinion in Anti-infective Investigational Drugs,1999,1,1;Levy,「The Challenge of Antibiotic Resistance」,Scientific American,1998年3月)。
另一關注點為抗生素抗性會如何快速擴散。舉例而言,直至1960年代,SP普遍對青黴素(penicillin)敏感,且在1987年,在美國僅0.02%之SP菌株具抗性。然而,到1995年時,據報導約7%之SP對青黴素具抗性且在美國一些地區高達30%之SP對青黴素具抗性(Lewis,FDA Consumer magazine(1995年9月);Gershman,The Medical Reporter,1997)。
醫院尤其充當藥物抗性生物體形成及傳播之中心。在醫院中出現之感染稱作醫院感染且正變為日益嚴重之問題。每年在醫院中受感染之兩百萬美國人中,此等感染中超過半數可抵抗至少一種抗生素。疾病控制中心(Center for Disease Control)報導在1992年,超過13,000名住院患者死於對抗生素治療具抗性之細菌感染(Lewis,「The Rise of Antibiotic-Resistant Infections」,FDA Consumer magazine,1995年9月)。
由於需要對抗藥物抗性細菌且可用藥物失效增多,所以對發現新抗生素的興趣重現。一種有吸引力之研發新抗生素之策略為抑制DNA旋轉酶及/或拓撲異構酶IV,DNA旋轉酶及/或拓撲異構酶IV為DNA複製所需且因此為細菌細胞生長及分裂所需的細菌酶。旋轉酶及/或拓撲異構酶IV活性亦與DNA轉錄、修復及重組中之事件有關。
旋轉酶為一種拓撲異構酶,拓撲異構酶為可催化DNA之拓撲異構體相互轉化的一組酶(一般參見Kornberg及Baker,DNA Replication,第2版,第12章,1992,W. H. Freeman and Co.;Drlica,Molecular Microbiology,1992,6,425;Drlica及Zhao,Microbiology and Molecular Biology Reviews,1997,61,第377-392頁)。旋轉酶自身控制DNA超螺旋化且減輕在親本雙鏈體之DNA股在複製過程期間解開時出現之拓撲應力。旋轉酶亦催化鬆弛之封閉環狀雙鏈體DNA轉化成更有利於重組之負超螺旋形式。超螺旋化反應之機制涉及旋轉酶包裹於DNA區域周圍、該區域中雙股斷裂、DNA之第二區域穿過該斷裂段以及斷裂股再接合。該種裂解機制為第II型拓撲異構酶之特徵。超螺旋化反應係由ATP結合至旋轉酶來推動。接著在反應期間ATP水解。此ATP結合及後續水解引起結合DNA之旋轉酶出現為其活性所需的構形變化。亦已發現DNA超螺旋化度(或鬆弛度)視ATP/ADP比率而定。在不存在ATP下,旋轉酶僅能夠使超螺旋化之DNA鬆弛。
細菌DNA旋轉酶為400千道爾頓蛋白質四聚體,其由兩個A次單位(GyrA)及兩個B次單位(GyrB)組成。DNA結合及裂解與GyrA有關,而ATP係由GyrB蛋白質結合及水解。GyrB由具有ATPase活性之胺基端結構域以及與GyrA及DNA相互作用之羧基端結構域組成。相比之下,真核第II型拓撲異構酶為均二聚體,其可使負超螺旋及正超螺旋鬆弛,但不能引入負超螺旋。基於抑制細菌DNA旋轉酶及/或拓撲異構酶IV之抗生素理論上應對此等酶具選擇性而針對真核第II型拓撲異構酶相對不具活性。
拓撲異構酶IV主要在DNA複製結束時解析所連接之染色體二聚體。
廣泛使用之喹諾酮抗生素抑制細菌DNA旋轉酶(GyrA)及/或拓撲異構酶IV(ParC)。喹諾酮之實例包括早期化合物,諸如萘啶酮酸(nalidixic acid)及歐索林酸(oxolinic acid);以及後來更有效之氟喹諾酮,諸如諾氟沙星(norfloxacin)、環丙沙星(ciprofloxacin)及曲伐沙星(trovafloxacin)。此等化合物結合至GyrA及/或ParC且使裂解之複合物穩定,從而抑制總體旋轉酶功能,導致細胞死亡。氟喹諾酮抑制旋轉酶(GyrA)及/或拓撲異構酶IV(Par C)之催化性次單位(參見Drlica及Zhao,Microbiology and Molecular Biology Reviews,1997,61,377-392)。然而,藥物抗性亦被認為為此類化合物之問題(WHO Report,「Use of Quinolones in Food Animals and Potential Impact on Human Health」,1998)。對於喹諾酮而言,如同其他類抗生素一般,暴露於早期化合物之細菌常很快地對同一類中更有效之化合物顯現交叉抗性。
負責經由ATP水解提供為酶催化轉換/重置所需之能量的相關次單位分別為GyrB(旋轉酶)及ParE(拓撲異構酶IV)(參見Champoux,J.J.,Annu. Rev. Biochem.,2001,70,第369-413頁)。靶向GyrB及ParE次單位中之此等相同ATP結合位點的化合物將適用於治療各種細菌感染(參見Charifson等人,J. Med. Chem.,2008,51,第5243-5263頁)。
存在較少之可結合至GyrB之已知抑制劑。實例包括香豆素、新生黴素(novobiocin)及香豆黴素(coumermycin)A1、環塞立汀(cyclothialidine)、辛諾汀(cinodine)及克來羅西汀(clerocidin)。香豆素已經顯示極緊密地結合至GyrB。舉例而言,新生黴素與蛋白質及若干疏水性接觸點形成氫鍵網狀結構。雖然新生黴素與ATP確實看似結合於ATP結合位點內,但兩種化合物之結合定位存在最低程度的重疊。重疊部分為新生黴素之糖單元及ATP腺嘌呤(Maxwell,Trends in Microbiology,1997,5,102)。
對於香豆素抗性細菌而言,最普遍之點突變處於結合至香豆素環之羰基的表面精胺酸殘基處(大腸桿菌GyrB中之Arg136)。雖然具有此突變之酶顯示較低之超螺旋化及ATPase活性,但其對香豆素藥物之抑制作用的敏感性亦較低(Maxwell,Mol. Microbiol.,1993,9,681)。
雖然香豆素為有效之旋轉酶超螺旋化抑制劑,但其未曾被廣泛用作抗生素。其一般因其在細菌中之低滲透性、真核生物毒性及不良水溶性而不適用(Maxwell,Trends in Microbiology,1997,5,102)。需要有一種能克服此等缺陷且活性較佳不依賴於結合至Arg136的新型有效GyrB及ParE抑制劑。該種抑制劑將為有吸引力之抗生素候選者,而無困擾其他類抗生素之抗性問題史。
由於細菌對抗生素之抗性已變成重要之公眾健康問題,所以不斷需要研發更新又更有效之抗生素。更特定而言,需要代表先前未用於治療細菌感染之新一類化合物的抗生素。靶向GyrB次單位(旋轉酶)及ParE次單位(拓撲異構酶IV)兩者中之ATP結合位點的化合物將適用於治療各種細菌感染。該等化合物將尤其適用於治療抗性細菌之形成及傳播正變得日益普遍的醫院中之醫院感染。此外,需要具有廣泛範圍之活性及有利之毒理學特性的新抗生素。
本發明係關於適用作旋轉酶及/或拓撲異構酶IV抑制劑之化合物及其醫藥學上可接受之鹽。本發明之旋轉酶及/或拓撲異構酶IV抑制劑可由式(I)或其鹽表示:
其中R為氫或氟;X為氫、-PO(OH)2、-PO(OH)O-M+、-PO(O-)2‧2M+或-PO(O-)2‧D2+;M+為醫藥學上可接受之單價陽離子;且D2+為醫藥學上可接受之二價陽離子。式(I)化合物具有廣泛範圍之抗細菌活性及有利之毒理學特性或為具有該活性之化合物的前藥。
本發明亦係關於式(IA)化合物或其醫藥學上可接受之鹽,其適用作旋轉酶及/或拓撲異構酶IV抑制劑。式(IA)化合物由式(I)所涵蓋。式(IA)化合物可表示為:
其中R為氫或氟。式(IA)化合物具有廣泛範圍之抗細菌活性及有利之毒理學特性。
本發明亦係關於式(IB)化合物或其醫藥學上可接受之鹽,其適用作旋轉酶及/或拓撲異構酶IV抑制劑之前藥。式(IB)化合物由式(I)所涵蓋。式(IB)化合物可表示為:
其中X為-PO(OH)2、-PO(OH)O-M+、-PO(O-)2‧2M+或-PO(O-)2‧D2+;M+為醫藥學上可接受之單價陽離子;且D2+為醫藥學上可接受之二價陽離子。式(IB)化合物為以下化合物之磷酸酯前藥:(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲,該化合物具有廣泛範圍之抗細菌活性及有利之毒理學特性。除本文提供之化合物之外,本發明進一步提供一種醫藥組合物,其包含式(I)(其包括由式(I)所涵蓋之其他式,諸如式(IA)、(IB)、(IC)及(ID))之化合物或其醫藥學上可接受之鹽以及醫藥學上可接受之載劑。
在另一實施例中,本發明係關於一種醫藥組合物,其包含式(I)化合物或其醫藥學上可接受之鹽、醫藥學上可接受之載劑以及選自以下之其他治療劑:抗生素、消炎劑、基質金屬蛋白酶抑制劑、脂氧合酶抑制劑、細胞激素拮抗劑、免疫抑制劑、抗癌劑、抗病毒劑、細胞激素、生長因子、免疫調節劑、前列腺素或抗血管過度增殖化合物。
在另一實施例中,本發明係關於一種治療有需要之哺乳動物之細菌感染的方法,其包含投與該哺乳動物治療有效量之式(I)化合物或其醫藥學上可接受之鹽。
在另一實施例中,本發明係關於一種治療有需要之哺乳動物之細菌感染的方法,其包含投與該哺乳動物治療有效量之式(I)化合物或其醫藥學上可接受之鹽以及連同該化合物作為多劑型之一部分或作為各別劑型之抗生素、消炎劑、基質金屬蛋白酶抑制劑、脂氧合酶抑制劑、細胞激素拮抗劑、免疫抑制劑、抗癌劑、抗病毒劑、細胞激素、生長因子、免疫調節劑、前列腺素或抗血管過度增殖化合物。
如本文所用之術語「鹵素」意謂F、Cl、Br或I。
除非另外說明,否則本文所示之結構亦意欲包括該結構之所有立體化學形式;亦即各不對稱中心之R型及S型組態。因此,本發明化合物之單一立體化學異構體以及對映異構體及非對映異構體混合物屬於本發明之範疇內。
本文亦包括一或多個原子經原子質量或質量數不同於自然界中通常所見之原子質量或質量數之原子置換的經同位素標記之式(I)化合物形式。可併入本發明化合物中之同位素的實例包括氫、碳、氮、氧及氟之同位素,諸如2H、3H、13C、14C、15N、18O及17O。該等放射性標記及穩定同位素標記之化合物適用作例如研究或診斷工具或治療概況有改良之旋轉酶及/或拓撲異構酶IV抑制劑。適當時,該等結構亦涵蓋該等化合物或鹽之兩性離子形式。
在一個實施例中,式(I)化合物包括式(IC)化合物:
其中R係如上文所定義。
在另一實施例中,式(I)化合物包括式(ID)及式(IE)之化合物,如下文所示:
(R)-1-乙基-3-(5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲,或其醫藥學上可接受之鹽;及
(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲,或其醫藥學上可接受之鹽。除非另外說明,否則短語「式(I)化合物」意欲包括本文所示之由式(I)所涵蓋之其他式,包括式(IA)、(IB)、(IC)、(ID)及(IE)。
式(IB)化合物為其以下母化合物之前藥:1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲。因此,在投與前藥時所展現之活性主要歸因於由前藥裂解產生之母化合物的存在。
術語「前藥」指作為藥物前驅體之化合物,其在投與及吸收後在活體內經由一些代謝過程釋放藥物。一般而言,前藥所具有之生物活性小於其母體藥物之生物活性。前藥亦可改良母體藥物之物理特性及/或其亦可改良總體藥物功效,例如藉由控制藥物吸收、血液含量、代謝分佈及細胞吸收而減小藥物之毒性及不想要之影響。
術語「母化合物」或「母體藥物」指在投與前藥後經由代謝過程或分解代謝過程之酶促作用或經由化學過程釋放之生物活性實體。母化合物亦可為用於製備其相應前藥之起始物質。
由M+定義之單價陽離子包括銨、鹼金屬離子(諸如鈉、鋰及鉀離子)、二環己胺離子及N-甲基-D-葡糖胺離子。由D2+定義之二價陽離子包括鹼土金屬離子,諸如鋁、鈣及鎂離子。亦包括胺基酸陽離子,諸如精胺酸、離胺酸、鳥胺酸等之離子。若M+為單價陽離子,則應瞭解若存在定義2M+,則各M+可相同或不同。另外,同樣應瞭解若存在定義2M+,則可能實際上存在二價陽離子D2+。並且,鹼性含氮基團可以諸如以下之試劑四級銨化:低碳數烷基鹵化物,諸如甲基、乙基、丙基及丁基氯化物、溴化物及碘化物;二烷基硫酸鹽,如二甲基、二乙基、二丁基、二戊基硫酸鹽;長鏈鹵化物,諸如癸基、月桂基、十四烷基及十八烷醯氯化物、溴化物及碘化物;芳烷基鹵化物,如苯甲基溴化物及其他者。
本發明之各種實施例包括如下文所示之式(IB)化合物或鹽:
(1) 化合物,其中X為
(a) -PO(OH)O-M+
(b) -PO(O-)2‧2M+;或
(c) -PO(O-)2‧D2+
(2) 化合物,其中M+
(a) Li+、Na+、K+、N-甲基-D-葡糖胺或N(R9)4 +;或
(b) Na+
(c) 各R9獨立地為氫或C1-C4烷基;
(3) 化合物,其中D2+
(a) Mg2+、Ca2+及Ba2+;或
(b) Ca2+
(4) 化合物磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯;及
(5) 化合物磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯二鈉鹽。
應瞭解,由於需要上述(1)至(3)中所列之替代性實施例中之一或多者,可選擇式(IB)之化合物或鹽之各種替代性實施例。舉例而言,本發明之其他實施例可藉由組合(1)(a)與(2)(a)、(1)(a)與(2)(b)、(1)(c)與(3)(a)、(1)(c)與(3)(b)、(1)(b)與(2)(a)、(1)(b)與(2)(b)及其類似者來獲得。
本發明之前藥特徵在於出人意料高之水溶性。此溶解性有助於投與較高劑量之前藥,使得每單位劑量之藥物負載量較大。
本發明之一個實施例係關於一種治療有需要之哺乳動物之細菌感染的方法,其包含投與該哺乳動物治療有效量之具有式(I)之化合物或其醫藥學上可接受之鹽。
根據另一實施例,本發明提供一種降低或抑制生物樣品中之細菌量的方法。此方法包含使該生物樣品與式(I)化合物或其醫藥學上可接受之鹽接觸。
如本文所用之術語「生物樣品」包括細胞培養物或其提取物;自哺乳動物獲得之活組織檢查物質或其提取物;及血液、唾液、尿液、糞便、精液、淚液或其他體液或其提取物。術語「生物樣品」亦包括活生物體,在該狀況下,「使本發明化合物與生物樣品接觸」與術語「投與哺乳動物該化合物或包含該化合物之組合物」同義。
一個實施例包含使該生物樣品與選自由以下組成之群的化合物接觸:(R)-1-乙基-3-(5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲或其醫藥學上可接受之鹽;及(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲或其醫藥學上可接受之鹽。適用於該等方法之醫藥組合物描述於下文中。
一個實施例包含使該生物樣品與如由式(IB)所定義之(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲之磷酸酯前藥接觸。適用於該等方法之醫藥組合物描述於下文中。
式(I)化合物之抗微生物活性可在抗微生物敏感性分析中顯示。用於抗微生物敏感性分析之條件的細節闡述於下文實例中。
本發明之旋轉酶及/或拓撲異構酶IV抑制劑或其醫藥鹽可調配成用於投與動物或人類之醫藥組合物。此等可有效治療或預防細菌感染且包含含量足以可量測地減少細菌量之旋轉酶及/或拓撲異構酶IV抑制劑及醫藥學上可接受之載劑的醫藥組合物為本發明之另一實施例。如本文所用之術語「可量測地減少細菌量」意謂含有該抑制劑之樣品與僅含細菌之樣品之間細菌數目有可量測之變化。
可提高細菌生物體對抗生素之敏感性的藥劑為已知的。舉例而言,美國專利第5,523,288號、美國專利第5,783,561號及美國專利第6,140,306號描述使用殺菌性/滲透性增強型蛋白質(BPI)提高革蘭氏陽性及革蘭氏陰性細菌之抗生素敏感性的方法。可增強細菌生物體之外膜滲透性的藥劑已由Vaara,M.,Microbiological Reviews(1992)第395-411頁描述,且革蘭氏陰性細菌之敏化已由Tsubery,H.等人,J. Med. Chem.(2000)第3085-3092頁描述。
本發明之另一實施例係關於一種如上文所述之預防、控制、處理或減輕有需要之哺乳動物之細菌感染進展度、嚴重度或影響的方法,但其進一步包含投與該哺乳動物可提高細菌生物體對抗生素之敏感性之藥劑的步驟。
根據另一實施例,本發明方法適用於治療獸醫領域中之患者,包括(但不限於)動物園、實驗室、人類伴侶動物及農畜,包括靈長類動物、齧齒動物、爬行動物及鳥類。該等動物之實例包括(但不限於)天竺鼠、倉鼠、沙鼠、大鼠、小鼠、家兔、狗、貓、馬、豬、綿羊、牛、山羊、鹿、恆河猴、猴、羅望子(tamarind)、類人猿、狒狒、大猩猩、黑猩猩、猩猩、長臂猿、鴕鳥、雞、火雞、鴨及鵝。
本發明之醫藥組合物及方法一般將適用於活體內控制細菌感染。可用本發明之組合物及方法控制之細菌生物體之實例包括(但不限於)以下生物體:肺炎鏈球菌、釀膿鏈球菌(Streptococcus pyogenes)、糞腸球菌、屎腸球菌、肺炎克雷伯氏桿菌(Klebsiella pneumoniae)、腸桿菌屬(Enterobacter spp.)、變形桿菌屬(Proteus spp.)、綠膿桿菌(Pseudomonas aeruginosa)、大腸桿菌(E. coli)、黏質沙雷氏菌(Serratia marcescens)、金黃色葡萄球菌、凝固酶陰性葡萄球菌屬(Coag. Neg. Staphylococci)、流行性感冒嗜血桿菌(Haemophilus influenzae)、炭疽桿菌(Bacillus anthracis)、肺炎黴漿菌(Mycoplasma pneumoniae)、卡它莫拉氏菌(Moraxella catarrhalis)、肺炎披衣菌(Chlamydophila pneumoniae)、沙眼衣原體(Chlamydia trachomatis)、嗜肺性退伍軍人桿菌(Legionella pneumophila)、結核分枝桿菌、幽門螺旋桿菌(Helicobacter pylori)、腐生葡萄球菌(Staphylococcus saprophyticus)、表皮葡萄球菌(Staphylococcus epidermidis)、土拉弗朗西斯菌(Francisella tularensis)、鼠疫耶氏桿菌(Yersinia pestis)、難養芽胞梭菌(Clostridium difficile)、淋病奈瑟氏菌(Neisseria gonorrhoeae)、腦膜炎奈瑟氏菌(Neisseria meningitidis)、鳥分枝桿菌複合物(Mycobacterium avium complex)、膿腫分枝桿菌(Mycobacteriumabscessus)、康查分枝桿菌(Mycobacterium kansasii)及潰瘍分枝桿菌(Mycobacterium ulcerans)。
該等組合物及方法因此將適用於控制、處理或減輕醫院或非醫院感染進展度、嚴重度或影響。醫院及非醫院感染之實例包括(但不限於)上呼吸道感染、下呼吸道感染、耳朵感染、胸膜肺及支氣管感染、併發性泌尿道感染、非併發性泌尿道感染、腹內感染、心血管感染、血流感染、敗血症、菌血症、CNS感染、皮膚及軟組織感染、GI感染、骨及關節感染、生殖器感染、眼睛感染或肉芽腫性感染。特定細菌感染之實例包括(但不限於)非併發性皮膚及皮膚結構感染(uSSSI)、併發性皮膚及皮膚結構感染(cSSSI)、導管感染、咽炎、竇炎、外耳炎、中耳炎、支氣管炎、膿胸、肺炎、社區型感染細菌性肺炎(CABP)、醫院型感染肺炎(HAP)、醫院型感染細菌性肺炎、呼吸器相關肺炎(VAP)、糖尿病性足感染、萬古黴素抗性腸球菌感染、膀胱炎及腎盂腎炎、腎結石、前列腺炎、腹膜炎、併發性腹內感染(cIAI)及其他腹內感染、透析相關腹膜炎、內臟膿腫、心內膜炎、心肌炎、心包炎、輸血相關敗血症、腦膜炎、腦炎、腦膿腫、骨髓炎、關節炎、生殖器潰瘍、尿道炎、陰道炎、子宮頸炎、齒齦炎、結膜炎、角膜炎、眼內炎、囊腫性纖維化患者之感染或發熱性嗜中性白血球減少症患者之感染。
術語「非醫院感染」亦稱為社區型感染。
在一個實施例中,該等組合物及方法因此將適用於控制、處理或減輕以下疾病進展度、嚴重度或影響:社區型感染細菌性肺炎(CABP)、醫院型感染肺炎(HAP)、醫院型感染細菌性肺炎、呼吸器相關肺炎(VAP)、菌血症、糖尿病性足感染、導管感染、非併發性皮膚及皮膚結構感染(uSSSI)、併發性皮膚及皮膚結構感染(cSSSI)、萬古黴素抗性腸球菌感染或骨髓炎。
在另一實施例,該等組合物及方法因此將適用於控制、處理或減輕以下疾病進展度、嚴重度或影響:上呼吸道感染、下呼吸道感染、耳朵感染、胸膜肺及支氣管感染、併發性泌尿道感染、非併發性泌尿道感染、腹內感染、心血管感染、血流感染、敗血症、菌血症、CNS感染、皮膚及軟組織感染、GI感染、骨及關節感染、生殖器感染、眼睛感染或肉芽腫性感染、非併發性皮膚及皮膚結構感染(uSSSI)、併發性皮膚及皮膚結構感染(cSSSI)、導管感染、咽炎、竇炎、外耳炎、中耳炎、支氣管炎、膿胸、肺炎、社區型感染細菌性肺炎(CABP)、醫院型感染肺炎(HAP)、醫院型感染細菌性肺炎、呼吸器相關肺炎(VAP)、糖尿病性足感染、萬古黴素抗性腸球菌感染、膀胱炎及腎盂腎炎、腎結石、前列腺炎、腹膜炎、併發性腹內感染(cIAI)及其他腹內感染、透析相關腹膜炎、內臟膿腫、心內膜炎、心肌炎、心包炎、輸血相關敗血症、腦膜炎、腦炎、腦膿腫、骨髓炎、關節炎、生殖器潰瘍、尿道炎、陰道炎、子宮頸炎、齒齦炎、結膜炎、角膜炎、眼內炎、囊腫性纖維化患者之感染或發熱性嗜中性白血球減少症患者之感染。
在另一實施例中,細菌感染特徵在於存在以下一或多者:肺炎鏈球菌、釀膿鏈球菌、糞腸球菌、屎腸球菌、金黃色葡萄球菌、凝固酶陰性葡萄球菌屬、炭疽桿菌、表皮葡萄球菌、腐生葡萄球菌或結核分枝桿菌。
在另一實施例中,細菌感染特徵在於存在以下一或多者:肺炎鏈球菌、糞腸球菌或金黃色葡萄球菌。
在另一實施例中,細菌感染特徵在於存在以下一或多者:大腸桿菌、卡它莫拉氏菌或流行性感冒嗜血桿菌。
在另一實施例中,細菌感染特徵在於存在以下一或多者:難養芽胞梭菌、淋病奈瑟氏菌、腦膜炎奈瑟氏菌、鳥分枝桿菌複合物、膿腫分枝桿菌、康查分枝桿菌、潰瘍分枝桿菌、肺炎披衣菌及沙眼衣原體。
在另一實施例中,細菌感染特徵在於存在以下一或多者:肺炎鏈球菌、表皮葡萄球菌、糞腸球菌、金黃色葡萄球菌、難養芽胞梭菌、卡它莫拉氏菌、淋病奈瑟氏菌、腦膜炎奈瑟氏菌、鳥分枝桿菌複合物、膿腫分枝桿菌、康查分枝桿菌、潰瘍分枝桿菌、肺炎披衣菌、沙眼衣原體、流行性感冒嗜血桿菌、釀膿鏈球菌或β-溶血性鏈球菌。
在一些實施例中,細菌感染特徵在於存在以下一或多者:二甲氧苯青黴素抗性金黃色葡萄球菌、氟喹諾酮抗性金黃色葡萄球菌、萬古黴素中度抗性金黃色葡萄球菌、利奈唑胺(Linezolid)抗性金黃色葡萄球菌、青黴素抗性肺炎鏈球菌、巨環內酯抗性肺炎鏈球菌、氟喹諾酮抗性肺炎鏈球菌、萬古黴素抗性糞腸球菌、利奈唑胺抗性糞腸球菌、氟喹諾酮抗性糞腸球菌、萬古黴素抗性屎腸球菌、利奈唑胺抗性屎腸球菌、氟喹諾酮抗性屎腸球菌、安比西林(Ampicillin)抗性屎腸球菌、巨環內酯(Macrolide)抗性流行性感冒嗜血桿菌、β-內醯胺抗性流行性感冒嗜血桿菌、氟喹諾酮抗性流行性感冒嗜血桿菌、β-內醯胺抗性卡它莫拉氏菌、二甲氧苯青黴素抗性表皮葡萄球菌、二甲氧苯青黴素抗性表皮葡萄球菌、萬古黴素抗性表皮葡萄球菌、氟喹諾酮抗性表皮葡萄球菌、巨環內酯抗性肺炎黴漿菌、異菸肼(Isoniazid)抗性結核分枝桿菌、利福平(Rifampin)抗性結核分枝桿菌、二甲氧苯青黴素抗性凝固酶陰性葡萄球菌屬、氟喹諾酮抗性凝固酶陰性葡萄球菌屬、醣肽中度抗性金黃色葡萄球菌、萬古黴素抗性金黃色葡萄球菌、異質性萬古黴素中度抗性金黃色葡萄球菌、異質性萬古黴素抗性金黃色葡萄球菌、巨環內酯-林可醯胺(Lincosamide)-鏈黴殺陽菌素(Streptogramin)抗性葡萄球菌屬(Staphylococcus)、β-內醯胺抗性糞腸球菌、β-內醯胺抗性屎腸球菌、酮內酯(Ketolide)抗性肺炎鏈球菌、酮內酯抗性釀膿鏈球菌、巨環內酯抗性釀膿鏈球菌、萬古黴素抗性表皮葡萄球菌、氟喹諾酮抗性淋病奈瑟氏菌、多藥抗性綠膿桿菌或頭孢菌素(Cephalosporin)抗性淋病奈瑟氏菌。
根據另一實施例,二甲氧苯青黴素抗性葡萄球菌屬係選自二甲氧苯青黴素抗性金黃色葡萄球菌、二甲氧苯青黴素抗性表皮葡萄球菌或二甲氧苯青黴素抗性凝固酶陰性葡萄球菌屬。
在一些實施例中,一種形式之式(I)化合物係用於治療社區型感染MRSA(亦即cMRSA)。
在其他實施例中,一種形式之式(I)化合物係用於治療達托黴素(daptomycin)抗性生物體,包括(但不限於)達托黴素抗性屎腸球菌及達托黴素抗性金黃色葡萄球菌。
根據另一實施例,氟喹諾酮抗性葡萄球菌屬係選自氟喹諾酮抗性金黃色葡萄球菌、氟喹諾酮抗性表皮葡萄球菌或氟喹諾酮抗性凝固酶陰性葡萄球菌屬。
根據另一實施例,醣肽抗性葡萄球菌屬係選自醣肽中度抗性金黃色葡萄球菌、萬古黴素抗性金黃色葡萄球菌、萬古黴素中度抗性金黃色葡萄球菌、異質性萬古黴素中度抗性金黃色葡萄球菌或異質性萬古黴素抗性金黃色葡萄球菌。
根據另一實施例,巨環內酯-林可醯胺-鏈黴殺陽菌素抗性葡萄球菌屬為巨環內酯-林可醯胺-鏈黴殺陽菌素抗性金黃色葡萄球菌。
根據另一實施例,利奈唑胺抗性腸球菌係選自利奈唑胺抗性糞腸球菌或利奈唑胺抗性屎腸球菌。
根據另一實施例,醣肽抗性腸球菌係選自萬古黴素抗性屎腸球菌或萬古黴素抗性糞腸球菌。
根據另一實施例,β-內醯胺抗性糞腸球菌為β-內醯胺抗性屎腸球菌。
根據另一實施例,青黴素抗性鏈球菌屬(Streptococci)為青黴素抗性肺炎鏈球菌。
根據另一實施例,巨環內酯抗性鏈球菌屬為巨環內酯抗性肺炎鏈球菌。
根據另一實施例,酮內酯抗性鏈球菌屬係選自巨環內酯抗性肺炎鏈球菌及酮內酯抗性釀膿鏈球菌。
根據另一實施例,氟喹諾酮抗性鏈球菌屬為氟喹諾酮抗性肺炎鏈球菌。
根據另一實施例,β-內醯胺抗性嗜血桿菌屬(Haemophilus)為β-內醯胺抗性流行性感冒嗜血桿菌。
根據另一實施例,氟喹諾酮抗性嗜血桿菌屬為氟喹諾酮抗性流行性感冒嗜血桿菌。
根據另一實施例,巨環內酯抗性嗜血桿菌屬為巨環內酯抗性流行性感冒嗜血桿菌。
根據另一實施例,巨環內酯抗性黴漿菌屬(Mycoplasma)為巨環內酯抗性肺炎黴漿菌。
根據另一實施例,異菸肼抗性分枝桿菌屬(Mycobacterium)為異菸肼抗性結核分枝桿菌。
根據另一實施例,利福平抗性分支桿菌屬為利福平抗性結核分枝桿菌。
根據另一實施例,β-內醯胺抗性莫拉氏菌屬(Moraxella)為β-內醯胺抗性卡它莫拉氏菌。
