TWI520956B - 伊莎匹隆及其中間體之製備方法 - Google Patents

伊莎匹隆及其中間體之製備方法 Download PDF

Info

Publication number
TWI520956B
TWI520956B TW103107816A TW103107816A TWI520956B TW I520956 B TWI520956 B TW I520956B TW 103107816 A TW103107816 A TW 103107816A TW 103107816 A TW103107816 A TW 103107816A TW I520956 B TWI520956 B TW I520956B
Authority
TW
Taiwan
Prior art keywords
compound
formula
group
decyl
etoac
Prior art date
Application number
TW103107816A
Other languages
English (en)
Other versions
TW201504234A (zh
Inventor
陳悅
蕭宗育
朱利安 保羅 漢史克
Original Assignee
台灣神隆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣神隆股份有限公司 filed Critical 台灣神隆股份有限公司
Publication of TW201504234A publication Critical patent/TW201504234A/zh
Application granted granted Critical
Publication of TWI520956B publication Critical patent/TWI520956B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)

Description

伊莎匹隆及其中間體之製備方法
本發明係關於一種製備伊沙匹隆、伊沙匹隆衍生物及類似物,及其中間體之新方法。
Ixempra®(國際非專有名(International non-propriety name,INN):伊沙匹隆(ixabepilone))是屬於埃博黴素(epothilone)類的可注射抗腫瘤劑。它是天然產物埃博黴素B(又名EpoB)的合成衍生物,其巨環內酯(macrolide)環的氧原子以氮原子替換,從而得到相應的巨環內醯胺(macrolactam)。伊沙匹隆(又名氮雜EpoB、氮雜埃博黴素B和BMS-247550)的化學名稱是((1S,3S,7S,10R,11S,12S,16R)-7,11-二羥基-8,8,10,12,16-五甲基-3-[(1E)-1-甲基-2-(2-甲基-4-噻唑基)乙烯基)-17-氧雜-4-氮雜雙環[14.1.0]十七烷-5,9-二酮。
伊沙匹隆是分子式為C27H42N2O5S且分子量為506.70的白色至灰白色粉末。伊沙匹隆由必治妥施貴寶(Bristol-Myers Squibb)開發並在2007年10月16日被美國食品和藥物管理局(FDA)批准用於治療轉移性乳腺癌。它是細胞毒性微管穩定劑並是所批准的埃博黴素抗癌劑家族中的第一個成員。
報導伊沙匹隆的類似物E-Epo C-內醯胺、Epo A-內醯胺、Epo F-內醯胺、Z-Epo C-內醯胺、Z-Epo D-內醯胺、E-Epo D-內醯胺亦已被研究報導(參見J.Am.Chem.Soc.2000,122,8890-8897)。報導Z-Epo D-內醯胺的C15差向異構體(又名15-epi-氮雜-dEpoB、15-epi-12,13-脫氧-15-氮雜埃博黴素B和15-epi-15-氮雜埃博黴素D)也已被研究報導(Org.Lett.2000,2,1637-1639)。
美國專利NO.6,605,599(‘599專利)描述了兩種用於合成氮雜埃博黴素(azaepothilones)(如伊沙匹隆)的方法。製備氮雜埃博黴素的一種合成策略是基於關環烯烴複分解(ring-closing olefin metathesis,RCM)反應將線性醯胺化合物環化為巨環的內醯胺(又名巨環內醯胺)。
如方案1所示,‘599專利亦揭示由醛18(可商購化合物)製備胺衍生物20。用烯丙基化試劑(如烯丙基溴化鎂)處理亞胺衍生物19。但是,‘599專利沒有描述製備均掌性(homochiral)形式的胺衍生物20,也沒有描述R15包含任何對掌性輔助化合物。
方案1--根據US 6,605,599合成胺衍生物20
如方案2所示,‘599專利還公開了由埃博黴素合成氮雜埃博黴素的方法。化合物103可通過由化合物5與鈀錯合物反應,然 後用叠氮化鈉處理來製備。化合物103的後續還原會提供化合物104。最後,使化合物104巨環內醯胺化(macrolactamization)得到化合物5。該方法係用於一鍋法的三步驟方案中,由天然產物埃博黴素B(又名EpoB、帕土匹龍、EPO 906)逐步製備伊沙匹隆,其總產率為13~21%或23%(J.Am.Chem.Soc.,2000,122,8890-8897)。
方案2--由埃博黴素途徑合成氮雜埃博黴素
如方案3所示,美國專利No.6,365,749公開了由埃博黴素3產生開環埃博黴素衍生物1的方法。可用鈀催化劑和基於氮的親核試劑處理埃博黴素衍生物3,以提供開環埃博黴素衍生物1。 當X是NH2時,所述衍生物可被巨環內醯胺化以產生氮雜埃博黴素。
方案3--根據US 6,365,749的埃博黴素衍生物的開環
如方案4所示,美國專利No.6,518,421號公開了埃博黴素成為氮雜埃博黴素的轉化,其包括使埃博黴素3的巨環內酯開環,以提供羧酸銨鹽,然後進行巨環內醯胺化以提供氮雜埃博黴素2。 其可以逐步或在單一反應容器中進行而不需分離鹽中間體,並可用於將埃博黴素B轉化為伊沙匹隆。
方案4--根據美國專利No.6,518,421將埃博黴素轉化為氮雜埃博黴素
美國專利No.6,867,305和J.Org.Chem.2001,66,4369-4378公開了用於製備伊沙匹隆的總合成方法。該方法包括:B-烷基Suzuki偶聯片段D1與一烯烴之硼烷(borane)衍生物D2(方案5)。通過Suzuki偶聯使D1b與烯烴之硼烷衍生物D2c偶聯(產率為78%),然後在一需要另外8個合成步驟(包括巨環內醯胺化)的方法中,轉化為伊沙匹隆。在Suzuki反應中,N-BOC胺衍生物IIIa’或叠氮衍生物D1b與D2a的Suzuki偶聯的產率分別僅為10%和63%。
據認為,IIIa’偶聯的低產率是由於存在N-BOC(BOC是 第三丁氧羰基;CO2 t-Bu;t-BuOCO)氨基甲酸酯基團。這似乎得到以下事實的支持:用叠氮化物取代碘化乙烯IIIa’中的N-BOC氨基甲酸酯基團(如叠氮基碘化乙烯D1b中那樣)得到了改善的產率(63%)。但是,在所有情況下,B-烷基Suzuki反應中都使用砷類配體AsPh3。砷是有毒的,且因為對人用原料藥(drug substance)中所允許的砷含量具有嚴格的要求(2ppm),所以在原料藥(API)製造中應極力避免使用砷類試劑。 因此,如果在API製造過程中使用砷類試劑,則製造商擔負將砷含量控制至可接受含量的重大(且昂貴)的負擔。因此,在API製造中較佳為避免使用砷類試劑。
方案5--根據J.Org.Chem.,2001,66,4369-4378合成伊沙匹隆
鑒於上文,仍然需要不依賴於使用天然產物埃博黴素作為原料,來製造伊沙匹隆及其衍生物的方法。亦需與相關技術相比,在形成伊沙匹隆的完整無環前體之後,僅需較少化學步驟來製造伊沙匹隆的方法。
本申請案要求於2013年3月8日提交的編號為61/775,461的美國臨時專利案申請的優先權。該臨時申請案的全部內容通過引用併入本文。
本發明涉及製備伊沙匹隆、伊沙匹隆衍生物及類似物、及其中間體的新方法。
在本發明的一方面中,提供一種由三個單元--單元A、單元B和單元C製備式I的化合物的方法。I本身可用作原料藥,或者作為替代地可被衍生化以提供其他具有有用藥物性質的物質。
