TWI538399B - 用於高速類比開關的低漏動態雙向本體-攫取方法 - Google Patents

用於高速類比開關的低漏動態雙向本體-攫取方法 Download PDF

Info

Publication number
TWI538399B
TWI538399B TW100129217A TW100129217A TWI538399B TW I538399 B TWI538399 B TW I538399B TW 100129217 A TW100129217 A TW 100129217A TW 100129217 A TW100129217 A TW 100129217A TW I538399 B TWI538399 B TW I538399B
Authority
TW
Taiwan
Prior art keywords
main path
type
field effect
effect transistor
switching element
Prior art date
Application number
TW100129217A
Other languages
English (en)
Other versions
TW201238247A (en
Inventor
穆罕默德 蘇海卜 侯賽因
雪克 瑪力卡勒強斯瓦密
Original Assignee
萬國半導體(開曼)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 萬國半導體(開曼)股份有限公司 filed Critical 萬國半導體(開曼)股份有限公司
Publication of TW201238247A publication Critical patent/TW201238247A/zh
Application granted granted Critical
Publication of TWI538399B publication Critical patent/TWI538399B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates

Landscapes

  • Electronic Switches (AREA)

Description

用於高速類比開關的低漏動態雙向本體-攫取方法
本發明是有關於一種高速雙向類比開關,特別是有關於一種高速雙向類比開關之雙向本體攫取開關。
目前,類比開關可用於傳遞或阻止隨時間變化的電壓信號。開關元件可以是一個電晶體,例如類似於金屬-氧化物-半導體場效電晶體(MOSFET)的場效電晶體(FET)。開關上的控制輸入端通常是一個標準的互補型金屬-氧化物-半導體(CMOS)或電晶體-電晶體邏輯(TTL)輸入端,這種輸入端可以在一定的電壓下,通過內部電路,將開關狀態從非傳導狀態切換到傳導狀態,反之亦然。對於一個典型的開關而言,控制輸入端上的邏輯電壓為0的話,會使開關具有很高的電阻,因此開關斷開(非傳導);控制輸入端的邏輯電壓為1的話,會使開關具有很低的電阻,因此開關接通(傳導)。
一種類型的雙向類比開關要將兩個分立的電源開關(例如MOSFET)背對背串聯在一起,帶有一個共源極或共汲極。那麼,這種開關的總導通電阻為一個單獨的功率MOSFET的兩倍。該結構的一個示例如圖1所示,其中MOSFET 10和11連接在一個共源極結構上。 傳統的雙向類比開關具有很高的汲源電阻(Rds),並且在導通狀態下具有很高的電容(Con)。參見圖1,信號可以來自於任意一邊。當沒有信號時,可以通過背對背體二極體以及開關斷開,阻止電流。但是,由於這兩個開關是串聯的,具有很高的電容,因此會產生很高的電阻。
CMOS開關的特點是,使一個PMOS(p-型MOS)和一個NMOS(n-型MOS)並聯穿過一個開關輸入端(SWIN)和開關輸出端(SWOUT)。在一個典型的MOSFET中,本體短接到源極上。由於這種開關是雙向的,輸入端和輸出端的極性可以互換,因此每個MOSFET的源極和汲極同樣也可以互換,或者說具有反轉電壓(由於有效的閘極電壓取決於源極,因此並聯使用PMOS和NMOS,可以確保至少有一個MOSFET是接通的)。典型的類比開關在開關接通時,CMOS體二極體是連接到它們的源極上的。
在一些原有技術的雙向開關中,當MOSFET的本體區連接(攫取)到當前的源極、無論是SWIN還是SWOUT的任意一邊上時,通常採用本體攫取的方式。
美國專利號為US6,590,440的專利提出了一種雙向電池斷路開關,包含一個四端子的N-型MOSFET,不具有源極/本體短路,以及用於確保本體短接到MOSFET的源極/汲極端(T3或T4)的任意一端上的電路,在較低的電壓下偏置。如圖2A所示,電池斷路開關S6包含開關N-型MOSFET M1’以及本體偏壓發生器50。如圖2B所示,T3端子連接到電池的負極端,T4端子連接到負載或電池充電器上。本體偏壓發生器50包含第一對MOSFET M2’和M3’以及第二對MOSFET M4’和M5’。MOSFET M2’連接在MOSFET M1’的汲 極和本體之間,MOSFET M3’連接在MOSFET M1’的源極和本體之間,並且MOSFET M2’和M3’的源極端連接到MOSFET M1’的本體上。MOSFET M2’和M3’含有一個傳統的源極-本體短路。MOSFET M2’的閘極連接到MOSFET M1’的源極上,MOSFET M3’的閘極連接到MOSFET M1’的汲極上。MOSFET M4’和M5’分別與MOSFET M2’和M3’並聯。但是,MOSFET M4’和M5’的閘極端共同連接到MOSFET M1’的本體上。按照傳統的方式,MOSFET M4’和M5’的源極和本體端短路,並短接到MOSFET M1’的本體上。MOSFET M2’和M3的作用是,在較低的電壓下,將MOSFET M1’的本體短接到MOSFET M1’的源極和汲極端的任意一端。MOSFET M4’和M5’的作用是,當MOSFET M2’和M3’都斷開時,防止MOSFET M1’的本體過度地向上“浮動”。MOSFET M2’的作用是,當MOSFET M1’的汲極處的電壓低於其源極電壓時,將MOSFET M1’的汲極和本體短接,MOSFET M3’的作用是,當MOSFET M1’的源極處的電壓低於其汲極電壓時,將MOSFET M1’的本體和源極短接。因此,MOSFET M1’的本體夾到MOSFET M1’的汲極和源極端的任意一端上,MOSFET M1’的汲極和源極端的任意一端達到最大程度地反向偏置,從而使MOSFET M1的源極和汲極也相應地反轉。在這種情況下,本體動態地攫取到NMOS源極。