根據另一實施例,細菌感染特徵在於存在以下一或多者:二甲氧苯青黴素抗性金黃色葡萄球菌、氟喹諾酮抗性金黃色葡萄球菌、萬古黴素中度抗性金黃色葡萄球菌、利奈唑胺抗性金黃色葡萄球菌、青黴素抗性肺炎鏈球菌、巨環內酯抗性肺炎鏈球菌、氟喹諾酮抗性肺炎鏈球菌、萬古黴素抗性糞腸球菌、利奈唑胺抗性糞腸球菌、氟喹諾酮抗性糞腸球菌、萬古黴素抗性屎腸球菌、利奈唑胺抗性屎腸球菌、氟喹諾酮抗性屎腸球菌、安比西林抗性屎腸球菌、巨環內酯抗性流行性感冒嗜血桿菌、β-內醯胺抗性流行性感冒嗜血桿菌、氟喹諾酮抗性流行性感冒嗜血桿菌、β-內醯胺抗性卡它莫拉氏菌、二甲氧苯青黴素抗性表皮葡萄球菌、二甲氧苯青黴素抗性表皮葡萄球菌、萬古黴素抗性表皮葡萄球菌、氟喹諾酮抗性表皮葡萄球菌、巨環內酯抗性肺炎黴漿菌、異菸肼抗性結核分枝桿菌、利福平抗性結核分枝桿菌、氟喹諾酮抗性淋病奈瑟氏菌或頭孢菌素抗性淋病奈瑟氏菌。
根據另一實施例,細菌感染特徵在於存在以下一或多者:二甲氧苯青黴素抗性金黃色葡萄球菌、二甲氧苯青黴素抗性表皮葡萄球菌、二甲氧苯青黴素抗性凝固酶陰性葡萄球菌屬、氟喹諾酮抗性金黃色葡萄球菌、氟喹諾酮抗性表皮葡萄球菌、氟喹諾酮抗性凝固酶陰性葡萄球菌屬、萬古黴素抗性金黃色葡萄球菌、醣肽中度抗性金黃色葡萄球菌、萬古黴素抗性金黃色葡萄球菌、萬古黴素中度抗性金黃色葡萄球菌、異質性萬古黴素中度抗性金黃色葡萄球菌、異質性萬古黴素抗性金黃色葡萄球菌、萬古黴素抗性屎腸球菌、萬古黴素抗性糞腸球菌、青黴素抗性肺炎鏈球菌、巨環內酯抗性肺炎鏈球菌、氟喹諾酮抗性肺炎鏈球菌、巨環內酯抗性釀膿鏈球菌或β-內醯胺抗性流行性感冒嗜血桿菌。
根據另一實施例,細菌感染特徵在於存在以下一或多者:二甲氧苯青黴素抗性金黃色葡萄球菌、萬古黴素抗性屎腸球菌、萬古黴素抗性糞腸球菌、萬古黴素抗性金黃色葡萄球菌、萬古黴素中度抗性金黃色葡萄球菌、異質性萬古黴素中度抗性金黃色葡萄球菌、異質性萬古黴素抗性金黃色葡萄球菌、多藥抗性綠膿桿菌、異菸肼抗性結核分枝桿菌及利福平抗性結核分枝桿菌。
除本發明化合物之外,本發明化合物之醫藥學上可接受之衍生物或前藥亦可以組合物形式用於治療或預防上文所示之病症。
「醫藥學上可接受之衍生物或前藥」意謂本發明化合物之任何醫藥學上可接受之鹽、酯、酯之鹽或其他衍生物,其在投與接受者後能夠直接或間接提供本發明化合物或其抑制活性代謝物或殘基。尤其有利之衍生物或前藥為如下衍生物或前藥:當投與哺乳動物該等化合物時該等衍生物或前藥可相對於母體物質提高本發明化合物之生物可用率(例如藉由使得經口投與之化合物較容易地吸收至血液中來達成)或增強母化合物向生物代謝區(例如腦或淋巴系統)之傳遞。
本發明化合物之醫藥學上可接受之前藥包括(但不限於)酯、胺基酸酯、磷酸酯、金屬鹽及磺酸酯。
本發明化合物之醫藥學上可接受之鹽包括源自醫藥學上可接受之無機酸及有機酸以及鹼之鹽。適合酸鹽之實例包括乙酸鹽、己二酸鹽、海藻酸鹽、天冬胺酸鹽、苯甲酸鹽、苯磺酸鹽、硫酸氫鹽、丁酸鹽、檸檬酸鹽、樟腦酸鹽、樟腦磺酸鹽、環戊烷丙酸鹽、二葡糖酸鹽、十二烷基硫酸鹽、乙烷磺酸鹽、甲酸鹽、反丁烯二酸鹽、葡糖庚酸鹽、甘油磷酸鹽、羥乙酸鹽、半硫酸鹽、庚酸鹽、己酸鹽、鹽酸鹽、氫溴酸鹽、氫碘酸鹽、2-羥基乙烷磺酸鹽、乳酸鹽、順丁烯二酸鹽、丙二酸鹽、甲烷磺酸鹽、2-萘磺酸鹽、菸鹼酸鹽、硝酸鹽、雙羥萘酸鹽、果膠酸鹽、過氧硫酸鹽、3-苯基丙酸鹽、磷酸鹽、苦味酸鹽、特戊酸鹽、丙酸鹽、水楊酸鹽、丁二酸鹽、硫酸鹽、酒石酸鹽、硫氰酸鹽、甲苯磺酸鹽及十一烷酸鹽。其他酸(諸如草酸)雖然本身並非為醫藥學上可接受但可用於製備在獲得本發明化合物及其醫藥學上可接受之酸加成鹽時適用作中間物的鹽。
源自適當鹼之鹽包括鹼金屬鹽(例如鈉鹽及鉀鹽)、鹼土金屬鹽(例如鎂鹽)、銨鹽及N+(C1-4烷基)4鹽。本發明亦設想將本文中所揭示之化合物之任何鹼性含氮基團四級銨化。可藉由該四級銨化獲得水溶性或油溶性或可分散性產物。
本發明醫藥組合物包含式(I)化合物或其醫藥學上可接受之鹽以及醫藥學上可接受之載劑。該等組合物可視情況包含其他治療劑。該等藥劑包括(但不限於)抗生素、消炎劑、基質金屬蛋白酶抑制劑、脂氧合酶抑制劑、細胞激素拮抗劑、免疫抑制劑、抗癌劑、抗病毒劑、細胞激素、生長因子、免疫調節劑、前列腺素或抗血管過度增殖化合物。
術語「醫藥學上可接受之載劑」指可連同本發明化合物一起投與患者且不會破壞本發明化合物之藥理活性的無毒載劑。
可用於本發明醫藥組合物中之醫藥學上可接受之載劑包括(但不限於)離子交換劑、氧化鋁、硬脂酸鋁、卵磷脂;血清蛋白,諸如人血清白蛋白;緩衝物質,諸如磷酸鹽;甘胺酸、山梨酸、山梨酸鉀、飽和植物脂肪酸之偏甘油酯混合物、水;鹽或電解質,諸如魚精蛋白硫酸鹽;磷酸氫二鈉、磷酸氫鉀、氯化鈉、鋅鹽、膠態二氧化矽、三矽酸鎂、聚乙烯吡咯啶酮、基於纖維素之物質、聚乙二醇、羧甲基纖維素鈉、聚丙烯酸酯、蠟、聚乙烯-聚氧化丙烯-嵌段聚合物、羊毛脂;及自乳化藥物傳遞系統(SEDDS),諸如α-生育酚、聚乙二醇1000丁二酸酯,或其他類似聚合傳遞基質。
術語「醫藥學上有效之量」指可有效治療或改善患者之細菌感染之量。術語「預防有效量」指可有效預防或實質上減輕患者之細菌感染的量。
視欲治療或預防之特定病狀或疾病病況而定,通常被投與以治療或預防該病狀之其他治療劑可連同本發明之抑制劑一起投與。該等治療劑包括(但不限於)抗生素、消炎劑、基質金屬蛋白酶抑制劑、脂氧合酶抑制劑、細胞激素拮抗劑、免疫抑制劑、抗癌劑、抗病毒劑、細胞激素、生長因子、免疫調節劑、前列腺素或抗血管過度增殖化合物。
本發明化合物可以習知方式用於活體內控制細菌感染程度且用於治療疾病或減輕由細菌介導之影響進展度或嚴重度。該等治療方法、其劑量水準及需求可由一般技術者自可用方法及技術中選擇。
舉例而言,本發明化合物可與醫藥學上可接受之佐劑組合而以醫藥學上可接受之方式且以可有效減輕感染或疾病之嚴重度的量投與患有細菌感染或疾病之患者。
或者,本發明化合物可用於在延長時段內針對細菌感染或疾病治療或保護個體之組合物及方法中。在一個實施例中,本發明化合物可用於在1週至2週時段內針對細菌感染或疾病治療或保護個體之組合物及方法中。在另一實施例中,本發明化合物可用於在4週至8週時段內針對細菌感染或疾病治療或保護個體之組合物及方法中(例如,用於治療患有心內膜炎或骨髓炎或有患上心內膜炎或骨髓炎之風險的患者)。在另一實施例中,本發明化合物可用於在8週至12週時段內針對細菌感染或疾病治療或保護個體之組合物及方法中。該等化合物可單獨或連同本發明之其他化合物一起以與酶抑制劑在醫藥組合物中之習知利用相符之方式用於該等組合物中。舉例而言,本發明化合物可與習知用於疫苗中之醫藥學上可接受之佐劑組合且以預防有效量投與以在延長時段內針對細菌感染或疾病保護個體。
在一些實施例中,可預防性使用式(I)化合物來預防細菌感染。在一些實施例中,可在牙科或外科程序之前、期間或之後使用式(I)化合物來預防機會性感染,諸如細菌性心內膜炎中所遇到之機會性感染。在其他實施例中,可在牙科程序中預防性使用式(I)化合物,該等牙科程序包括(但不限於)拔牙、牙周程序、牙齒植入體安置及牙髓手術。在其他實施例中,可在包括(但不限於)以下之外科程序中預防性使用式(I)化合物:一般手術、呼吸道手術(扁桃體切除術/增殖腺切除術)、胃腸手術(上GI及選擇性小腸手術、食道硬化療法及擴張術、大腸切除術、急性闌尾切除術)、創傷手術(穿透性腹部手術)、生殖泌尿道手術(前列腺切除術、尿道擴張術、膀胱鏡檢查、陰道或腹式子宮切除術、剖腹產)、移植手術(腎、肝臟、胰臟或腎移植)、頭頸部手術(皮膚切除術、頸部解剖、喉切除術、頭頸部癌症手術、下頜骨骨折)、矯形術(全關節置換術、創傷開放性骨折)、血管手術(周邊血管程序)、心胸手術、冠狀動脈繞道手術、肺切除術及神經手術。
除非另外指示,否則如本文所用之術語「預防細菌感染」意謂預防性使用抗生素(諸如本發明之旋轉酶及/或拓撲異構酶IV抑制劑)來預防細菌感染。可以旋轉酶及/或拓撲異構酶IV抑制劑進行預防性治療以預防由對旋轉酶及/或拓撲異構酶IV抑制劑敏感之生物體所引起的感染。可考慮預防性治療之一組一般情況為當個體因例如免疫力變弱、手術、創傷、體內存在人工器件(臨時或永久性)、解剖缺陷、暴露於高量細菌或可能暴露於引發疾病之病原體而較易患上感染時。可能導致免疫力變弱之因素的實例包括化學療法、放射療法、糖尿病、高齡、HIV感染及移植。解剖缺陷之實例可為增加細菌性心內膜炎風險之心瓣膜缺陷。人工器件之實例包括人工關節、手術用固定銷(surgical pin)、導管等。預防性使用旋轉酶及/或拓撲異構酶IV抑制劑可能適當之另一組情形可為防止病原體在個體之間(直接或間接)擴散。預防性使用以防止病原體擴散之特定實例為健康照護機構(例如醫院或安養院)中之個體使用旋轉酶及/或拓撲異構酶IV抑制劑。
式(I)化合物亦可與其他抗生素共同投與以增強針對各種細菌感染之治療或預防作用。當本發明化合物與其他藥劑一起以組合療法形式投與時,其可依序或並行投與患者。或者,本發明之醫藥或預防性組合物包含式(I)化合物與另一治療劑或預防劑之組合。
在一些實施例中,其他治療劑為選自以下之抗生素:天然青黴素、青黴素酶抗性青黴素、抗單假胞菌青黴素(antipseudomonal penicillin)、胺基青黴素、第一代頭孢菌素、第二代頭孢菌素、第三代頭孢菌素、第四代頭孢菌素、碳青黴烯(carbapenem)、頭黴素(cephamycin)、喹諾酮(quinolone)、氟喹諾酮、胺基醣苷、巨環內酯、酮內酯、多黏菌素(polymyxin)、四環素(tetracycline)、醣肽、鏈黴殺陽菌素、噁唑啶酮、利福黴素(rifamycin)或磺醯胺。
在一些實施例中,其他治療劑為選自以下之抗生素:青黴素、頭孢菌素、喹諾酮、胺基醣苷或噁唑啶酮。
在其他實施例中,其他治療劑係選自天然青黴素,包括苄星青黴素G(Benzathine penicillin G)、青黴素G及青黴素V;選自青黴素酶抗性青黴素,包括鄰氯青黴素(Cloxacillin)、雙氯青黴素(Dicloxacillin)、萘夫西林(Nafcillin)及苯唑西林(Oxacillin);選自抗單假胞菌青黴素,包括羧苄青黴素(Carbenicillin)、美洛西林(Mezlocillin)、哌拉西林(Pipercillin)、哌拉西林/三唑巴坦(tazobactam)、替卡西林(Ticaricillin)及替卡西林/棒酸鹽(Clavulanate);選自胺基青黴素,包括阿莫西林(Amoxicillin)、安比西林及安比西林/舒巴坦(Sulbactam);選自第一代頭孢菌素,包括頭孢唑啉(Cefazolin)、頭孢羥胺苄(Cefadroxil)、頭孢胺苄(Cephalexin)及頭孢拉定(Cephadrine);選自第二代頭孢菌素,包括頭孢克洛(Cefaclor)、頭孢克洛-CD、頭孢羥唑(Cefamandole)、頭孢羥苯磺唑(Cefonacid)、頭孢丙烯(Cefprozil)、氯碳頭孢(Loracarbef)及頭孢呋新(Cefuroxime);選自第三代頭孢菌素,包括頭孢地尼(Cefdinir)、頭孢克肟(Cefixime)、頭孢哌酮(Cefoperazone)、頭孢噻肟(Cefotaxime)、頭孢泊肟(Cefpodoxime)、頭孢他啶(Ceftazidime)、頭孢布烯(Ceftibuten)、頭孢唑肟(Ceftizoxme)及頭孢曲松(Ceftriaxone);選自第四代頭孢菌素,包括頭孢吡肟(Cefepime)、頭孢洛林(Ceftaroline)及頭孢吡普(Ceftobiprole);選自頭黴素,包括頭孢替坦(Cefotetan)及頭孢噻吩(Cefoxitin);選自碳青黴烯,包括多尼培南(Doripenem)、亞胺培南(Imipenem)及美羅培南(Meropenem);選自單環菌素(monobactam),包括胺曲南(Aztreonam);選自喹諾酮,包括西諾沙星(Cinoxacin)、萘啶酮酸(Nalidixic acid)、噁喹酸(Oxolininc acid)及吡哌酸(Pipemidic acid);選自氟喹諾酮,包括貝西沙星(Besifloxacin)、環丙沙星、依諾沙星(Enoxacin)、加替沙星(Gatifloxacin)、格帕沙星(Grepafloxacin)、左氧氟沙星(Levofloxacin)、洛美沙星(Lomefloxacin)、莫西沙星(Moxifloxacin)、諾氟沙星、氧氟沙星(Ofloxacin)及司帕沙星(Sparfloxacin);選自胺基醣苷,包括阿米卡星(Amikacin)、慶大黴素(Gentamicin)、卡那黴素(Kanamycin)、新黴素(Neomycin)、乙基西梭黴素(Netilmicin)、壯觀黴素(Spectinomycin)、鏈黴素(Streptomycin)及托普黴素(Tobramycin);選自巨環內酯,包括阿奇黴素(Azithromycin)、克拉黴素(Clarithromycin)及紅黴素(Erythromycin);選自酮內酯,包括泰利黴素(Telithromycin);選自四環素,包括氯四環素(Chlortetracycline)、地美環素(Demeclocycline)、強力黴素(Doxycycline)、二甲胺四環素(Minocycline)及四環素;選自醣肽,包括奧利萬星(Oritavancin)、達巴萬星(Dalbavancin)、特拉萬星(Telavancin)、替考拉寧(Teicoplanin)及萬古黴素;選自鏈黴殺陽菌素,包括達福普汀(Dalfopristin)/奎奴普丁(quinupristin);選自噁唑啶酮,包括利奈唑胺;選自利福黴素,包括利福布汀(Rifabutin)及利福平;及選自其他抗生素,包括枯草菌素(bactitracin)、黏菌素(colistin)、替加環素(Tygacil)、達托黴素、氯黴素(chloramphenicol)、克林達黴素(clindamycin)、異菸肼、甲硝噠唑(metronidazole)、莫匹羅星(mupirocin)、多黏菌素B、吡嗪醯胺(pyrazinamide)、甲氧苄胺嘧啶(trimethoprim)/磺胺甲基異噁唑(sulfamethoxazole)及磺胺異噁唑(sulfisoxazole)。
在其他實施例中,其他治療劑係選自天然青黴素,包括青黴素G;選自青黴素酶抗性青黴素,包括萘夫西林及苯唑西林;選自抗單假胞菌青黴素,包括哌拉西林/三唑巴坦;選自胺基青黴素,包括阿莫西林;選自第一代頭孢菌素,包括頭孢胺苄;選自第二代頭孢菌素,包括頭孢克洛、頭孢克洛-CD及頭孢呋新;選自第三代頭孢菌素,包括頭孢他啶及頭孢曲松;選自第四代頭孢菌素,包括頭孢吡肟;選自碳青黴烯,包括亞胺培南、美羅培南、伊特培南(Ertapenem)、多尼培南、帕尼培南(Panipenem)及比阿培南(Biapenem);選自氟喹諾酮,包括環丙沙星、加替沙星、左氧氟沙星及莫西沙星;選自胺基醣苷,包括托普黴素;選自巨環內酯,包括阿奇黴素及克拉黴素;選自四環素,包括強力黴素;選自醣肽,包括萬古黴素;選自利福黴素,包括利福平;及選自其他抗生素,包括異菸肼、吡嗪醯胺、替加環素、達托黴素或甲氧苄胺嘧啶/磺胺甲基異噁唑。
在一些實施例中,可投與式(I)化合物之固體形式以治療革蘭氏陽性感染。在一些實施例中,組合物為固體、液體(例如懸浮液),或靜脈內(例如,將一種形式之式(I)化合物溶解於液體中且經靜脈內投與)組合物。在一些實施例中,包括式(I)化合物之組合物與例如以下之其他抗生素劑組合投與:天然青黴素、青黴素酶抗性青黴素、抗單假胞菌青黴素、胺基青黴素、第一代頭孢菌素、第二代頭孢菌素、第三代頭孢菌素、第四代頭孢菌素、碳青黴烯、頭黴素、喹諾酮、氟喹諾酮、胺基醣苷、巨環內酯、酮內酯、多黏菌素、四環素、醣肽、鏈黴殺陽菌素、噁唑啶酮、利福黴素或磺醯胺。在一些實施例中,包括式(I)化合物之固體形式之組合物經口投與,且例如以下之其他抗生素劑經靜脈內投與:天然青黴素、青黴素酶抗性青黴素、抗單假胞菌青黴素、胺基青黴素、第一代頭孢菌素、第二代頭孢菌素、第三代頭孢菌素、第四代頭孢菌素、碳青黴烯、頭黴素、喹諾酮、氟喹諾酮、胺基醣苷、巨環內酯、酮內酯、多黏菌素、四環素、醣肽、鏈黴殺陽菌素、噁唑啶酮、利福黴素或磺醯胺。
在一些實施例中,可投與式(I)化合物之固體形式以治療革蘭氏陰性感染。在一些實施例中,組合物為固體、液體(例如懸浮液),或靜脈內(例如,將一種形式之式(I)化合物溶解於液體中且經靜脈內投與)組合物。在一些實施例中,包括式(I)化合物之組合物與選自以下之其他抗生素劑組合投與:天然青黴素、青黴素酶抗性青黴素、抗單假胞菌青黴素、胺基青黴素、第一代頭孢菌素、第二代頭孢菌素、第三代頭孢菌素、第四代頭孢菌素、碳青黴烯、頭黴素、單環菌素、喹諾酮、氟喹諾酮、胺基醣苷、巨環內酯、酮內酯、多黏菌素、四環素或磺醯胺。在一些實施例中,包括式(I)化合物之固體形式之組合物經口投與,且例如以下之其他抗生素劑經口投與:天然青黴素、青黴素酶抗性青黴素、抗單假胞菌青黴素、胺基青黴素、第一代頭孢菌素、第二代頭孢菌素、第三代頭孢菌素、第四代頭孢菌素、碳青黴烯、頭黴素、單環菌素、喹諾酮、氟喹諾酮、胺基醣苷、巨環內酯、酮內酯、多黏菌素、四環素或磺醯胺。在一些實施例中,其他治療劑經靜脈內投與。
上文所述之其他治療劑可與含有抑制劑之組合物分開投與而作為多劑量方案之一部分。或者,此等藥劑可為單一劑型之一部分,與抑制劑一起混合於單一組合物中。
本發明之醫藥組合物可經口、非經腸、藉由吸入噴霧劑、局部、經直腸、經鼻、經頰、經陰道或經由植入之儲集囊投與。本發明之醫藥組合物可含有任何習知之無毒的醫藥學上可接受之載劑、佐劑或媒劑。在一些狀況下,可用醫藥學上可接受之酸、鹼或緩衝劑調整調配物之pH值以增強所調配之化合物或其傳遞形式之穩定性。如本文所用之術語非經腸包括皮下、皮內、靜脈內、肌肉內、關節內、滑膜內、胸骨內、鞘內、病變內及顱內注射或輸注技術。
醫藥組合物可呈無菌可注射製劑形式,例如呈無菌可注射水性或油性懸浮液形式。此懸浮液可根據此項技術中已知之技術使用適合分散劑或濕潤劑(諸如吐溫80(Tween 80))及懸浮劑調配。無菌可注射製劑亦可為於無毒非經腸可接受之稀釋劑或溶劑中的無菌可注射溶液或懸浮液,例如於1,3-丁二醇中之溶液。可使用的可接受之媒劑及溶劑中有甘露糖醇、水、林格氏溶液(Ringer's solution)及等張氯化鈉溶液。另外,無菌不揮發性油習用作溶劑或懸浮介質。出於此目的,可使用任何溫和之不揮發性油,包括合成單酸甘油酯或二酸甘油酯。脂肪酸(諸如油酸)及其甘油酯衍生物適用於製備可注射劑,醫藥學上可接受之天然油亦如此,諸如橄欖油或蓖麻油,尤其呈其聚氧乙基化型式。此等油性溶液或懸浮液亦可含有長鏈醇稀釋劑或分散劑,諸如瑞士藥典(Pharmacopeia Helvetica)中所述者,或類似醇。
本發明之醫藥組合物可以任何經口可接受之劑型經口投與,該等劑型包括(但不限於)膠囊、錠劑以及水性懸浮液及溶液。在供經口使用之錠劑的狀況下,通常所用之載劑包括乳糖及玉米澱粉。亦通常添加潤滑劑,諸如硬脂酸鎂。為以膠囊形式經口投藥,適用之稀釋劑包括乳糖及乾燥玉米澱粉。當經口投與水性懸浮液及溶液及丙二醇時,將活性成分與乳化劑及懸浮劑組合。必要時,可添加某些甜味劑及/或調味劑及/或著色劑。
本發明之醫藥組合物亦可以用於直腸投藥之栓劑形式投與。此等組合物可藉由將本發明化合物與適合之無刺激性賦形劑混合來製備,該賦形劑在室溫下為固體,但在直腸溫度下為液體且因此將在直腸中熔融而釋放活性組分。該等物質包括(但不限於)可可脂、蜂蠟及聚乙二醇。
當所需治療涉及藉由局部施用易達到之部位或器官時,本發明醫藥組合物之局部投藥尤其適用。為局部施用至皮膚,醫藥組合物應調配成含有懸浮或溶解於載劑中之活性組分的適合軟膏。用於局部投與本發明化合物之載劑包括(但不限於)礦物油、液體石油、白石油、丙二醇、聚氧化乙烯、聚氧化丙烯、乳化蠟及水。或者,醫藥組合物可調配成含有懸浮或溶解於載劑中之活性化合物的適合洗劑或乳膏劑。適合載劑包括(但不限於)礦物油、脫水山梨糖醇單硬脂酸酯、聚山梨酸酯60、十六烷基酯蠟、十六醇十八醇、2-辛基十二醇、苯甲醇及水。本發明之醫藥組合物亦可藉由直腸栓劑調配物或以適合灌腸劑調配物形式局部施用於下部腸道。本發明亦包括局部投與之經皮貼片。
本發明之醫藥組合物可藉由鼻用氣霧劑或吸入投與。該等組合物係根據醫藥調配技術中熟知之技術來製備且可製備成於生理食鹽水中之溶液,其中使用此項技術中已知之苯甲醇或其他適合防腐劑、增強生物可用率之吸收促進劑、碳氟化合物及/或其他增溶劑或分散劑。
根據另一實施例,式(I)化合物亦可藉由植入(例如以手術方式),諸如用植入式或留置器件來傳遞。植入式或留置器件可經設計而永久或暫時存留於個體體內。植入式及留置器件之實例包括(但不限於)隱形眼鏡、中央靜脈導管及無針連接器、氣管內導管、子宮內器件、機械心瓣膜、起搏器、腹膜透析導管、假肢關節(諸如髖及膝置換物)、鼓膜穿刺管、導尿管、發聲假體、支架、傳遞泵、血管過濾器及植入式控制釋放組合物。生物膜可能有害於具有植入式或留置醫療器件之患者的健康,因為其將人工基層引入體內且可能引起持續感染。因此,將式(I)化合物提供於植入式或留置器件中或其上面可防止或減少生物膜產生。另外,植入式或留置器件可用作式(I)化合物之儲槽或儲集囊。任何植入式或留置器件可用於傳遞式(I)化合物,限制條件為a)器件、式(I)化合物與包括式(I)化合物之任何醫藥組合物具生物相容性,及b)器件可傳遞或釋放有效量之式(I)化合物以賦予所治療之患者以治療作用。
經由植入式或留置器件傳遞治療劑在此項技術中為已知的。參見例如「Recent Developments in Coated Stents」,Hofma等人,發表於Current Interventional Cardiology Reports 2001,3:28-36,其全部內容(包括其中引用之參考文獻)以引用方式併入本文中。關於植入式器件之其他描述可見於美國專利第6,569,195號及第6,322,847號;以及美國專利申請案第2004/0044405號、第2004/0018228號、第2003/0229390號、第2003/0225450號、第2003/0216699號及第2003/0204168號中,其各自以全文引用之方式併入本文中。
在一些實施例中,植入式器件為支架。在一個特定實施例中,支架可包括連鎖有孔纜線。各纜線可包括用於結構支撐之金屬線及用於傳遞治療劑之聚合線。聚合線可藉由將聚合物浸漬於治療劑溶液中而加有藥物。或者,可在由聚合前驅體溶液形成線路期間將治療劑嵌入聚合線中。
在其他實施例中,植入式或留置器件可塗有包括治療劑之聚合塗層。聚合塗層可經設計以控制治療劑之釋放速率。可使用各種技術控制治療劑釋放。已知具有將活性劑之不均相溶液及/或分散液併入聚合物質中之整體層或塗層的器件,其中藥劑之擴散速率受到限制,因為藥劑透過聚合物擴散至聚合物-流體界面,然後才釋放至周圍流體中。在一些器件中,可溶性物質亦溶解或分散於聚合材料中,以至於在物質溶解之後留下額外之微孔或通道。基質器件之擴散一般同樣受限,但器件之通道或其他內部幾何結構亦會影響藥劑釋放至流體中。通道可為預先存在之通道或由脫模劑或其他可溶性物質留下之通道。
可被腐蝕或可降解的器件通常具有以物理方式固定於聚合物中之活性劑。活性劑可溶解及/或分散於整個聚合材料中。聚合材料常會隨時間推移因不穩定鍵水解而受到水解作用降解,使得聚合物在流體中被腐蝕,釋放活性劑至流體中。親水性聚合物之腐蝕速率一般快於疏水性聚合物。咸信疏水性聚合物讓活性劑幾乎呈單純之表面擴散,其自表面向內腐蝕。咸信親水性聚合物允許水穿透聚合物表面,使得表面下之不穩定鍵水解,此會引起聚合物均勻或整體腐蝕。
植入式或留置器件塗層可包括各自具有不同治療劑釋放速率之聚合物的摻合物。舉例而言,塗層可包括聚乳酸/聚氧化乙烯(PLA-PEO)共聚物以及聚乳酸/聚己內酯(PLA-PCL)共聚物。聚乳酸/聚氧化乙烯(PLA-PEO)共聚物相對於聚乳酸/聚己內酯(PLA-PCL)共聚物可展現較高之治療劑釋放速率。隨時間推移所傳遞之治療劑之相對量及給藥速率可藉由控制較快釋放型聚合物相對於較慢釋放型聚合物之相對量來控制。對於較高初始釋放速率而言,可相對於較慢釋放型聚合物增加較快釋放型聚合物之比例。若需要經長時段釋放大部分劑量,則大部分聚合物可為較慢釋放型聚合物。器件可藉由用聚合物、活性劑及溶劑之溶液或分散液噴塗器件來塗佈。可蒸發溶劑,留下聚合物及活性劑之塗層。活性劑可溶解及/或分散於聚合物中。在一些實施例中,共聚物可擠壓至器件上。
每天每公斤體重約0.01 mg至約100 mg,較佳每天每公斤體重0.5 mg至約75 mg及最佳每天每公斤體重約1 mg至50 mg活性成分化合物之劑量適用於在單藥療法中預防及治療細菌感染。
通常,本發明之醫藥組合物將每天投與約1至5次,或者以連續輸注形式投與。或者,本發明組合物可以脈動式調配物形式投與。該投藥可用作長期或短期療法。可與載劑物質組合以產生單一劑型之活性成分之量將視所治療之宿主及特定投藥方式而不同。典型製劑含有約5%至約95%活性化合物(w/w)。較佳地,該等製劑含有約20%至約80%活性化合物。
當本發明組合物包含式(I)化合物與一或多種其他治療劑或預防劑之組合時,化合物及其他藥劑應以通常在單藥療法方案中投與之劑量的約10%至80%之劑量存在。
在改善患者病狀後,必要時可投與維持劑量之本發明化合物、組合物或組合。隨後,可隨症狀而將投藥劑量或頻率或兩者降低至維持該有所改善之病狀的水準,當症狀已被減輕至所需水準時,應停止治療。然而,患者在任何復發或疾病症狀下可能需要以長期方式進行間歇治療。
如熟練技術人員所瞭解,可能需要低於或高於上文所述劑量的劑量。用於任何特定患者之特定劑量及治療方案將視多種因素而定,包括所用特定化合物之活性、年齡、體重、一般健康狀況、性別、飲食、投藥時間、排泄率、藥物組合、疾病嚴重度及病程,以及患者之患病傾向及治療醫師之判斷。
根據另一實施例,本發明提供治療或預防細菌感染或疾病病況之方法,其包含投與患者本文所述之任何化合物、醫藥組合物或組合的步驟。如本文所用之術語「患者」意謂動物,較佳為哺乳動物,且最佳為人類。
本發明之化合物亦適用作可有效結合至旋轉酶B及/或拓撲異構酶IV酶之市售試劑。作為市售試劑,本發明化合物及其衍生物可用於在針對細菌旋轉酶B及/或拓撲異構酶IV或其同源物之生物化學或細胞分析中阻斷旋轉酶B及/或拓撲異構酶IV活性或可經衍生化以結合至穩定樹脂而作為用於親和層析應用之栓繫(tethered)受質。此等及其他表徵市售旋轉酶B及/或拓撲異構酶IV抑制劑之用途對於一般技術者而言為明顯的。
本發明化合物可根據為熟習此項技術者對於類似化合物所知之一般方法來製備,如美國專利第RE40245 E號、美國專利第7,495,014 B2號、美國專利第7,569,591 B2號、美國專利第7,582,641 B2號、美國專利第7,618,974 B2號、及美國專利第7,727,992 B2號所教示。所有該等六個專利係以引用方式併入本文中,如同在本文中全面闡述一般。用於製備本發明化合物之條件的細節進一步闡述於實例中。
為更充分瞭解本發明,闡述下列實例。此等實例僅出於說明之目的而不應理解為以任何方式限制本發明範疇。
以下定義說明本文所用之術語及縮寫:
Ac 乙醯基
Bu 丁基
Et 乙基
Ph 苯基
Me 甲基
THF 四氫呋喃
DCM 二氯甲烷
CH2Cl2 二氯甲烷
EtOAc 乙酸乙酯
CH3CN 乙腈
EtOH 乙醇
Et2O 乙醚
MeOH 甲醇
MTBE 甲基第三丁基醚
DMF N,N-二甲基甲醯胺
DMA N,N-二甲基乙醯胺
DMSO 二甲亞碸
HOAc 乙酸
TEA 三乙胺
TFA 三氟乙酸
TFAA 三氟乙酸酐