單元A是酮XIX或其非鏡像異構物XIX’
單元B是醛XX ;以及 單元C是氨基碘化乙烯III(其中X是I)
將單元A、單元B和單元C依次偶聯在一起,產生式IV的化合物。
式IV的化合物會轉化為式V的化合物。
然後,使式V的化合物環化以產生巨環內醯胺VI或I。
具有式I的化合物視情況轉化為伊沙匹隆、伊沙匹隆衍生物和式VII所示的伊沙匹隆的類似物。
在本發明的另一方面中,提供了一種製備式III’的化合物的方法,所述式III’的化合物可用於本發明的第一方面的有用結構單元。
所述方法包括使式X的醛
轉化為式XI的對掌性衍生物
其與烯丙基化試劑立體選擇性地反應以產生式XII的化合物。
式XII的化合物被轉化為III’的化合物。
I. 概述
本發明提供了用於工業製造伊沙匹隆、伊沙匹隆衍生物及類似物、及其中間體的新方法。亦包括本發明化合物的鹽和前藥。 本發明的伊沙匹隆、伊沙匹隆衍生物以及伊沙匹隆類似物旨在用於治療人的疾病。
II. 定義
本文所用術語“氮雜埃博黴素”指屬埃博黴素類的16員聚酮型內醯胺。
本文所用巨環內醯胺是具有12個或更多個原子的包含環的環狀醯胺。
本文所用術語“芳基”和“芳族環”本身或作為另一取代基的一部分時,指多不飽和的烴基,其可以是單環,或者稠合在一起或共價連接的多環(至多三個環)。芳基的非限制性實例包括:苯基、萘基和聯苯基。“取代芳基”可被一個或更多個選自由以下的基團所組成群組而取代:鹵素、羥基、氨基、烷氨基、醯胺基、醯基、硝基、氰基和烷氧基。
“雜芳基”指包含5至16個環原子的單環芳族環或稠合雙環或三環芳族環集合(ring assembly),其中環原子中有1至5個是雜原子,例如:N、O或S。還可使用另外的雜原子,其包括但不限於B、Al、Si和P。雜原子還可被氧化,例如但不限於-S(O)-和-S(O)2-。雜芳基可包含任何數目的環原子,例如:3至6、4至6、5至6、3至8、4至8、5至8、6至8、3至9、3至10、3至11或3至12個環成員。雜芳基中可包含任何合適數目的雜原子,例如:1、2、3、4或5個,或者1至2、1至3、1至4、1至5、2至3、2至4、2至5、3至4或3至5個。雜芳基可包含基團例如:吡咯、吡啶、咪唑、吡唑、三唑、四唑、吡嗪、嘧啶、噠嗪、 三嗪(1,2,3-、1,2,4-和1,3,5-異構體)、噻吩、呋喃、噻唑、異噻唑、噁唑和異噁唑。雜芳基還可稠合至芳族環系統(例如苯環)以形成包括但不限於以下的成員:苯幷吡咯(如吲哚和異吲哚)、苯幷吡啶(如喹啉和異喹啉)、苯幷呱嗪(奎喏林(quinoxaline))、苯幷嘧啶(奎唑林(quinazoline))、苯幷噠嗪(如酞嗪(phthalazine)和唑啉(cinnoline))、苯幷噻吩和苯幷呋喃。另一些雜芳基包括通過鍵連接的雜芳基環,如聯吡啶(bipyridine)。“取代雜芳基”可被一個或更多個選自由以下的基團所組成群組而取代:鹵素、羥基、氨基、烷氨基、醯胺基、醯基、硝基、氰基和烷氧基。
除非另作說明,否則術語“烷基”本身或作為另一取代基的一部分時,意指直鏈或支鏈烴基。烷基取代基和其他烴取代基可包含指明取代基中碳原子數目的數目指示詞(designator)(即C1-8意指一至八個碳),但是這種指示詞可以省略。除非另有詳細說明,否則本發明的烷基包含1至10個碳原子。例如,烷基可包含1~2、1~3、1~4、1~5、1~6、1~7、1~8、1~9、1~10、2~3、2~4、2~5、2~6、3~4、3~5、3~6、4~5、4~6或5~6個碳原子。烷基的實例包括甲基、乙基、正丙基、異丙基、正丁基、第三丁基、異丁基、第二丁基、正戊基、正己基、正庚基、正辛基等。
本文所用術語“氟烷基”指包含一個或更多個氟取代基的烷基。 在一些實施方案中,氟烷基指其中所有氫原子都被氟原子取代的烷基。氟烷基的實例包括三氟甲基、2,2,2-三氟乙基等。
本文所用術語“烯基”指具有至少2個碳原子和至少一個雙鍵的直鏈或支鏈烴。烯基可包含任何數目的碳,例如C2、C2-3、C2-4、C2-5、C2-6、C2-7、C2-8、C2-9、C2-10、C3、C3-4、C3-5、C3-6、C4、C4-5、C4-6、C5、C5-6和C6。烯基可具有任何合適數目的雙鍵,包括但不限於1、2、3、4、5或更多個。烯基的實例包括但不限於乙烯基、丙烯基、異丙烯基、1-丁烯基、2-丁烯基、異丁烯基、丁二烯基、1-戊烯基、2-戊烯基、異戊烯基、1,3-戊二烯基、1,4-戊二烯基、1-己烯基、2-己烯基、3-己烯基、1,3-己二烯基、1,4-己二烯基、1,5-己二烯基、2,4-己二烯基或1,3,5-己三烯基。
本文所用術語“接觸”指使至少兩種不同物質相接觸以使其可發生反應的方法。但是,應理解,所產生的反應產物可由所添加試劑之間的反應直接產生,或者由來自一種或更多種所添加試劑的可在反應混合物中產生的中間體產生。本文所用術語“處理”指使物質與至少一種另外的物質接觸。
本文所用術語“硼烷衍生物”指具有至少一個碳-硼鍵的化合物。硼烷衍生物包括但不限於硼酸、烷基硼烷、烯基硼烷、乙烯基硼烷。硼烷衍生物可通過使式R2BH的硼烷與合適的母體分子(如烯烴)反應來形成。在硼烷衍生物被轉化為另一種化合物之前可被分離和純化,或者其可不經分離和純化而原樣使用。
本文所用術語“硼烷”指包含與三個取代基結合之硼原子的化合物。在一些實施方案中,硼烷是包含一個或更多個烷基取代基的烷基硼烷。硼烷的實例包括但不限於9-硼雙環-[3.3.1]壬烷(9-BBN)、9-硼雙環[3.3.1]壬烷二聚體(9-BBN二聚體)、二異戊基硼烷(disiamylborane)和二環己基硼烷。
本文所用術語“保護基”指形成以使得功能性基團不反應的一基團。形成該基團被稱為“保護”所述功能性基團或包含所述功能性基團的分子。保護基可以被移除以使所述功能性基團恢復至其初始狀態。移除保護基被稱為“脫保護”。多種保護基和保護試劑(包括羥基保護基)為本領域技術人員所公知,並包括Protective Groups in Organic Synthesis,第4版,T.W.Greene和P.G.M.Wuts,John Wiley & Sons,New York,2006(其通過引用整體併入本文)中公開的化合物。
本文所用術語“乙烯基鹵化物”指包含鹵素原子的任何烯烴,所述鹵素原子與烯烴雙鍵中不飽和的碳原子之一結合。
本文所用術語“過渡金屬”指以具有不完全d亞層或產生具有不完全d亞層之陽離子的原子為特徵的元素。過渡金屬的實例包括Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir Pt、Au、Hg、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg、Cn。鑭系和錒系 也可充當本發明方法中的過渡金屬。
本文所用術語“過渡金屬催化劑”指包含至少一種參與化學反應以改變反應速率的過渡金屬的化合物。一般而言,過渡金屬催化劑提高反應速率而在反應過程中並不消耗其自身。過渡金屬催化劑可以是元素形式,例如鈀黑,或者過渡金屬催化劑可以是包含與一種或更多種配體結合的過渡金屬的配位化合物(coordination complex)。
本文所用術語“環氧基”指包含一個氧原子和兩個碳原子的三元環。一般而言,本發明的環氧基是通過使前體(如烯烴)與合適的環氧化劑接觸而形成的。環氧化劑的實例包括但不限於過氧酸,例如過乙酸和3-氯過苯甲酸。
本文所用術語“溶劑”指在環境溫度或壓力下為液體的物質。 溶劑的實例包括水、丙酮、甲苯、二氯甲烷(methylene chloride)、乙酸乙酯、乙腈、四氫呋喃、苯、氯仿、乙醚、二甲基甲醯胺、二甲基亞碸和石油醚。
本文所用術語“烯丙基”指具有式-CH2-CH=CH2的部分。
本文所用術語“鹵素”指氟、氯、溴和碘。術語“鹵化物”指包含鹵素或來源於母體鹵素之陰離子的化合物。
本文所用術語“二苯甲酮”指在羰基碳上被兩個苯基取代的酮。 “二苯甲酮亞胺”指可由氨與二苯甲酮反應產生的亞胺。“二苯甲酮二烷基縮醛”指可由二苯甲酮與二當量烷基醇反應產生的縮醛。二苯甲酮亞胺和二苯甲酮二烷基縮醛還可通過另一些反應得到。