在圖2B中,一個級聯N-型MOSFET M6’連接到電路中。MOSFET M6’為一個沒有源極/本體短路的四端子元件。MOSFET M6’的源極/汲極端分別連接到MOSFET M1’的源極和MOSFET M2’的閘極上;MOSFET M6’的本體連接到MOSFET M1’的本體上;並且MOSFET M6’的閘極連接到電池B的正極端,這有利於在控制積體電路中 實現本體偏置發生器50。在這種情況下,本體電壓箝位元到二極體的電壓降以下。
然而,要使用這種開關通常需要具有很高的信號頻率,也就是說電容要很低。因此,開關元件要做得很小。但是,元件越小,導通狀態下的汲源電阻Rdson就會越大。大Rdson意味著當MOSFET接通時,整個MOSFET上的汲源電壓相當地高。MOSFET上相當高的電壓可以導通內部體二極體(如果超過了通常為0.7V左右的二極體的正向電壓降)。這會使得MOSFET失控,並產生閂鎖,這都是我們要盡力避免的。另外,鑒於本體攫取MOSFET所固有的電容,如圖2A-2B所示的開關具有較低的開關速度。而且,如果MOSFET M1的導通電阻Rdson太低的話,那麼閘極偏壓就不足以攫取本體。
正是在以上背景下,才提出了本發明的各個實施例。
本發明提供一種用於高速類比開關的低漏動態雙向本體-攫取方式,雙向開關電路中的各個主通路場效電晶體(MOSFET)上的接通電壓降和兩個二極體正向電壓降一樣高,而不會開啟體二極體;降低通道電阻;當開關處於斷開狀態時,本體區連接到高/電源電壓或低/接地電壓,有助於降低漏電流。
為實現上述目的,本發明提供一種高速雙向類比開關,該高速雙向類比開關包含:一連接在輸入節點和輸出節點之間的主通路N-型場效電晶體;相互串聯在輸入節點和輸出節點之間的第一開關元件和第二開關 元件,其中第一開關元件和第二開關元件在接通狀態下的電阻相等,其中主通路N-型場效電晶體的本體區電耦合在第一開關元件和第二開關元件之間,從而當第一開關元件和第二開關元件在接通狀態時,主通路N-型場效電晶體的本體區攫取到其輸入節點和輸出節點之間電壓的一半處;一與主通路N-型場效電晶體並聯在輸入節點和輸出節點之間的主通路P-型場效電晶體;相互串聯在輸入節點和輸出節點之間的第三開關元件和第四開關元件,其中第三開關元件和第四開關元件在接通狀態下的電阻相等,其中主通路P-型場效電晶體的本體區電耦合在第三開關元件和第四開關元件之間,從而當第三開關元件和第四開關元件在接通狀態時,主通路P-型場效電晶體的本體區攫取到其輸入節點和輸出節點之間電壓的一半處。
該高速雙向類比開關更包含連接在接地VSS端和主通路N-型場效電晶體的本體區之間的第五開關元件,連接在電源VDD端和主通路P-型場效電晶體的本體區之間的第六開關元件。
其中當上述的高速雙向開關元件接通時,主通路P-型場效電晶體、第一開關元件、第二開關元件、第三開關元件和第四開關元件接通,第五開關元件和第六開關元件斷開,其中當上述的高速雙向開關元件斷開時,主通路P-型場效電晶體、第一開關元件、第二開關元件、第三開關元件和第四開關元件斷開,第五開關元件和第六開關元件接通。
其中第一開關元件、第二開關元件和第五開關元件以及主通路N- 型場效電晶為金屬氧化物半導體場效電晶體(MOSFET)元件,第三開關元件、第四開關元件和第六開關元件以及主通路P-型場效電晶體為金屬氧化物半導體場效電晶體(MOSFET)元件。
其中第一開關元件、第二開關元件和第五開關元件的本體區短接至接地端。
其中第三開關元件和第四開關元件的本體區短接至主通路P-型場效電晶體的本體區,其中第六開關元件的本體區短接至電源端。
該高速雙向類比開關更包含電耦合在電源VDD端和主通路P-型場效電晶體的本體區之間,與第六開關元件串聯的電流阻擋元件,其中電流阻擋元件用於在斷開狀態下,阻斷主通路P-型場效電晶體的本體區和VDD端之間的漏電流。
其中電流阻擋元件為二極體。
其中電流阻擋元件是一個具有本體和閘極的場效電晶體,其中電流阻擋元件的閘極和本體短接至主通路P-型場效電晶體的本體區。
一種雙向開關元件,該雙向開關元件包含:一個連接在輸入節點和輸出節點之間的第一主通路場效電晶體(FET);其中當第一主通路FET處於接通狀態時,第一主通路FET的本體區所載入的電壓,為第一主通路FET的輸入節點處的電壓和第一主通路FET的輸出節點處的電壓之間的一半。
其中當第一主通路場效電晶體斷開時,第一主通路FET的本體區 所載入的電壓為接地電壓VSS
該雙向開關元件更包含連接到第一主通路FET閘極的充電泵。
其中第一主通路FET為主通路N-型FET,其中雙向開關元件更包含在輸入節點和輸出節點之間,與主通路N-型FET並聯的主通路P-型FET;其中當雙向開關元件接通時,主通路P-型FET的本體區所載入的電壓,為主通路P-型FET的輸入節點處的電壓與主通路P-型FET的輸出節點處的電壓之間的一半。
該雙向開關元件更包含:一位於主通路N-型FET的輸入節點和本體區之間的N-型第一電阻(RNS1);一位於主通路N-型FET的輸出節點和本體區之間的N-型第二電阻(RNS2);一位於主通路P-型FET的輸入節點和本體區之間的P-型第一電阻(RPS1);以及一個位於主通路P-型FET的輸出節點和本體區之間的P-型第二電阻(RPS2);其中當第一主通路FET接通時,N-型第一電阻RNS1的值等於N-型第二電阻(RNS2)的值,P-型第一電阻(RPS1)的值等於P-型第二電阻(RPS1)的值。
該雙向開關元件還包含: 複數個並聯在輸入端和輸出端之間的開關元件,其中配置複數個開關元件,當主通路FET接通時,使各個主通路場效電晶體的本體區所載入的電壓,都在主通路FET的汲極和源極電壓之間的一半,其中當主通路FET斷開時,主通路N-型場效電晶體的本體區所載入的電壓為地電壓VSS,其中當主通路場效電晶體斷開時,主通路P-型場效電晶體的本體區所載入的電壓為電源電壓VDD
其中配置複數個開關元件,在接通狀態下,使各個主通路電晶體上的電壓,在開啟主通路電晶體的體二極體之前,都能達到兩個二極體正向電壓降。
其中複數個開關元件包含在輸入端和輸出端之間,相互串聯的第一開關元件和第二開關元件,其中第一開關元件和第二開關元件在接通狀態下的電阻相等,其中主通路N-型電晶體的本體區電耦合在第一開關元件和第二開關元件之間,從而當第一開關元件和第二開關元件在接通狀態時,主通路N-型電晶體的本體區攫取到其輸入節點和輸出節點之間電壓的一半處。
該雙向開關元件更包含連接在主通路N-型場效電晶體的接地VSS端和本體區之間的第三開關元件。