Et3N 三乙胺
DIPEA 二異丙基乙胺
DIEA 二異丙基乙胺
K2CO3 碳酸鉀
Na2CO3 碳酸鈉
Na2S2O3 硫代硫酸鈉
Cs2CO3 碳酸銫
NaHCO3 碳酸氫鈉
NaOH 氫氧化鈉
Na2SO4 硫酸鈉
MgSO4 硫酸鎂
K3PO4 磷酸鉀
NH4Cl 氯化銨
LC/MS 液相層析/質譜
GCMS 氣相層析質譜
HPLC 高效液相層析
GC 氣相層析
LC 液相層析
IC 離子層析
IM 肌肉內
CFU/cfu 群落形成單位
MIC 最低抑制濃度
Hr或h 小時
atm 氛圍
rt或RT 室溫
TLC 薄層層析
HCl 鹽酸
H2O 水
EtNCO 異氰酸乙酯
Pd/C 鈀/碳
NaOAc 乙酸鈉
H2SO4 硫酸
N2 氮氣
H2 氫氣
n-BuLi 正丁基鋰
DI 去離子
Pd(OAc)2 乙酸鈀(II)
PPh3 三苯基膦
i-PrOH 異丙醇
NBS N-溴代丁二醯亞胺
Pd[(Ph3)P]4 肆(三苯基膦)鈀(0)
PTFE 聚四氟乙烯
rpm 轉數/分
SM 起始物質
Equiv. 當量
1H-NMR 質子核磁共振
HPMCAS 乙酸羥基丙基甲基纖維素
PVP 聚乙烯吡咯啶酮
EDTA 乙二胺四乙酸
K2EDTA 乙二胺四乙酸二鉀
mCPBA 間氯過氧苯甲酸
aq 水性
Boc2O 二碳酸二第三丁酯
DMAP N,N-二甲基胺基吡啶
mL 毫升
L 公升
mol 莫耳
g 公克
LCMS 液相層析-質譜
MHz 兆赫茲
CDCl3 氘代氯仿
NEt3 三乙胺
mmol 毫莫耳
psi 磅/平方吋
iPrOH 異丙醇
ppm 百萬分率
NH4NO3 硝酸銨
Hz 赫茲
Pd(dppf)Cl2 [1,1'-雙(二苯基膦基)二茂鐵]二氯鈀(II)
L 公升
MeOD 氘代甲醇
CD3OD 氘代甲醇
ee 對映異構過量
min 分鐘
Bn 苯甲基
RBF 圓底燒瓶
MeCN 乙腈
PES 聚醚碸
mm 毫米
μm 微米
M 莫耳濃度
N 當量濃度
Boc 第三丁氧羰基
ESMS 電噴霧質譜
CV 管柱體積
D2O 氧化氘
NH3 氨
OBD 最佳床層密度
mg 毫克
CLSI 臨床及實驗室標準學會
ATCC 美國菌種中心
MHII 繆勒-幸頓II
μL 微升
WT 野生型
CGSC 大腸桿菌遺傳保藏中心
MS 質譜
IS 內標
APCI 大氣壓化學電離
MRM 多反應監測
m/z 質荷比
LLOQ 定量下限
ng 奈克
UV 紫外線
SD 標準差
%CV 變異係數
PO 口周
MC 微晶纖維素
EDTA 乙二胺四乙酸或乙二胺四乙酸鹽
PK 藥物動力學
IV 靜脈內
D5W 5%右旋糖水溶液
HPMC-AS 乙醯丁二酸羥丙基甲基纖維素
PVP 聚乙烯吡咯啶酮
CAPT 磺丁基醚-β-環糊精
ATP 三磷酸腺苷
ADP 二磷酸腺苷
NADH 菸醯胺腺嘌呤二核苷酸(還原形式)
NAD+ 菸醯胺腺嘌呤二核苷酸(氧化形式)
TRIS 參(羥甲基)胺基甲烷
mM 毫莫耳
MgCl2 氯化鎂
KCl 氯化鉀
μM 微莫耳
DTT 二硫蘇糖醇
nM 奈莫耳
Ki 解離常數
IC50 半數最大抑制濃度
μg 微克
BSA 牛血清白蛋白
LDH 乳酸脫氫酶
PVDF 聚偏二氟乙烯
AcN 乙腈
VMAx 最大反應初速度或速率
實例1 製備2-(2-硝基苯基)-2,5-二氫呋喃及2-(2-硝基苯基)-2,3-二氫呋喃(3a3b)
混合1-溴-2-硝基-苯(1)(600 g,99%,2.941 mol,Alfa Aesar A11686)、1,3-雙(二苯膦基)丙烷(62.50 g,97%,147.0 mmol,Alfa Aesar A12931)、1,4-二噁烷(2.970 L,Sigma-Aldrich 360481)、碳酸鉀(812.9 g,5.882 mol,JT-Baker 301201)及2,3-二氫呋喃(2)(1.041 kg,99%,1.124 L,14.70 mol,Aldrich 200018)。使氮氣流鼓泡通過正攪拌之混合物4小時,繼而添加乙酸鈀(II)(16.51 g,73.52 mmol,Strem 461780)且再繼續去氧10分鐘。在回流下於氮氣下攪拌反應混合物隔夜(經處理之等分試樣的NMR顯示芳基溴化物完全耗盡)。將其冷卻,用己烷(1 L)稀釋,經Florisil短柱塞(500 g,-200篩目)過濾,且用EtOAc溶離。在減壓下濃縮濾液(2-(2-硝基苯基)-2,3-二氫呋喃在高真空下易揮發且在室溫下可能略微不穩定),得到呈深棕色油狀之(3a)與(3b)之混合物。將粗物質儲存於冰箱中且未經進一步純化即可繼續使用。
實例2 製備2-四氫呋喃-2-基-苯胺(4)
在氮氣下將5%鈀/碳(16.3 g,50%濕,3.83 mmol,Aldrich 330116)置放於帕爾瓶(Parr bottle)中,繼而置放MeOH(100 mL,JT-Baker 909333)。添加溶解於MeOH(389 mL)中之2-(2-硝基苯基)-2,5-二氫呋喃與2-(2-硝基苯基)-2,3-二氫呋喃(3a3b)之粗混合物(163 g),繼而添加NEt3(237.6 mL,1.705 mol,Sigma-Aldrich 471283)。將容器置放於帕爾振盪器上且用H2使其飽和。添加30 psi H2且振盪直至完全耗盡為止(LCMS及NMR顯示完全反應)。用氮氣吹洗反應混合物,經CeliteTM過濾且用EtOAc沖洗。在旋轉蒸發器上濃縮濾液,得到棕色油狀物。再以相同規模重複反應三次且合併各批產物進行純化。真空蒸餾粗產物(約15托),其中在108℃至129℃下收集餾出物,得到呈澄清淡黃色油狀之(4)(427.9 g,平均產率為84%;98% GCMS純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 163.95(1.46分鐘)。1H NMR(300 MHz,CDCl3): δ 7.15-7.04(m,2H),6.77-6.62(m,2H),4.85-4.77(m,1H),4.18(s,2H),4.12-4.02(m,1H),3.94-3.85(m,1H),2.25-1.95(m,4H) ppm。
實例2a 製備(R)-2-(四氫呋喃-2-基)苯胺(4a)
將33 g化合物(4)溶解於MeOH(265 ml)中,得到約125 mg/ml之濃度。經0.2微米膜式過濾器過濾混合物,接著在ChiralPak IC管柱(30 mm×150 mm,管柱溫度35℃,Chiral Technologies)上於100巴下,使用Berger multigram超臨界流體層析系統進行層析。移動相為(90:10)CO2:CH3OH,以350毫升/分鐘在於220奈米下進行UV監測下溶離。得到15.64 g呈綠色油狀之所需產物(4a)。分析型SFC([90:10] CO2:CH3OH,5毫升/分鐘,於ChiralPak IC管柱(4.6×100 mm)上,保持在35℃下且在100巴壓力下於220 nm下進行UV監測下操作)展示95.5% ee及95%總體純度。
實例3 製備4-溴-2-四氫呋喃-2-基-苯胺(5)
在維持內部溫度低於約8℃下,向2-四氫呋喃-2-基-苯胺(4)(53.45 g,327.5 mmol)於甲基第三丁基醚(MTBE,641.4 mL)及乙腈(213.8 mL)中之已冷卻至2℃之經攪拌溶液中分4份添加N-溴代丁二醯亞胺(58.88 g,99%,327.5 mmol,Aldrich B81255)。在用冰水浴冷卻同時攪拌反應混合物30分鐘(經處理之等分試樣的NMR顯示起始物質完全耗盡)。添加1 N Na2S2O3水溶液(330 mL),移除冷卻浴槽且攪拌20分鐘。用EtOAc稀釋混合物且分離各層。用飽和NaHCO3水溶液(2×)、水、鹽水洗滌有機相,經MgSO4乾燥,經二氧化矽短柱塞過濾,用EtOAc溶離,且在減壓下濃縮,得到呈極深琥珀色油狀之(5)(82.25 g,77%至94% HPLC純度)。其未經進一步純化即可繼續使用。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 242.10(2.89分鐘)。1H NMR(300 MHz,CDCl3) δ 7.22(d,J=2.3 Hz,1H),7.16(dd,J=8.4,2.3 Hz,1H),6.54(d,J=8.4 Hz,1H),4.79-4.73(m,1H),4.15(s,2H),4.10-4.01(m,1H),3.93-3.85(m,1H),2.26-2.13(m,1H),2.12-1.97(m,3H) ppm。
實例4 製備N-(4-溴-2-硝基-6-四氫呋喃-2-基-苯基)-2,2,2-三氟-乙醯胺(6)
在2℃下在攪拌下經由加料漏斗經15分鐘向三氟乙酸酐(455.3 mL,3.275 mol,Sigma-Aldrich 106232)中緩慢添加呈濃稠油狀之4-溴-2-四氫呋喃-2-基-苯胺(5)(79.29 g,327.5 mmol)(反應溫度升高至14℃)。用無水2-甲基四氫呋喃(39.6 mL,Sigma-Aldrich 4l4247)將剩餘油狀物沖洗至反應混合物中。移除冷卻浴槽且添加硝酸銨(34.08 g,425.8 mmol,Aldrich 467758)。使反應溫度經約30分鐘升高至40℃,此時使用冷水浴控制放熱量且使反應物達到室溫。接著移除冷卻浴槽且再繼續攪拌40分鐘(HPLC展示殘留之未經硝化之物質極少)。將反應混合物緩慢傾注於正經攪拌之碎冰混合物(800 g)中。藉由過濾收集固體沈澱物,用水、飽和NaHCO3水溶液(達pH 8)洗滌,再用水洗滌,且用己烷洗滌。首先在對流烘箱中於50℃下乾燥濕固體若干小時且接著在減壓下於烘箱中在40℃下乾燥隔夜,得到呈淡棕色固體狀之(6)(77.86 g,62%產率;98% HPLC純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 383.19(3.27分鐘)。1H NMR(300 MHz,CDCl3) δ 9.81(s,1H),8.08(d,J=2.2 Hz,1H),7.73(d,J=2.2 Hz,1H),4.88(dd,J=9.0,6.5 Hz,1H),4.17-4.08(m,1H),4.03-3.95(m,1H),2.45-2.34(m,1H),2.17-2.06(m,2H),1.96-1.83(m,1H) ppm。
實例5 製備4-溴-2-硝基-6-四氫呋喃-2-基-苯胺(6a)
將N-(4-溴-2-硝基-6-四氫呋喃-2-基-苯基)-2,2,2-三氟-乙醯胺(6)(54.00 g,140.9 mmol)溶解於1,4-二噁烷(162 mL)中且添加6 M NaOH水溶液(70.45 mL,422.7 mmol,JT-Baker 567202)。在回流下攪拌反應混合物2天(HPLC展示完全轉化),加以冷卻,用MTBE(800 mL)稀釋,用水(2×200 mL)、飽和NH4Cl水溶液、水及鹽水洗滌。經MgSO4乾燥混合物,過濾且在減壓下濃縮,得到呈深琥珀色油狀之(6a)(40.96 g,93%產率;總92% HPLC+NMR純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% MeOH/水梯度溶離3分鐘-5分鐘)M+1: 287.28(3.44分鐘)。1H NMR(300 MHz,CDCl3) δ 8.24(d,J=2.4 Hz,1H),7.41(d,J=2.3 Hz,1H),6.91(s,2H),4.80(t,J=7.2 Hz,1H),4.14-4.05(m,1H),3.98-3.90(m,1H),2.36-2.19(m,1H),2.15-2.01(m,3H) ppm。
實例6 製備2-[5-(4-胺基-3-硝基-5-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(8)
混合4-溴-2-硝基-6-四氫呋喃-2-基-苯胺(6a)(40.40 g,92%,129.5 mmol)、1,4-二噁烷(260 mL,Sigma-Aldrich 360481)、2-[5-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)嘧啶-2-基]丙-2-醇(7)(41.05 g,155.4 mmol)及2.7 M Na2CO3水溶液(143.9 mL,388.5 mmol)。使氮氣流鼓泡通過正經攪拌之混合物1小時,繼而添加肆(三苯基膦)鈀(0)(7.48 g,6.47 mmol,Strem 462150)。在回流下攪拌反應混合物2小時(HPLC展示完全反應),加以冷卻,用EtOAc稀釋,用水、飽和NH4Cl水溶液、鹽水洗滌,經MgSO4乾燥,且經Florisil短柱塞過濾,用EtOAc溶離。在減壓下濃縮濾液,得到深棕色油狀物。將其溶解於CH2Cl2中且經由矽膠短柱塞用CH2Cl2且接著用EtOAc溶離。在旋轉蒸發器上濃縮所需溶離份直至形成沈澱物為止,得到濃稠棕色漿料,將其用MTBE濕磨。藉由過濾收集固體,用MTBE洗滌且在高真空下乾燥,得到呈黃色固體狀之(8)(35.14 g,99+% HPLC純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 345.00(2.69分鐘)。1H NMR(300 MHz,CDCl3) δ 8.88(s,2H),8.36(d,J=2.2 Hz,1H),7.56(d,J=2.1 Hz,1H),7.09(s,2H),4.92(t,J=7.2 Hz,1H),4.62(s,1H),4.20-4.11(m,1H),4.03-3.94(m,1H),2.39-2.26(m,1H),2.23-2.08(m,3H),1.64(s,6H) ppm。進一步濃縮濾液且藉由ISCO矽膠層析(用0%至80% EtOAc/己烷溶離)純化,得到呈琥珀色固體狀之第二批產物(8)(4.46 g,88%總產率;88% HPLC純度)。
實例7 2-[5-(4-胺基-3-硝基-5-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(8)之替代性製備
混合N-(4-溴-2-硝基-6-四氫呋喃-2-基-苯基)-2,2,2-三氟-乙醯胺(6)(19.00 g,49.59 mmol)、2-[5-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)嘧啶-2-基]丙-2-醇(7)(14.41 g,54.55 mmol)、2.7 M碳酸鈉水溶液(73.48 mL,198.4 mmol)及1,4-二噁烷(190 mL,Sigma-Aldrich 360481)。使氮氣流鼓泡通過正經攪拌之混合物40分鐘,繼而添加1,1'-雙(二苯膦基)二茂鐵二氯鈀-二氯甲烷加合物(2.025 g,2.480 mmol,Strem 460450)。在回流下於N2下攪拌反應混合物7小時,再添加50 mL飽和碳酸鈉水溶液且再回流16小時。冷卻混合物,接著用EtOAc(500 mL)及水(200 mL)稀釋。分離各層且用EtOAc(200 mL)萃取水相。用水(500 mL)、鹽水(500 mL)洗滌合併之有機相,經Na2SO4乾燥,經Florisil柱塞過濾且在旋轉蒸發器上濃縮,得到呈橙色油狀之粗(8)。藉由ISCO矽膠層析(用20%至90% EtOAc/己烷溶離)來純化粗產物,得到呈橙色固體狀之(8)(15.00 g,87%產率;81%至88%純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 345.35(2.68分鐘)。1H NMR(300 MHz,CDCl3) δ 8.88(s,2H),8.36(d,J=2.2 Hz,1H),7.56(d,J=2.1 Hz,1H),7.09(s,2H),4.92(t,J=7.2 Hz,1H),4.62(s,1H),4.20-4.11(m,1H),4.03-3.94(m,1H),2.39-2.26(m,1H),2.23-2.08(m,3H),1.64(s,6H) ppm。
實例8 製備2-[5-(3,4-二胺基-5-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(9)
在氮氣下向帕爾瓶中2-[5-(4-胺基-3-硝基-5-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(8)(30.10 g,87.41 mmol)及THF(90 mL)之懸浮液中添加5%鈀/碳(3.01 g,50%濕,0.707 mmol,Aldrich 330116)於MeOH(90 mL,JT-Baker 909333)中之漿料,繼而添加NEt3(24.37 mL,174.8 mmol,Sigma-Aldrich 471283)。將容器置放於帕爾振盪器上且用H2使其飽和。添加45 psi H2且振盪直至完全耗盡為止(HPLC展示完全轉化)。用氮氣吹洗反應混合物,經CeliteTM過濾且用EtOAc沖洗。經夾在兩張P5紙之間的0.5微米玻璃纖維濾紙再過濾濾液,且在減壓下濃縮,得到呈淡棕色泡沫狀之(9)(28.96 g,98%產率;93% NMR純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 315.32(1.54分鐘)。1H NMR(300 MHz,CDCl3) δ 8.83(s,2H),6.92(d,J=1.8 Hz,1H),6.88(d,J=1.8 Hz,1H),4.90(dd,J=7.9,6.2 Hz,1H),4.72(s,1H),4.18(s,2H),4.17-4.08(m,1H),3.99-3.89(m,1H),3.46(s,2H),2.34-2.19(m,1H),2.17-2.05(m,3H),1.63(s,6H) ppm。
實例9 製備1-乙基-3-[5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-四氫呋喃-2-基-1H-苯并咪唑-2-基]脲(11)
向2-[5-(3,4-二胺基-5-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(9)(32.10 g,102.1 mmol)於1,4-二噁烷(160.5 mL,Sigma-Aldrich 360481)中之正經攪拌的溶液中添加pH 3.5緩衝液(240.8 mL),該緩衝液係藉由將三水合NaOAc(34.5 g)溶解於1 N H2SO4水溶液(240 mL)中來製備。添加1-乙基-3-(N-(乙基胺甲醯基)-C-甲基硫基-亞胺亞甲基)脲(10)(28.46 g,122.5 mmol,CB ReSearch and Development)且在回流下攪拌隔夜(HPLC展示起始二胺消耗99%)。將反應混合物冷卻至室溫且逐份傾注(起泡)至飽和NaHCO3水溶液(480 mL)及水(120 mL)之正經攪拌的溶液中,達到pH 8至9。攪拌此物質30分鐘,藉由過濾收集固體,用水充分洗滌達中性pH值,且接著較有節制地用EtOH洗滌。在減壓下乾燥固體,得到呈灰白色固體狀之(11)(34.48 g,82%產率;99.4% HPLC純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 411.41(1.73分鐘)。1H NMR(300 MHz,MeOD) δ 9.02(s,2H),7.62(s,1H),7.37(s,1H),5.31(s,1H),4.23(dd,J=14.5,7.3 Hz,1H),4.01(dd,J=15.0,7.1 Hz,1H),3.38-3.28(m,2H),2.58-2.46(m,1H),2.16-2.05(m,2H),2.02-1.88(m,1H),1.63(s,6H),1.22(t,J=7.2 Hz,3H) ppm。
實例10 對掌性層析分離1-乙基-3-[5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(12)
在35℃下在CHIRALPAK IC管柱(Chiral Technologies)上(用DCM/MeOH/TEA(60/40/0.1)溶離)解析1-乙基-3-[5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-四氫呋喃-2-基-1H-苯并咪唑-2-基]脲(11)之外消旋樣品(24.60 g),得到呈白色固體狀之所需對映異構體(12)(11.35 g,45%產率;99+% HPLC純度,99+% ee)。分析型對掌性HPLC滯留時間為6.2分鐘(CHIRALPAK IC 4.6×250 mm管柱,1毫升/分鐘流速,30℃)。
藉由單晶X射線繞射分析確定12之結構及絕對立體化學。在裝備有密封管Cu K-α源(Cu Kα輻射,γ=1.54178 )及Apex II CCD偵測器之Bruker Apex II繞射計上獲得單晶繞射資料。選擇尺寸為1/2×0.05×0.05 mm之晶體,使用礦物油清潔,固定至顯微載片(MicroMount)上且在Bruker APEXII系統上置於中心。獲得以倒晶格空間分離之三批40個框架以提供取向矩陣及初始晶胞參數。在完成資料收集後基於完全資料集合獲得最終晶胞參數且進行精修。基於系統消光(systematic absence)及強度統計資料,以偏中心P21空間群解析結構且精修。
對各框架使用60秒曝光使用0.5°步幅獲得倒晶格空間之繞射資料集合達0.9 之解析度。在100(2) K下收集資料。使用APEXII軟體求得強度之積分且對晶胞參數進行精修。在資料收集後觀測晶體未展示分解跡象。如圖1所示,在結構上存在兩個對稱獨立性分子且兩個對稱獨立性分子為R型異構體。
使用Apex II軟體收集資料,精修且換算。使用SHELXS97(Sheldrick,1990)程式解析結構且使用SHELXL97(Sheldrick,1997)程式精修結構。晶體展示單斜晶胞(P21空間群)。晶格參數為a=9.8423(4) ,b=10.8426(3) ,c=19.4441(7) ,β=102.966(3)°。體積=2022.09(12)
實例11 製備1-乙基-3-[5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲之甲烷磺酸鹽(13)
用冰水浴冷卻1-乙基-3-[5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(12)(9.32 g,22.71 mmol)於絕對乙醇(93.2 mL)中之正經攪拌的懸浮液。添加甲烷磺酸(1.548 mL,23.85 mmol,Sigma-Aldrich 471356),移除冷卻浴槽且在室溫下攪拌20分鐘。將其在旋轉蒸發器上於35℃下濃縮成濃稠漿料,用EtOAc稀釋,藉由過濾收集固體,用EtOAc洗滌,且在減壓下乾燥,得到首批呈白色固體狀之(13)(8.10 g)。在旋轉蒸發器(rotavap)上濃縮濾液,得到黃色玻璃狀泡沫狀物,將其溶解於EtOH中,濃縮成固體漿料,用EtOAc/Et2O濕磨,且藉由過濾收集。用EtOAc/Et2O洗滌固體,與第一批產物合併,且在減壓下乾燥,得到呈白色固體狀之(13)(9.89 g,86%產率;99+% HPLC純度,99+% ee)。分析型對掌性HPLC展示一種對映異構體,其滯留時間為6.3分鐘(在CHIRALPAK IC 4.6×250 mm管柱上,用DCM/MeOH/TEA(60/40/0.1)溶離,流速為1毫升/分鐘,於30℃下)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 411.53(1.74分鐘)。1H NMR(300 MHz,MeOD) δ 9.07(s,2H),7.79(S,1H),7.62(s,1H),5.30(t,J=7.3 Hz,1H),4.24(dd,J=14.6,7.3 Hz,1H),4.04(dd,J=15.0,7.6 Hz,1H),3.40-3.30(m,2H),2.72(s,3H),2.65-2.54(m,1H),2.20-2.07(m,2H),2.04-1.90(m,1H),1.64(s,6H),1.23(t,J=7.2 Hz,3H) ppm。
實例12 製備2-(2-氟-6-硝基-苯基)-2,3-二氫呋喃(15A)與2-(2-氟-6-硝基-苯基)-2,5-二氫呋喃(15B)
將2-溴-1-氟-3-硝基-苯(14)(200.3 g,98%,892.3 mmol,Bosche F6657)、1,4-二噁烷(981.5 mL,Sigma-Aldrich 360481)及2,3-二氫呋喃(2)(341.1 mL,99%,4.462 mol,Aldrich 200018)饋入反應燒瓶中,繼而饋入N,N-二異丙基乙胺(155.4 mL,892.3 mmol,Sigma-Aldrich 550043)及溴(三-第三丁基膦)鈀(I)二聚體(6.936 g,8.923 mmol,Johnson Matthey C4099)。在回流下攪拌混合物2小時(HPLC展示起始芳基溴化物消耗98%)。將其冷卻,藉由過濾移除沈澱物,用EtOAc沖洗,且在真空中濃縮濾液,得到深紅棕色半固體油狀物。將此物質溶解於CH2Cl2中,經由二氧化矽柱塞用CH2Cl2溶離,且在真空中濃縮,得到呈深琥珀色油狀之15A15B之混合物(291.3 g)。粗產物未經進一步純化即繼續使用。主要產物為2-(2-氟-6-硝基-苯基)-2,3-二氫呋喃(15A)(96%):LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 210.23(3.13分鐘);1H NMR(300 MHz,CDCl3) δ 7.54(dt, J=8.0,1.2 Hz,1H),7.43(td,J=8.2,5.2 Hz,1H),7.32(ddd,J=9.7,8.3,1.3 Hz,1H),6.33(dd,J=4.9,2.4 Hz,1H),5.80(t,J=10.9 Hz,1H),5.06(q,J=2.4 Hz,1H),3.18-3.07(m,1H),2.94-2.82(m,1H) ppm。次要產物為2-(2-氟-6-硝基-苯基)-2,5-二氫呋喃(15B)(4%):GCMS(Agilent HP-5MS 30 m×250 μm×0.25 μm管柱,在60℃下加熱2分鐘,經15分鐘加熱至300℃,流速為1毫升/分鐘)M+1: 210(11.95分鐘)。1H NMR(300 MHz,CDCl3) δ 7.47(d,J=8.0 Hz,1H),7.43-7.34(m,1H),7.30-7.23(m,1H),6.21-6.15(m,1H),6.11-6.06(m,1H),5.97-5.91(m,1H),4.89-4.73(m,2H) ppm。
實例13 製備3-氟-2-四氫呋喃-2-基-苯胺(16)