本文所用術語“活化”指提高官能團對期望的反應參與物(reaction partner)的反應性。活化官能團可包括形成對反應參與物的反應性比母本官能團更大的中間體。在一些實施方案中,例如,活化含羰基的化合物包括形成烯醇矽醚(silyl enol ether)。
本文所用術語“路易斯酸”指可接受來自第二化合物(即,路易斯鹼)的電子對以形成酸鹼加合物的化合物。路易斯酸的實例包括但不限於金屬鹵化物,如四氯化鈦(TiCl4)、二氯化鋅(ZnCl2)、二氯化錫和四氯化錫(SnCl2和SnCl4);三氟化硼(BF3);鹵化 鋁和烷基鹵化鋁(AlX3和RnAlX3-n);以及五氟化磷和五氟化銻(PF5和SbF5)。
本文所用術語“鹼”指能夠接受質子(即,氫陽離子)以形成鹼的共軛酸的分子。鹼的實例包括但不限於Hunig鹼(即,N,N-二異丙基乙胺),盧剔啶(lutidine)(包括2,6-盧剔啶,即2,6-二甲基吡啶,其有時也稱為盧剔啶)、三乙胺和吡啶。
本文所用術語“非鏡像異構物(diastereomers)”指化合物的兩種或更多種彼此不呈鏡像的立體異構體(即,不是對掌異構物(enantiomer))。術語“非鏡像異構物比例(diastereomeric ratio)“指非鏡像異構物混合物中一種非鏡像異構物與一種或更多種其他非鏡像異構物之比。
術語“磺內醯胺(sultam)“是指一種環狀磺醯胺化合物,其中S-N化學鍵形成環的一部分。本文所用術語“磺內醯胺“是指環狀磺醯胺(1R)-(+)-2,10-樟腦磺內醯胺或(1S)-(-)-2,10-樟腦磺內醯胺或者這些化合物的衍生物,還稱為樟腦磺內醯胺或Oppolzer磺內醯胺,其來自於樟腦或樟腦的對掌異構物。在本文中描述的本發明中,這些磺內醯胺用作對掌性輔助劑。
III. 具體實施方案
本發明巨環內醯胺化合物的合成方法包括使三種原料(本文稱為單元)依次偶聯在一起。結構單元是稱為單元A的酮(如XIX或其非鏡像異構物XIX’)、稱為單元B的醛(XX)和稱為單元C的氨基碘化乙烯(如III)。使單元偶聯以形成線性、無環前體分子IV,稱為單元ABC)。對所述線性、無環前體化合物進行化學操作以除去保護基,然後環化以產生巨環內醯胺化合物(即,VI和I),其本身可用作治療劑,或者必要時可對其進行進一步的合成操作以產生其他治療劑,包括含環氧基的巨環內醯胺化合物伊沙匹隆(其是已知的治療劑)。該合成策略歸納於方案6中。
方案6--本文中所描述的合成策略
A. 用於製備單元A的方法
單元A可以是N-((3S)-3-氧基-5-氧代-庚醯基)-莰烷-10,2-磺內醯胺XVIII或XVIII’,或C3-羥基被保護的衍生物XIX或XIX’。在一些較佳實施方案中,單元A是酮XIX或其非鏡像異構物XIX’,其中R1是矽烷基保護基(如三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS))。XIX可使用本領域已知方法來製備(參見例如Helv.Chim.Acta 2002,85,4086-4110)。在一些更佳實施方案中,單元A是酮XIX’,其中R1是矽烷基保護基(如三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS))。酮XIX’可使用本文所公開的方法來製備(方案7)。當R1在XIX和XIX’中是相同的保護基時,酮XIX和XIX’是一對非鏡像異構物型的立體異構體。
方案7--合成單元A
本領域中已知XIX可由XVIII通過封閉羥基C3-OH來製備。本領域中已知(參見Helv.Chim.Acta,2002 85,4086-4110)XVIII可通過以下來製備:用路易斯酸三氟甲磺酸二乙硼處理可商購的磺內醯胺XVI,然後用二乙基異丙基胺處理,然後冷却至-75℃下並與醛XVII反應。三氟甲磺酸二乙硼是非常昂貴的試劑。如本文所述,新的中間體XIX’(其中R1是矽烷基保護基,如TES、TIPS、TBS或TBDPS)可使用更具成本效益的條件來製備。在該方法中,在-78℃下,在有機溶劑(較佳無水二氯甲烷(DCM))中,用在胺鹼(如Et3N(三乙胺)或2,6-盧剔啶)存在下經矽烷基三氟甲磺酸酯(例如TBSOTf(第三丁基二甲基矽烷基三氟甲磺酸酯))預處理過的XVI的對掌異構物,即N-乙醯基樟腦磺內 醯胺(N-乙醯基莰烷-10,2-磺內醯胺)XVI’(其已在有機溶劑(較佳無水DCM)中活化),處理醛XVII與路易斯酸TiCl4的混合物。 已知另一些路易斯酸(例如BF3醚合物、鑭系元素三氟甲磺酸酯(例如Yb(OTf)3)、過渡金屬三氟甲磺酸酯(例如Sc(OTf)3)、鎂(II)鹽、鋅(II)鹽、其他Ti(IV)鹽或TMSOTf(三甲基矽烷基三氟甲磺酸酯))可用於類似的Mukaiyama羥醛縮合反應。當活化的XVI’與醛XVII的Mukaiyama羥醛縮合反應完成後,進行水溶液處理(aqueous workup),然後可使用本領域中已知的方法分離XVIII’。與其他醛的反應相比,醛XVII與N-乙醯基樟腦磺內醯胺XVI的反應提供了在庚醯基鏈C3處為相反立體化學的對掌性醇。因此,為了得到期望立體化學,必須使用可期望來自此的N-乙醯基磺內醯胺XVI的相反對掌異構物。即,在新方法中使用N-乙醯基磺內醯胺XVI’。
因此,當使用該替代方法時,所得化合物XVIII’是化合物XVIII的非鏡像異構物,其係使用已知方法採用路易斯酸Bu2BOTf時所獲得。在本發明的巨環內醯胺產物中存在的C3關鍵對掌性中心,在XVIII和XVIII’二者中是相同的。XVIII’可分別與甲矽烷化劑(例如三乙基氯矽烷(TESCl)、三異丙基氯矽烷(TIPSCl)、第三丁基二甲基氯矽烷(TBSCl)、第三丁基二甲基矽烷基三氟甲磺酸酯(TBSOTf)或第三丁基二苯基矽烷基三氟甲磺酸酯(TBDPSOTf))進行反應以提供XIX’,其中R1=TES、TIPS、TBS或TBDPS。XIX和XIX’二者都可作為用於製備伊沙匹隆、伊沙匹隆類似物及其中間體的一種結構單元(即,單元A)。如本文所述,當合成伊沙匹隆時,較佳單元A是式XIXa’的化合物(N-((3S)-3-(第三丁基二甲基)矽烷基氧基-5-氧代-庚醯基)-莰烷-10,2-磺內醯胺)。
B. 單元B與單元A的反應
單元AB(II)是單元A和單元B的複合物,並包含N-((3S)-3,7-二氧基-5-氧代-十一-10-烯醯基)-莰烷-10,2-磺內醯胺部分。II可以是部分被羥基保護的化合物XXII或XXII’,或者是完全被羥基保 護的化合物IIa或IIa’。部分被保護和完全被保護的化合物都可用於製備本發明的伊沙匹隆、伊沙匹隆類似物以及中間體。此外,如本文所提供的,當製備伊沙匹隆時,使用完全被保護的IIa或IIa’(例如其中R1=TBS以及R2=TBS)更佳,且與使用IIax相比,使用IIax’(其中R1=TBS且R2=TBS)更佳。使用IIa’比使用IIa更佳,是因為雙重TBS保護的化合物IIax’更容易作為結晶固體而分離,這使其在生產規模上純化更方便、更高效且花費更少。
單元AB(II)可通過酮XIX或XIX’與醛XX的羥醛縮合反應(aldol reaction)來製備(方案8)。R1和R2獨立地是H(氫)或保護基PG1和PG2。保護基較佳是矽烷基保護基,例如:TES、TIPS、TBS或TBDPS。單元AB的實例是XXII、XXII'、IIa和IIa'。 IIa和IIa'通過進一步保護XXII和XXII'來製備。在一些較佳實施方案中,R1是TBS且R2是H或TBS,且Z可以是磺內醯胺ST或其對掌異構物(antipode)磺內醯胺ST’,因此在這些較佳的實施方案中,化合物IIa和IIa'分別是IIax和IIax'。更佳地,單元AB是式IIax’的化合物。
方案8--合成單元AB(II)