其中複數個開關元件包含相互串聯在輸入節點和輸出節點之間的第三開關元件和第四開關元件,其中第三開關元件和第四開關元件在接通狀態下的電阻相等,其中主通路P-型電晶體的本體區電耦合在第三開關元件和第四開關元件之間,從而當第三開關元件和第四開關元件在接通狀態時,主通路P-型MOSFET的本體區攫取到其輸入節點和輸出節點之間電壓的一半處。
一種雙向開關方法,該方法包含下列步驟:開啟並聯在輸入節點和輸出節點之間的主通路P-型場效電晶體以及主通路N-型場效電晶體;並且當主通路P-型場效電晶體和N-型場效電晶體接通時,將主通路P-型場效電晶體和N-型場效電晶體的本體區電壓調至輸入節點處電壓和輸出節點處電壓之間的一半。
其中調節主通路場效電晶體的本體區更包含:在每個主通路場效電晶體的本體區和輸入端之間,加入一第一電阻;並且在各個主通路場效電晶體的本體區和輸出端之間,加入一第二電阻,其中設計合適的開關,使第一電阻值與第二電阻值相等。
其中調節主通路場效電晶體的本體區更包含:在各個主通路場效電晶體的本體區和輸入端之間,加入一第一電晶體;在各個主通路場效電晶體的本體區和輸出端之間,加入一第二電晶體,其中設計合適的開關,使第一電阻值與第二電阻值相等。
其中第一電阻由第一電晶體的導通電阻提供,第二電阻由第二電晶體的導通電阻提供。
該方式更包含:當雙向開關斷開時,將主通路P-型場效電晶體的本體區連接到電 源電壓VDD上;並且當雙向開關斷開時,將主通路N-型場效電晶體的本體區連接到地電壓VSS上。
本發明用於高速類比開關的低漏動態雙向本體-攫取方式和習知技術相比,其優點在於,本發明雙向開關電路中的各個主通路電晶體的本體區,所載入的電壓為汲極和源極電壓之間的一半(而不是源極處的電壓),這樣一來,各個主通路MOSFET上的接通電壓降就和兩個二極體正向電壓降(約為1.2至1.4V)一樣高,是不會開啟體二極體,解決了MOSFET失控和產生閂鎖的問題;此外,由於本體效應,本發明的型電阻也會降低;當開關處於斷開狀態時,本發明本體區連接到高/電源電壓(VDD)或低/接地電壓(VSS),這有助於降低漏電流。
10、11‧‧‧電源開關(例如MOSFET)
300‧‧‧低電阻的類比開關
302、306、308‧‧‧N-型場效電晶體
304、310、312‧‧‧P-型場效電晶體
400‧‧‧用於配置高速雙向類比開關的本體-攫取之電路
50‧‧‧本體偏壓發生器
500‧‧‧高速雙向類比開關
600‧‧‧適用於具有單一主場效電晶體之電路
S6‧‧‧電池斷路開關
T3‧‧‧源極端
T4‧‧‧汲極端
M1’‧‧‧電池斷路開關之N-型金屬氧化物半導體場效電晶體
M2’、M3’、M4’及M5’‧‧‧本體偏壓發生器之金屬氧化物半導體場效電晶體
M6’‧‧‧級聯N-型金屬氧化物半導體場效電晶體
M1‧‧‧N-型金屬氧化物半導體場效電晶體
M2‧‧‧P-型金屬氧化物半導體場效電晶體
N1、N2‧‧‧接通狀態之N-型之場效電晶體
N3‧‧‧斷開狀態之N-型之場效電晶體
NS1、NS2、PS1及PS2‧‧‧接通狀態之通用的開關元件
NS3及PS3‧‧‧斷開狀態之通用的開關元件
P1、P2‧‧‧接通狀態之P-型之場效電晶體
P3‧‧‧斷開狀態之P-型之場效電晶體
BN‧‧‧N-型之本體
BP‧‧‧P-型之本體
BD1、BD2、BD3及BD4‧‧‧體二極體
PG‧‧‧P-型閘極控制信號
NG‧‧‧N-型閘極控制信號
PBSON‧‧‧P-型之接通狀態
PBSOFF‧‧‧P-型之斷開狀態
NBSON‧‧‧P-型之接通狀態
NBSOFF‧‧‧P-型之斷開狀態
SWIN‧‧‧輸入電壓
SWOUT‧‧‧輸出電壓
VDD‧‧‧電源電壓
VSS‧‧‧接地端
Rdson‧‧‧導通電阻
RNS1‧‧‧N-型第一電阻
RNS2‧‧‧N-型第二電阻
RPS1‧‧‧P-型第一電阻
RPS2‧‧‧P-型第二電阻
X2‧‧‧電流阻擋元件
td‧‧‧停滯時間
第1圖 係為一種傳統的含有一對背對背連接的MOSFET的類比開關;第2A-2B圖係為現有技術的電池斷路開關的示意圖;第3圖 係為一種低電阻的類比開關的示意圖;第4A圖 係為本發明的一個實施例,一種用於高速類比開關的本體-攫取電路的示意圖;第4A-1圖 係為用於帶有額外標籤的第4A圖所示的高速類比開關的本體-捆綁攫取的示意圖; 第4B圖 係為在第4A圖所示的電路中,將二極體用作電流阻擋元件的示意圖;第4C圖 係為在第4A圖所示的電路中,將P-型FET用作電流阻擋元件的示意圖;第4D圖 係為帶有主通路場效電晶體的體二極體,第4A圖所示的本體-攫取電路的示意圖;第4E圖 係為第4A圖所示電路的運行時序圖;第5圖 係為本發明的一個可選實施例,用於高速類比開關的本體-攫取電路的示意圖;第6圖 係為本發明的一個實施例,一個開關電路在簡化的接通狀態運行時的電路圖;以及第7圖 係為一種開關電路的電路圖,其中單一主FET M1的本體區上的電壓基本上是,當M1接通時,M1的輸入側處的電壓和M1的輸出側處的電壓之間的一半。
儘管為了解釋說明,以下詳細說明包含了許多具體細節,但是本領域的任何技術人員都應理解基於以下細節的多種變化和修正都屬本發明的範圍。因此,本發明的典型實施例的提出,對於請求保護的發明沒有任何一般性的損失,而且不附加任何限制。
動態本體攫取用於傳統的高速雙向類比開關,可以獲得低Rds、低靜態電流以及低斷電漏電流。高速雙向類比開關可用於多工(Mux)、多路分工(DeMux)或者通用串列匯流排(USB)(例如 埠共用、隔離以及信號Mux)。高速雙向類比開關在“接通”時,具有連接在其源極上的體二極體。如上所述,一種高速雙向類比開關,例如USB 2.0(480Mbps),要求在接通時電容Con很低,這會產生很高的R ds,從而引起體二極體傳導。
請參閱第3圖,其係為一種低電阻的類比開關300的示意圖。該開關包含三個N-型場效電晶體(FET)302、306、308以及三個P-型FET 304、310和312。如圖所示,在接通狀態下,N-型FET 302的本體BN,在接通狀態下,通過N-型FET 306短接到輸出電壓(SWOUT),在斷開狀態下,本體BN通過N-型FET 308短接到接地端(VSS)。在接通狀態下,P-型FET 304的本體BP,通過P-型FET 310短接到輸入電壓(SWIN),在斷開狀態下,本體BP通過P-型FET 312短接到電源電壓(VDD)(例如短接到VDD端)。當“接通”時,對於N型金氧半導體(NMOS)元件來說,本體攫取輸出電壓(SWOUT),對於P型金氧半導體(PMOS)元件來說,本體攫取輸入電壓(SWIN);當“斷開”時,對於NMOS元件來說,本體攫取接地端(VSS),對於PMOS元件來說,本體攫取VDD。當“接通”時,本體並不攫取,而是連接到一側或另一側上。無論SWIN和SWOUT的電壓如何波動,PMOS和NMOS並聯,都能確保MOSFET的其中一個是接通的。但是,如果MOSFET上的電壓降超過二極體的正向電壓降的話,這些MOSFET仍然面臨體二極體開啟的問題。