在氮氣下將5%鈀/碳(37.3 g,50%濕,8.76 mmol,Aldrich 330116)置放於帕爾瓶中,繼而置放MeOH(70 mL,JT-Baker 909333)。添加溶解於MeOH(117 mL)中之2-(2-氟-6-硝基-苯基)-2,3-二氫呋喃與2-(2-氟-6-硝基-苯基)-2,5-二氫呋喃(15A15B)之粗混合物(186.6 g,892.1 mmol),繼而添加NEt3(124.3 mL,892.1 mmol,Sigma-Aldrich 471283)。將容器置放於帕爾振盪器上且用H2使其飽和。在添加45 psi H2後,振盪反應混合物直至起始物質完全耗盡為止(HPLC及LCMS展示完全反應)。用氮氣吹洗反應混合物,經CeliteTM過濾且用EtOAc沖洗。在旋轉蒸發器上濃縮濾液,得到棕色油狀物,將其溶解於Et2O中且用水(2×)洗滌。用1 N HCl水溶液(5×250 mL)萃取乙醚相,用Et2O(3×)洗滌,且接著用6 N NaOH水溶液鹼化至pH 12至14。用CH2Cl2(4×)萃取鹼性水相,且用飽和NH4Cl水溶液洗滌合併之有機萃取物,經MgSO4乾燥,且經二氧化矽墊過濾,用CH2Cl2至25% EtOAc/己烷溶離。在減壓下濃縮所需濾液,得到呈淡棕色油狀之16(121.8 g,84% GCMS+NMR純度)。GCMS(Agilent HP-5MS 30 m×250 μm×0.25 μm管柱,在60℃下加熱2分鐘,經15分鐘加熱至300℃,流速為1毫升/分鐘)M+1: 182.0(11.44分鐘)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 182.10(2.61分鐘)。1H NMR(300 MHz,CDCl3) δ 6.97(td,J=8.1,6.3 Hz,1H),6.43-6.35(m,2H),5.21-5.13(m,1H),4.54(s,2H),4.16-4.07(m,1H),3.90-3.81(m,1H),2.23-2.00(m,4H) ppm。如下再獲得數批產物:用飽和NaHCO3水溶液、鹽水洗滌合併之乙醚相,經Na2SO4乾燥,傾析且在減壓下濃縮。真空蒸餾(約15托)油狀物,在101℃至108℃下收集餾出物。在2℃下向蒸餾出之油狀物於EtOH(1體積)中之正經攪拌的溶液中緩慢添加5 M HCl(1當量)之iPrOH溶液。使所得懸浮液達到室溫,用EtOAc(3體積,體積/體積)稀釋,且攪拌2小時。藉由過濾收集白色固體,用EtOAc洗滌,且在減壓下乾燥,得到第二批呈HCl鹽形式之產物。將母液濃縮成漿料,用EtOAc稀釋且藉由過濾收集固體,用EtOAc洗滌,且在真空中乾燥,得到HCl鹽作為第三批產物。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 182.10(2.58分鐘)。1H NMR(300 MHz,CDCl3) δ 10.73(br.s,3H),7.66(d,J=8.1 Hz,1H),7.33(td,J=8.2,5.9 Hz,1H),7.13-7.05(m,1H),5.26(dd,J=9.0,6.5 Hz,1H),4.38-4.28(m,1H),4.00-3.91(m,1H),2.59-2.46(m,1H),2.30-1.95(m,3H) ppm。三批產物之總產率為76%。
實例14 製備4-溴-3-氟-2-四氫呋喃-2-基-苯胺(17)
在維持反應溫度低於約-15℃下向3-氟-2-四氫呋喃-2-基-苯胺(16)(131.9 g,92%,669.7 mmol)於甲基第三丁基醚(1.456 L)及乙腈(485 mL)中之已冷卻至-20℃之正經攪拌的溶液中分3份添加N-溴代丁二醯亞胺(120.4 g,99%,669.7 mmol,Aldrich B81255)。完成添加後,在-15℃至-10℃下繼續攪拌30分鐘。經處理之等分試樣的1H NMR顯示起始苯胺消耗96%,故再添加4.82 g NBS且在-10℃下再攪拌30分鐘。將1 N Na2S2O3水溶液(670 mL)添加至反應混合物中。移除冷卻浴槽,攪拌混合物20分鐘,接著用EtOAc稀釋。分離各層且用飽和NaHCO3水溶液(2×)、水、鹽水洗滌有機相,經Na2SO4乾燥,傾析且在減壓下濃縮,得到深琥珀色油狀物。用己烷稀釋殘餘物且經由二氧化矽短柱塞溶離(用25% EtOAc/己烷至50% EtOAc/己烷溶離)。在真空中濃縮所需濾液,得到呈深琥珀色油狀之17(182.9 g,90%產率;86% NMR純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 260.12(3.20分鐘)。1H NMR(300 MHz,CDCl3) δ 7.15(dd,J=8.6,7.6 Hz,1H),6.30(dd,J=8.7,1.3 Hz,1H),5.19-5,12(m,1H),4.58(s,2H),4.16-4.07(m,1H),3.90-3.81(m,1H),2.23-1.99(m,4H) ppm。
實例15 製備N-(4-溴-3-氟-6-硝基-2-四氫呋喃-2-基-苯基)-2,2,2-三氟-乙醯胺(18)
在2℃下在攪拌下經由加料漏斗經約20分鐘向三氟乙酸酐(565.3 mL,4.067 mol,Sigma-Aldrich 106232)中緩慢添加呈濃稠油狀之純4-溴-3-氟-2-四氫呋喃-2-基-苯胺(17)(123.0 g,86%,406.7 mmok)(反應溫度升高至13℃)。用無水THF(35 mL)將剩餘油狀物沖洗至反應混合物中。移除冷卻浴槽且將反應物加熱至35℃,繼而經2.5小時逐份添加NH4NO3(4.88 g×20份,1.22 mol,Sigma-Aldrich A7455),同時僅為控制放熱量所需使用冰水浴維持反應溫度在30℃與41℃之間。在完成添加後,再攪拌反應混合物10分鐘(HPLC展示99%完全反應)。將其緩慢傾注於碎冰(1.23 kg)中且攪拌1小時,形成可過濾固體沈澱物,將其收集且用水洗滌,有節制地用飽和NaHCO3水溶液洗滌,且再用水洗滌(達pH 7)。在對流烘箱中於40℃下乾燥產物隔夜且接著在減壓下於烘箱中在50℃下乾燥隔夜,得到呈米色固體狀之18(152.5 g,90%產率;96% HPLC純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 401.30(3.41分鐘)。1H NMR(300 MHz,CDCl3) δ 10.56(s,1H),8.19(d,J=6.6 Hz,1H),5.22(dd,J=10.3,6.4 Hz,1H),4.22(dd,J=15.8,7.2 Hz,1H),3.99(dd,J=16.1,7.5 Hz,1H),2.50-2.38(m,1H),2.22-2.11(m,2H),1.86-1.71(m,1H) ppm。
實例16 製備4-溴-3-氟-6-硝基-2-四氫呋喃-2-基-苯胺(19)
將N-(4-溴-3-氟-6-硝基-2-四氫呋喃-2-基-苯基)-2,2,2-三氟-乙醯胺(18)(242.3 g,604.1 mmol)、1,4-二噁烷(1.212 L)、2 M硫酸水溶液(362.4 mL,724.9 mmol)饋入反應燒瓶中,且在回流下攪拌5天(HPLC展示98%轉化)。將其冷卻,用EtOAc稀釋,用飽和NaHCO3水溶液中和,分離各層,且用EtOAc(2×)再萃取水相。用鹽水(2×)洗滌合併之有機相,經MgSO4乾燥,過濾且在真空中濃縮,得到呈棕綠色固體狀之19(181.7 g,94%產率;95% HPLC純度)。產物未經進一步純化即進入下一步。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 305.20(3.63分鐘)。1H NMR(300 MHz,CDCl3) δ 8.35(d,J=7.3 Hz,1H),7.45(s,2H),5.23-5.16(m,1H),4.23-4.14(m,1H),3.93-3.84(m,1H),2.31-1.96(m,4H) ppm。
實例17 製備2-[5-(4-胺基-2-氟-5-硝基-3-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(20)
向4-溴-3-氟-6-硝基-2-四氫呋喃-2-基-苯胺(19)(525.0 g,1.721 mol,Bridge Organics Co.)於1,4-二噁烷(4.20 L,Sigma-Aldrich 360481)中之正經攪拌的溶液中添加1.2 MNaHCO3水溶液(4.302 L,5.163 mol)。使氮氣流鼓泡通過正經攪拌之混合物2小時,繼而添加2-[5-(4,4,5,5-四甲基-1,3,2-二氧硼-2-基)嘧啶-2-基]丙-2-醇(7)(545.4 g,2.065 mol,Bridge Organics Co.)及1,1'-雙(二苯基膦基)二茂鐵二氯鈀-二氯甲烷加合物(42.16 g,51.63 mmol,Strem 460450)。在回流下攪拌反應混合物隔夜,冷卻,用EtOAc(8.4 L)稀釋且分離各層。用飽和NH4Cl水溶液洗滌有機相且接著用鹽水洗滌。用EtOAc(4 L)再萃取水相且用鹽水洗滌此有機萃取物。經MgSO4乾燥合併之有機相,經Florisil短柱塞過濾,用EtOAc溶離,且在旋轉蒸發器上濃縮濾液,得到深棕色濕固體。將此物質溶解於CH2Cl2中,加載至矽膠墊上,用己烷溶離,接著用25% EtOAc/己烷溶離,且接著用50% EtOAc/己烷溶離。在旋轉蒸發器上濃縮所需濾液,得到濃稠懸浮液,且藉由過濾收集固體,用MTBE濕磨,且在真空中乾燥,得到呈鮮黃色固體狀之20(55.8%產率,90%至97% HPLC純度)。濃縮濾液且重複上述純化,得到第二批呈鮮黃色固體狀之20(19.7%產率)。再濃縮濾液,得到深棕色油狀物且將此物質連同甲苯及最少量的CH2Cl2一起加載至二氧化矽管柱上。將其用EtOAc/己烷(0%至50%)溶離。將所需溶離份濃縮成漿料且用MTBE/己烷稀釋。藉由過濾收集固體且用最少量的MTBE洗滌,得到第三批呈鮮黃色固體狀之20(4.9%產率),三批產物之總產率為80%。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 363.48(2.95分鐘)。1H NMR(300 MHz,CDCl3) δ 8.84(d,J=1.6 Hz,2H),8.27(d,J=8.0 Hz,1H),7.62(s,2H),5.31-5.24(m,1H),4.63(s,1H),4.27-4.18(m,1H),3.97-3.87(m,1H),2.33-2.05(m,4H),1.64(s,6H) ppm。
實例18 製備2-[5-(4,5-二胺基-2-氟-3-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(21)
在氮氣下將5%鈀/碳(14.21 g,50%濕,3.339 mmol,Aldrich 330116)置放於帕爾瓶中,繼而置放MeOH(242 mL,JT-Baker 909333)及NEt3(46.54 mL,333.9 mmol,Sigma-Aldrich 471283)。將2-[5-(4-胺基-2-氟-5-硝基-3-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(20)(121.0 g,333.9 mmol)溶解於熱THF(360 mL)中,冷卻,將其添加至反應混合物中,且用另一部分THF(124 mL)沖洗。將容器置放於帕爾振盪器上且用H2使其飽和。添加45 psi H2且振盪直至完全耗盡為止(HPLC及LCMS展示完全反應)。用氮氣吹洗反應混合物,經CeliteTM過濾且用EtOAc沖洗。將其經濾紙(玻璃微纖維)再過濾且在真空中濃縮濾液。以相同規模再重複反應三次且合併各批產物,得到呈棕色固體狀之21(447 g,99%產率;93% HPLC純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 333.46(1.79分鐘)。1H NMR(300 MHz,CDCl3) δ 8.81(d,J=1.4 Hz,2H),6.69(d,J=7.3 Hz,1H),5.27-5.20(m,1H),4.73(s,1H),4.70(s,2H),4.23-4.14(m,1H),3.94-3.86(m,1H),3.22(s,2H),2.32-2.22(m,1H),2.18-1.99(m,3H),1.63(s,6H) ppm。
實例19 製備1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-四氫呋喃-2-基-1H-苯并咪唑-2-基]脲(22)
向2-[5-(4,5-二胺基-2-氟-3-四氫呋喃-2-基-苯基)嘧啶-2-基]丙-2-醇(21)(111.3 g,334.9 mmol)及1,4-二噁烷(556.5 mL,Sigma-Aldrich 360481)之正經攪拌的懸浮液中添加1-乙基-3-(N-(乙基胺甲醯基)-C-甲基硫基-亞胺亞甲基)脲(10)(93.36 g,401.9 mmol,CB Research and Development),繼而添加pH 3.5緩衝液(1.113 L),該緩衝液係藉由將三水合NaOAc(158.1 g)溶解於1 N H2SO4水溶液(1.100 L)中而製備。在回流下攪拌反應混合物隔夜(HPLC展示完全轉化),冷卻至室溫且逐份傾注(起泡)至正經攪拌之飽和NaHCO3水溶液(2.23 L)中,達到pH 8至9。攪拌此物質30分鐘,藉由過濾收集固體,用水充分洗滌達中性pH值,且接著較有節制地用EtOH洗滌。在減壓下乾燥固體,得到呈灰白黃色固體狀之22(135.2 g,94%產率;99% HPLC純度)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 429.58(2.03分鐘)。1H NMR(300 MHz,MeOD) δ 8.95(d,J=1.6 Hz,2H),7.45(d,J=6.5 Hz,1H),5.38(br.s,1H),4.27(dd,J=14.9,7.1 Hz,1H),4.01(dd,J=15.1,7.0 Hz,1H),3.37-3.29(m,2H),2.55(br.s,1H),2.19-2.07(m,2H),2.02-1.82(br.s,1H),1.63(s,6H),1.21(t,J=7.2 Hz,3H) ppm。
實例20 對掌性層析分離1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(23)
在25℃下在CHIRALPAK IC管柱(Chiral Technologies)上(用DCM/MeOH/TEA(60/40/0.1)溶離)解析1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-四氫呋喃-2-基-1H-苯并咪唑-2-基]脲(22)之外消旋樣品(133.60 g),得到呈灰白色固體狀之所需對映異構體23(66.8 g,45%產率;99.8% HPLC純度,99+% ee)。分析型對掌性HPLC滯留時間為7.7分鐘(CHIRALPAK IC 4.6×250 mm管柱,1毫升/分鐘流速,30℃)。將固體懸浮於2:1 EtOH/Et2O(5體積)中,攪拌10分鐘,藉由過濾收集,用2:1 EtOH/Et2O洗滌,且在減壓下乾燥,得到白色固體(60.6 g)。
藉由單晶X射線繞射分析確定23之結構及絕對立體化學。在裝備有密封管Cu K-α源(Cu Kα輻射,γ=1.54178 )及Apex II CCD偵測器之Bruker Apex II繞射計上獲得單晶繞射資料。選擇尺寸為0.15×0.15×0.10 mm之晶體,使用礦物油清潔,固定至顯微載片上且在Bruker APEXII系統上置於中心。獲得以倒晶格空間分離之三批40個框架以提供取向矩陣及初始晶胞參數。在完成資料收集後基於完全資料集合獲得最終晶胞參數且進行精修。基於系統消光及強度統計資料,以偏中心P21空間群解析結構且精修。
對各框架使用30秒曝光使用0.5°步幅獲得倒晶格空間之繞射資料集合達0.85 之解析度。在100(2) K下收集資料。使用APEXII軟體求得強度之積分且對晶胞參數進行精修。在資料收集後觀測晶體未展示分解跡象。如圖2所示,在結構上存在兩個對稱獨立性分子且兩個對稱獨立性分子為R型異構體。
使用Apex II軟體收集資料,精修且換算。使用SHELXS97(Sheldrick,1990)程式解析結構且使用SHELXL97(Sheldrick,1997)程式精修結構。晶體展示單斜晶胞(P21空間群)。晶格參數為a=9.9016(2) ,b=10.9184(2) ,c=19.2975(4) ,β=102.826(1)°。體積=2034.19(7)
實例21 製備1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲之甲烷磺酸鹽(23A)
向1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(23)(15.05 g,35.13 mmol)於二氯甲烷(60 mL,J.T. Baker 931533)及絕對乙醇(15 mL,Pharmco-AAPER 111000200)中之正經攪拌的懸浮液中添加甲烷磺酸(2.392 mL,36.89 mmol,Sigma-Aldrich 471356)。在室溫下攪拌直至觀測到澄清溶液為止。經約1小時緩慢添加庚烷(300 mL)且藉由過濾(在Whatman GF/F玻璃微纖維濾紙頂部使用Whatman定性第3號紙)收集固體沈澱物。在減壓下於真空烘箱中在40℃下乾燥(用硫酸鈣及氫氧化鉀脫水)隔夜,得到呈白色固體狀之23A(13.46 g,99+% HPLC純度,99+% ee)。分析型對掌性HPLC展示一種對映異構體,其滯留時間為8.6分鐘(在CHIRALPAK IC 4.6×250 mm管柱上,用CH2Cl2/MeOH/TEA(60/40/0.1)溶離,流速為1毫升/分鐘,於30℃下)。自濾液獲得第二批白色固體產物23A(4.36 g,98% HPLC純度,99+% ee)。LCMS(C18管柱,用含甲酸改質劑之10%至90% CH3CN/水梯度經5分鐘溶離)M+1: 429.58(2.03分鐘)。1H NMR(300 MHz,MeOD) δ 9.00(d,J=1.6 Hz,2H),7.67(d,J=6.1 Hz,1H),5.39(t,J=7.7 Hz,1H),4.30(dd,J=14.9,6.9 Hz,1H),4.03(dd,J=14.8,7.7 Hz,1H),3.40-3.31(m,2H),2.72(s,3H),2.70-2.60(m,1H),2.21-2.08(m,2H),1.98-1.84(m,1H),1.65(s,6H),1.22(t,J=7.2 Hz,3H) ppm。
接著可根據下文所述之流程使(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲23轉化成磷酸酯或磷酸鹽前藥。
流程1
試劑及條件:(a) N,N-二異丙基胺基磷酸二苯甲酯、四唑、23℃、DMF;(b) mCPBA、0℃至23℃、DMF;(c) H2、Pd/C、M+OH-或D2+(OH-)2、EtOH、H2O;(d) H+水溶液;(e) M+OH-水溶液。
可如流程1所示自化合物23製備式(IB)化合物。在步驟1中,用N,N-二異丙基胺基磷酸二苯甲酯及四唑處理化合物23,繼而用間氯過氧苯甲酸(mCPBA)處理,得到磷酸二苯甲酯24。在步驟2中,在M+OH-或D2+(OH-)2存在下使24氫解,得到式(IB)化合物之二陰離子形式(X=-PO(O-)2‧2M+或-PO(O-)2‧D2+)。可藉由用酸水溶液處理二陰離子形式而得到式(IB)化合物之游離酸形式(X=PO(OH)2)。可藉由用1當量M+OH-處理游離酸形式而得到式(IB)化合物之單陰離子形式(X=PO(OH)O-M+)。
流程2
試劑及條件:(a) Boc2O、DMF、23℃;(b) N,N-二異丙基胺基磷酸二苯甲酯、四唑、23℃、DMF;(c) mCPBA、0℃至23℃、DMF;(d) TFA、H2O、MeOH、DCM、23℃;(e) H2、Pd/C、M+OH-或D2+(OH-)2、EtOH、H2O;(f) H+水溶液;(g)M+OH-水溶液。
或者,可如流程2所示自化合物23製備式(IB)化合物。在步驟1中,用二碳酸二第三丁酯(Boc2O)處理化合物23,得到經保護之苯并咪唑化合物25。在步驟2中,用N,N-二異丙基胺基磷酸二苯甲酯及四唑處理化合物25,繼而用mCPBA處理,得到經保護之磷酸二苯甲酯26。在步驟3中,用三氟乙酸(TFA)處理化合物26,以移除保護基且得到磷酸二苯甲酯24。在步驟4中,在M+OH-或D2+(OH-)2存在下使24氫解,得到式(IB)化合物之二陰離子形式(X=-PO(O-)2‧2M+或-PO(O-)2‧D2+)。可藉由用酸水溶液處理二陰離子形式而得到式(IB)化合物之游離酸形式(X=PO(OH)2)。可藉由用1當量M+OH-處理游離酸形式而得到式(I)化合物之單陰離子形式(X=PO(OH)O-M+)。
流程3
試劑及條件:(a) Boc2O、DMAP、DMF、23℃;(b) N,N-二異丙基胺基磷酸二苯甲酯、四唑、23℃、DMF;(c) mCPBA、0℃至23℃、DMF;(d) TFA、DCM;(e) M+OH-或D2+(OH-)2水溶液;(f) H+水溶液;(g) M+OH-水溶液。
亦可如流程3所示自化合物23製備式(IB)化合物。在步驟1中,用2當量Boc2O在N,N-二甲基胺基吡啶(DMAP)存在下處理化合物23,得到雙保護之苯并咪唑化合物28。在步驟2中,用N,N-二異丙基胺基磷酸二苯甲酯及四唑處理化合物28,繼而用mCPBA處理,得到雙保護之磷酸二苯甲酯29。在步驟3中,用TFA處理化合物29以移除保護基。用M+OH-或D2+(OH-)2水溶液處理所得中間物,得到式(IB)化合物之二陰離子形式(X=-PO(O-)2‧2M+或-PO(O-)2‧D2+)。可藉由用酸水溶液處理二陰離子形式而得到式(IB)化合物之游離酸形式(X=PO(OH)2)。可藉由用1當量M+OH-處理游離酸形式而得到式(I)化合物之單陰離子形式(X=PO(OH)O-M+)。
實例22 製備磷酸(R)-二苯甲酯2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯(24)
在N2下於23℃下向1L圓底燒瓶中之1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(23)(10.24 g,23.66 mmol)中添加DMF(200 mL),繼而添加四唑溶液(105.2 mL之0.45 M MeCN溶液,47.32 mmol),繼而添加N-二苯甲氧基磷烷基-N-異丙基-丙-2-胺(12.26 g,11.93 mL,35.49 mmol)。再過4.5小時後,添加N-二苯甲氧基磷烷基-N-異丙基-丙-2-胺(4 mL)。再攪拌16小時後,將反應物冷卻至0℃(冰水浴),接著用mCPBA(15.17 g,61.52 mmol)處理。在0℃下攪拌混合物30分鐘,接著在23℃下攪拌30分鐘,然後將反應混合物分配於水(400 mL)與EtOAc(700 mL)之間。分離有機層,用飽和碳酸氫鈉水溶液(500 mL)、10%亞硫酸氫鈉水溶液(500 mL)、飽和碳酸氫鈉水溶液(500 mL)及鹽水(500 mL)洗滌,接著乾燥(硫酸鎂),過濾且濃縮。藉由MPLC使用ISCO COMBIFLASH牌的急驟層析純化系統(330 g管柱)(用含0%至10% EtOH之DCM線性梯度經16.5個管柱體積以200毫升/分鐘流速溶離)純化殘餘物。在真空中濃縮後,得到呈白色固體狀之磷酸(R)-二苯甲酯2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯(24)(13.89 g,20.17 mmol,85.27%)。ESMS(M+1)=689.5;1H NMR(300 MHz,CD3OD) δ 8.88(d,J=1.6 Hz,2H),7.37(d,J=6 Hz,1H),7.30(m,10H),5.38-5.33(m,1H),5.12-5.01(m,4H),4.24(dd,J=6.8,14.9 Hz,1H),3.98(dd,J=6.9,15.1 Hz,1H),3.35-3.27(m,3H),2.52(q,J=5.9 Hz,1H),2.14-2.05(m,2H),1.91(s,6H)及1.22-1.14(m,3H) ppm。
實例23 製備磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯二鈉鹽(W)
向1 L帕爾容器中饋入水(200 mL)、Pd/C(4 g,10重量%乾燥基,濕,德固賽(Degussa)型)、磷酸(R)-二苯甲酯2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯(24)(13.89 g,20.17 mmol)、EtOH(400 mL)及1 M NaOH水溶液(40.34 mL,40.34 mmol)。在50 psi H2下於帕爾振盪裝置上氫化所得混合物40分鐘。經0.22 μm聚醚碸(PES)膜過濾反應混合物,得到深色濾液。用水沖洗,得到穿過濾膜之較深色物質。使所得濾液通過矽藻土墊且深色物質不溶離直至用水沖洗矽藻土墊為止。用3體積EtOH(2100 mL)稀釋所得深色溶液(約700 mL),經0.22 μm PES膜過濾(使用4個拋棄式Corning聚苯乙烯過濾系統,編號431098)且在真空中濃縮濾液。將所得殘餘物溶解於水(100 mL)及EtOH(300 mL)中,經0.22 μm PES膜過濾,得到澄清黃色溶液,接著使其通過矽藻土柱塞(26 mm直徑×60 mm高度,用EtOH預先濕潤),用EtOH(50 mL)沖洗且接著濃縮濾液。在1 L圓底燒瓶中將所得殘餘物溶解於水(250 mL)中,接著在攪拌下經15分鐘緩慢添加1 M HCl水溶液(40 mL),得到白色固體之漿料。在完成HCl添加後20分鐘,經由經0.22 μm PES膜過濾收集固體。用水(100 mL)洗滌收集之固體,接著轉移(仍濕潤)至1 L圓底燒瓶中且在MeOH(150 mL)中製成漿料並維持30分鐘。經由過濾收集所得精細白色沈澱物,接著在真空中乾燥隔夜。用水(80 mL)處理所得游離酸(9.17 g,18.0 mmol),接著用1.0 N NaOH水溶液(36.0 mL,2當量)處理。冷凍所得溶液且凍乾,得到呈淺奶白色固體狀之磷酸[1-[5-[2-(乙基胺甲醯基胺基)-6-氟-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-5-基]嘧啶-2-基]-1-甲基-乙基]酯二鈉鹽(W)(10.206 g,18.08 mmol,89.66%,分析數據相符)。ESMS(M+1)=509.4;1H NMR(300 MHz,D2O) δ 8.58(s,2H),6.92(d,J=6.3 Hz,1H),5.13(t,J=7.5 Hz,1H),3.98-3.81(m,2H),3.04(q,J=7.2 Hz,2H),2.26(t,J=5.7 Hz,1H),1.97-1.92(m,2H),1.67(s,6H)及1.01(t,J=7.2 Hz,3H) ppm。