在一些較佳實施方案中,使用單元A和單元B的非鏡像選擇性羥醛縮合反應,使得主反應單元AB產物式II的化合物(其具體化為式XXIII和XXIII’的化合物)具有所需的(6R,7S)-立體化學。 更佳地,羥醛縮合反應是酮XIXa’與醛XX的縮合反應,且主要產物是式XXIIa’的化合物。單元B是式XX的醛化合物。醛XX可使用現有技術(參見例如Org.Lett.2009,11,5326-5328)中報導的方法來製備。已報導了酮XIX(其中R1是TBS)與-甲基醛的鈦烯醇化物羥醛縮合反應中的良好立體選擇性(例如,參見Org.Lett.2002,4,3811-3814,J.Org.Chem.2004,69,9269-9284)。已報導指出對於酮XIX(其中R1是TBS)與-甲基醛XXIIIa和XXIIIb的鈦烯醇化物羥醛縮合反應,(6R,7S)-非鏡像異構物相對於(6S,7R)-非鏡像異構物的立體選擇性(其被報導為非鏡像異構物比例(d.r.))高達10:1至20:1(參見Org.Lett.2002,4,3811-3814,J.Org.Chem.2004,69,9269-9284)。提出了將α-甲基醛XXIIIa和XXIIIb作為用於合成埃博黴素B和D的中間體。但是,沒有報導指出用於含磺內醯胺的酮XIX或XIX’與醛XX偶聯的這些鈦烯醇化物羥醛縮合反應,可用於製備對氮雜埃博黴素合成有用的中間體。
本文所描述的酮XIX或XIX’與醛XX的非鏡像異構物選擇性的鈦-烯醇化物羥醛縮合反應,可使用現有技術所報導的酮與醛的鈦-烯醇化物羥醛縮合反應的反應條件來進行。酮XIX或XIX’通 過在低溫下(較佳低於-50℃,更佳低於-70℃,以及最佳約-70至-80℃)在有機溶劑(較佳DCM)中,用鈦系的路易斯酸(例如TiCl4或TiBr4,較佳TiCl4)處理,然後添加胺鹼(例如DIPEA(N,N-二異丙基乙胺;Hünig鹼)、Et3N、Bu3N,較佳DIPEA)來活化。活化酮之後,對維持在低溫(較佳低於-50℃,更佳低於-70℃,以及最佳約-73至-78℃)的經活化酮混合物添加醛。醛XX以純淨(無溶劑)形式添加或以在有機溶劑(例如,DCM、戊烷、己烷、石油醚或正庚烷)中或者在有機溶劑混合物(例如DCM和正庚烷)中的形式添加。當以足夠高的含量存在時,一些溶劑(包括THF(四氫呋喃))可抑制本發明中XIX或XIX’與XX的羥醛縮合反應,因此應被避免。醛XX的摩爾當量可相對於酮XIX或XIX’而變化,但是,現已發現應使用至少1.5摩爾當量的醛XX,且更佳地,應使用超過3摩爾當量的醛XX以允許酮XIX或XIX’對產物XXII和XXII’的良好轉化。最佳地,使用約4摩爾當量的醛XX以確保酮XIX或XIX’分別對XXII和XXII’的良好化學轉化。添加醛之後,可將反應混合物保持在低溫(約-70至-78℃)下一段時間,或者在反應處理前允許升溫至約0℃以分離產物XXII和XXII’。
本發明中的XIX或XIX’與XX的非鏡像異構物選擇性的鈦-烯醇化物羥醛縮合反應分別提供了產物XXII或XXII’的不同的非鏡像異構物比例(d.r.)(方案9)。例如,XIXa與XX的羥醛縮合反應提供了(6R,7S)-非鏡像異構物/(6S,7R)-非鏡像異構物為約91:9、至多約95:5之d.r.的XXIIa,而XIXa’與XX的羥醛縮合反應提供了(6R,7S)-非鏡像異構物/(6S,7R)-非鏡像異構物為約84:16、至多約86:14之d.r.的XXIIa’。
方案9-在XIX或XIX’與XX的鈦-烯醇化物醛醇縮合反應中形成的兩種主要的非鏡像異構物XXII或XXIII’。
在一個較佳的實施方案中,分離的XXIIa’(其是式XXII’的化合物,其中R1是TBS,且R2是H)不需要純化,並可用於下一步反應以提供IIax’(其是式IIa’的的化合物,其中R1是TBS且R2是TBS)。式IIa’的化合物(其中R2是矽烷基保護基)通過在本領域中已知用於第二醇之矽烷基化的反應條件下由XXIIa’的矽烷基化來製備。在一些較佳的實施方案中,式XXIIa’的化合物通過其在有機溶劑(較佳無水DCM)中在鹼(例如2,6-盧剔啶或咪唑,更佳2,6-盧剔啶)的存在下與TBSOTf(第三丁基二甲基家矽烷基三氟甲磺酸酯)的反應來進行矽烷基化。
在一些其中需要IIax的實施方案中,較佳在其矽烷基化之前其前體XXIIa通過結晶或通過管柱層析法純化,從而除去不想要的XXIIa之(6S,7R)-非鏡像異構物。通過結晶純化XXIIa可使用MeOH(甲醇)與水的混合物來實現。通過管柱層析法純化XXIIa以除去不想要的XXIIa之(6S,7R)-非鏡像異構物(使分離的XXIIa的d.r.為約99:1),確保可獲得高對掌性純度的IIax。式IIa的化合物可通過本領域中已知的方法(例如管柱層析法)來純化。當如剛剛描述的管柱層析法純化其前體XXIIa時,可以約99:1的 d.r.獲得本發明的IIax。
在一些較佳的實施方案中,固體化合物IIax’通過從有機溶劑(包括MeOH)再結晶來純化。從MeOH再結晶d.r.獲IIax’提供了化學純度和對掌性純度的IIax’。再結晶的IIax’的(6R,7S)-非鏡像異構物/(6S,7R)-非鏡像異構物的d.r.大於或等於99:1。多重再結晶可提供甚至更高的再結晶的IIax’的(6R,7S)-非鏡像異構物/(6S,7R)-非鏡像異構物的d.r.。因此,儘管IIax和IIax’均可用於本發明用於製造伊沙匹隆或其類似物和衍生物,但是較佳IIax’,因為其對掌性純度高以及便於製備。
考慮分別由XIX或XIX’與XX的鈦-烯醇化物醛醇縮合反應所產生的XXII或XXII’的d.r.值可表明,與XIX’相比,XIX是較佳的用於製造伊沙匹隆的結構單元。但是,兩個出乎意料的因素表明XIX’比XIX更適於使用本文中描述的方法來製造伊沙匹隆。 首先,雖然對掌性中間體中使用的天然產物(+)-樟腦是油狀物,但是XXII’和IIax’均是固體化合物。即,雖然衍生自天然產物(+)-樟腦的化合物IIax是油狀物,但衍生自非天然對掌異構物(+)-樟腦的兩種化合物(即,XXII’和IIax’)是固體。非鏡像異構物化合物的這一物理性質之差異的後果是,製造IIax’比製造IIax更高效。事實上,在一些較佳的實施方案中,可以以大於或等於99:1的(6R,7S)-非鏡像異構物/(6S,7R)-非鏡像異構物非鏡像異構物比例和大於60%總產率(偶聯XXIa’與XX然後通過矽烷基化合結晶而無需色譜純化)的高化學純度來製備IIax’。IIax’的高化學純度和非鏡像異構物純度很容易通過從甲醇中結晶IIax’來實現。相反,IIax以油狀物理形式產生,且不想要的(6S,7R)-非鏡像異構物必需通過管柱層析法來除去。因此,在本文中描述的伊沙匹隆的製造中較佳XIX’,XXII’和IIax’(而不是製造相應非鏡像異構物XIX中的XXII和IIax)用作中間體。以下描述的另一些優勢是,水解衍生自IIax’的含磺內醯胺的中間體IVax’提供比水解相應的含磺內醯胺的中間體IVax(其是IVax’的非鏡像異構物且衍生自IIax)更高產率的XXVIax。
式II化合物(單元AB)的磺內醯胺基(Z是磺內醯胺ST或磺內醯胺ST’)可被除去且被轉變為氧系的基團,例如烷基酯或矽烷基酯。這可以使用本領域中已知方法通過式IIa或IIa’的化合物的醯胺鍵水解來實現(例如,使用LiOH或NaOH和H2O2水解)以提供II的羧酸衍生物(例如XXIVa),然後使用本領域已知方法對其進行酯化以提供酯(方案8)(例如,XXVa)。這些酯可用於製備伊沙匹隆及其衍生物和類似物。
C. 製備單元C
單元C由通式III表示(方案10)。RA是未取代或取代的芳基或者未取代或取代的雜芳基,且較佳是基團2-甲基-噻唑-4-基。 RB和RC獨立地是烷基、氟烷基、未取代或取代的芳基或者未取代或取代的雜芳基,且皆較佳是甲基。X是選自由:I、Br和Cl所組成群組的鹵素或非鹵素(例如三氟甲磺酸酯(OSO2CF3)或磷酸酯(OPO(OR)2))且較佳是I。R3和R4獨立地是氫(H)或一保護基。在一些較佳的用於製備本發明的巨環內酯化合物的實施方案中,III是式III’的化合物,且在一些較佳的可用於合成伊沙匹隆的實施方案中,III是IIIa’。III還可以是IIIb’、IIId’、IIIe’和IIIc’。