為了解決上述難題,在本發明的實施例中,雙向開關電路中的每個主通路電晶體的本體區,所載入的電壓為汲極和源極電壓之間的一半(而不是源極處的電壓)。這樣一來,每個主通路MOSFET 上的接通電壓降就和兩個二極體正向電壓降(約為1.2至1.4V)一樣高,而不會開啟體二極體。此外,由於本體效應,通道電阻也會降低。
當開關處於斷開狀態時,本體區連接到高/電源電壓(VDD)或低/接地電壓(VSS),(這取決於它是PMOS還是NMOS)這有助於降低漏電流。
請參閱第4A圖,其係為一種用於配置高速雙向類比開關的本體-攫取電路400的示意圖。在電路400中,NMOS FET M1和PMOS FET M2作為CMOS開關的主通路FET。主FET M1和M2連接在開關輸入端SWIN和開關輸出端SWOUT之間,NMOS M1的汲極和PMOS M2的源極連接到開關輸入端SWIN,它們的源極連接到開關輸出端SWOUT,反之亦然。由於該開關是雙向的,主FET M1和M2的源極和汲極也可以換邊。但是,在本實施例中,為了便於解釋電路元件,使用FET的‘源極’還是‘汲極’通常取決於SWIN是否向SWOUT正向偏置。為了易於瞭解,請參閱第4A-1圖所示,其中‘D’指的是汲極,‘S’指的是源極。由於M1和M2為對稱元件,因此根據信號是來自於輸入端還是輸出端,它們的源極和汲極可以互換。一般對於所有信號而言,NMOS元件M1上的汲極是連接到PMOS M2的源極上的,或者反之亦然(決不會出現汲極連接到汲極,或源極連接到源極的現象)。
N-型接通FET N1、N2串聯耦合在開關輸入端SWIN和開關輸出端SWOUT之間。當信號來自於SWIN時,FET N1的汲極耦合到開關輸入端SWIN上,FET N1的源極耦合到FET N2的汲極上。FET N2的源極耦合到開關輸出端SWOUT上。主NFET M1的本體耦合在FET N1的 源極和FET N2的汲極之間。N-型接通FET N1和N2的導通電阻Rdson相等。N-型接通FET N1、N2的本體可以接地(VSS)。要注意的是,一般來說,FET N1和N2的汲極/源極的確定,取決於NMOS主FET M1上的電勢。例如,如果輸入端SWIN的正電勢高於輸出端SWOUT,也就是說信號來自於輸入端SWIN,那麼N1的汲極就連接到SWIN上,N2的源極就連接到SWOUT上(並且如果輸出端SWOUT的正電勢高於輸入端SWIN,那麼N1連接到SWIN上的一側就成為了源極,N2連接到SWOUT上的一側就成為了汲極)。當信號來自於SWOUT時,源極和汲極的命名可以互換。
與之類似,P-型接通FET P1、P2也可以串聯耦合在開關輸入端SWIN和開關輸出端SWOUT之間。FET P1的輸入端(例如源極)耦合到開關輸入端SWIN上,FET P1的輸出端(例如汲極)耦合到FET P2的輸入端(例如源極)上。FET P2的輸出端(例如汲極)耦合到開關輸出端SWOUT上。與N1相反的是,如果信號來自於輸入端SWIN(也就是說SWIN處的正電勢高於SWOUT),那麼P1的源極就連接到SWIN上,其汲極和本體連接到P2的源極和本體上,P2的汲極連接到SWOUT上。如果信號來自於輸出端SWOUT,就將這些命名互換即可。主P-型FET M2的本體耦合在FET P1的汲極和FET P2的源極之間。P-型接通FET P1和P2的導通電阻Rdson相等。在本實施例中,FET P1和P2的本體都短接到與主通路P-型FET M2的本體相同的電壓上。
N-型斷開控制FET N3可以耦合在接地電壓VSS和主NFET M1的本體之間。FET N3的源極耦合到VSS上,FET N3的汲極耦合到主FET M1的本體上。N-型斷開FET N3的本體可以接地(VSS)。在 這種情況下,由於FET N3的源極/本體連接到V SS上,FET N3的汲極耦合到主FET M1的本體上,因此電勢最高的位置就是FET N3的汲極。
與之類似,P-型斷開控制FET P3以及電流阻擋元件X2可以串聯耦合在電源電壓VDD和主P-型FET M2之間。電流阻擋元件X2在斷開狀態下,阻斷了漏電流通路。漏電流通路從輸入端SWIN或輸出端SWOUT,穿過主FET M2的源極或汲極,到達主FET M2體二極體(請參閱第4D圖中的BD3或BD4),當VDD為0V時,穿過FET P3的汲極,到FET P3的源極/本體中。換言之,也就是說,電流阻擋元件X2確保當VDD為0V時,或者當SWIN或SWOUT的正電勢高於VDD時,沒有漏電流從SWIN流至SWOUT。
FET P3的源極和本體可以耦合到電源電壓VDD上,電流阻擋元件X2可以耦合在FET P3的汲極和主P-型FET M2的本體之間,電流阻擋元件X2的負極端連接到主FET M2的本體上。P-型接通FET P1、P2的結構等同於背對背的體二極體,以便當M2在斷開狀態時,阻斷SWIN和SWOUT之間的電流。
在實際運行中,主N-型FET M1的閘極連接到N-型閘極控制信號NG上,主P-型FET M2的閘極連接到P-型閘極控制信號PG上。請參閱第4E圖之時序圖所示,由於閘極控制信號NG和PG相互同步(儘管它們的極性相反),所以M1和M2是同時接通和斷開的。要注意的是,當到達N-型FET的閘極信號很高時,N-型FET接通,而當到達P-型FET的閘極信號很低時,P-型FET接通,反之亦然。當需要接通雙向開關時,主通路FET M1和M2接通,當需要斷開雙向開關時,主通路FET M1和M2斷開。N-本體接通信號(NBSON)耦合到N- 型接通FET N1、N2上。與之類似,P-本體接通信號(PBSON)耦合到P-型接通FET P1、P2上。N-本體接通信號NBSON和P-本體接通信號PBSON與閘極控制信號NG、PG同步,因此當主FET M1和M2接通時,所有的接通FET N1、N2、P1、P2都接通,反之亦然。
N-本體斷開信號(NBSOFF)耦合到N-型斷開FET N1、N2上。與之類似,P-本體斷開信號(PBSOFF)耦合到P-型斷開FET P1、P2上。N-本體斷開信號NBSOFF和P-本體斷開信號PBSOFF與閘極控制信號NG、PG同步,因此當主FET M1和M2斷開時,所有的斷開FET N1、N2、P1、P2都斷開,反之亦然。控制信號NBSON和NBSOFF運行時相互不同相,之間有一段停滯時間。控制信號PBSON和PBSOFF運行時也相互不同相,之間也有一段停滯時間。NBSOFF和NBSON信號具有“先斷後通”的關係,也就是說,在NBSON控制的FET接通之前,NBSOFF控制的FET必須斷開,反之亦然。這就確保FET N1和N2不會與FET N3同時接通,從而使來自於SWIN或SWOUT的電流不會通過NBSOFF短接至地電壓V SS。因此,請參閱第4E圖之時序圖所示,在NBSOFF斷開和NBSON接通之間,以及NBSON斷開和NBSOFF接通之間,存在一小段停滯時間td。PBSOFF和PBSON信號也具有類似的“先斷後通”關係,以避免來自於SWIN或SWOUT的電流短接至電源電壓VDD