實例24 製備Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(25)
在23℃下向1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(23)(10.72 g,25.02 mmol)於DMF(250 mL)中之溶液/懸浮液中添加Boc2O(6.11 g,28.00 mmol)。2小時後,添加2 M氨之MeOH溶液(2 mL)以淬滅任何過量Boc2O。將淬滅之反應混合物分配於EtOAc與水(各400 mL)之間,分離有機層,用水(2×400 mL)及鹽水(400 mL)洗滌,接著經MgSO4乾燥,過濾且濃縮,得到Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(25)(12.69 g,23.58 mmol,94.26%),其未經進一步純化即可使用。ESMS(M+1)=529.3;1H NMR(300.0 MHz,CDCl3) δ 9.50(s,1H),9.02(t,J=5.3 Hz,1H),8.91(d,J=1.6 Hz,2H),7.74(d,J=6.5 Hz,1H),5.58(t,J=7.8 Hz,1H),4.64(s,1H),4.22(q,J=7.4 Hz,1H),4.05(td,J=7.8,4.3 Hz,1H),3.47(td,J=7.2,4.3 Hz,2H),2.42-2.35(m,2H),2.28-2.16(m,2H),1.75(s,9H),1.68(s,6H)及1.31(t,J=7.3 Hz,3H) ppm。
實例25 製備磷酸Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲二苯甲酯(26)
在N2下於23℃下向Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(25)(12.69 g,23.58 mmol)及四唑(3.304 g,47.16 mmol)中添加DCM(240 mL),繼而添加N-二苯甲氧基磷烷基-N-異丙基-丙-2-胺(9.775 g,9.509 mL,28.30 mmol)。在23℃下3小時後,將反應物冷卻至0℃,接著添加mCPBA(6.977 g,28.30 mmol)。在0℃下攪拌所得溶液45分鐘,接著在23℃下攪拌20分鐘。接著將反應混合物分配於DCM(50 mL)與飽和碳酸氫鈉水溶液(400 mL)之間。分離有機層,接著依次用亞硫酸氫鈉水溶液(63 g於350 mL水中)及飽和碳酸氫鈉水溶液(400 mL)洗滌,接著經硫酸鎂乾燥,過濾且在真空中濃縮。藉由MPLC使用ISCO COMBIFLASH牌的急驟層析純化系統(330 g二氧化矽管柱)(用含0%至100% EtOAc之己烷線性梯度經16個管柱體積以200毫升/分鐘溶離)純化殘餘物。在真空中蒸發含有產物之溶離份,得到磷酸Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲二苯甲酯(26)(11.92 g,15.11 mmol,64.09%)。ESMS(M+1)=789.2;1H NMR(300.0 MHz,CDCl3) δ 9.51(s,1H),9.03(t,J=5.4 Hz,1H),8.91(d,J=1.6 Hz,2H),7.73(d,J=6.5 Hz,1H),7.37-7.28(m,10H),5.58(t,J=7.8 Hz,1H),5.17-5.05(m,4H),4.23(t,J=7.5 Hz,1H),4.05(td,J=7.8,4.3 Hz,1H),3.53-3.44(m,2H),2.39(dd,J=7.9,14.5 Hz,2H),2.28-2.15(m,2H),1.98(s,6H),1.72(m,9H)及1.31(t,J=7.2 Hz,3H) ppm。
實例26 製備磷酸(R)-二苯甲酯2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯(24)
在23℃下向磷酸Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲二苯甲酯(26)(11.9 g,15.09 mmol)於DCM(300 mL)中之溶液中添加水(2.325 mL,129.1 mmol),接著添加TFA(3.441 g,2.325 mL,30.18 mmol)。1小時後,藉由tlc僅觀測到部分轉化,故再添加TFA(3.441 g,2.325 mL,30.18 mmol)。再過2.5小時後,添加MeOH(2 mL)且再攪拌混合物18小時。用1:1鹽水:飽和碳酸氫鈉水溶液(200 mL)洗滌反應混合物。用DCM(150 mL)再萃取水層,合併有機層,接著乾燥(經硫酸鎂),過濾且在真空中濃縮。將所得殘餘物再溶解於EtOAc(200 mL)中,用水(150 mL)及鹽水(100 mL)洗滌,接著乾燥(硫酸鎂),過濾且濃縮,得到呈白色固體狀之磷酸(R)-二苯甲酯2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯(24)(10.21 g,14.83 mmol,98.27%)。ESMS(M+1)=689.4;1H NMR(300 MHz,CD3OD) δ 8.88(d,J=1.6 Hz,2H),7.37(d,J=6 Hz,1H),7,30(m,10H),5.38-5.33(m,1H),5.12-5.01(m,4H),4.24(dd,J=6.8,14.9 Hz,1H),3.98(dd,J=6.9,15.1 Hz,1H),3.35-3.27(m,3H),2.52(q,J=5.9 Hz,1H),2.14-2.05(m,2H),1.91(s,6H)及1.22-1.14(m,3H) ppm。
實例27 製備磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯二鈉鹽(W)
向1 L圓底燒瓶中饋入磷酸(R)-二苯甲酯2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯(24)(9.37 g,13.61 mmol)、EtOH(300 mL)、水(150 mL)、Pd/C(10重量%乾燥基,濕,德固賽型,3 g)及1 M NaOH水溶液(27.22 mL,27.22 mmol)。將懸浮液抽真空3分鐘(針至泵),接著置放於氫氣氛圍(氣球)下。在23℃下攪拌2.5小時後,經0.22 μm PES膜(拋棄式Corning過濾系統,1 L,聚苯乙烯,編號431098)過濾反應物以移除催化劑且用EtOH(50 mL)洗滌。濃縮所得溶液,將殘餘物溶解於水(80 mL)中,用MeCN(80 mL)處理,接著冷凍且凍乾,得到呈白色固體狀之磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯二鈉鹽(W)(7.10 g,12.81 mmol,94.12%)。ESMS(M+1)=509.3;1H NMR(300 MHz,D2O) δ 8.58(s,2H),6.92(d,J=6.3 Hz,1H),5.13(t,J=7.5 Hz,1H),3.98-3.81(m,2H),3.04(q,J=7.2 Hz,2H),2.26(t,J=5.7 Hz,1H),1.97-1.92(m,2H),1.67(s,6H)及1.01(t,J=7.2 Hz,3H) ppm。
實例28 製備二Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(28)
向1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(23)(1.333 g,3.111 mmol)於DMF(30 mL)中之溶液/懸浮液中添加DMAP(38.01 mg,0.3111 mmol),繼而添加Boc2O(1.426 g,1.501 mL,6.533 mmol)。30分鐘後,用水及EtOAc(各300 mL)稀釋反應混合物,分離有機層,用水及鹽水(各300 mL)洗滌,接著經硫酸鎂乾燥,過濾且濃縮。藉由MPLC使用ISCO COMBIFLASH牌的急驟層析純化系統(80 g二氧化矽管柱)(用含0%至60% EtOAc之己烷線性梯度經20個管柱體積以60毫升/分鐘流速溶離)純化殘餘物。合併所需產物溶離份且蒸發,得到呈澄清泡沫狀之二Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(28)(1.43 g,2.275 mmol,73.11%)。ESMS(M+1)=629.3;1H NMR(300.0 MHz,CDCl3) δ 8.95(d,J=1.6 Hz,2H),8.31-8.27(m,1H),8.05(d,J=6.5 Hz,1H),5.80-5.68(m,1H),4.70(s,1H),4.21-4.09(m,1H),3.98(d,J=6.4 Hz,1H),3.42-3.37(m,2H),2.45-2.00(m,4H),1.65(s,6H),1.62(s,9H),1.37(s,9H)及1.28-1.21(m,3H) ppm。
實例29 製備磷酸二Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲二苯甲酯(29)
在N2下於23℃下向二Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲(28)(1.13 g,1.797 mmol)及四唑(251.8 mg,3.594 mmol)中添加DCM(30 mL),繼而添加N-二苯甲氧基磷烷基-N-異丙基-丙-2-胺(744.7 mg,724.4 μL,2.156 mmol)。攪拌18小時後,將反應物冷卻至0℃,接著用mCPBA(531.5 mg,2.156 mmol)處理。在0℃下攪拌反應物15分鐘,接著在23℃下攪拌30分鐘。接著將所得溶液分配於EtOAc與飽和碳酸氫鈉水溶液(各300 mL)之間,分離有機層,接著用10%亞硫酸氫鈉水溶液、飽和碳酸氫鈉水溶液及鹽水(各300 mL)洗滌,接著經硫酸鎂乾燥,過濾且濃縮。藉由MPLC使用ISCO COMBIFLASH牌的急驟層析純化系統(80 g二氧化矽管柱)(用含0%至80% EtOAc之己烷線性梯度經20個管柱體積以60毫升/分鐘流速溶離)純化殘餘物。合併所需產物溶離份且蒸發,得到呈澄清玻璃狀油狀之磷酸二Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲二苯甲酯(29)(1.03 g,1.159 mmol,64.50%)。ESMS(M+1)=889.5;1H NMR(300.0 MHz,CDCl3) δ 8.93(d,J=1.5 Hz,2H),8.31(s,1H),8.04(d,J=6.4 Hz,1H),7.36-7.26(m,10H),5.83-5.70(m,1H),5.16-5.05(m,4H),4.24-4.18(m,1H),4.03-3.97(m,1H),3.42-3.36(m,2H),2.43-2.05(m,4H),1.98(s,6H),1.64(s,9H),1.40(s,9H)及1.26(t,J=7.2 Hz,3H) ppm。
實例30 製備磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯鈉鹽(W)
在23℃下向磷酸二Boc-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲二苯甲酯(29)(121 mg,0.1361 mmol)於DCM(10 mL)中之溶液中添加TFA(5 mL)。2小時後,在真空中濃縮反應混合物。將殘餘物溶解於MeOH(6 mL)中且用約0.5 mL 2 M NH3之MeOH溶液處理(以完全溶解物質)。在製備型HPLC逆相Sunfire製備型C18 OBD 5 μM管柱(19×100 mm;用10%至90% MeCN水溶液+0.1% TFA緩衝液線性梯度經15分鐘以20毫升/分鐘流速溶離)上以6次注射純化所得溶液。彙集含有產物之溶離份且凍乾。將所得物質懸浮於MeOH(3 mL)中,在23℃下攪拌30分鐘,接著經由經塑膠玻璃料(plastic frit)過濾收集沈澱物。使所得白色固體再經受MeOH漿料(3 mL)處理,接著經由過濾收集,在乾燥後得到68 mg白色固體。用0.10 M NaOH水溶液(2.68 mL,2當量NaOH)處理白色固體,得到溶液,接著使其通過具有0.45 μm PTFE膜之Acrodisc CR 13 mm針筒過濾器,用水(2 mL)沖洗。用MeCN(3 mL)處理所得溶液,冷凍且凍乾,得到呈白色粉末狀之磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯鈉鹽(W)。ESMS(M+1)=509.2;1H NMR(300 MHz,D2O) δ 8.58(s,2H),6.92(d,J=6.3 Hz,1H),5.13(t,J=7.5 Hz,1H),3.98-3.81(m,2H),3.04(q,J=7.2 Hz,2H),2.26(t,J=5.7 Hz,1H),1.97-1.92(m,2H),1.67(s,6H)及1.01(t,J=7.2 Hz,3H) ppm。
實例31 於液體培養基中之敏感性測試
可藉由在液體培養基中進行敏感性測試來測試本發明化合物之抗微生物活性。該等分析在指導該等實踐之最新CLSI文件之準則範圍內進行:「M07-A8 Methods for Dilution A ntimicrobial Susceptibility Tests for Bacteria that Grow Aerobically;Approved Standard-第8版(2009)」。其他出版物(諸如「實驗室醫學中之抗生素(Antibiotics in Laboratory Medicine)」(由V. Lorian編,出版商Williams and Wilkins,1996))提供實驗室抗生素測試之基本實踐技術。所用特定方案如下:
第1號方案:使用微量稀釋培養液方法進行化合物之旋轉酶MIC測定
材料:
圓底96孔微量滴定盤(Costar 3788)
繆勒-幸頓II瓊脂培養盤(MHII;BBL預混合)
繆勒-幸頓II液體培養液(MHII;BBL預混合)
BBL Prompt接種系統(Fisher B26306)
測試讀取鏡(Fisher)
具有劃線接種成單一群落之細菌的瓊脂培養盤,新鮮製備
無菌DMSO
人類血清(U.S. Biologicals S1010-51)
裂解馬血(Laked horse blood)(Quad Five 270-100)
刃天青0.01%
史泊格多利(Sprague Dawley)大鼠血清(U.S. Biologicals 1011-90B或Valley BioMedical AS3061SD)
彙集小鼠血清(Valley BioMedical AS3054)
菌株(培養基、培養液及瓊脂):
1. 金黃色葡萄球菌,ATCC編號29213
a. MHII
b. MHII+50%人類血清
c. MHII+50%大鼠血清
d. MHII+50%小鼠血清
2. 金黃色葡萄球菌,ATCC編號29213 GyrB T173I(MHII)
3. 金黃色葡萄球菌,JMI菌種中心菌株;參見表5(MHII)
4. 表皮葡萄球菌,JMI菌種中心菌株;參見表5(MHII)
5. 糞腸球菌,ATCC編號29212(MHII+3%裂解馬血)
6. 屎腸球菌,ATCC編號49624(MHII+3%裂解馬血)
7. 糞腸球菌,JMI菌種中心菌株;參見表5(MHII+3%裂解馬血)
8. 屎腸球菌,JMI菌種中心菌株;參見表5(MHII+3%裂解馬血)
9. 肺炎鏈球菌,ATCC編號10015(MHII+3%裂解馬血)
10. 肺炎鏈球菌,JMI菌種中心菌株;參見表5(MHII+3%裂解馬血)
11. β-溶血性鏈球菌(A群、B群、C群、G群),JMI菌種中心菌株;參見表5(MHII+3%裂解馬血)
12. 臘狀桿菌(Bacillus cereus),ATCC 10987(MHII)
13. 臘狀桿菌,ATCC 14579(MHII)
14. 枯草桿菌(Bacillus subtilis),ATCC 6638(MHII)
15. 枯草桿菌(168),ATCC 6051(MHII)
接種物製備(對於除金黃色葡萄球菌(+50%血清)以外的所有菌株):
1. 使用BBL Prompt套組,自如上所示生長於適當瓊脂培養基上之培養物選出5個大或10個小的經充分分離之群落且接種1 mL於套組中提供之無菌生理食鹽水。
2. 渦旋各孔約30秒,得到約108個細胞/毫升之懸浮液。可藉由析出此懸浮液之稀釋液來確定實際密度。
3. 對於各盤所測試之化合物,藉由將0.15 mL細胞轉移至15 mL(約106個細胞/毫升)之無菌培養液(或參見下文)中來按1/100稀釋懸浮液,接著渦旋以混合。若測試1個盤以上的化合物(>8種化合物),則相應地增加體積。
a. 對於糞腸球菌、屎腸球菌及肺炎鏈球菌:使用14.1 mL MHII+0.9 mL裂解馬血。
4. 使用50 μl細胞(約5×104個細胞)接種各含有50 μl於培養液(參見下文)中稀釋之藥物的微量滴定孔。
藥物稀釋、接種、MIC測定:
1. 通常在100% DMSO中以12.8 mg/mL濃度製備所有藥物/化合物儲液。
2. 在50 μL DMSO中將藥物/化合物儲液稀釋至200×所需最終濃度。若MIC之起始濃度為8 μg/mL最終濃度,則需要6.25 μL儲液+43.75 μL DMSO。將各200×儲液置放於新96孔微量滴定盤之行1之各別列中。
3. 將25 μL DMSO添加至含有200×化合物儲液之微量滴定盤的所有列之行2至12中且自行1至行11連續稀釋25 μL,在各行之後更換吸頭。亦即,25 μL化合物+25 μL DMSO=2×稀釋液。在各系列末端保留「無化合物」DMSO孔用於對照。
4. 對於所測試之各菌株(例外為金黃色葡萄球菌+50%人類血清),使用Matrix移液器準備兩個具有50 μL MHII培養液之微量滴定盤。
5. 將0.5 μL各稀釋液(用Matrix自動移液器)轉移至50 μL培養基/微量滴定孔中,然後添加50 μL細胞。在於培養基+細胞中1/200稀釋後,化合物之通常起始濃度為8 μg/mL-化合物濃度在微量滴定盤之各列上以2×步幅遞減。一式兩份測定所有MIC。
6. 用50 μl已稀釋之細胞懸浮液(參見上文)接種所有孔達100 μl之最終體積。
7. 在添加接種物後,用手動多注式移液器充分混合各孔;在同一微量滴定盤中使用相同吸頭自低藥物濃度向高藥物濃度進行。
8. 在37℃下培育微量滴定盤至少18小時。
9. 在18小時後用測試讀取鏡觀察微量滴定盤且將MIC記錄為未觀測到生長(孔中光學透明)之最低藥物濃度。
製備金黃色葡萄球菌+50%人類血清、金黃色葡萄球菌+50%大鼠血清或金黃色葡萄球菌+50%小鼠血清。
1. 藉由組合15 mL MHII+15 mL人類血清(總共30 mL)來製備50%血清培養基。當測試1個以上化合物培養盤時,以30 mL增量增加體積。
2. 使用如上文所述之相同之BBL Prompt金黃色葡萄球菌(ATCC編號29213)接種物,藉由將0.15 mL細胞轉移至30 mL(約5×105個細胞/毫升)上文所製備之50%人類血清培養基中來按1/200稀釋且加以渦旋以混合。
3. 用100 μL於50%血清培養基中之細胞填充所需數目之微量滴定盤之所有測試孔。
4. 將0.5 μL各化合物稀釋液(用Matrix自動移液器)轉移至100 μL細胞/培養基中。在於培養基+細胞中1/200稀釋後,化合物之通常起始濃度為8 μg/mL-化合物濃度在微量滴定盤之各列上以2×步幅遞減。一式兩份測定所有MIC。
5. 用手動多注式移液器充分混合各孔;在同一微量滴定盤中使用相同吸頭自低藥物濃度向高藥物濃度進行。
6. 在37℃下培育培養盤至少18小時。培育後,將25 μL 0.01%刃天青添加至各孔中且再繼續在37℃下培育至少1小時或直至刃天青變色為止。
7. 用測試讀取鏡觀察培養盤且記錄MIC。當使用刃天青時,無生長之孔中染料顏色自深藍色變成亮粉紅色。使用染料變成粉紅色之最低藥物濃度為MIC。
第2號方案:使用微量稀釋培養液方法測定化合物針對革蘭氏陰性菌之旋轉酶MIC
材料:
圓底96孔微量滴定盤(Costar 3788)
繆勒-幸頓II瓊脂培養盤(MHII;BBL預混合)
繆勒-幸頓II液體培養液(MHII;BBL預混合)
BBL Prompt接種系統(Fisher b26306)
測試讀取鏡(Fisher)
具有劃線接種成單一群落之細菌的瓊脂培養盤,新鮮製備無菌DMSO
菌株(MHII培養基(用於所有菌株);培養液及瓊脂):
1. 大腸桿菌,ATCC編號25922
2. 大腸桿菌,JMI菌種中心菌株,參見表5
3. 大腸桿菌,AG100 WT
4. 大腸桿菌,AG100 tolC
5. 鮑氏不動桿菌(Acinetobacter baumannii),ATCC編號BAA-1710
6. 鮑氏不動桿菌,ATCC編號19606
7. 鮑氏不動桿菌,JMI菌種中心菌株,參見表5
8. 肺炎克雷伯氏桿菌,ATCC編號BAA-1705
9. 肺炎克雷伯氏桿菌,ATCC編號700603
10. 肺炎克雷伯氏桿菌,JMI菌種中心菌株,參見表5
11. 卡它莫拉氏菌,ATCC編號25238
12. 卡它莫拉氏菌,ATCC編號49143
13. 卡它莫拉氏菌,JMI菌種中心菌株,參見表5
14. 流行性感冒嗜血桿菌,ATCC 49247
15. 流行性感冒嗜血桿菌(Rd1 KW20),ATCC 51907
16. 流行性感冒嗜血桿菌Rd0894(AcrA-)
17. 流行性感冒嗜血桿菌,JMI菌種中心菌株,參見表5
18. 綠膿桿菌PAO1
19. 綠膿桿菌,JMI菌種中心菌株,參見表5
20. 奇異變形桿菌(Proteus mirabilis),JMI菌種中心菌株,參見表5
21. 陰溝腸桿菌(Enterobacter cloacae),JMI菌種中心菌株,參見表5
22. 嗜麥芽窄食單胞菌(Stenotrophomonas maltophilia),ATCC BAA-84
23. 嗜麥芽窄食單胞菌ATCC13637
接種物製備:
1. 使用BBL Prompt套組,自生長於瓊脂培養基上之培養物選出5個大或10個小的經充分分離之群落且接種1 mL來自套組之無菌生理食鹽水。
2. 渦旋各孔約30秒,得到約108個細胞/毫升之懸浮液。可藉由析出此懸浮液之稀釋液來確定實際密度。
3. 對於各盤所測試之化合物,藉由將0.15 mL細胞轉移至15 mL(約106個細胞/毫升)之無菌培養液(參見下文)中來按1/100稀釋懸浮液,加以渦旋以混合。若欲測試1個盤以上的化合物(>8種化合物),則相應地增加體積。
4. 使用50 μl細胞(約5×104個細胞)接種各含有50 μl於培養液(參見下文)中稀釋之藥物的微量滴定孔。
藥物稀釋、接種、MIC測定:
1. 通常在100% DMSO中以12.8 mg/mL濃度製備所有藥物/化合物儲液。
2. 在50 μL DMSO中將藥物/化合物儲液稀釋至200×所需最終濃度。若MIC之起始濃度為8 μg/mL最終濃度,則需要6.25 μL儲液+43.75 μL DMSO。將各200×儲液置放於新96孔微量滴定盤之行1之各別列中。
3. 將25 μL DMSO添加至含有200×化合物儲液之微量滴定盤的所有列之行2至12中且自行1至行11連續稀釋25 μL,在各行之後更換吸頭。亦即,25 μL化合物+25 μL DMSO=2×稀釋液。在各系列末端保留「無化合物」DMSO孔用於對照。
4. 對於所測試之各菌株,使用Matrix移液器準備兩個具有50 μL MHII培養液之微量滴定盤。
5. 將0.5 μL各稀釋液(用Matrix自動移液器)轉移至50 μL培養基/微量滴定孔中,然後添加50 μL細胞。在於培養基+細胞中1/200稀釋後,化合物之通常起始濃度為8 μg/mL-化合物濃度在微量滴定盤之各列上以2×步幅遞減。一式兩份測定所有MIC。
6. 用50 μl已稀釋之細胞懸浮液(參見上文)接種所有孔達100 μl之最終體積。
7. 在添加接種物後,用手動多注式移液器充分混合各孔;在同一微量滴定盤中使用相同吸頭自低藥物濃度向高藥物濃度進行。
8. 在37℃下培育培養盤至少18小時。
9. 在18小時後用測試讀取鏡觀察培養盤且將MIC記錄為未觀測到生長(孔中光學透明)之最低藥物濃度。
第3號方案:使用瓊脂稀釋法對化合物進行旋轉酶MIC測定
材料:
皮氏培養盤(Petri plate),60×15 mm(Thermo Scientific目錄號:12567100)
離心管,15 mL(Costar)
BBL Prompt接種系統(Fisher b26306)
具有劃線接種成單一群落之細菌的瓊脂培養盤,新鮮製備無菌DMSO
GasPakTM培育容器(BD目錄號:260672)
GasPakTM EZ厭氧菌容器系統囊(BD目錄號:260678)
GasPakTM EZ C02容器系統囊(BD目錄號:260679)
GasPakTM EZ Campy容器系統囊(BD目錄號260680)
菌株:
1. 難養芽胞梭菌ATCC BAA-1382;
2. 難養芽胞梭菌,CMI菌種中心菌株,參見表4
3. 產氣莢膜梭菌(Clostridium perfringens),CMI菌種中心菌株,參見表4
4. 脆弱擬桿菌(Bacteroides fragilis)及擬桿菌屬(Bacteroides spp.),CMI菌種中心菌株,參見表4
5. 梭桿菌屬(Fusobacterium spp.),CMI菌種中心菌株,參見表4
6. 消化鏈球菌屬(Peptostreptococcus spp.),CMI菌種中心菌株,參見表4
7. 普雷沃氏菌屬(Prevotella spp.),CMI菌種中心菌株,參見表4
8. 淋病奈瑟氏菌ATCC 35541
9. 淋病奈瑟氏菌ATCC 49226
10. 淋病奈瑟氏菌,JMI菌種中心菌株,參見表4
11. 腦膜炎奈瑟氏菌,JMI菌種中心菌株,參見表4
培養基製備及生長條件:
根據CLSI出版物『M11-A7 Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria;Approved Standard-第7版(2007)』製備經推薦用於各微生物物種之生長培養基,例外為根據「M07-A8 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically;Approved Standard-第8版(2009)」製備用於淋病奈瑟氏菌及腦膜炎奈瑟氏菌之培養基。