化合物IIIa’(參見方案11)可通過已知方法製備。遺憾的是,已報導的用於合成IIIa的方法(參見J.Org.Chem.2001,66,4369-4378)需要長的合成途徑且產率低。因此,存在對可以以生產規模進行的新的且更高效路徑的需要。在本發明中,III(具體為IIIb’、IIIa’、IIId’、IIIe’和IIIc’)使用新方法來製備,其包括:以烯丙基化試劑AL向對掌性N-亞磺醯基亞胺XI的C-N雙鍵的1,2-加成作為關鍵反應步驟,以提供具有高立體純度的對掌性N-亞磺醯基胺XII(方案10)。如本文所述,可使用例如Chem.Rev.2010,110,3600-3740中提供的那些條件或使用本文中所描述的方法,由α,β-不飽和醛X通過與第三丁基亞磺醯胺縮合來製備N-亞磺醯基亞胺XI。例如,Xa可以在活化劑(例如Ti(Oi-Pr)4、Ti(OEt)4、MgSO4、CsCO3或KHSO4)存在下(最佳在KHSO4存 在下)在無水溶劑中(較佳在無水甲苯中)與(R)-(+)-N-第三丁基亞磺醯胺在室溫下反應數小時,然後水溶液處理,並並在真空下濃縮以提供XIa。在隨後的反應步驟中,烯丙基化試劑AL的原子M可以是這樣的金屬或類金屬(metalloid),其可用於包括Mg、Zn、In、Li、Sn、Ce、Al、B、鑭系元素或Si向C-N雙鍵的1,2-加成。鎂是更佳的,因為其在1,2-加成中可獲得高立體選擇性(98% d.e.(非鏡像異構物過量))。當M是金屬(如Zn)時,可以將金屬鹽(如InCl3和In(OTf)3)添加至反應混合物中。式AL中n的值可以是1、2、3或4,但較佳是1。例如,XIa在無水有機溶劑(例如DCM、乙醚、THF或2-Me-THF(2-甲基四氫呋喃))中的溶液(更佳在無水DCM或無水2-Me-THF中的溶液)可與烯丙基溴化鎂(ALa)在乙醚或在2-Me-THF中(更佳在2-Me-THF中)在約<-40℃下反應。雖然乙醚中的烯丙基化溴化鎂可商購,但當在2-Me-THF中製備烯丙基溴化鎂時,XIa向XIIa的轉化中可實現改進的立體選擇性。因此,較佳在該反應中使用2-Me-THF中的烯丙基溴化鎂。一旦烯丙基化試劑與亞胺衍生物XI的1,2-加成反應完成,可在-20℃下用溫和的酸水溶液(例如飽和氯化銨水溶液)處理產物混合物,然後升溫至室溫。水溶液處理之後,可分離XIIa,視情況通過本領域中已知的方法(包括沉澱或管柱層析法)純化。在本發明的一些較佳的實施方案中,可以以高化學純度和高非鏡像異構物純度(d.e.)(例如99% d.e.)作為固體化合物通過從MTBE(甲基第三丁基醚)和正庚烷的溶液中對其進行沉澱來分離XIIa。此外,類金屬(例如硼和矽)的烯丙基衍生物可自身或在活化劑(例如路易斯酸,例如TMSOTf、Ti(IV)和Al(III)鹽或TBAF(四-N-丁基氟化銨)或MeLi)存在下用作烯丙基化試劑AL的替代物。
方案10--合成單元C(III)
在本發明的一個實施方案中,烯丙基化試劑AL是烯丙基溴化鎂(ALa),III是IIIb’、IIIa’、IIId’、IIIe’或IIIc’中的任何一個(方案11),且較佳是IIIb’、IIIa’或IIId’,更佳IIIb’或IIIa’,以及最佳是IIIa’。所有的這些化合物可由可商購化合物Xa使用本文中公開方法製備。IIIa’可用於使用本文中所描述的方法製造伊沙匹隆及其衍生物和類似物。
方案11--合成IIIa-e
XII向本發明通式III化合物的轉化可通過多種合成路徑現(方案12)。例如,使用强酸移除XII的亞磺醯基對掌性助劑從而提供烯丙基胺XIII,其可提供為游離鹼或鹽(例如HCl鹽、對甲苯磺酸鹽、樟腦磺酸鹽、檸檬酸鹽或者(L)-(+)-或(D)-(-)-酒石酸鹽)。保護XIII的游離鹼或鹽形式的氮原子從而提供XIV。其可隨後通過兩步驟氧化以及Wittig反應的一鍋法來同系化 (homologate)(參見J.Am.Chem.Soc.2000,122,10521-10532), 以提供乙烯基鹵化物III。
方案12--XII轉化為IIIa-e
例如,在室溫下,在有機溶劑(例如MeOH或1,4-二氧六環,較佳MeOH)中用醚溶劑(例如乙醚或1,4-二氧六環)中(較佳在乙醚中)的HCl溶液處理XIIa,提供了烯丙基胺XIIIa的鹽酸(HCl)鹽的有機溶劑溶液。中和烯丙基胺XIIIa的鹽酸鹽可用鹼(例如NaOH水溶液)來進行,以提供烯丙基胺XIIIa,其可不經進一步純化而用於隨後的反應步驟,或者作為替代地,可對其進行純化(例如,通過管柱層析法)。或者,在約室溫下在MeOH中用濃HCl水溶液處理XIIa提供烯丙基胺XIIIa的鹽酸鹽(HCl),其隨後提取到水中,與有機溶劑(例如MTBE)混合,並用10%NaOH水溶液處理,直到pH提高至約10-11。用水和鹽水洗滌有機相提供一有機溶液,其隨後在減壓下濃縮,以提供具有良好化學純度的烯丙基胺XIIIa。烯丙基胺XIIa可通過在有機溶劑(例如THF、2-Me-THF或DCM,較佳DCM)中,視情況在鹼(例如Et3N)存在下,用二碳酸二叔丁酯(還稱為BOC酸酐或BOC2O)處理而被轉化成其N-第三丁氧羰基(N-BOC)保護的衍 生物XIVax。較佳地,在鹼存在下,DCM中的XIIIa與二碳酸二叔丁酯反應,反應完成後,將產物混合物濃縮,通過添加庚烷以高產率和高化學純度來沉澱XIVax。
在一個實施方案中,烯烴XIV可通過一鍋/兩步驟二羥基化和氧化反應順序,被轉化為醛XV,無需分離二羥基化反應中間體XXI。該順序包括:使用第一氧化劑的XIV雙鍵的二羥基化以提供二羥基化合物XXI。所述第一氧化可以是氧化劑(例如,H2O2t-BuOOH、DMDO(二甲基二環氧乙烷)、m-CPBA(間氯過氧苯甲酸)或者與其他氧化劑(例如高碘酸鹽或過氧化物)組合的金屬條件(例如使用催化或化學計量之量的Rh、Ru、Pt、Pd、Cu、Ce或Os鹽)(在一個步驟中存在或不存在配體),且較佳催化量的鋨酸鹽與4-甲基嗎啉N-氧化物的組合,使用例如水、酮、醇、醚、腈或離子液體或其組合的溶劑,但更佳是丙酮與水的混合物。 當反應被視為已達到滿意的完成含量時(如通過分析技術(例如HPLC分析)所確定),將延遲或去活化鋨鹽氧化能力的試劑,添加至產物混合物。該去活化劑較佳是路易斯鹼,例如吡啶或吡啶衍生物,例如N,N-二甲基-4-氨基吡啶(DMAP)。該去活化是必需的,以抑制第二反應步驟中(即,在二羥基化合物XXI向醛XV的轉化中)剩餘雙鍵的氧化。添加去活化劑之後,向混合物中添加第二氧化劑而不分離二羥基化合物XXI,以影響二羥基化中間體XXI對醛XV的轉化。所述第二氧化劑可以是NaIO4、HIO4、PbI(OAc)2或Pb(OAc)4,且較佳是NaIO4,使用例如水、醚、二氧六環、腈、EtOAc(乙酸乙酯)或氯化烴的溶劑,但更佳是丙酮與水的混合物。該反應順序提供在生產規模上的優勢,因為二羥基中間體XXI不需要分離,而是可在同一反應容器中,使用相同的溶劑,在添加第二氧化劑後直接轉化為XV。
在烯烴XIV轉化為醛XV的另一實施方案中,伴隨著XIV之雙鍵的二羥基化,使用氧化劑以提供二羥基化合物XXI。所述氧化劑可以是,例如:H2O2t-BuOOH、DMDO、m-CPBA的氧化劑,或者與其他氧化劑(例如高碘酸鹽或過氧化物)組合的金屬 試劑(例如使用催化或化學計量之量的Rh、Ru、Pt、Pd、Cu、Ce或Os鹽)(在一個步驟中存在或不存在配體),且較佳為在(DHQ)2PHAL的存在下,使用例如THF與水的混合物的溶劑的具催化量的鋨酸鹽與4-甲基嗎啉N-氧化物組合。隨後將二羥基化合物XXI分離,並使用本領域中已知的技術(例如,結晶或色譜)來純化。隨後使用氧化劑將經純化的二羥基化合物XXI氧化以提供醛XV。所述氧化劑可以是NaIO4、HIO4、PbI(OAc)2或Pb(OAc)4,且較佳是NaIO4,使用例如:水、醚、二氧六環、腈、EtOAc或氯化烴的溶劑,但更佳為THF與水的混合物。