在上述結構中,當開關處於接通狀態時(也就是說當主FET M1和M2接通時),由信號NBSON(即N1、N2)和PBSON(即P1、P2)控制的FET連接到主FET M1和M2的本體區上,以便將電壓調至M1和M2的源極和汲極電壓的一半處。請參閱第4E圖之時序圖所示,當主FET M1和M2斷開時,驅動斷開控制FET N3、P3的斷開控制信號 NBSOFF、PBSOFF達到同步,接通FET N3、P3,分別將主N-型FET M1連接到地電壓V SS(低壓),主P-型FET M2連接到電源電壓VDD(高壓),以使流過主FET M1和M2的漏電流最小(與之相反,偏置體二極體的情況可參見第4D圖)。作為示例,FET N1、N2、P1和P2可以設計為比主FET M1和M2小得多,並且其導通電阻比主FET M1和M2大得多,從而當開關接通時,大多數的電流都流經主FET M1和M2。
當電路400處於斷開狀態時,主通路FET(M1和M2)斷開,開啟由PBSOFF和NBSOFF驅動的FET。從而將M1的本體連接到VSS,將M2的本體連接到由VDD-VX2驅動的中間電壓,其中VX2為電流阻擋元件X2上的電壓降。由於電流阻擋元件X2阻斷了流向電源電壓VDD的電流,因此降低了從外部流經VDD的漏電流。作為示例,電流阻擋元件X2可以是如第4B圖所示的二極體D,或者是如第4C圖所示的P-型阻擋FET P4,其閘極和本體短接至汲極。在如第4C圖所示的結構中,FET P4就像一個偽-肖特基二極體一樣,在一個方向上允許電流通過,但在另一個方向上阻斷電流。在穩定狀態下(並且當開關斷開時),通過P-型FET P4的正向偏置的偽-肖特基動作,M2的本體最終達到電源電壓VDD。阻擋FET P4的閘極不應連接到PBSOFF,因為這會導致在電源斷開的情況下,產生很高的電流IOFF
當電路400處於接通狀態時,主通路FET M1和M2接通,P-本體接通信號PBSON開啟P-型FET P1、P2,N-本體接通信號NBSON開啟N-型FET N1、N2。FET N1和N2具有相等的導通電阻,將主N-型FET M1的本體所載入的電壓,為其汲極電壓和源極電壓之間的一半。 與之類似,在接通狀態時,由於FET P1和P2具有相等的導通電阻,因此主P-型FET M2的本體所載入的電壓,為主P-型FET M2的源極和汲極電壓之間的一半。假設主FET M1、M2上總的電壓降永遠不會超過兩個體二極體的電壓降,那麼就不會打開M1和M2的主體二極體。
請參閱第4D圖所示之電路圖,除了明確地表示出了主通路FET M1和M2的體二極體BD1、BD2、BD3和BD4以外,其他都與第4A圖之電路圖400相同。體二極體BD1形成在主FET M1的輸入端(第4A-1圖中的汲極)和M1的本體區之間,體二極體BD2形成在主FET M1的輸出端(第4A-1圖中的源極)和M1的本體區之間。由於對於N-型FET而言,源極和汲極區(輸入/輸出)為N-型,本體區為P-型,因此體二極體BD1和BD2的陽極位於本體區一側,陰極位於輸入和輸出端一側。與之類似,體二極體BD3形成在主FET M2的輸入端(第4A-1圖中的汲極)和M2的本體區之間。體二極體BD4形成在主FET M2的輸出端(第4A-1圖中的源極)和M2的本體區之間;然而,體二極體BD3和BD4的極性卻與BD1和BD2相反。當開關電路400處於接通狀態時,FET M1、N1和N2開啟。通過FET N1,從SWIN端穿過體二極體BD2,有可能形成電流。當體二極體BD2開啟時,主通路FET M1的本體區的電壓,必須是一二極體的正向電壓降高於M1輸出端的電壓。由於主通路FET M1的本體區,通過FET N1和N2,連接在主通路M1的輸入端和輸出端之間,這就意味著,主通路FET M1的輸入端和輸出端總的電壓降可以在體二極體傳導之前,就達到兩個電壓降(當開關接通時)。同樣的原理也適用於其他體二極體BD1、BD3和BD4。因此,主通路FET可以製作得更 加小巧,無論主通路FET體二極體是否開啟,都能獲得較低的電容(隨之而來的是較高的導通電阻Rdson,並且整個主通路FET上的電壓降更高);或者不改變主通路FET的尺寸,但當主通路FET體二極體開啟時,留有較大的安全範圍。
此外,在接通狀態時,由於主FET M1和M2的體電壓正向偏置到它們的源極電壓(而不是依賴於源極電壓),M1和M2的閾值電壓Vt受體效應的影響而降低,從而減小電路400在接通狀態下的通道電阻。在接通狀態下,電路400受體效應影響而產生的電容升高,大於降低的導通電阻的優勢所帶來的補償。
在電路400斷開的狀態下,主N-型FET M1的本體攫取到低電壓(VSS),主P-型FET M2的本體攫取到電源電壓(VDD)。在接通狀態下(即NBSOFF斷開,NG接通),NBSON接通,M1的本體攫取到開關上電壓降的一半(即輸入端SWIN和輸出端SWOUT之間電壓的一半)。這就意味著,在M1接通時,只有當電壓降達到正常體二極體電壓的兩倍時,才能開啟體二極體。從而增大了電壓的範圍,並允許更大的電壓降,也就是說可以將開關製作得更加小巧,獲得更高的阻抗。另外,本體處於固定的電勢上(而不是像原有技術的開關中那樣,處於浮動電勢上)。
P-型主FET M2在接通和斷開狀態下,工作原理與之類似。但是,在斷開狀態下,有一條通過P-型斷開控制FET P3,到達電源電壓VDD的漏電路徑。為了解決這個問題,可以在P-型斷開控制FET P3和P-型主FET M2的本體之間,添加電流阻擋元件X2。
由於M1和M2具有較高的體二極體接通電壓的能力,因此電路400 的結構允許使用較小的開關元件,從而降低電路400一半的電容,並縮短傳導延時以及提高通過開關的信號速度。如果電流很小的話,那麼所增加的阻抗就不會對傳導延時造成影響。作為示例,大多數的高速雙向類比開關元件都需要十幾毫安培(mA)以下的電流。由於雙向類比開關通常用於傳輸電壓信號,因此它們的特點是可以傳輸小電流。作為示例,在一個有限的電壓範圍內(對於USB而言,為0-0.4V),當電阻僅增加大約10X時,電容可以從120pF降至4pF(倍數為30)。