培養盤傾注:
1. 如表1中所述製備各測試化合物之100×藥物儲液。使用15 mL離心管,將100 μL各藥物儲液添加至10 mL熔融瓊脂(在水浴中冷卻至約55℃)中。藉由翻轉管2×-3×來混合,接著傾注至個別標記之60×15 mm皮氏培養皿中。
2. 常規測試濃度為0.002 μg/mL至16 μg/mL(14個培養盤)。
3. 傾注4個無藥物培養盤:2個培養盤作為陽性對照,2個培養盤作為好氧菌對照。
4. 使培養盤乾燥。當天使用或在室溫下儲存隔夜或在4℃下儲存至多3天。
5. 針對所放置之藥物濃度及菌株相應地標記培養盤。
需要維持厭氧環境之細胞的生長:
1. 儘可能快速地進行以厭氧細菌進行之所有研究;在不到30分鐘內完成在生物安全箱(亦即有氧環境)中進行之研究,然後使細胞回到厭氧腔室中。
2. 使用GasPakTM腔室培育厭氧菌。大盒式腔室(VWR 90003-636)需要2個厭氧囊(VWR 90003-642),而高圓柱體式腔室(VWR 90003-602)僅需要1個厭氧囊。
培養盤接種(在生物安全箱中進行):
1. 如上文所述將各菌株劃線接種至個別瓊脂培養盤上。針對所需時間及環境條件(亦即厭氧、微量好氧等)進行培育。
2. 使用直接群落懸浮法使數個菌環量(loopful)之新鮮劃線接種之細胞在約4 mL 0.9% NaCl2中懸浮且加以渦旋。
3. 將懸浮液調整至O.D.600 0.05(5×10e7 cfu/mL)。加以渦旋以混合。
4. 將約0.2 mL經調整之混合培養物轉移至96孔培養盤中。當測試5個菌株時,所有菌株一起排成單列。當測試>5個菌株時,將菌株轉移至培養盤中且不超過5個菌株成單列。此為適合於小培養盤上所需。
5. 使用多注式移液器,將0.002 mL來自所製備之96孔培養盤之各菌株點加於各MIC測試培養盤上。此產生約1×10e5個群落形成單位/斑點。當測試難養芽胞梭菌時,菌株在生長時群集,然而多注式移液器斑點之間的距離足夠遠而使得群集細胞不會損害分析結果。
a. 首先接種2個無藥物培養盤,而另外2個無藥物培養盤在MIC測試培養盤後最後接種。前者及後者用作生長及接種對照。將來自各組無藥物對照組之一個培養盤與MIC培養盤一起在所需氛圍條件下培育且以有氧方式培育一組培養盤以測試好氧細菌之污染。在用嚴格厭氧菌或微量好氧菌株進行研究時有氧培養對生長具負面性。使用淋病奈瑟氏菌時會看見某些生長。
6. 乾燥接種物(視需要維持較短時間),接著在具有適當數目之囊袋的GasPak中倒置且培育。
7. 在37℃下於5% CO2環境中培育奈瑟氏菌屬(Neisseria spp.)24小時。
MIC測定:
在恰當培育時間後檢驗測試培養盤且在相較於陽性對照培養盤上之生長外觀而言測試培養盤上生長外觀出現顯著減少之濃度下讀取MIC終點。
表1 用於使用瓊脂稀釋法測定MIC的化合物稀釋液
方案4.用於分支桿菌屬( Mycobacterium species)之MIC測定程序
材料
圓底96孔微量滴定盤(Costar 3788)或類似物
培養盤密封膜(PerkinElmer,TopSeal-A,編號6005250或其類似物)
含0.2%甘油之Middlebrook 7H10培養液
含0.2%甘油之Middlebrook 7H10瓊脂
Middlebrook OADC增菌液
結核分枝桿菌之接種物製備:
1. 使用所製備之儲存於-70℃下之冷凍結核分枝桿菌儲液。在7H10培養液+10% OADC中培養結核分枝桿菌,接著以100 Klett或5×107 cfu/ml之濃度冷凍。
2. 藉由移取1 ml冷凍儲液且將其添加至19 ml 7H10培養液+10% OADC中來製備1:20稀釋液(最終濃度為2.5×106 cfu/ml)。
3. 由此稀釋液製備第二1:20稀釋液,移取1 ml且將其添加至19 ml新鮮培養液中。此為欲添加至96孔培養盤中之最終接種物。
康查分枝桿菌、鳥分枝桿菌、膿腫分枝桿菌及諾卡氏菌屬( Nocardia spc.)之接種物製備:
1. 以10 Klett或5×107個/毫升之濃度使用所製備之冷凍培養物儲液或在7H10培養液中培養之新鮮培養物。
2. 藉由移取1.0 ml培養物儲液且將其添加至19 ml 7H10培養液中來製備1:20稀釋液(最終濃度為2.5×106 cfu/ml)。
3. 由此稀釋液製備1:20稀釋液,移取1 ml且將其添加至19 ml新鮮培養液中(最終懸浮液)。
培養盤製備:
1. 標記培養盤。
2. 使用多注式電子移液器將50 μl 7H10培養液+10% OADC添加至所有用於MIC測定之孔中。
3. 製備欲測試之藥物的儲備溶液(例如1 mg/ml濃度)。
4. 加以融化且使用7H10培養液+10% OADC稀釋冷凍儲備溶液,得到4×所測試最大濃度之工作溶液(例如最終濃度為32 μg/ml,所測試最高濃度為8 μg/ml)。稀釋液由儲備溶液製成。為以1 μg/ml之濃度為起始濃度,以4 μg/ml製備藥物,因此起始濃度為1 μg/ml。移取25 μl 1 mg/ml儲液且添加至6.2 ml培養液中。在培養液中製得所有藥物稀釋液。
5. 將50 μl之4×工作溶液添加至指定列之第一個孔中。對於欲測試之所有化合物繼續。使用多注式電子移液器,混合4×稀釋且連續稀釋之化合物直至第11個孔。棄去剩餘之50 μl。使用第12個孔作為陽性對照。
6. 在37℃下培育結核分枝桿菌之培養盤約18天;培育鳥分枝桿菌及康查分枝桿菌之培養盤約7天;培育諾卡氏菌屬及膿腫分枝桿菌之培養盤約4天;該等培養盤由密封膜密封。
7. 目視讀取且記錄結果。將MIC記錄為未觀測到生長(孔中光學透明)之最低藥物濃度。
方案5.結核分枝桿菌血清轉變MIC分析之方案
材料與試劑:
Costar(編號3904)黑邊平底96孔微量滴定盤
含0.2%甘油之Middlebrook 7H9培養液(BD271310)
Middlebrook OADC增菌液
胎牛血清
觸酶(Sigma C1345)
右旋糖
NaCl2
BBL Prompt接種系統(Fisher B26306)
具有劃線接種成單一群落之細菌的瓊脂培養盤(含0.2%甘油及OADC增菌液之Middlebrook 7H11)
無菌DMSO
培養基製備:
1. 對於血清轉變MIC,需要三種不同培養基,其皆具有7H9+0.2%甘油之基質。重要的是,在MIC之前對所有培養基及補充物進行殺菌。
2. 製備以下所有培養基且如下一部分中所述接種。使用各培養基針對Mtb測試所有化合物。
a. 7H9+0.2%甘油+10% OADC(「標準」MIC培養基)。
b. 7H9+0.2%甘油+2 g/L右旋糖+0.85 g/L NaCl+0.003 g/L觸酶(0% FBS)。
c. 2×7H9+0.2%甘油+2 g/L右旋糖+0.85 g/L NaCl+0.003 g/L觸酶,與等體積胎牛血清組合(50% FBS)。
接種物製備:
1. 使用BBL Prompt選出5至10個經充分分離之群落且接種1 ml來自套組中之無菌生理食鹽水。通常,培養盤在用於此分析時因為此生物體在培養中生長緩慢而已用於培養兩至三週。
2. 渦旋培養盤之孔,接著在水浴中音波處理30秒,得到約108個細胞/毫升之懸浮液。可藉由析出此懸浮液之稀釋液來確定實際密度。
3. 在三種培養基調配物中之每一者中藉由1/200稀釋BBL Prompt懸浮液得到約106個細胞/毫升之起始細胞密度(例如:將0.2 ml細胞轉移至40 ml培養基中)來製備接種物。
4. 使用100 μl細胞(約5×104個細胞)接種含有1 μl於DMSO中之藥物(參見下文)的各微量滴定孔。
藥物稀釋、接種、MIC測定:
1. 在100% DMSO中以10 mM製備對照藥物儲液異菸肼及新生黴素,同時分別在50% DMSO及100% DMSO中以1 mM製備環丙沙星及利福平。製備稀釋液:將100 μL儲備溶液分配至96孔培養盤之第一行中。藉由自行1轉移50 μl至行2中之50 μl DMSO中而在整個列上製備各化合物之11步2倍連續稀釋液。自行2直至行11連續轉移50 μL,同時在各行時混合並更換吸頭。保留行12僅具有DMSO作為對照。
2. 將1 μl各稀釋液轉移至空微量滴定孔中,然後添加100 μl細胞。異菸肼及新生黴素在於培養基+細胞中稀釋後的起始濃度為100 μM;環丙沙星及利福平在於培養基+細胞中稀釋後的起始濃度為10 μM。化合物濃度跨越微量滴定盤之各列以2×步幅遞減。在三種培養基條件中之每一者下一式兩份測定所有MIC。
3. 測試化合物組通常為10 mM及50 μL體積。
4. 使用多注式移液器,自母培養盤之各行移取全部體積且轉移至新96孔微量滴定盤之第一行中。對於母培養盤上之各行化合物重複,轉移至新96孔培養盤之行1中。
5. 如上文對於對照化合物所述,使用DMSO作為稀釋劑來產生各化合物之2倍11點稀釋液。在所有狀況下,保留行12僅含DMSO而用作對照。在完成所有稀釋後,再將1 μl各稀釋液轉移至空微量滴定孔中,然後添加100 μl細胞,如對於對照化合物所進行。
6. 用100 μl已稀釋之細胞懸浮液(參見上文)接種所有孔。
7. 添加接種物後,藉由平緩地輕敲培養盤側面來混合培養盤。
8. 在含濕氣37℃腔室中培育培養盤9天。
9. 在第9天,將25 μl 0.01%無菌刃天青添加至各孔中。在激發492 nm、發射595 nm下量測背景螢光,且使培養盤回到培育箱中再維持24小時。
24小時後,在激發492 nm、發射595 nm下量測各孔之螢光。
如下計算既定化合物之抑制百分比:抑制百分比=100-([孔螢光-平均背景螢光]/[DMSO對照值-平均背景螢光]×100)。對於所有三種培養基條件將MIC評定為在既定培養基條件下抑制刃天青還原(『抑制%』)信號70%的最低化合物濃度。
表2展示所選之本發明化合物的MIC分析結果。
在表2及後續表以及實例中,「化合物12」對應於1-乙基-3-[5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲且「化合物13」指化合物12之甲磺酸鹽。同樣,「化合物23」對應於1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲且「化合物23A」指化合物23之甲磺酸鹽。此等編號與如上述實例中所用之用於識別該等化合物及鹽的編號相同。
表2-所選化合物之MIC值
表3展示所選之本發明化合物的MIC90分析結果。
表3-所選化合物針對革蘭氏陽性、革蘭氏陰性及厭氧病原體組之MIC90值
表3A亦展示所選之本發明化合物的MIC分析結果。在表3A中,「化合物23A」對應於1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-[(2R)-四氫呋喃-2-基]-1H-苯并咪唑-2-基]脲之甲烷磺酸鹽(23A)。同樣,「化合物W」對應於磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯二鈉鹽(W)。此等編號與上述合成實例中用於識別該等化合物的編號相同。
表3A.所選化合物之MIC值
在下表4中,術語「CMI」表示位於Wilsonville,Oregon之臨床微生物學學會(Clinical Microbiology Institute)。
表4:用於產生MIC90數據之厭氧生物體組
在下表5中,術語「JMI」表示位於North Liberty,Iowa之瓊斯微生物學學會(Jones Microbiology Institute)。
表5:用於產生MIC90數據之革蘭氏陽性及革蘭氏陰性生物體組
實例32 小鼠金黃色葡萄球菌腎感染模型
動物:雌性CD-1小鼠(8至10週大;6隻/組)係自Charles River實驗室獲得且根據實驗動物照護及使用指南(Guide to the Care and Use of Experimental Animals)加以圈養並維持。
細菌菌株及儲液
二甲氧苯青黴素敏感性金黃色葡萄球菌(MSSA)菌株ATCC 29213係自美國菌種中心獲得。為製備用於動物研究之儲液,將金黃色葡萄球菌接種於繆勒-幸頓瓊脂培養盤上且在37℃下培育隔夜。使用培養盤中之3至4個群落接種5 mL繆勒-幸頓培養液(MHB),在37℃下在以300 RPM振盪下培育8小時。將5 mL 8小時培養物按20倍稀釋成100 mL且培育隔夜(12至14小時)。以3000×使細菌集結持續20分鐘且用含有0.5%牛血清白蛋白(BSA)之磷酸鹽緩衝生理食鹽水(PBS)洗滌兩次。冷凍在PBS/20%甘油中含有約1×1010 cfu之等分試樣(1 mL)且儲存於-80℃下直至使用當天為止。藉由連續稀釋且接種於繆勒-幸頓瓊脂培養盤上來確定儲液效價。
小鼠金黃色葡萄球菌腎感染模型
在接種之前,融化細菌儲液且用PBS/BSA洗滌一次。接著用PBS/BSA將儲液稀釋至1×109 cfu/mL之最終濃度,得到體積為100 μL之每隻小鼠約1×108 cfu至2×108 cfu的接種物。在初步實驗中發現此接種物最佳,在初步實驗中,使用106-109個金黃色葡萄球菌生物體/小鼠之攻擊劑量在感染後第26小時形成約106個群落形成單位/腎負荷而無死亡(資料未示)。在此等初步研究中,以少於107個群落形成單位/小鼠之金黃色葡萄球菌攻擊會誘發不一致之慢性感染或不誘發慢性感染,而109個群落形成單位/小鼠之劑量在高百分比之小鼠中引起快速發病及死亡。使用無菌30號針經由尾靜脈靜脈內給與注射劑。在小鼠感染完成後,接種用於攻擊小鼠之細菌儲液且加以計數以確定接種物之濃度。
為在所示之感染後時間(最常為第2小時至第26小時)評定細菌負荷,使小鼠安樂死且以無菌方式收集腎,且置放於無菌PBS/BSA(每對腎5 mL)中。在無菌條件下使用手持式均質機(Powergen 125;Fisher Scientific)將腎均質化。在收集及均質化期間,將所有樣品保持在冰上且在各樣品之間充分洗滌均質機且加以殺菌。在無菌PBS/BSA中連續稀釋勻漿且接種於MH瓊脂上以測定每對腎細菌計數。
表6.化合物23A降低小鼠金黃色葡萄球菌腎感染模型之金黃色葡萄球菌負荷
用2×108個群落形成單位/小鼠之金黃色葡萄球菌(ATCC 29213)靜脈內攻擊CD-1小鼠(6隻/組)。經由經口管飼10ml/kg媒劑(10% VitE TPGS)或10 mg/kg、30 mg/kg、100 mg/kg化合物23A來處理攻擊後兩小時之小鼠。處理30分鐘及6小時處理組一次,而24小時組在首次給藥後第10小時接受第二次處理。在處理後遞增量之時間(30分鐘、6小時或24小時)後,使小鼠安樂死且收集腎,加以均質化且接種以定量金黃色葡萄球菌負荷。計算各小鼠之成對腎之負荷以及各組小鼠之中值。
結果:經口投與之化合物23A針對以實驗方式誘發之腎MSSA(SA 29213)感染展現活體內功效。在初始處理後第30分鐘,經化合物處理之小鼠與經媒劑處理之小鼠之間的腎負荷不存在差異。30分鐘媒劑處理組用作早期對照以用於在後續時間點比較化合物作用。在首次給藥後第6小時,相較於時間匹配媒劑對照組,所有化合物處理皆使得腎中之細菌負荷降低0.4 log至0.6 log。另外,相較於30分鐘早期對照組,以30 mg/kg及100 mg/kg投與之化合物23A引起0.3 log至0.4 log降低。
在24小時之處理時段後(包括在第10小時投與之第二劑處理),觀測到所有處理組之細菌密度相較於時間匹配媒劑對照組皆有所降低。相較於24小時媒劑處理對照組,以30 mg/kg及100 mg/kg每天兩次投與之化合物23A引起2.8 log至2.9 log降低,而10 mg/kg化合物23A(每天兩次)較可變且引起1.8 log降低。另外,相較於30分鐘媒劑處理對照組,以30 mg/kg及100 mg/kg投與之化合物23A展示約1.5 log降低,此指示殺細菌活性。
概括而言且如上文在表6中所示,30 mg/kg及100 mg/kg化合物23A每天兩次給藥會在第6小時及第24小時評定時間相較於30分鐘對照組減少二甲氧苯青黴素敏感性金黃色葡萄球菌(MSSA)菌株ATCC 29213之細菌生長,而用10 mg/kg化合物23A處理會在第6小時限制細菌生長,但在第24小時相較於其他處理組有效性較低。
用2×108個群落形成單位/小鼠之金黃色葡萄球菌(ATCC 29213)靜脈內攻擊CD-1小鼠(6隻/組)。在2小時後,使單組小鼠(早期對照組(EC))安樂死且收集腎,加以均質化且接種以定量金黃色葡萄球菌負荷。經由經口管飼10 ml/kg媒劑(10% VitE TPGS;後期對照組,LC)、10 mg/kg、30 mg/kg、60 mg/kg、100 mg/kg化合物23A來處理其他組之感染小鼠。24小時後,使各組經處理小鼠安樂死且收集腎,加以均質化且接種以定量金黃色葡萄球菌負荷。彙總各小鼠之成對腎之負荷以及各組小鼠之中值。
結果:概括而言且如上文在表7中所示,化合物23A單次經口給藥針對以實驗方式誘發之腎MSSA(SA 29213)感染展現活體內功效。在24小時後,相較於時間匹配媒劑對照組,所有處理組皆展示細菌密度降低。化合物23A在以10 mg/kg、30 mg/kg、60 mg/kg或100 mg/kg投與時相較於媒劑對照組展現1.9 log、2.3 log、3.1 log及3.3 log降低之劑量依賴性降低。另外,相較於早期對照組,60 mg/kg及100 mg/kg劑量之化合物23A使細菌負荷降低1.2 log至1.4 log,表示化合物23A具有殺細菌活性。
用2×108個群落形成單位/小鼠之金黃色葡萄球菌(ATCC 29213)靜脈內攻擊CD-1小鼠(8隻/組)。在2小時後,使單組小鼠(早期對照組(EC))安樂死且收集腎,加以均質化且接種以定量金黃色葡萄球菌負荷。經由經口管飼10 ml/kg媒劑(水;後期對照組,LC)來處理其他組之感染小鼠,以16 mg/kg、49 mg/kg、99 mg/kg或166 mg/kg標稱劑量投與化合物W,該等標稱劑量預期傳遞10 mg/kg、30 mg/kg、60 mg/kg或100 mg/kg化合物23A,活性部分劑量當量在完成換算後為10 mg/kg、30 mg/kg、60 mg/kg、100 mg/kg。24小時後,使各組經處理小鼠安樂死且收集腎,加以均質化且接種以定量金黃色葡萄球菌負荷。彙總各小鼠之成對腎之負荷以及各組小鼠之中值。
結果:概括而言且如上文在表8中所示,化合物W單次經口給藥針對以實驗方式誘發之腎MSSA(SA 29213)感染展現活體內功效。在24小時後,相較於時間匹配媒劑對照組,所有處理組皆展示細菌密度降低。化合物W在以16 mg/kg、49 mg/kg、99 mg/kg及166 mg/kg(提供10 mg/kg、30 mg/kg、60 mg/kg或100 mg/kg化合物24之等效暴露量)投與時相較於媒劑對照組展現1.9 log、2.3 log、2.7 log、2.6 log及3.0 log降低之劑量依賴性降低。另外,相較於早期對照組,16 mg/kg、49 mg/kg、99 mg/kg及166 mg/kg劑量之化合物W使細菌負荷降低0.7 log至1.5 log,表示化合物23A具有殺細菌活性。
實例33 嗜中性白血球減少症大鼠大腿感染模型
動物: 體重為76公克至100公克之無特定病原體之雄性史泊格多利大鼠係自Charles River Laboratories,Inc.(Wilmington,MA)獲得且用於此實驗中。在開始研究之前使動物適應最少七(7)天。
細菌: 使用二甲氧苯青黴素敏感性金黃色葡萄球菌(MSSA)ATCC菌株29213進行活體內實驗。在標準微生物瓊脂培養基(含5%綿羊血之胰蛋白酶大豆瓊脂)上繼代培養測試分離株兩次。在用於製備大腿感染模型接種物之前24小時內進行第二次轉移。
嗜中性白血球減少症大鼠大腿感染模型: 為誘發嗜中性球減少症,在感染前三天藉由腹膜內(IP)注射投與1 ml之150 mg/kg免疫抑制劑環磷醯胺(cyclophosphamide)來處理大鼠。藉由將0.2 ml之107 cfu/ml二甲氧苯青黴素敏感性金黃色葡萄球菌29213於生理食鹽水中之懸浮液經肌肉內(IM)注射至兩條後大腿中來使大鼠感染。隨時間經過(2小時至26小時),收集各動物之兩條後大腿,用無菌生理食鹽水沖洗,稱重,接著置於50 ml無菌生理食鹽水中且置於濕冰上直至均質化為止。使全部均質化樣品體積之約一半通過大微孔過濾器(以移除軟骨及聚集之大組織塊),在生理食鹽水中稀釋且培養於瓊脂培養基培養盤(含5%綿羊血之胰蛋白酶大豆瓊脂)上。在約37℃下培育所有培養盤18至24小時。計算群落形成單位數(以每毫升勻漿之群落形成單位計)且計算各處理組及對照組之中值。通常,各組n=6;每隻腿視作個別數目。將每組之群落形成單位數中值/毫升與第2小時之初始細菌密度(早期對照組)或同時收集之時間匹配媒劑對照組(後期對照組;LC)相比較。
藉由用約2×106個群落形成單位/大腿之金黃色葡萄球菌(ATCC 29213)肌肉內(IM)攻擊使嗜中性白血球減少症大鼠(3隻/組)感染。在2小時後,使單組大鼠(早期對照組(EC))安樂死且收集大腿,加以均質化且接種以定量金黃色葡萄球菌負荷。藉由經口管飼10 ml/kg媒劑(20% Cavitron/1% HPMCAS-MG;後期對照組,LC)或10 mg/kg、30 mg/kg、60 mg/kg化合物23A來處理其他受感染之大鼠。8小時處理組接受單次處理(QD)且在處理(QD)後第8小時使其安樂死且收集大腿以測定群落形成單位數,而24小時處理組接受2次相隔12小時之給藥(q12h)且在處理後第24小時使其安樂死且收集大腿。測定各個別大腿之負荷且彙總群落形成單位數/毫升以及各組3隻大鼠之中值。
結果:如上文在表8中所示,經口投與之化合物23A針對MSSA(SA 29213)展現活體內功效。在首次給藥後第8小時,所有組之負荷相較於時間匹配對照組皆有所降低,10 mg/kg化合物23A組降低約1.3 log且30 mg/kg及60 mg/kg化合物23A組降低約2 log。相較於早期對照組,10 mg/kg化合物23A將SA 29213之細菌生長保持至至少停滯點,而60 mg/kg及100 mg/kg化合物23A使細菌負荷略微降低約0.5 log至0.6 log。
24小時後且在第12小時投與第二劑處理後,觀測到所有處理組之細菌密度相較於後期對照組降低約2.4 log至2.8 log。觀測到相較於早期對照組,10 mg/kg化合物23A組降低約0.8 log,而30 mg/kg及60 mg/kg化合物23A組降低約1.1 log至1.2 log。
藉由用約2×106個群落形成單位/大腿之金黃色葡萄球菌(ATCC 29213)肌肉內(IM)攻擊使嗜中性白血球減少症大鼠(3隻/組)感染。在2小時後,使單組大鼠(早期對照組(EC))安樂死且收集大腿,加以均質化且接種以定量金黃色葡萄球菌負荷。藉由經口管飼10 ml/kg媒劑(10%維生素E/TPGS;後期對照組,LC)或30 mg/kg、60 mg/kg、100 mg/kg化合物13來處理其他感染之大鼠。8小時處理組接受單次處理(QD)且在處理(QD)後第8小時使其安樂死且收集大腿以測定群落形成單位數,而24小時處理組接受2次相隔12小時之給藥(q12h)且在處理後第24小時使其安樂死且收集大腿。測定各個別大腿之負荷且對於各組彙總群落形成單位數/個別大腿以及各組3隻大鼠之中值。
結果:如上文在表9中所示,經口投與之化合物13針對MSSA(SA 29213)展現活體內功效。觀測到三個處理組之間存在抗細菌活性程度之差異。在首次給藥後第8小時,所有組之負荷相較於時間匹配對照組皆有所降低,10 mg/kg化合物13組降低約1.5 log且60 mg/kg及100 mg/kg化合物13組降低約1.7 log及1.8 log。在首次給藥後第8小時,10 mg/kg化合物13將SA 29213之細菌生長保持至至少停滯點,而60 mg/kg及100 mg/kg化合物13相較於早期對照組分別使細菌負荷略微降低約0.4 log及約0.5 log。在24小時後且在第12小時投與第二劑處理後,60 mg/kg及100 mg/kg化合物13組之細菌密度相較於早期對照組展現約1 log降低。相反,以30 mg/kg投與之化合物13未顯現有效性,其中群落形成單位量可變且比早期對照組平均大0.3 log。然而,相較於後期對照組,所有劑量皆使細菌密度有所降低。觀測到10 mg/kg處理組降低約1.1 log,而觀測到60 mg/kg及100 mg/kg劑量組降低2.85 log及約3 log。
概括而言,60 mg/kg及100 mg/kg化合物13之q12h給藥會在第8小時及第24小時評定時間相較於初始對照組減少SA 29213之細菌生長,而用30 mg/kg處理會在第8小時限制細菌生長,但在第24小時相較於其他處理組有效性較低。
實例34 大鼠七天口服(管飼)毒性及毒物動力學研究
此研究之目的為:1)評估化合物13及化合物23A在藉由管飼法經口投與雄性大鼠連續7天時之潛在毒性;及2)評定化合物13及化合物23A在首次及第七次給藥後之毒物動力學。
動物 物種、來源、歷史及理由
Crl:CD(SD)大鼠係自Stone Ridge,NY之Charles River Laboratories獲得。該等動物皆在實驗室育種且未經實驗處理。選擇大鼠之原因在於其為常用於非臨床毒性評估之物種。
數目、性別、年齡及體重範圍
訂購四十隻大鼠(20隻未插管雄性大鼠及20隻具有頸靜脈插管之雄性大鼠)。在此等動物中,使用15隻未插管雄性大鼠及15隻已插管之雄性大鼠。動物之年齡儘可能均一。大鼠皆為發育期前至年輕成年大鼠,在開始給藥時約9週大。其由供應商計算之出生日期保留於研究記錄中。在分配至各組時動物之體重範圍為218.5 g至306.3 g。
研究設計
如下表10所示分配大鼠。動物藉由經口管飼接受測試物品或媒劑連續7天且在完成給藥後第二天終止。將給藥第一天指定為研究之第1天。評估動物之臨床體征、體重及如下文所述之其他參數的變化。
表10:分組及劑量
途徑/劑量
藉由以每公斤體重10 mL之給藥體積每日一次經口管飼連續7天來分別投與組A及組B至D媒劑及測試物品。藉由以每公斤體重10 mL之給藥體積每日兩次(相隔約8小時)經口管飼連續7天來分別投與組E及組F測試物品及媒劑。基於各動物之最近體重計算投與各動物之實際體積且加以調整。
存活期觀測及量測 觀測
在整個研究期間在早晨觀測動物之活力至少一次且在下午觀測動物之活力一次,相隔至少4小時。在處理時段期間,在給藥前及給藥後(僅在首次給藥後)進行每日籠子旁觀測且記錄。基於來自先前研究之兩種化合物之Cmax/Tmax在以下時間進行在處理期間進行之給藥後觀測:對於組A至組F,給藥後1小時。
在屍體解剖當天進行一次籠子旁觀測。
非預定觀測
在除預定觀測時間以外的時間觀測到之任何發現將記錄於非預定觀測上或Provantis中;然而,在整個研究期間未觀測到異常。Provantis為此項技術中常用之電子資料收集、管理及報導系統。
體重
在開始給藥之前,在第1天量測體重以進行隨機化。在處理期間,在第1天及第7天量測體重。另外,在屍體解剖之前量測禁食體重以計算器官重/體重比率。
食物消耗量