式XV的化合物成為式III化合物的轉化通過使用由(1-碘乙基)三苯基碘化膦產生之內鎓鹽的Wittig反應來實現。(1-碘乙基)三苯基碘化膦可由J.Am.Chem.Soc.2000,122,10521-10532中所描述的(乙基)三苯基碘化膦製備,然而,在數克或更大規模上,現已發現最好在使用前分離並純化(1-碘乙基)三苯基碘化膦(Org.Lett.2008,10,1353-1356)。這與本領域中已知的方法(例如J.Am.Chem.Soc.2000,122,10521-10532)相反,其中(1-碘乙基)三苯基碘化膦在原位產生,並無需分離而直接用於下一步反應。因此,在一些較佳的實施方案中,在低於環境溫度的溫度(較佳0至10℃)下,在有機溶劑(例如THF或2-Me-THF)中用强鹼(例如n-BuLi)對無水(1-碘乙基)三苯基碘化膦進行脫質子。升溫至環境溫度之後,隨後將經脫質子的中間體冷却至約-50至-60℃,並用碘化劑(例如碘)來碘化。在升溫至環境溫度之後,將如此產生的粗製(1-碘乙基)三苯基碘化膦從反應漿體中通過過濾分離。較佳純化粗製(1-碘乙基)三苯基碘化膦,因為這在隨後的反應步驟中提供更好的效率。粗製(1-碘乙基)三苯基碘化膦的純化可通過攪拌在有機溶劑中的粗製(1-碘乙基)三苯基碘化膦的漿體一段充足的時間後過濾來實現。有機溶劑是可優先溶解雜質而基本上不溶解(1-碘乙基)三苯基碘化膦的有機溶劑。較佳的有機溶劑包括DCM或MeCN(乙腈)。該漿體方法導致除去某些雜質,例如未反應的(乙基)三苯基碘化膦,其可導致在下一反應步驟中形成雜 質。更佳的是,該漿體純化在DCM中進行,因為其具有低沸點,以及容易在乾燥所分離的固體時從經純化的(1-碘乙基)三苯基碘化膦中除去。
使用本領域中已知的技術對經純化的(1-碘乙基)三苯基碘化膦進行乾燥(較佳在真空烤箱中進行),以除去任何非故意地引入的水分。隨後,將經乾燥的試劑與有機溶劑混合,所述有機溶劑,例如:THF、2-Me-THF、MeCN或甲苯或2-Me-THF與TPPA(三吡咯烷磷酸三醯胺)、DMSO(二甲基亞碸)、DME(1,2-二甲氧基乙烷)、二甘醇二甲醚、NMP(N-甲基-2-吡咯烷酮)、TMEDA(N,N,N’,N’-四甲基乙二胺)或DMAc(二甲基乙醯胺)的組合,並在低於環境溫度的溫度(例如約-20℃或低於-20℃)下與强鹼反應,所述强鹼例如:LiHMDS(雙(三甲基矽烷基)氨基鋰)、NaHMDS(雙(三甲基矽烷基)氨基鈉)、KHMDS(雙(三甲基矽烷基)氨基鉀)或n-BuLi(正丁基鋰)。用强鹼對(1-碘乙基)三苯基碘化膦脫質子之後,將反應溫度進一步降低至例如約-50℃或以下,並添加醛XV,其較佳溶解在有機溶劑(例如THF或2-Me-THF)中。完成反應之後,進行處理,且分離III並較佳對其進行純化。 當III是固體時,較佳通過結晶進行純化。當III是非固體化合物時,例如IIIa,較佳通過管柱層析法進行純化。
當保護基R4是第三丁氧羰基(BOC;t-BOC;Boc)時,R3是H,RA是2-甲基-噻唑-4-基,RB和RC是甲基,且X是I,通式III(單元C)是式IIIa’化合物。IIIa’化合物可用於製造伊沙匹隆。 使用本文中公開的方法對IIIa’的R4進行的脫保護提供了烯丙基胺IIIb’,其可以其游離鹼形式或作為鹽(其中HX是Brnsted酸,H是質子且X是共軛鹼,例如式IIIb.HCl化合物中的HCl)而分離。烯丙基胺IIIb’可用於製造伊沙匹隆。或者,烯丙基胺IIIb’可在催化劑存在下與二苯甲酮反應以提供二苯甲酮亞胺IIIc’。或者,使用本文中公開的方法對IIIa’進行進一步的BOC保護,包括用鹼(例如NaHMDS)對IIIa’進行脫保護,並將IIIa’的脫保護形式與二碳酸二叔丁酯反應,提供雙-BOC保護的乙烯基鹵化物 IIId’。雙-BOC保護的乙烯基鹵化物IIId’可用於製造伊沙匹隆。 或者,使用本文中公開的方法氧化XII的硫原子和雙鍵二者,提供醛XVb’,其可隨後通過兩步驟的氧化和Wittig反應順序而被同系化,以提供乙烯基鹵化物IIIe’,其中R4是H,RB是甲基(Me)且RA是2-甲基-噻唑-4-基。
D. 製備無環前體ABC
本發明的伊沙匹隆和伊沙匹隆類似物的無環前體IV通過使用B-烷基Suzuki反應將烯烴II的硼烷(Hydroborane)衍生物(單元AB)與乙烯基鹵化物III(單元C)偶聯來製備(方案13)。 B-烷基Suzuki反應是金屬催化的碳-碳鍵形成反應。用於B-烷基Suzuki反應的烯烴II的硼烷衍生物(還稱為烷基硼烷)可使用本領域中已知的方法通過烯烴與硼烷的反應來製備,所述硼烷包括9-硼雙環-[3.3.1]壬烷(9-BBN)、9-硼雙環[3.3.1]壬烷二聚體(9-BBN二聚體)、二異戊基硼烷、二環己基硼烷或其他硼烷衍生物。9-BBN或其二聚體是用於IIa或IIa’的硼烷化的最佳的硼烷,其可用於IIa或IIa’與IIIa的偶聯。烷基硼烷可不經分離或純化直接用於Suzuki反應。B-烷基Suzuki反應為本領域所公知(例如,參見J.Am.Chem.Soc.1989,111,314-321和Chem.Rev.1995,95,2457-2483)。當根據本發明方法使用烯烴II的Suzuki反應或B-烷基Suzuki反應時,在進行鈀催化偶聯步驟之前首先將烯烴轉化為其硼烷衍生物。
方案13--合成無環前體ABC
在本發明的一個實施方案中,III是IIIb、IIIa、IIId、IIIe或IIIc中的任何一個,且較佳IIIb、IIIa或IIId,更佳IIIb或IIIa,且最佳IIIa;其在Suzuki反應中與烯烴XXII、XXII’、IIa或IIa’的硼烷衍生物(最佳IIa’的9-BBN衍生物)偶聯,以產生IV(方案14)。較佳地,R3和R4是H或BOC,而更佳R3是H以及R4是BOC。R1和R2是H或保護基,較佳矽烷基保護基,包括TES、TIPS、TBS和TBDPS,最佳TBS。對於伊沙匹隆的製造,IIa’比IIa更佳,因為與IIa的磺內醯胺基團ST相比,IIa’的磺內醯胺基團ST’可被更高效除去,以提供羧酸XXVIa。最佳地,為了製造伊沙匹隆,IIax’與IIIa’偶聯產生IV,其中Z是磺內醯胺ST’,R1和R2是TBS,R3是H且R4是BOC且RA是2-甲基-噻唑-4-基,RB和RC是甲基。
先前有報導指出N-BOC胺衍生物IIIa與烯烴D2a的硼烷衍生物的Suzuki反應產生D3a,產率為10%(參見方案5;J.Org.Chem.,2001,66,4369-4378)。在該報導中,IIIa的偶聯中獲得了低產率,並認為這是因為存在N-BOC氨基甲酸酯基團。用叠氮基團取代碘化乙烯的N-BOC氨基甲酸酯基團後獲得了改善的產率(63%)。出人意料的是,如本文中所提供的,N-BOC胺衍生物IIIa可與IIa或IIa’的9-BBN硼烷化衍生物非常高效地偶聯。事實上,使用本發明的方法,可以得到的IVax和IVax’(即,IV,其中R1是R2是TBS、Z是磺內醯胺ST或磺內醯胺ST’、R3是H、R4是BOC)的分離產率>90%。另外,如本文中所描述的,N-BOC胺衍生物IIIa與IIa或IIa’的9-BBN硼烷化衍生物偶聯中不需要砷系的配體三苯基砷(AsPh3)(如J.Org.Chem.,2001,66,4369-4378中所報導的用於Suzuki反應實例)。總之,目前發現在不需要叠氮衍生物和砷系的配體AsPh3的情況下,IIa或IIa’的9-BBN硼烷化衍生物可與N-BOC胺衍生物IIIa偶聯以及IV的產率很高(90~98%)。例如,在50℃下,在N,N-二甲基甲醯胺(DMF) 中,用5mol%的[1,1'-雙(二苯基膦)二茂鐵]二氯化鈀(II)(Pd(dppf)Cl2)(沒有任何另外的含磷或砷系的配體)和3摩爾當量的Cs2CO3使1.3摩爾當量的IIax’的9-BBN硼烷化衍生物與IIIa’偶聯,反應僅1小時後得到的IVax或IVax’的分離產率為98%(通過管柱層析法)。
除了IIa以及IIa’的9-BBN硼烷化衍生物的Suzuki反應之外,還發現部分被保護的類似物XXII和XXII’也可與N-BOC胺衍生物IIIa偶聯。雖然使用被部分保護的類似物提供不需要額外保護的優點,但是缺少對C7-羥基的保護使得產生雜質且降低轉化率的逆向羥醛縮合反應發生。因此,最佳是兩個羥基(即,C3-和C7-羥基)都被保護(即,在Suzuki偶聯步驟中使用IIa或IIa’優於使用XXII或XXII’)。並不傾向被完全未被保護的類似物(即,其中C3-和C7-羥基均未被保護),因為在B-烷基Suzuki反應中會發生相當高含量的逆向羥醛縮合反應,導致低產率和雜質形成。