為了解釋說明,第4A圖至第4D圖所示之開關400表示出了N-型和P-型MOSFET元件的所有的開關元件。但是,本發明的實施例並不局限於基於MOSFET元件的開關電路。對於大多數的開關元件而言,利用除了MOSFET以外的元件,也可以製成與開關400相類似的電路。請參閱第5圖,其係為本發明的一個可選實施例,一種高速雙向類比開關500的本體-攫取電路的示意圖。該雙向類比開關500是第4A圖所示之電路400的通用版本。在本實施例中,主通路開關元件仍然是N-型FET M1和P-型FET M2。然而,N-型接通FET N1、N2以及P-型接通FET P1、P2可以分別用通用的開關元件NS1、NS2、PS1和PS2代替。同樣地,N-型斷開MOSFET N3和P-型斷開MOSFET P3可以分別用通用的開關元件NS3和PS3代替。在開關元件PS3和主通路P-型FET M2之間,可以選用一個電流阻擋元件X2(未繪示於圖中),但這也不是必須的,主要取決於是否配置了通用開關元件。通用的開關元件可以是雙極結型電晶體(BJT)、場效電晶體、例如絕緣柵場效電晶體(IGFET)、絕緣柵雙極電晶體(IGBT)、結型場效電晶體(JFET)等諸如此類,這僅作 為示例,應不以此為限。
開關元件NS1和開關元件NS2通常具有相關阻抗N-型第一電阻RNS1、N-型第二電阻RNS2。選擇合適的NS1和NS2,使它們的相關阻抗N-型第一電阻RNS1、N-型第二電阻RNS2相等或近似相等。這樣能夠確保當開關500處於接通狀態時,主通路N-型FET M1的本體被攫取到電壓為主通路N-型FET M1的汲極和源極電壓之間的一半處。只要將開關元件NS1的輸出端和開關元件NS2的輸入端電耦合到N-型FET M2的本體上,就可以實現。與之類似,選擇合適的PS1和PS2,使它們的相關阻抗P-型第一電阻RPS1、P-型第二電阻RPS2相等或近似相等,從而當開關處於接通狀態時,主通路P-型FET M2的本體被攫取到電壓為M2的汲極和源極電壓之間的一半處。只要將開關PS1的輸出端和開關PS2的輸入端電耦合到P-型FET M2的本體上,就可以實現。還可選用區別於開關元件NS1、NS2、PS1和PS2的導通電阻的電阻器,提供阻抗N-型第一電阻RNS1、N-型第二電阻RNS2、P-型第一電阻RPS1和P-型第二電阻RPS2。選擇合適的電阻,使N-型第一電阻RNS1=N-型第二電阻RNS2並且P-型第一電阻RPS1=P-型第二電阻RPS2。N-型第一電阻RNS1、N-型第二電阻RNS2、P-型第一電阻RPS1和P-型第二電阻RPS2應相當地大,例如大到當開關元件接通時,大部分的電流都直接通過主通路FET M1和M2。
請參閱第6圖,其係為本發明的一個實施例,一個開關電路在簡化的接通狀態運行時的電路圖。N-型主通路FET M1連接在輸入端/節點和輸出端/節點之間。主通路FET M1的本體區連接到M1的輸入端電壓和M1的輸出端電壓之間的一半處。與之類似,P-型主通 路FET M2連接在輸入端和輸出端之間,與N-型主通路FET M1並聯。主通路FET M2的本體區連接到M2的輸入端電壓和M2的輸出端電壓之間的一半處。這可以通過在M1的本體區和M1、M2的輸入/輸出端之間,選取合適的N-型第一電阻RNS1、N-型第二電阻RNS2、P-型第一電阻RPS1、P-型第二電阻RPS2來實現。應選擇電阻,使N-型第一電阻RNS1=N-型第二電阻RNS2並且P-型第一電阻RPS1=P-型第二電阻RPS2。電阻可以配置成電阻器N-型第一電阻RNS1、N-型第二電阻RNS2、P-型第一電阻RPS1、P-型第二電阻RPS2,或開關元件的導通電阻,或以其他方式配置,這僅作為示例,不以此為限。
如第5圖所示之開關500的運行方式與上述第4A圖所示之電路400基本相同。也就是說,在接通狀態時,當主閘極信號NG、PG開啟主通路FET M1、M2時,N-本體和P-本體開啟信號NBSON、PBSON開啟開關元件NS1、NS2、PS1、PS2。在斷開狀態時,當主閘極信號NG、PG開啟主通路FET M1、M2時,N-本體和P-本體斷開信號NBSON、PBSON開啟開關元件NS3、PS3。
如圖7所示,上述原理也適用於具有單一主FET M1(表示為一個N-型FET)的電路600,當M1接通時,將單一主FET M1的本體區連接到M1的輸入端電壓和M1的輸出端電壓之間的一半處。如上所述,這可以通過在主FET M1的本體區與M1的輸入和輸出端之間,加入N-型第一電阻RNS1和N-型第二電阻RNS2實現。N-型第一電阻RNS1和N-型第二電阻RNS2的值相等。N-型第一電阻RNS1和N-型第一電阻RNS2應相當地大,使電流直接穿過主通路FET M1。也可選擇,使用一個帶有閘極信號NG的充電泵CP,當需要M1接通 時,無論輸入端SWIN和輸出端SWOUT的電壓如何波動,都能確保閘極信號相對於源極而言足夠強。需指出的是,該原理也適用於P-型主FET。
儘管本發明關於某些較佳的版本已經做了詳細的敍述,但是仍可能存在各種不同的修正和變化。例如,儘管本發明所提及的是雙向類比開關,但本發明也可以適用於雙向數位開關。因此,本發明的範圍不應由上述說明決定,與之相反,本發明的範圍應參照所附的申請專利範圍及其全部等效內容。任何可選件(無論首選與否),都可與其他任何可選件(無論首選與否)組合。在以下申請專利範圍中,除非特別聲明,否則不定冠詞“一”或“一種”都指下文內容中的一個或多個專案的數量。除非用“意思是”明確指出限定功能,否則所附的申請專利範圍並不應認為是意義和功能的局限。
儘管本發明的內容已經通過上述優選實施例作了詳細介紹,但應當認識到上述的描述不應被認為是對本發明的限制。在本領域技術人員閱讀了上述內容後,對於本發明的多種修改和替代都將是顯而易見的。因此,本發明的保護範圍應由所附的權利要求來限定。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
400‧‧‧用於配置高速雙向類比開關的本體-攫取之電路
M1‧‧‧N-型金屬氧化物半導體場效電晶體
M2‧‧‧P-型金屬氧化物半導體場效電晶體
N1、N2‧‧‧接通狀態之N-型之場效電晶體
N3‧‧‧斷開狀態之N-型之場效電晶體
P1、P2‧‧‧接通狀態之P-型之場效電晶體
P3‧‧‧斷開狀態之P-型之場效電晶體
PG‧‧‧P-型閘極控制信號
NG‧‧‧N-型閘極控制信號
PBSON‧‧‧P-型之接通狀態
PBSOFF‧‧‧P-型之斷開狀態
NBSON‧‧‧P-型之接通狀態
NBSOFF‧‧‧P-型之斷開狀態
SWIN‧‧‧輸入電壓
SWOUT‧‧‧輸出電壓
VDD‧‧‧電源電壓
VSS‧‧‧接地端
X2‧‧‧電流阻擋元件