在整個研究期間,自開始給藥前3天開始每日量測食物消耗量。
臨床病理學評估
在屍體解剖之前自後眼眶叢(在CO2/O2麻醉下,對於主要研究動物)或頸靜脈插管(對於毒物動力學動物)收集所有動物之血液樣品以評估血液學、凝血及血清化學參數。由於用於保持毒物動力學動物之插管開放的殘留肝素,所以來自此等大鼠之凝血樣品不能進行分析。在血液收集之前使動物禁食隔夜。在收集血液進行臨床病理學分析當天,不對動物進行屍體解剖直至收集血液且由臨床病理學小組判定樣品可接受之後為止。
血液學
在含有EDTA之管中收集適量血液。分析全血樣品之在下表11中所示之參數。
表11:全血參數
凝血
在含有檸檬酸鈉之管中收集適量血液且接著離心,得到血漿以測定凝血酶原時間(PT)及活化部分凝血活酶時間(APTT)。
血清化學
在不含抗凝血劑之管中收集適量血液。使樣品凝結且接著離心,得到血清。分析血清之在下表12中所示之參數。
表12:血清參數
毒物動力學
在給藥第1天及第7天,在下文所列之時間點自頸靜脈插管收集所有毒物動力學動物之血液樣品(每個樣品約0.5 mL)放入含有K3EDTA之管中。僅在各收集當天於第1小時時間點(在當天首次劑量投藥後)對對照組(組F)之毒物動力學動物進行單次血液收集取樣。在各次收集之前,自插管移出小量血液樣品(含肝素阻斷溶液)且棄去。將新注射器置於插管中,且獲取方案所需樣品。移出具有血液樣品之注射器,且將具有生理食鹽水之新注射器連接至插管。將血液體積置換成等體積之生理食鹽水且接著將阻斷溶液置放於插管中。使各動物回到其籠子中直至下一收集時間點為止。
將在此研究期間收集之所有樣品置放於標記之容器中。各標記含有以下資訊:1)研究數、2)動物數、3)收集時間間隔、4)分組與性別及5)收集日期。
立即藉由翻轉混合血液樣品,接著置放於濕冰上且冷卻離心(約1500 g,約10分鐘,約5℃),得到血漿。將血漿以2個等分試樣分入具有確定無RNase、DNase之可刺穿TPE capcluster蓋的96孔1.4 mL聚丙烯管中且冷凍儲存(-70℃)。
表13:樣品收集時間點
終止
在研究期間認為無動物瀕死。在處理方案規定之天數後使所有研究動物安樂死且進行屍體解剖。藉由放血(在深度CO2/O2麻醉同時切斷腹主動脈)來終止所有動物。
屍體解剖
對在研究期間終止之所有動物進行屍體解剖並收集組織。屍體解剖包括檢查以下:屍體及肌肉/骨骼系統;所有外表面及孔竅;顱腔及腦外表面;頸部及相關器官及組織;及胸腔、腹腔及骨盆腔及其相關器官及組織。
描述且記錄所有異常。
器官重量
對於在預定屍體解剖時安樂死之所有動物,對腎、肝臟及前列腺進行稱重。在稱重後,稱取約1公克肝臟及腎樣品,轉移至Precellys 7 mL CK28組織均質化管(目錄號0904-01)中,瞬間冷凍且加以分析。
使用在屍體解剖之前獲得之最終禁食體重計算器官重量/體重比率。
組織保存及骨髓收集
自所有動物收集下表14中所示之組織及器官且除睾丸、附睾及眼睛以外保存於10%中性緩衝福馬林(formalin)中。在經改良戴維森氏溶液(Modified Davidson’s Solution)中固定睾丸、附睾及眼睛以及所連接之視神經約24至48小時,用水沖洗,且接著轉移至10%中性緩衝福馬林中以儲存。
表14:組織收集
組織病理學
對於預定進行最終屍體解剖之所有動物,將腎、肝臟及前列腺包埋於石蠟中,切片且用蘇木精(hematoxylin)及伊紅(eosin)染色以藉由光學顯微鏡作進一步檢查。僅對於組A、D、E及F,將上列之剩餘組織包埋於石蠟中,切片且用蘇木精及伊紅染色以藉由光學顯微鏡作進一步檢查。
統計分析
適當時,以統計學方式評估數值型動物資料。
對於比較統計,將組A(對照組)與組B及C(處理組,每日一次給藥)相比且將組F(對照組,每日兩次給藥)與組E(處理組,每日兩次給藥)相比。使用利文氏檢驗(Levene Test)針對變異數均齊性且使用夏皮羅-威爾克檢驗(Shapiro-Wilks Test)針對分佈正態性評估數據,在p 0.05下具顯著性。藉由變異數分析(ANOVA)評估確定具均齊性且具正態分佈之數據。若ANOVA確定在p 0.05下具顯著性,則使用參數檢驗(杜奈特氏檢驗(Dunnett Test))將各處理組與各別對照組進行逐對比較以識別統計學差異(p 0.05)。使用克魯斯凱-沃利斯檢驗(Kruskal-Wallis Test)針對群組因數顯著性評估確定具非均齊性或具非正態分佈之數據。若各組之間存在顯著性(p 0.05),則使用非參數檢驗(威爾卡遜檢驗(Wilcoxon)及龐費洛尼-荷姆檢驗(Bonferroni-Holm))將處理組與對照組進行比較。自適當時段排除動物之出現溢出之食物消耗量數據。食物消耗量數據限於使用杜奈特氏檢驗(參數檢驗)進行比較統計分析。不對測試前(測試前第4天至第1天)食物消耗量進行統計分析。
結果
不同劑量之化合物23A及化合物13之暴露具劑量相關性。未觀測到用化合物13或化合物23A處理之動物在平均體重方面存在不利觀測結果或影響。用化合物13(100 mg/kg或200 mg/kg)每日一次處理之動物及用化合物23A(300 mg/kg)每日兩次處理之動物在研究之不同時段期間的平均食物消耗量有所降低。然而,由於化合物13組及化合物23A組中食物消耗量降低與體重變化無關,所以此等影響不被認為不利或生物學上顯著。當相較於每天兩次處理之對照組時,每天兩次投與300 mg/kg化合物23A之大鼠組的平均鈣離子濃度(CA)在統計學上較低,而平均ALT及AST在統計學上較高。對於以任何給藥方案接受化合物13或化合物23A之動物未注意到測試物品相關之組織病理學研究結果。
在此研究範疇內且基於不存在體重、臨床病理學及組織病理學之變化,經由管飼法每天一次經口投與雄性大鼠並維持7天之化合物13的NOEL(無可觀測作用量(No-Observable-Effect-Level))為200 mg/kg(844微克×小時/毫升7天AUC),而每天一次投與之化合物23A的NOEL為100 mg/kg(82微克×小時/毫升AUC)。經由管飼法每天兩次經口投與雄性大鼠並維持7天之化合物23A的NOAEL(無可觀測不利作用量)為300 mg/kg(291微克×小時/毫升AUC)。
因此,化合物13及23A在研究範疇內分別在高達200毫克/公斤/天及600毫克/公斤/天之劑量下未展現不利毒性。
實例35 雄性食蟹獼猴之口服範圍確定毒性及毒物動力學研究
此研究之目的為:1)評估化合物23在藉由管飼法經口投與雄性食蟹獼猴連續7天時之潛在毒性;及2)評定化合物23在首次給藥及第七次給藥後之毒物動力學。
動物 物種、來源、歷史及理由
食蟹獼猴(長尾猴(Macaca Fascicularis))係自PinCourt,Quebec,Canada之Primus Bio-Resources Inc.獲得。選擇食蟹獼猴之原因在於其為常用於非臨床毒性評估之非齧齒動物物種。
數目、性別、年齡及體重範圍
在研究中使用8隻(2隻未經處理及6隻經處理)雄性。動物為年輕成年動物且在開始給藥時體重為2公斤至4公斤。
研究設計
如下表15所示分配動物。動物藉由經口管飼每天一次接受化合物23或媒劑連續7天且在完成給藥後第二天終止。將給藥第一天指定為研究之第1天。基於各動物之最近體重計算投與各動物之實際體積且加以調整。
表15:分組及劑量
存活期觀測及量測 觀測
在研究期間每天至少一次記錄籠子旁臨床體征(健康不良、行為變化等)。
體重
記錄在分組之前且在第1天(給藥前)、第3天及第7天以及最終在屍體解剖之前(禁食)所有動物之體重。
心電圖學(ECG)
在處理前時段期間獲取所有猴之心電圖(雙極肢體導聯I、II及III以及加壓單極導聯aVR、aVL及aVF)一次且再在第7天(給藥後)獲取一次。
評定指示心臟電學功能障礙之總體變化跡線。確定涉及心率(第II導聯)、竇性節律及隔室節律或導電性之異常的潛在性存在。量測心率、PR間期、QRS持續時間、QT及QTc間期值。
毒物動力學
在第1天及第7天於以下時間點自各猴收集一系列7個血液樣品(各約0.5 mL):給藥前、給藥後30分鐘及2小時、3小時、6小時、12小時及24小時。出於此目的,藉由靜脈穿刺對各猴進行取血且將樣品收集至含有抗凝血劑K2EDTA之管中。將管置於濕冰上直至準備處理為止。
臨床病理學
在開始處理之前且在第8天終止之前對所有動物進行實驗室研究(血液學、凝血、臨床化學及尿分析)。
在禁食隔夜時段(由至少12小時但不超過20小時組成)後藉由靜脈穿刺收集血液樣品。自禁食且禁水隔夜(至少12小時但不超過20小時)之動物收集尿液。
血液學
對收集至EDTA抗凝血劑中之血液樣品量測以下參數:紅血球計數、平均血球血紅素量(計算值)、血球比容(計算值)、平均血球體積、血紅素、細胞形態、白血球計數、血小板計數、白血球分類(絕對)、網狀紅血球(絕對及百分比)及平均血球血紅素濃度(計算值)。
凝血
量測收集至檸檬酸鹽抗凝血劑中之血液樣品的活化部分凝血活酶時間及凝血酶原時間。
臨床化學
對收集至含有凝血活化劑之管中的血液樣品量測以下參數:a/g比率(計算值)、肌酸酐、丙胺酸轉胺酶、球蛋白(計算值)、白蛋白、葡萄糖、鹼性磷酸酶、磷(無機)、天冬胺酸轉胺酶、鉀、膽紅素(總)、鈉、鈣、總蛋白、氯離子、三酸甘油酯、膽固醇(總)、尿素、γ麩胺醯轉移酶及山梨醇脫氫酶。
尿分析
對尿樣品量測以下參數:膽紅素、蛋白質、血液、沉渣顯微鏡檢、顏色及外觀、比重、葡萄糖、尿膽素原、酮、體積及pH值。
終止
在第8天處理時段完成後在禁食隔夜時段後使所有動物安樂死。用氯胺酮(Ketamine)預先使猴麻醉且接著藉由靜脈內過量給與戊巴比妥鈉使其安樂死,繼而藉由橫切主要血管放血。
屍體解剖
對在研究期間終止之所有動物進行屍體解剖並收集組織。屍體解剖包括檢查以下:屍體及肌肉/骨骼系統;所有外表面及孔竇;顱腔及腦外表面;頸部及相關器官及組織;及胸腔、腹腔及骨盆腔及其相關器官及組織。
描述且記錄所有異常。
組織保存
在完成大體檢查及所選器官稱重後,如下表16中所述保留組織及器官。除非另外指示,否則使用中性緩衝10%福馬林進行固定及保存。
表16. 組織及器官保留
組織病理學
對於所有動物,將上文所示之所有組織包埋於石蠟中,切片且用蘇木精及伊紅染色且藉由光學顯微鏡檢查。
結果
不同劑量之化合物23之暴露具劑量相關性。
不存在可能歸於以高達200毫克/公斤/天之劑量投與化合物23的臨床體征或體重、心電圖學參數、臨床病理學參數或器官重量之變化。同樣,不存在可明顯歸於以高達200毫克/公斤/天之劑量投與化合物23的宏觀或微觀研究結果。化合物23對雄性食蟹獼猴之無可觀測作用量(NOEL)經測定為200毫克/公斤/天。
實例36 藥物動力學研究
在下文所述之實驗中測定所選本發明化合物之藥物動力學參數。如下使用一般分析程序及特定實驗方案:
一般分析程序
在下文所述之藥物動力學實驗中使用以下一般分析程序:樣品分析:使用高效液相層析/串聯質譜(HPLC/MS/MS)方法測定化合物23及化合物W在血漿中之濃度。在提取之前,根據需要使用空白血漿2倍、4倍、5倍或10倍稀釋血漿樣品,視劑量或調配物而定。藉由用乙腈(血漿/乙腈比率為1:4)使蛋白質直接沈澱而自各100 μL之(經稀釋)血漿中提取化合物23及化合物W以及內標(IS)。在離心後,將上清液提取物(10 μL)注射至LC/MS/MS系統上。HPLC系統包括Waters Xterra MS C18管柱,5微米,2.1 mm直徑×50 mm長度,用由含0.1%甲酸之水或乙腈組成之梯度移動相溶離。
藉由MS/MS用大氣壓化學電離(APCI)以多反應監測(MRM)模式偵測分析物。定量下限(LLOQ)為1 ng/mL、2 ng/mL、4 ng/mL、5 ng/mL、10 ng/mL或20 ng/mL,視樣品稀釋因數而定。分析之線性範圍為1 ng/mL至5000 ng/mL。同日內(intra-day)及異日間(inter-day)分析精確度處於標稱值之2%範圍內。同日內及異日間分析變異數<10%。
在視劑量或調配物而定,用DMSO:乙腈:水(33:33:33)10倍至500倍或1000倍稀釋後,用HPLC/UV法分析化合物W之給藥懸浮液調配物之樣品。在視劑量或調配物而定,用DMSO:水(50:50)10倍、50倍、100倍或500倍稀釋後,用HPLC/UV法分析化合物W之給藥溶液調配物之樣品。
藥物動力學數據分析:藉由非隔室藥物動力學方法使用專業版軟體5.1.1版(Pharsight Corporation,Mountain View,CA)分析化合物23及化合物W之血漿濃度-時間關係圖。
測定關鍵藥物動力學參數,包括AUCall、AUCextrap、Cmax、tmax、Cl_obs、Vss_obs及t1/2
統計數據分析:使用WinNonlin軟體5.1.1版或Microsoft Excel 2000計算血漿濃度及藥物動力學參數估計值之描述性統計數據,包括平均值、標準差(SD)及變異係數(%CV)。
猴經口研究
藉由管飼法投與雄性食蟹獼猴(每個劑量組n=3)3 mg/kg、30 mg/kg及300 mg/kg單次標稱PO劑量之化合物W。在0.5% MC(微晶纖維素)中調配化合物W。動物在給藥之前及之後自由攝取食物及水。
在給藥之前且在給藥後第0小時(給藥前)、第0.25小時、第0.5小時、第1小時、第2小時、第3小時、第4小時、第6小時、第8小時、第12小時、第24小時、第48小時經由頸動脈導管收集血液樣品(各約0.25 mL)。將各血液樣品收集至管中,該管保持於濕冰上且含有乙二胺四乙酸鉀作為抗凝血劑。分離血漿且儲存於約-70℃下直至分析為止。
使用液相層析/串聯質譜(LC/MS/MS)方法分析血漿樣品以測定化合物23及化合物W之濃度,其中定量下限(LLOQ)為1 ng/mL至20 ng/mL,視樣品稀釋因數而定。對血漿濃度-時間數據進行非隔室藥物動力學(PK)分析。此分析之結果提供於表17中。
表17. 猴經口研究之藥物動力學數據
猴靜脈內研究
經由頸靜脈插管投與雄性食蟹獼猴(每個劑量組n=3)1 mg/kg之單次標稱靜脈內快速注射劑量的化合物W。在D5W(5%右旋糖水溶液)中調配化合物W。動物在給藥之前及之後自由攝取食物及水。
在給藥之前且在給藥後第0小時(給藥前)、第5分鐘、第10分鐘、第0.25小時、第0.5小時、第1小時、第2小時、第3小時、第4小時、第6小時、第8小時、第12小時、第24小時、第48小時經由頸動脈導管收集血液樣品(各約0.25 mL)。將各血液樣品收集至管中,該管保持於濕冰上且含有乙二胺四乙酸鉀作為抗凝血劑。分離血漿且儲存於約-70℃下直至分析為止。
使用液相層析/串聯質譜(LC/MS/MS)方法分析血漿樣品以測定化合物23及化合物W之濃度,其中定量下限(LLOQ)為1 ng/mL至20 ng/mL,視樣品稀釋因數而定。對血漿濃度-時間數據進行非隔室藥物動力學(PK)分析。此分析之結果提供於表18中。
表18. 猴靜脈內研究之藥物動力學數據
大鼠經口研究
藉由管飼法投與各組雄性史泊格多利大鼠(每個劑量組n=3)3 mg/kg、10 mg/kg、30 mg/kg、300 mg/kg單次標稱口服劑量之化合物W。在0.5% MC(微晶纖維素)或20%磺丁基醚-β-環糊精、1% HPMC-AS(乙醯基丁二酸羥丙基甲基纖維素)、1% PVP(聚乙烯吡咯啶酮)中調配化合物W。動物在給藥之前及之後自由攝取食物及水。在給藥之前且在給藥後第0小時(給藥前)、第0.25小時、第0.5小時、第1小時、第1.5小時、第2小時、第4小時、第6小時、第8小時、第12小時、第24小時經由頸動脈導管收集血液樣品(各約0.25 mL)。將各血液樣品收集至管中,該管保持於濕冰上且含有乙二胺四乙酸鉀作為抗凝血劑。分離血漿且儲存於約-70℃下直至分析為止。
使用液相層析/串聯質譜(LC/MS/MS)方法分析血漿樣品以測定化合物23及化合物W之濃度,其中定量下限(LLOQ)為1 ng/mL至20 ng/mL,視樣品稀釋因數而定。對血漿濃度-時間數據進行非隔室藥物動力學(PK)分析。此分析之結果提供於表19中。
表19. 大鼠經口研究之藥物動力學數據
大鼠靜脈內研究
經由頸靜脈插管投與各組雄性史泊格多利大鼠(每個劑量組n=3)1 mg/kg及5 mg/kg單次標稱靜脈內快速注射劑量之化合物W。在D5W中調配化合物W。動物在給藥之前及之後自由攝取食物及水。在給藥之前且在給藥後第0小時(給藥前)、第5分鐘、第10分鐘、第0.25小時、第0.5小時、第1小時、第1.5小時、第2小時、第4小時、第6小時、第8小時、第12小時、第24小時經由頸動脈導管收集血液樣品(各約0.25 mL)。將各血液樣品收集至管中,該管保持於濕冰上且含有乙二胺四乙酸鉀作為抗凝血劑。分離血漿且儲存於約-70℃下直至分析為止。
使用液相層析/串聯質譜(LC/MS/MS)方法分析血漿樣品以測定化合物23及化合物W之濃度,其中定量下限(LLOQ)為1 ng/mL至20 ng/mL,視樣品稀釋因數而定。對血漿濃度-時間數據進行非隔室藥物動力學(PK)分析。此分析之結果提供於表20中。
表20. 大鼠靜脈內研究之藥物動力學數據
小鼠經口研究
藉由管飼法投與各組雌性CD-1小鼠(每個劑量組n=3)10 mg/kg、30 mg/kg、100 mg/kg單次標稱口服劑量之化合物W。在0.5% MC中調配化合物W。動物在給藥之前及之後自由攝取食物及水。在給藥之前且在給藥後第0小時(給藥前)、第0.25小時、第0.5小時、第1小時、第1.5小時、第2小時、第4小時、第6小時、第8小時、第12小時、第24小時自下頜下靜脈收集血液樣品(各約0.025 mL)。將各血液樣品收集至管中,該管保持於濕冰上且含有乙二胺四乙酸鉀作為抗凝血劑。分離血漿且儲存於約-70℃下直至分析為止。
使用液相層析/串聯質譜(LC/MS/MS)方法分析血漿樣品,其中定量下限(LLOQ)為1 ng/mL至20 ng/mL,視樣品稀釋因數而定。對血漿濃度-時間數據進行非隔室藥物動力學(PK)分析。此分析之結果提供於表21中。
表21. 小鼠經口研究之藥物動力學數據
上文所述之研究表明化合物W至少在大鼠、狗及猴體內活體內轉化成化合物23。
實例37
酶學研究
在下文所述之實驗中測定所選本發明化合物之酶抑制活性:
DNA旋轉酶ATPase分析
藉由使經由丙酮酸激酶/乳酸脫氫酶產生ADP與NADH氧化相關聯來量測金黃色葡萄球菌DNA旋轉酶之ATP水解活性。此方法先前已有描述(Tamura及Gellert,1990,J. Biol. Chem.,265,21342)。
在30℃下於含有100 mM TRIS(pH 7.6)、1.5 mM MgCl2、150 mM KCl之緩衝溶液中進行ATPase分析。關聯系統含有2.5 mM最終濃度之磷酸烯醇丙酮酸、200 μM菸醯胺腺嘌呤二核苷酸(NADH)、1 mM DTT、30 μg/ml丙酮酸激酶及10 μg/ml乳酸脫氫酶。添加酶(最終濃度為90 nM)及所選化合物之DMSO溶液(最終濃度為3%)。在30℃下培育反應混合物10分鐘。藉由添加ATP達0.9 mM之最終濃度來開始反應,且經10分鐘時段在340奈米下監測NADH消失速率。根據速率-濃度之關係圖確定Ki及IC50值。
發現所選之本發明化合物抑制金黃色葡萄球菌DNA旋轉酶。表22展示此等化合物在金黃色葡萄球菌DNA旋轉酶抑制分析中之抑制活性。
22. 對金黃色葡萄球菌DNA旋轉酶之抑制
DNA Topo IV ATPase分析 使ATP藉由金黃色葡萄球菌TopoIV酶轉化成ADP與NADH轉化成NAD+相關聯,且藉由在340 nm下吸光度之變化來量測反應進程。在30℃下將TopoIV(64 nM)與所選化合物(最終3% DMSO)一起在緩衝液中培育10分鐘。緩衝液由以下組成:100 mM Tris(7.5)、1.5 mM MgCl2、200 mM麩胺酸鉀、2.5 mM磷酸烯醇丙酮酸、0.2 mM NADH、1 mM DTT、5 μg/mL線性化DNA、50 μg/mL BSA、30 μg/mL丙酮酸激酶及10 μg/mL乳酸脫氫酶(LDH)。用ATP開始反應,且在Molecular Devices SpectraMAX盤讀取器上於30℃下連續監測速率20分鐘。根據有關緊密結合抑制劑擬合成莫里森方程式(Morrison Equation)之速率-所選化合物濃度之關係圖確定抑制常數、Ki及IC50
發現所選之本發明化合物抑制金黃色葡萄球菌DNA Topo IV。表23展示此等化合物在金黃色葡萄球菌DNA旋轉酶抑制分析中之抑制活性。
表23. 對金黃色葡萄球菌DNA Topo IV之抑制
實例38
水溶解度研究
根據以下程序測定化合物23及化合物W之水溶解度。
樣品製備:如下製備各化合物之樣品水溶液。稱取化合物(20 mg至30 mg化合物)至4 ml透明小瓶中,然後添加水(0.5 mL)且藉由磁力攪拌器攪拌。將1.0 N HCl添加至懸浮液中,將pH值調整至所需範圍。在室溫下攪拌96小時後,經0.22微米過濾器(Millipore,Ultrafree離心過濾器,Durapore PVDF 0.22 μm,目錄號UFC30GVNB)過濾懸浮液。收集濾液且用pH計量測pH值。10倍稀釋含有化合物W之濾液以提供適用於HPLC分析之濃度。含有化合物23之濾液不需要稀釋。
製備標準溶液:根據以下程序製備各化合物之標準溶液。準確地稱取1 mg至2 mg各化合物放入10 mL容量瓶中且添加水(對於化合物W)或1:1甲醇:0.1 N HCl(對於化合物23)以完全溶解化合物。對於化合物23進行音波處理,以幫助於1:1甲醇:0.1 N HCl中溶解。當所有固體溶解時,再添加溶劑以將各溶液之體積調整至10 ml。充分混合所得溶液,得到各化合物之標準溶液。接著用溶劑2倍、10倍及100倍稀釋各標準溶液。
溶解度分析:藉由HPLC分析(Agilent 1100,注射體積10 μL,波長271 nm,管柱XTerra Phenyl 5 μm,4.6×50 mm,零件編號186001144,移動相:A:含0.1% TFA之水、含0.1% TFA之AcN)分析各樣品及各標準溶液之等分試樣。注射各標準溶液三次,且注射各樣品兩次。由HPLC之峰面積平均值相對於標準溶液濃度(基於如經過元素分析所測定之固體總水含量適當校正標準物後之重量)之關係繪圖,獲得標準曲線。由來自HPLC結果之樣品水溶液峰面積及標準曲線之斜率及截距計算各樣品之濃度。由樣品濃度與樣品之稀釋因數的乘積導出下表24中所列之溶解度值。
表24. 化合物23及W之水溶解度
實例39
肝(HEPATIC)及肝臟(LIVER)S9細胞中之活體內代謝研究
在大鼠、狗、猴及人類之肝臟及腸S9部份中研究化合物W向化合物23之轉化。在肝臟S9部份中培育0.1 μM、0.3 μM、1 μM、3 μM、10 μM、20 μM、40 μM、100 μM、200 μM、300 μM之化合物W且在腸S9部份中培育1 μM、3 μM、10 μM、20 μM、100 μM、300 μM、500 μM、1000 μM之化合物W。進行培育0分鐘、5分鐘、10分鐘、15分鐘、30分鐘、45分鐘或60分鐘。藉由LC/MS-MS定量化合物23之形成且將數據擬合成麥卡里斯-夢騰方程式(Michaelis Menten equation)。下表25中之數據指示化合物W在此等肝及腸S9部份中快速轉化為化合物23。
表25. 在肝臟及腸S9中由化合物W形成化合物23之速度(VMAX)
圖1為化合物12之兩個對稱獨立分子之熱橢球圖(thermal ellipsoid plot)。
圖2為化合物23之兩個對稱獨立分子之熱橢球圖。
(無元件符號說明)

Claims (22)

  1. 一種下式之化合物 或其醫藥學上可接受之鹽,其中R為氫或氟;X為氫、-PO(OH)2、-PO(OH)O-M+、-PO(O-)2˙2M+或-PO(O-)2˙D2+;M+為醫藥學上可接受之單價陽離子;且D2+為醫藥學上可接受之二價陽離子。
  2. 如請求項1之化合物或其醫藥學上可接受之鹽,其中該化合物具有下式: 其中R為氫或氟。
  3. 如請求項1之化合物或其醫藥學上可接受之鹽,其中該 化合物具有下式: 其中X為-PO(OH)2、-PO(OH)O-M+、-PO(O-)2˙2M+或-PO(O-)2˙D2+;M+為醫藥學上可接受之單價陽離子;且D2+為醫藥學上可接受之二價陽離子。
  4. 如請求項1之化合物或其醫藥學上可接受之鹽,其中該化合物具有下式: 其中R為氫或氟。
  5. 如請求項4之化合物或其醫藥學上可接受之鹽,其中該化合物為(R)-1-乙基-3-(5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲。
  6. 如請求項4之化合物或其醫藥學上可接受之鹽,其中該化合物為(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲。
  7. 如請求項4之化合物或其醫藥學上可接受之鹽,其中該鹽為(R)-1-乙基-3-(5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲之甲烷磺酸鹽。
  8. 如請求項4之化合物或其醫藥學上可接受之鹽,其中該鹽為(R)-1-乙基-3-(6-氟-5-(2-(2-羥基丙-2-基)嘧啶-5-基)-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-2-基)脲之甲烷磺酸鹽。
  9. 如請求項3之化合物或其醫藥學上可接受之鹽,其中X為-PO(OH)O-M+、-PO(O-)2˙2M+或-PO(O-)2˙D2+;M+係選自由以下組成之群:Li+、Na+、K+、N-甲基-D-葡糖胺及N(R9)4 +,其中各R9獨立地為氫或C1-C4烷基;D2+係選自由以下組成之群:Mg2+、Ca2+及Ba2+
  10. 如請求項9之化合物或其醫藥學上可接受之鹽,其中X為-PO(OH)O-M+或-PO(O-)2˙2M+;M+係選自由以下組成之群:Li+、Na+、K+、N-甲基-D-葡糖胺及N(R9)4 +,其中各R9獨立地為氫或C1-C4烷基。
  11. 如請求項9之化合物或其醫藥學上可接受之鹽,其中X為-PO(O-)2˙2M+;M+係選自由以下組成之群:Li+、Na+、K+、N-甲基-D-葡糖胺及N(R9)4 +,其中各R9獨立地為氫或C1-C4烷基。
  12. 如請求項9之化合物或其醫藥學上可接受之鹽,其中M+ 為Na+
  13. 如請求項3之化合物或其醫藥學上可接受之鹽,其中該化合物為磷酸(R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙-2-基酯二鈉鹽。
  14. 一種醫藥組合物,其包含如請求項1之化合物或其醫藥學上可接受之鹽及醫藥學上可接受之載劑、佐劑或媒劑。
  15. 一種醫藥組合物,其包含如請求項2之化合物或其醫藥學上可接受之鹽及醫藥學上可接受之載劑、佐劑或媒劑。
  16. 一種醫藥組合物,其包含如請求項3之化合物或其醫藥學上可接受之鹽及醫藥學上可接受之載劑、佐劑或媒劑。