在Suzuki反應中,除了使用N-BOC胺衍生物IIIa之外,可使用其他被保護和未被保護的胺類似物。未被保護的游離胺IIIb或其鹽IIIb.HCl可與II(如IIa或IIa’)偶聯以提供IV,其中R3是R4,以及R4是H,但是較佳偶聯在二碳酸二叔丁酯((BOC)2O)存在下進行,這提供了產物的N-BOC衍生物(即,IV,其中R3是H以及R4是BOC)或其與IV(其中,R3是R4’是H)的混合物。IIId、IIIe和IIIc都可以使用Suzuki反應與II偶聯以提供IV。
方案14--合成中間體IVax和IVax’,其用於合成包括伊沙匹隆的氮雜埃博黴素
然後,通過移除Z基團和氮保護基R3和R4(當R3不是H時)將式IV的無環前體轉化為式V的氨基酸化合物(方案15)。可以以任何一種順序(即,可在移除R3和R4(當R3不是H時)之前移除Z基團,或反之亦然)來進行Z基團和氮保護基R3和R4(當R3不是H時)的移除以提供中間體XXVI。在這樣的一些實施方案中,其中當Z基團是烷基酯,例如第三丁基酯或矽烷基酯(如2-(三甲基矽烷基)乙氧基甲基(SEM)),以及R4(和R3(如果R3不是H))是Brnsted酸和/或路易斯酸敏感性保護基(如BOC)時,使用Brnsted酸(如三氟乙酸TFA)或路易斯酸(如三氟甲磺酸三甲基矽酯(TMSOTf))使Z基團視情況與移除R4(和R3(如果R3不是H))同時移除。視情況,當Z是烷基酯(如第三丁基酯)或矽烷基酯(如SEM)時,其可在R1和R2(當R1和R2是矽烷基保護基,如TES、TIPS、TBS或TBDPS時)的脫保護期間同時被移除。在另一個實施方案中,移除Z基團之前,保護基R1和R2可與R4(和R3(如果R3不是H))同時被移除,從而得到氨基酸IX(其中R1和R2是H),其是可用於合成氮雜埃博黴素(例如伊沙匹隆)的完全未被保護的中間體。
然後,使用本領域已知方法使線性氨基酸V通過巨環內醯胺化而環化以提供巨環內醯胺VI。巨環內醯胺化反應由線性氨基酸或氨基酸衍生物(例如氨基酯)形成巨環醯胺。然後,使巨環內醯胺VI的保護基R1和R2脫保護,從而提供氮雜埃博黴素I。在IX中R1和R2是H的實施方案中,使IX的巨環內醯胺化直接提供氮雜埃博黴素I。然後,視情況使用已知方法通過環氧化將I轉化為含環氧基的氮雜埃博黴素。
方案15--由無環前體ABC合成氮雜埃博黴素
在一些實施方案中,R1和R2是TBS,R4和R4'是BOC以及 R3和R3'是H,Z是磺內醯胺ST或磺內醯胺ST’或SEM。在一些實施方案中,RA是2-甲基-噻唑-4-基,RB和RC是甲基。因此,在本發明的這些實施方案中,無環前體IV是IVax或IVax’,無環前體XXVI是XXVIax或XXVIbx或XXVIbx’,無環前體V是式Vax化合物,巨環內醯胺VI是式VIax化合物,巨環內醯胺I是式Ia的化合物以及含環氧基的氮雜埃博黴素VII是伊沙匹隆(方案16和15)。在另一些實施方案中,無環前體IV是式XXVIIax或XXVIIax’化合物(方案18),以及完全未被保護的無環前體IX是式Ixa化合物(方案17)。
較佳地,當R4是BOC以及Z基團是磺內醯胺ST或磺內醯胺ST’時,在使R4(R4')脫保護之前將中間體XXVI的Z基團轉化為OH。
本文中提供的含磺內醯胺化合物IVax或IVax’可通過兩種不同路徑轉化為Vax。在較佳路徑中,使用氫氧化物與有機試劑的混合物或溶劑的混合物使IVax或IVax’的磺內醯胺基團通過水解除去以提供XXVIax。較佳地,將過氧化氫(H2O2)添加至混合物中。所述H2O2可以是H2O2水溶液。氫氧化物包括鹼金屬氫氧化物,例如但不限於LiOH、NaOH、KOH、CsOH;鹼土金屬氫氧化物,例如但不限於Mg(OH)2、Ba(OH)2;和氫氧化銨,例如但不限於四丁基氫氧化銨(TBAH)。有機溶劑包括但不限於醚,如2-Me-THF(2-甲基四氫呋喃)、THF(四氫呋喃)、二甲氧基乙烷(DME);和醇,如甲醇(MeOH)、乙醇(EtOH)、丙醇(如正丙醇(n-PrOH)和異丙醇(i-PrOH))和丁醇(如正丁醇(n-BuOH)),及其混合物。H2O2較佳是水溶液。當將NaOH用作氫氧化物時,2-Me-THF或THF和MeOH是較佳的溶劑混合物,以及XXVIax的產率大於70%。當使用四丁基氫氧化銨時,較佳二甲氧基乙烷(DME)作為反應溶劑。該反應步驟之後,在溶劑(例如DCM(二氯甲烷))中使用Brnsted酸(例如HCl或H2SO4)或路易斯酸(例如TMSOTf)除去XXVIax的BOC保護基。當使用路易斯酸TMSOTf導致除去BOC保護基,以提供氨基酸化合物Vax, 反應較佳地在2,6-盧剔啶(2,6-二甲基吡啶)存在下進行。當使用TFA代替TMSOTf時,同時移除XXVIax的BOC基和TBS基二者,以提供完全未被保護的氨基酸化合物IXa(方案17)。使用作為替代的反應順序可將混合物IVax或IVax’轉化為Vax。這一作為替代的反應順序,包括用可試劑系統處理化合物IVax或混合物IVax’,所述試劑系統可在2,6-盧剔啶存在下在DCM中對BOC保護基(例如的TMSOTf)脫保護,以分別提供化合物XXVIbx或化合物XXVIbx’,隨後其可在用氫氧化物、H2O2水溶液和有機溶劑的混合物處理之後被轉化為Vax。例如,在2-Me-THF或THF和MeOH或其混合物中用LiOH或NaOH、H2O2水溶液處理之後,或者在DME中用四丁基氫氧化銨(TBAH)或H2O2水溶液處理之後,XXVIbx或XXVIbx’可轉化為氨基酸化合物Vax。產生氨基酸化合物Vax的這個作為替代的路徑(即,通過XXVIbx或XXVIbx’)並不優於通過XXVIax進行的路徑,因為缺少C15氨基的保護使得發生一些(或更高含量的)N-氧化。即,將IVax或IVax’轉化為XXVIax,然後將XXVIax轉化為氨基酸化合物Vax,這優於將IVax或IVax’對應地轉化為化合物XXVIbx或XXVIbx’,然後將化合物XXVIbx或XXVIbx’轉化為氨基酸化合物Vax。對於使用本文中所描述的本發明製造伊沙匹隆來說最佳的是,式IVax’的中間體轉化為式XXVIax的化合物,其隨後轉化為式Vax的化合物。
使用用於巨環內醯胺化的已知條件,將本發明的氨基酸Vax轉化為巨環內醯胺VIax。可用於巨環內醯胺化的條件包括本領域中已知的用於肽偶聯反應的那些條件,其包括:在鹼(例如但不限於DIPEA(N,N-二異丙基乙胺))的存在下,使用溶劑(例如但不限於THF中)中的鏻偶聯試劑,例如PyBOP(六氟磷酸苯幷三唑-1-基氧基三(吡咯烷基)-鏻),脲陽離子偶聯試劑,例如HATU(O-(7-氮雜苯幷三唑-1-基)-1,1,3,3-四甲基脲陽離子六氟磷酸鹽),銨偶聯試劑,例如BOMI(苯幷三唑-1-基氧基-N,N-二甲基-甲亞胺正離子六氯銻酸鹽),碳二亞胺偶聯試劑,例如DCC (N,N’-二環己基碳二亞胺)、咪唑鎓鹽偶聯試劑,例如CDI(1,1’- 羰二咪唑)或BOI(2-(苯幷三唑-1-基)氧基-1,3-二甲基-咪唑鎓六氟磷酸鹽),有機磷偶聯試劑,例如BOP-Cl(N,N’-雙(2-氧代-3-噁唑烷基)-次膦醯氯),酸鹵化偶聯試劑,例如三聚氯氰或TFFH(氟-N,N,N’,N’-四甲基甲脒六氟磷酸鹽),或其他,例如氯甲酸鹽/酯、BMPI(2-溴-1-甲基碘化吡啶鎓)或DMTMM(4-(4,6-二甲氧基[1,3,5]三嗪-2-基)-4-甲基氯化嗎啉鎓)。例如,J.Org.Chem.2001,66,4369-4378中報導了氨基酸D4的巨環內醯胺化條件(參見方案5)。
使用已知切割矽烷基醚以產生醇的試劑,使巨環內醯胺化合物VIax的TBS保護基脫保護,從而提供氮雜埃博黴素Ia。例如,用DCM中的TFA處理巨環內醯胺化合物VIax提供氮雜埃博黴素Ia。類似地,用適用於產生巨環內醯胺化的條件直接處理完全未被保護的氨基酸IXa,從而直接提供Ia(方案17)。可用於將完全未被保護的氨基酸IXa巨環內醯胺化以提供氮雜埃博黴素Ia的條件包括:本領域中已知的用於肽偶聯反應的那些條件,其包括:在鹼(例如但不限於DIPEA)的存在下使用溶劑(例如但不限於THF)中的肽偶聯劑,例如但不限於HATU。因此,與用Vax製備Ia(經由VIax)相比,由IXa合成Ia省去了一步合成步驟。