Claims (13)

  1. 一種雙向開關元件,其中,該雙向開關元件包含:一連接在輸入節點和輸出節點之間的第一主通路場效電晶體;其中當該第一主通路場效電晶體處於接通狀態時,該第一主通路場效電晶體的本體區所載入的電壓,為該第一主通路場效電晶體的輸入節點處的電壓和該第一主通路場效電晶體的輸出節點處的電壓之間的一半;其中該雙向開關元件還包含連接到該第一主通路場效電晶體閘極的一充電泵。
  2. 如申請專利範圍第1項所述之雙向開關元件,其中當該第一主通路場效電晶體斷開時,該第一主通路場效電晶體的本體區所載入的電壓為接地VSS端。
  3. 如申請專利範圍第1項所述之雙向開關元件,其中該第一主通路場效電晶體為一主通路N-型場效電晶體,其中該雙向開關元件還包含在輸入節點和輸出節點之間,與該主通路N-型場效電晶體並聯的一主通路P-型場效電晶體;其中當該雙向開關元件接通時,該主通路P-型場效電晶體的本體區所載入的電壓,為該主通路P-型場效電晶體的輸入節點處的電壓與該主通路P-型場效電晶體的輸出節點處的電壓之間的一半。
  4. 如申請專利範圍第3項所述之雙向開關元件,該雙向開關元件還包含:一位於該主通路N-型場效電晶體的輸入節點和本體區之間的N-型 第一電阻;一位於該主通路N-型場效電晶體的輸出節點和本體區之間的N-型第二電阻;一位於該主通路P-型場效電晶體的輸入節點和本體區之間的P-型第一電阻;以及一位於該主通路P-型場效電晶體的輸出節點和本體區之間的P-型第二電阻;其中當該第一主通路場效電晶體接通時,該N-型第一電阻的值等於該N-型第二電阻的值,該P-型第一電阻的值等於該P-型第二電阻的值。
  5. 如申請專利範圍第3項所述之雙向開關元件,該雙向開關元件還包含:複數個並聯在輸入端和輸出端之間的開關元件,其中配置複數個開關元件,當該主通路場效電晶體接通時,使各該主通路場效電晶體的本體區所載入的電壓,都在該主通路場效電晶體的汲極和源極電壓之間的一半,其中當該主通路場效電晶體斷開時,該主通路N-型場效電晶體的本體區所載入的電壓為接地VSS端,其中當該主通路場效電晶體斷開時,該主通路P-型場效電晶體的本體區所載入的電壓為電源電壓VDD
  6. 如申請專利範圍第5項所述之雙向開關元件,其中配置該複數個開關元件,在接通狀態下,使各該主通路場效電晶體上的電壓,在開啟該主通路場效電晶體的體二極體之前,都能達到二個二極體正向電壓降。
  7. 如申請專利範圍第5項所述之雙向開關元件,其中該複數個開關元件包含在輸入端和輸出端之間,相互串聯的一第一開關元件和 一第二開關元件,其中該第一開關元件和該第二開關元件在接通狀態下的電阻相等,其中該主通路N-型場效電晶體的本體區電耦合在該第一開關元件和該第二開關元件之間,從而當該第一開關元件和該第二開關元件在接通狀態時,該主通路N-型場效電晶體的本體區攫取到其輸入節點和輸出節點之間電壓的一半處。
  8. 如申請專利範圍第7項所述之雙向開關元件,該雙向開關元件還包含連接在該主通路N-型電晶體的接地VSS端和本體區之間的一第三開關元件。
  9. 如申請專利範圍第7項所述之雙向開關元件,其中該複數個開關元件包含相互串聯在輸入節點和輸出節點之間的一第三開關元件和一第四開關元件,其中該第三開關元件和該第四開關元件在接通狀態下的電阻相等,其中該主通路P-型電晶體的本體區電耦合在該第三開關元件和該第四開關元件之間,從而當該第三開關元件和該第四開關元件在接通狀態時,該主通路P-型場效電晶體的本體區攫取到其輸入節點和輸出節點之間電壓的一半處。
  10. 一種雙向開關方法,包含下列步驟:開啟並聯在輸入節點和輸出節點之間的一主通路P-型場效電晶體以及一主通路N-型場效電晶體;以及當該主通路P-型場效電晶體和該主通路N-型場效電晶體接通時,將該主通路P-型場效電晶體和該主通路N-型場效電晶體的本體區電壓調至輸入節點處電壓和輸出節點處電壓之間的一半;其中雙向開關方法還包含接入一位於該主通路N-型場效電晶體的輸入節點和本體區之間的N-型第一電阻;接入一位於該主通路N-型場效電晶體的輸出節點和本體區之間的 N-型第二電阻;接入一位於該主通路P-型場效電晶體的輸入節點和本體區之間的P-型第一電阻;以及接入一位於該主通路P-型場效電晶體的輸出節點和本體區之間的P-型第二電阻;其中當該第一主通路場效電晶體接通時,該N-型第一電阻的值等於該N-型第二電阻的值,該P-型第一電阻的值等於該P-型第二電阻的值。
  11. 如申請專利範圍第10項所述之雙向開關方法,其中調節該主通路P-型場效電晶體和該主通路N-型場效電晶體的本體區還包含下列步驟:在該主通路P-型場效電晶體和該主通路N-型場效電晶體的本體區和輸入端之間,加入一第一電晶體;在該主通路P-型場效電晶體和該主通路N-型場效電晶體的本體區和輸出端之間,加入一第二電晶體,其中設計合適的開關,使該第一電阻值與該第二電阻值相等。
  12. 如申請專利範圍第11項所述之雙向開關方法,其中該第一電阻由該第一電晶體的導通電阻提供,該第二電阻由該第二電晶體的導通電阻提供。
  13. 如申請專利範圍第10項所述之雙向開關方法,雙向開關方法還包含下列步驟:當該雙向開關斷開時,將該主通路P-型場效電晶體的本體區連接到電源電壓VDD上;並且當該雙向開關斷開時,該主通路N-型場效電晶體的本體區連接到接地VSS端上。
TW100129217A 2010-10-12 2011-08-16 用於高速類比開關的低漏動態雙向本體-攫取方法 TWI538399B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IN2425DE2010 2010-10-12