  17. 一種減少或抑制生物樣品中以下細菌之細菌量的體外方法:結核分枝桿菌(Mycobacterium tuberculosis)、肺炎鏈球菌(Streptococcus pneumoniae)、表皮葡萄球菌(Staphylococcus epidermidis)、糞腸球菌(Enterococcus faecalis)、金黃色葡萄球菌(Staphylococcus aureus)、難養芽胞梭菌(Clostridium difficile)、卡它莫拉氏菌(Moraxella catarrhalis)、淋病奈瑟氏菌(Neisseria gonorrhoeae)、腦膜炎奈瑟氏菌(Neisseria meningitidis)、鳥分枝桿菌複合物(Mycobacterium avium complex)、膿腫分枝桿菌(Mycobacterium abscessus)、康查分枝桿菌 (Mycobacterium kansasii)、潰瘍分枝桿菌(Mycobacterium ulcerans)、肺炎披衣菌(Chlamydophila pneumoniae)、沙眼衣原體(Chlamydia trachomatis)、流行性感冒嗜血桿菌(Haemophilus influenzae)、釀膿鏈球菌(Streptococcus pyogenes)或β-溶血性鏈球菌(β-haemolytic streptococci),該方法包括使該生物樣品與如請求項1之化合物或其醫藥學上可接受之鹽接觸。
  18. 一種如請求項1之化合物或其醫藥學上可接受之鹽的用途,其係用於製造用以控制、處理或減輕患者之醫院或非醫院細菌感染之進展度、嚴重度或影響的藥物。
  19. 如請求項18之用途,其中該細菌感染特徵在於存在以下一或多者:結核分枝桿菌、肺炎鏈球菌、表皮葡萄球菌、糞腸球菌、金黃色葡萄球菌、難養芽胞梭菌、卡它莫拉氏菌、淋病奈瑟氏菌、腦膜炎奈瑟氏菌、鳥分枝桿菌複合物、膿腫分枝桿菌、康查分枝桿菌、潰瘍分枝桿菌、肺炎披衣菌、沙眼衣原體、流行性感冒嗜血桿菌、釀膿鏈球菌或β-溶血性鏈球菌。
  20. 如請求項19之用途,其中該細菌感染係選自以下一或多者:上呼吸道感染、下呼吸道感染、耳朵感染、胸膜肺及支氣管感染、併發性泌尿道感染、非併發性泌尿道感染、腹內感染、心血管感染、血流感染、敗血症、菌血症、CNS感染、皮膚及軟組織感染、GI感染、骨及關節感染、生殖器感染、眼睛感染或肉芽腫性感染、非併發性皮膚及皮膚結構感染(uSSSI)、併發性皮膚及皮膚結構 感染(cSSSI)、導管感染、咽炎、竇炎、外耳炎、中耳炎、支氣管炎、膿胸、肺炎、社區型感染細菌性肺炎(CABP)、醫院型感染肺炎(HAP)、醫院型感染細菌性肺炎、呼吸器相關肺炎(VAP)、糖尿病性足感染、萬古黴素抗性腸球菌感染、膀胱炎及腎盂腎炎、腎結石、前列腺炎、腹膜炎、併發性腹內感染(cIAI)及其他腹內感染、透析相關腹膜炎、內臟膿腫、心內膜炎、心肌炎、心包炎、輸血相關敗血症、腦膜炎、腦炎、腦膿腫、骨髓炎、關節炎、生殖器潰瘍、尿道炎、陰道炎、子宮頸炎、齒齦炎、結膜炎、角膜炎、眼內炎、囊腫性纖維化患者之感染或發熱性嗜中性白血球減少症患者之感染。
  21. 如請求項20之用途,其中該細菌感染係選自以下一或多者:社區型感染細菌性肺炎(CABP)、醫院型感染肺炎(HAP)、醫院型感染細菌性肺炎、呼吸器相關肺炎(VAP)、菌血症、糖尿病性足感染、導管感染、非併發性皮膚及皮膚結構感染(uSSSI)、併發性皮膚及皮膚結構感染(cSSSI)、萬古黴素抗性腸球菌感染或骨髓炎。
  22. 一種如請求項1之化合物或其醫藥學上可接受之鹽的用途,其係用於製造用以減少或抑制生物樣品中以下細菌之細菌量的藥物:結核分枝桿菌、肺炎鏈球菌、表皮葡萄球菌、糞腸球菌、金黃色葡萄球菌、難養芽胞梭菌、卡它莫拉氏菌、淋病奈瑟氏菌、腦膜炎奈瑟氏菌、鳥分枝桿菌複合物、膿腫分枝桿菌、康查分枝桿菌、潰瘍分枝桿菌、肺炎披衣菌、沙眼衣原體、流行性感冒嗜血桿菌、釀膿鏈球菌或β-溶血性鏈球菌。
TW101101534A 2011-01-14 2012-01-13 旋轉酶及拓樸異構酶iv抑制劑 TWI546298B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161432965P 2011-01-14 2011-01-14
US201161499134P 2011-06-20 2011-06-20
US201161515174P 2011-08-04 2011-08-04
US201161515249P 2011-08-04 2011-08-04

Publications (2)

Publication Number Publication Date
TW201309677A TW201309677A (zh) 2013-03-01
TWI546298B true TWI546298B (zh) 2016-08-21

Family

ID=45567120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101101534A TWI546298B (zh) 2011-01-14 2012-01-13 旋轉酶及拓樸異構酶iv抑制劑

Country Status (18)

Country Link
US (2) US8481551B2 (zh)
EP (1) EP2663557B1 (zh)
JP (1) JP6085829B2 (zh)
KR (1) KR101897952B1 (zh)
CN (1) CN103443096B (zh)
AR (1) AR084863A1 (zh)
AU (1) AU2012205415B2 (zh)
BR (1) BR112013017974B1 (zh)
CA (1) CA2824516C (zh)
CL (1) CL2013002025A1 (zh)
ES (1) ES2545516T3 (zh)
IL (1) IL227406A (zh)
MX (1) MX339455B (zh)
RU (1) RU2609259C2 (zh)
SG (1) SG191946A1 (zh)
TW (1) TWI546298B (zh)
WO (1) WO2012097269A1 (zh)
ZA (1) ZA201305233B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595002B (zh) * 2012-07-18 2017-08-11 思沛羅三南公司 (R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙烷-2-基磷酸二氫鹽之固體形式及其鹽

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012097274A1 (en) * 2011-01-14 2012-07-19 Vertex Pharmaceuticals Incorporation Process of making gyrase and topoisomerase iv inhibitors
KR101897950B1 (ko) * 2011-01-14 2018-09-12 스페로 트리넴, 인코포레이티드 자이라제 억제제 (r)­1­에틸­3­[5­[2­{1­하이드록시­1­메틸­에틸}피리미딘­5­일]­7­(테트라하이드로푸란­2­일}­1h­벤즈이미다졸­2­일]우레아의 고체 형태
RU2625305C2 (ru) * 2011-01-14 2017-07-13 Сперо Тринем, Инк. Твердые формы ингибитора гиразы (r)-1-этил-3-[6-фтор-5[2-(1-гидрокси-1-метил-этил) пиримидин-5-ил]-7-(тетрагидрофуран-2-ил)-1н-бензимидазол-2-ил] мочевины
AU2012205415B2 (en) 2011-01-14 2017-02-02 Spero Therapeutics, Inc. Pyrimidine gyrase and topoisomerase IV inhibitors
TWI554515B (zh) * 2011-06-20 2016-10-21 維泰克斯製藥公司 旋轉酶(gyrase)及拓樸異構酶抑制劑之磷酸酯
US9572809B2 (en) 2012-07-18 2017-02-21 Spero Trinem, Inc. Combination therapy to treat Mycobacterium diseases
CA2938459A1 (en) 2014-02-03 2015-08-06 Spero Gyrase, Inc. Antibacterial compounds
BR112019000290B1 (pt) * 2016-07-07 2022-10-18 Cyclerion Therapeutics, Inc Prófármacos de fósforo dos estimuladores da sgc
JPWO2018174288A1 (ja) 2017-03-24 2020-01-23 大正製薬株式会社 2(1h)−キノリノン誘導体
US20200345637A1 (en) * 2018-01-19 2020-11-05 Aiviva Biopharma, Inc. Suspension compositions of multi-target inhibitors
CN109464471B (zh) * 2019-01-17 2023-09-19 广西医科大学 一种铜绿假单胞菌家兔脓胸脓絮状物生物膜模型建立方法
CN109464472B (zh) * 2019-01-17 2023-09-15 广西医科大学 一种铜绿假单胞菌家兔脓胸引流管生物膜模型建立方法
CA3236710A1 (en) * 2021-10-26 2023-05-04 Spero Therapeutics, Inc. Human efficacious dose and dosage schedule of spr720

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2015676A1 (de) 1970-04-02 1971-10-21 Farbenfabriken Bayer Ag, 5090 Leverkusen Neue Imine der 2-Formyl-chinoxalindi-N-oxidcarbon-säure-(3) und deren Salze, Verfahren zu ihrer Herstellung und ihre Verwendung als antimikrobielle Mittel
US4174400A (en) 1978-09-13 1979-11-13 Merck & Co., Inc. Anthelmintic benzimidazoles
US4512998A (en) 1980-10-20 1985-04-23 Schering Corporation Anthelmintic benzimidazole carbamates
CA2028530A1 (en) 1989-11-21 1991-05-22 Christian Hubschwerlen Substituted pyrimidobenzimidazole derivatives
AU695814B2 (en) 1993-09-22 1998-08-20 Xoma Corporation Method of treating gram-negative bacterial infection by administration of bactericidal/permeability-increasing (bpi) protein product and antibiotic
DK0754050T3 (da) 1994-01-14 2002-10-21 Xoma Technology Ltd Anti-gram-positive bakterielle fremgangsmåder og materialer
DE19514313A1 (de) 1994-08-03 1996-02-08 Bayer Ag Benzoxazolyl- und Benzothiazolyloxazolidinone
HRP960159A2 (en) 1995-04-21 1997-08-31 Bayer Ag Benzocyclopentane oxazolidinones containing heteroatoms
US5643935A (en) 1995-06-07 1997-07-01 The University Of North Carolina At Chapel Hill Method of combatting infectious diseases using dicationic bis-benzimidazoles
TW538046B (en) 1998-01-08 2003-06-21 Hoechst Marion Roussel Inc Aromatic amides having antiobiotic activities and the preparation processes, intermediates and pharmaceutical composition thereof
AUPP873799A0 (en) 1999-02-17 1999-03-11 Fujisawa Pharmaceutical Co., Ltd. Pyridine compounds
US6156373A (en) 1999-05-03 2000-12-05 Scimed Life Systems, Inc. Medical device coating methods and devices
GB9911594D0 (en) 1999-05-19 1999-07-21 Smithkline Beecham Plc Novel compounds
GB9912413D0 (en) 1999-05-28 1999-07-28 Pfizer Ltd Compounds useful in therapy
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US7419678B2 (en) 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US20040018228A1 (en) 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
PT1341769E (pt) * 2000-12-15 2007-12-31 Vertex Pharma Inibidores de girase bacteriana e suas utilizações
US20030229390A1 (en) 2001-09-17 2003-12-11 Control Delivery Systems, Inc. On-stent delivery of pyrimidines and purine analogs
US20040044405A1 (en) 2001-10-25 2004-03-04 Wolff Matthew R. Vascular stent or graft coated or impregnated with protein tyrosine kinase inhibitors and method of using same
US6939376B2 (en) * 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US20030204168A1 (en) 2002-04-30 2003-10-30 Gjalt Bosma Coated vascular devices
CN101538263A (zh) * 2002-06-13 2009-09-23 沃泰克斯药物股份有限公司 作为促旋酶和/或拓扑异构酶iv的抑制剂用于治疗细菌感染的2-脲基-6-杂芳基-3h-苯并咪唑-4-羧酸衍生物和相关化合物
DE60309701T2 (de) 2002-06-13 2007-09-06 Vertex Pharmaceuticals Inc., Cambridge 2-ureido-6-heteroaryl-3h-benzoimidazol-4-carbonsäurederivate und verwandte verbindungen als gyrase und/oder topoisomerase iv inhibitoren zur behandlung von bakteriellen infektionen
US8193352B2 (en) 2003-01-31 2012-06-05 Vertex Pharmaceuticals Incorporated Gyrase inhibitors and uses thereof
US7582641B2 (en) 2003-01-31 2009-09-01 Vertex Pharmaceuticals Incorporated Gyrase inhibitors and uses thereof
US8404852B2 (en) 2003-01-31 2013-03-26 Vertex Pharmaceuticals Incorporated Gyrase inhibitors and uses thereof
US7618974B2 (en) 2003-01-31 2009-11-17 Vertex Pharmaceuticals Incorporated Gyrase inhibitors and uses thereof
US7569591B2 (en) 2003-01-31 2009-08-04 Vertex Pharmaceuticals Incorporated Gyrase inhibitors and uses thereof
AR042956A1 (es) * 2003-01-31 2005-07-13 Vertex Pharma Inhibidores de girasa y usos de los mismos
CN101171247A (zh) * 2005-03-04 2008-04-30 阿斯利康(瑞典)有限公司 作为dna促旋酶和拓扑异构酶抑制剂的吡咯衍生物
AU2006311729A1 (en) 2005-11-07 2007-05-18 Vertex Pharmaceuticals Incorporated Benzimidazole derivatives as gyrase inhibitors
GB0612428D0 (en) 2006-06-22 2006-08-02 Prolysis Ltd Antibacterial agents
US8481544B2 (en) 2006-06-22 2013-07-09 Biota Europe Limited Antibacterial compositions
GB0724349D0 (en) 2007-12-13 2008-01-30 Prolysis Ltd Antibacterial agents
JP2010511682A (ja) 2006-12-04 2010-04-15 アストラゼネカ アクチボラグ 抗菌性の多環系尿素化合物
GB0724342D0 (en) 2007-12-13 2008-01-30 Prolysis Ltd Anitbacterial compositions
WO2009156966A1 (en) 2008-06-25 2009-12-30 Ranbaxy Laboratories Limited Benzothiazoles and aza-analogues thereof use as antibacterial agents
WO2011032050A2 (en) 2009-09-11 2011-03-17 Trius Therapeutics, Inc. Gyrase inhibitors
MX339000B (es) 2009-10-16 2016-05-09 Melinta Therapeutics Inc Compuestos antimicrobianos y metodos para fabricar y utilizar los mismos.
AU2011313820A1 (en) 2010-10-08 2013-04-11 Biota Europe Ltd Antibacterial compounds
RU2625305C2 (ru) 2011-01-14 2017-07-13 Сперо Тринем, Инк. Твердые формы ингибитора гиразы (r)-1-этил-3-[6-фтор-5[2-(1-гидрокси-1-метил-этил) пиримидин-5-ил]-7-(тетрагидрофуран-2-ил)-1н-бензимидазол-2-ил] мочевины
KR101897950B1 (ko) * 2011-01-14 2018-09-12 스페로 트리넴, 인코포레이티드 자이라제 억제제 (r)­1­에틸­3­[5­[2­{1­하이드록시­1­메틸­에틸}피리미딘­5­일]­7­(테트라하이드로푸란­2­일}­1h­벤즈이미다졸­2­일]우레아의 고체 형태
AU2012205415B2 (en) 2011-01-14 2017-02-02 Spero Therapeutics, Inc. Pyrimidine gyrase and topoisomerase IV inhibitors
WO2012097274A1 (en) * 2011-01-14 2012-07-19 Vertex Pharmaceuticals Incorporation Process of making gyrase and topoisomerase iv inhibitors
TWI554515B (zh) 2011-06-20 2016-10-21 維泰克斯製藥公司 旋轉酶(gyrase)及拓樸異構酶抑制劑之磷酸酯
US9604976B2 (en) 2012-03-22 2017-03-28 Spero Gyrase, Inc. Antibacterial compounds
US9018216B2 (en) * 2012-07-18 2015-04-28 Vertex Pharmaceuticals Incorporated Solid forms of (R)-2-(5-(2-(3-ethylureido)-6-fluoro-7-(tetrahydrofuran-2-yl)-1H-benzo[d]imidazol-5-yl)pyrimidin-2-yl)propan-2-yl dihydrogen phosphate and salts thereof
US9572809B2 (en) * 2012-07-18 2017-02-21 Spero Trinem, Inc. Combination therapy to treat Mycobacterium diseases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595002B (zh) * 2012-07-18 2017-08-11 思沛羅三南公司 (R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙烷-2-基磷酸二氫鹽之固體形式及其鹽

Also Published As

Publication number Publication date
CA2824516C (en) 2019-02-26
RU2609259C2 (ru) 2017-01-31
US20120184512A1 (en) 2012-07-19
RU2013137750A (ru) 2015-02-20
US8481551B2 (en) 2013-07-09
BR112013017974A2 (pt) 2018-05-02
EP2663557B1 (en) 2015-05-27
JP2014503557A (ja) 2014-02-13
US8969359B2 (en) 2015-03-03
CA2824516A1 (en) 2012-07-19
AR084863A1 (es) 2013-07-10
CN103443096A (zh) 2013-12-11
JP6085829B2 (ja) 2017-03-01
NZ612961A (en) 2015-10-30
MX339455B (es) 2016-05-27
KR20140037031A (ko) 2014-03-26
BR112013017974B1 (pt) 2021-05-25
CL2013002025A1 (es) 2013-12-27
WO2012097269A1 (en) 2012-07-19
ES2545516T3 (es) 2015-09-11
IL227406A0 (en) 2013-09-30
TW201309677A (zh) 2013-03-01
MX2013008162A (es) 2013-08-27
SG191946A1 (en) 2013-08-30
ZA201305233B (en) 2014-11-26
AU2012205415B2 (en) 2017-02-02
AU2012205415A1 (en) 2013-08-01
EP2663557A1 (en) 2013-11-20
KR101897952B1 (ko) 2018-09-12
CN103443096B (zh) 2016-06-29
IL227406A (en) 2017-02-28
US20130289002A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
TWI546298B (zh) 旋轉酶及拓樸異構酶iv抑制劑
TWI595002B (zh) (R)-2-(5-(2-(3-乙基脲基)-6-氟-7-(四氫呋喃-2-基)-1H-苯并[d]咪唑-5-基)嘧啶-2-基)丙烷-2-基磷酸二氫鹽之固體形式及其鹽
JP5977344B2 (ja) ジャイレースおよびトポイソメラーゼ阻害剤のリン酸エステル
TWI535714B (zh) 旋轉酶抑制劑(r)-1-乙基-3-[6-氟-5-[2-(1-羥基-1-甲基-乙基)嘧啶-5-基]-7-(四氫呋喃-2-基)-1h-苯并咪唑-2-基]脲之固體形式
AU2012205416B2 (en) Solid forms of gyrase inhibitor (R)-1-ethyl-3-(5-(2-{1-hydroxy-1-methyl-ethyl}pyrimidin-5-yl)-7-(tetrahydrofuran-2-yl}-1H-benzimidazol-2-yl)urea