Publications (2)

Publication Number Publication Date
TW201238247A TW201238247A (en) 2012-09-16
TWI538399B true TWI538399B (zh) 2016-06-11

Family

ID=45924673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100129217A TWI538399B (zh) 2010-10-12 2011-08-16 用於高速類比開關的低漏動態雙向本體-攫取方法

Country Status (3)

Country Link
US (1) US9118322B2 (zh)
CN (1) CN102447457B (zh)
TW (1) TWI538399B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858914B2 (ja) * 2010-08-04 2016-02-10 ローム株式会社 パワーモジュールおよび出力回路
US8698196B2 (en) 2011-06-28 2014-04-15 Alpha And Omega Semiconductor Incorporated Low capacitance transient voltage suppressor (TVS) with reduced clamping voltage
US8710627B2 (en) 2011-06-28 2014-04-29 Alpha And Omega Semiconductor Incorporated Uni-directional transient voltage suppressor (TVS)
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8710541B2 (en) * 2012-03-20 2014-04-29 Analog Devices, Inc. Bi-directional switch using series connected N-type MOS devices in parallel with series connected P-type MOS devices
KR101902228B1 (ko) 2012-10-31 2018-09-28 삼성전자주식회사 무선 전력 전송 장치 및 방법
US9214932B2 (en) * 2013-02-11 2015-12-15 Triquint Semiconductor, Inc. Body-biased switching device
CN106027027B (zh) * 2015-03-24 2019-06-04 快捷半导体(苏州)有限公司 低电压开关控制
US10978869B2 (en) 2016-08-23 2021-04-13 Alpha And Omega Semiconductor Incorporated USB type-C load switch ESD protection
EP3297161B1 (en) 2016-09-15 2019-08-21 Visic Technologies Ltd. Power device for high voltage and high current switching
JP6815509B2 (ja) * 2016-11-24 2021-01-20 ヴィジック テクノロジーズ リミテッド 高電圧および高電流スイッチング用の電源デバイス
CN107094013B (zh) * 2017-04-17 2019-02-12 电子科技大学 一种传输门电路
CN108696270B (zh) * 2018-05-24 2022-02-01 上海艾为电子技术股份有限公司 一种模拟开关电路
US10739807B2 (en) * 2018-09-11 2020-08-11 Stmicroelectronics (Crolles 2) Sas Body biasing for ultra-low voltage digital circuits
TW202025635A (zh) * 2018-12-26 2020-07-01 新唐科技股份有限公司 電晶體開關電路
TWI708134B (zh) * 2019-09-18 2020-10-21 新唐科技股份有限公司 基體偏壓產生電路
US10892757B1 (en) 2019-11-25 2021-01-12 Stmicroelectronics (Research & Development) Limited Reverse body biasing of a transistor using a photovoltaic source
CN111725871B (zh) 2019-12-30 2021-10-15 华为技术有限公司 一种充电保护电路、充电电路以及电子设备
US11159170B1 (en) * 2020-10-22 2021-10-26 Texas Instruments Incorporated Differential converter with offset cancelation
TWI819947B (zh) * 2023-01-05 2023-10-21 瑞昱半導體股份有限公司 開關電路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689209A (en) 1994-12-30 1997-11-18 Siliconix Incorporated Low-side bidirectional battery disconnect switch
EP0735676B1 (en) * 1995-03-29 2001-05-23 Agilent Technologies, Inc. Predriver circuit for low-noise switching of high currents in a load
JP3258930B2 (ja) * 1997-04-24 2002-02-18 東芝マイクロエレクトロニクス株式会社 トランスミッション・ゲート
AU2003263510A1 (en) * 2002-10-29 2004-05-25 Koninklijke Philips Electronics N.V. Bi-directional double nmos switch
US7514983B2 (en) * 2007-03-23 2009-04-07 Fairchild Semiconductor Corporation Over-voltage tolerant pass-gate
US7724069B1 (en) * 2007-10-30 2010-05-25 Intersil Americas Inc. Analog switch for operation outside power rails with low supply current
US7843248B1 (en) * 2007-11-01 2010-11-30 Intersil Americas Inc. Analog switch with overcurrent detection
TW201001911A (en) * 2008-06-18 2010-01-01 Genesys Logic Inc Transmission gate with body effect compensation circuit

Also Published As

Publication number Publication date
TW201238247A (en) 2012-09-16
US9118322B2 (en) 2015-08-25
CN102447457A (zh) 2012-05-09
US20120086499A1 (en) 2012-04-12
CN102447457B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
TWI538399B (zh) 用於高速類比開關的低漏動態雙向本體-攫取方法
TWI519070B (zh) 具有適應性汲極與源極電壓之射頻切換器
US8295784B2 (en) Semiconductor switching device
TWI294214B (en) High frequency switching circuit and semiconductor device
TWI484754B (zh) 具有內部裝置基體控制之類比開關
TW201607244A (zh) 包含高功率增強模式的氮化鎵電晶體與驅動電路的電源切換系統
US11522453B2 (en) Dead-time conduction loss reduction for buck power converters
JP2003529992A (ja) 低コストハーフブリッジドライバ集積回路
JP2014187479A (ja) 駆動回路
TWI554031B (zh) 具有路徑充放電路的射頻切換器
CN101826794A (zh) 逆流防止电路以及电源切换装置
EP1961118A1 (en) High voltage power switches using low voltage transistors
US20150372590A1 (en) Charge pump, potential conversion circuit and switching circuit
EP2871765A1 (en) NPC converter for use in power module, and power module incorporating same
CN109314509A (zh) 驱动装置
CA2517152A1 (en) On chip power supply
WO2015070647A1 (zh) 与非门电路、显示器背板、显示器和电子设备
US10128834B2 (en) Bidirectional integrated CMOS switch
JP5366911B2 (ja) 高周波用スイッチ回路
EP4131779A1 (en) Gate driver device
WO2012115900A2 (en) Driver circuit for a semiconductor power switch
US6798629B1 (en) Overvoltage protection circuits that utilize capacitively bootstrapped variable voltages
US10523197B2 (en) Switch circuit, corresponding device and method
CN110635687B (zh) 降压转换器电路以及降压转换方法
WO2020056685A1 (zh) 一种传输门电路、矩阵开关以及电子设备