最終,當需要含環氧基氮雜埃博黴素(稱為伊沙匹隆)時,使用本領域中已知的用於碳-碳雙鍵環氧化的條件進行氮雜埃博黴素Ia的環氧化(例如,參見J.Am.Chem.Soc.,1999,121,7050-7062,J.Org.Chem.2001,66,4369-4378和J.Org.Chem.2004,69,9269-9284)。
在另一個實施方案中,被部分保護的中間體XXII或XXII’(方案18)可用於使用與用於化合物IIa或IIa’之轉化類似或相同的反應條件來製備共同中間體I。
方案16--使用本發明的較佳方法合成伊沙匹隆
方案17--使用本發明的較佳方法由XXVIax經由IXa合成Ia
方案18--使用本發明的較佳方法由被部分保護的中間體XXII或XXIIa’合成Ia
E. 本發明的優點
與美國專利No.6,867,305和J.Org.Chem.2001,66,4369-4378所公開的用於製備伊沙匹隆的合成路徑相比,本文所述方法不需要使用包含叠氮化物的試劑或中間體(與方案5中的D1b和D3c相比)。叠氮化合物因其固有毒性和其潜在的爆炸性,是工業生產的挑戰,因此較佳避免使用這樣的化合物。
與可用於製備伊沙匹隆的其他已知路徑不同,對於II與III經Suziku反應步驟提供產物IV,本文所述方法不需要三苯基砷(AsPh3)。三苯基砷是有機砷化合物以及已知砷有毒。出乎意料地,在本文所述的一些實施方案中,在不使用砷系的Suziku反應催化劑的情況下,發生了快速且高效的Suzuki反應。該結果對於生產人員的安全和避免砷系的有毒化學品所需的相關廢物處理來說特別有利。
此外,進行本文所述的將化合物II與化合物III偶聯起來以提供產物IV的Suzuki反應步驟的產率高於J.Org.Chem.2001,66,4369-4378所述方法。例如,當將被N-BOC保護的胺IIIa’與IIax’偶聯起來時,通常可得到>90%的產率。相比之下,J.Org.Chem.2001,66,4369-4378所報導的用於將被N-BOC保護的胺IIIa’與化合物D2a偶聯的產率僅有10%。
J.Org.Chem.2001,66,4369-4378所公開的伊沙匹隆合成路徑相比,從Suzuki反應步驟計算,本發明方法需要的合成步驟少了三步。這在工業規模上是有利的,這是因為用於藥用物質製造期間的下游步驟成本最高,因為其中採用高含量管理以確保最終的活性藥用物質具有適用於人用的高品質。因此,從需要高含量管理的這一點上看,使下游合成步驟數目盡可能少是成本效益最好的。
對掌性胺衍生物XII是可使用本發明的一方面(例如,對化合物XI進行烯丙基格氏試劑加成(allyl Grignard reagent addition))以高對掌性純度製備的新化合物。這種對掌性胺可用於合成整個系列的N-保護的類似物III,其在本文中示出可用於合成伊沙匹隆。
伊沙匹隆可由三個結構單元製備,以及在一些實施方案中,可使用已知方法製備這三個結構單元,以及在另一些實施方案中,這些可使用本文中描述的方法來製備。
根據上述的實施方案和下文中提供的實施例,本發明提供一種用於製備式I的氮雜埃博黴素的方法
其中,RA選自取代或未取代的芳基和取代或未取代的雜芳基;RB選自H、烷基和取代或未取代的芳基;以及RC選自H、烷基、氟烷基、取代或未取代的芳基和取代或未取代的雜芳基;所述方法包括:a)在過渡金屬催化劑存在下,使式II化合物的硼烷衍生物 其中 Z選自 且 R1和R2獨立地選自氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS),與式III的乙烯基鹵化物接觸,
其中R3和R4獨立地選自H、第三丁氧羰基(BOC)或第三丁基磺醯基(SO2 t-Bu),或者R3和R4一起為CPh2,以提供式IV的化合物 b)通過將Z轉化為OH並將R3和R4轉化為H(當R3和R4之一或二者不是H時),將式IV的化合物轉化為式V的化合物 c)使式V的化合物環化以提供式VI的化合物 ;以及 d)使式VI的化合物脫保護以提供式I的氮雜埃博黴素。
在一些實施方案中,本發明提供用於製備式VII的含氧化物的氮雜埃博黴素的方法
其中,RA選自取代或未取代的芳基和取代或未取代的雜芳基,RB選自H、烷基和取代或未取代的芳基,以及RC選自H、烷基、取代或未取代的芳基、取代或未取代的雜芳基和氟烷基;所述方法包括:a)用環氧化劑處理式VI的化合物 其中R1和R2獨立地選自氫、矽烷基烷基、TES、TIPS、TBS和TBDPS,以形成式VIII的化合物 ;以及 b)使式VIII的化合物脫保護以提供含環氧基的氮雜埃博黴素VII。
在一些實施方案中,根據這樣的方法來製備式VI的化合物,所述方法包括:a)在過渡金屬催化劑存在下,使式II化合物的硼烷衍生物 其中Z選自 ,以及 R1和R2獨立地選自氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS),與式III的乙烯基鹵化物接觸 其中R3和R4獨立地選自H、第三丁氧羰基(BOC)和第三丁基磺醯基(SO2 t-Bu),或者R3和R4一起是CPh2,以提供式IV的化合物 ;以及 b)通過將Z轉化為OH以及將R3和R4轉化為H(當R3和R4之一或二者不是H時),將式IV的化合物轉化為式V的化合物 其中轉化步驟以任意順序進行;以及c)使式V的化合物環化成式VI的化合物。
在一些實施方案中,本發明提供一種用於製備式I化合物的方法,
其中RA選自取代或未取代的芳基和取代或未取代的雜芳基,RB選自H、烷基和取代或未取代的芳基,RC選自H、烷基、氟烷基、取代或未取代的芳基和取代或未 取代的雜芳基(包括噻唑、異噁唑),所述方法包括:a)在過渡金屬催化劑存在下,使式II化合物的硼烷衍生物 其中Z選自 ,以及 R1和R2獨立地選自氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS),與式III的乙烯基鹵化物接觸, 其中R3和R4獨立地選自H、第三丁氧羰基(BOC)或第三丁基磺醯基(SO2 t-Bu),或者R3和R4一起為CPh2,以提供式IV的化合物 b)通過將Z轉化為OH並將R1、R2、R3和R4轉化為H(當R1、R2、R3和R4中任意個或全部都不是H時),將式IV的化合物轉化為式IX的化合物 其中轉化步驟以任意順序進行;以及c)使式IX的化合物環化以提供式I的化合物。
在一些實施方案中,硼烷衍生物由式II的化合物通過與選自以下的硼烷反應而原位製備:9-硼雙環-[3.3.1]壬烷(9-BBN)、9-硼雙環[3.3.1]壬烷二聚體(9-BBN二聚體)、二異戊基硼烷和二環己基硼烷。在一些實施方案中,硼烷選自:9-硼雙環-[3.3.1]壬烷(9-BBN)和9-硼雙環[3.3.1]壬烷二聚體(9-BBN二聚體)。
在本發明的一些實施方案中,過渡金屬催化劑包括選自Ni和Pd的金屬。
在一些實施方案中,用包含H2O2水溶液、氫氧化物和溶劑的混合物處理式IV的化合物,將Z轉化為OH。在一些實施方案中,所述氫氧化物選自氫氧化鈉和氫氧化鋰,而所述溶劑包括2-甲基四氫呋喃或四氫呋喃與甲醇的混合物。
在一些實施方案中,所述方法還包括通過使式I的化合物環氧化,將式I的化合物轉化為式VII的含環氧基的氮雜埃博黴素
在一些實施方案中,RA是2-甲基-噻唑-4基 ,以及 RB和RC是甲基。
在一些實施方案中,本發明提供一種用於製備式III’的化合物的方法 其中RA是芳基或雜芳基,且RB和RC選自H、烷基、氟烷基、未取代或取代的芳基以及未取代或取代的雜芳基,所述方法包括:a)使式X的化合物
在活化劑存在下在有機溶劑中與第三丁基亞磺醯胺接觸以提供式XI的化合物
b)使式XI的化合物在有機溶劑中與烯丙基化試劑AL接觸 AL,
其中值n在1至4之間,以提供式XII的化合物 c)通過用酸處理將在有機溶劑中的式XII的化合物轉化為式XIII的化合物 其中X是鹵素以及下標m是0、1或2;d)通過XIII與二碳酸二叔丁酯在有機溶劑中的反應來保護式XIII的化合物以產生式XIVa的化合物 ;以及 e)將式XIVa的化合物轉化為式III’的化合物。
在一些實施方案中,步驟a)的有機溶劑是甲苯,而活化試劑是KHSO4
在一些實施方案中,M選自Mg、Zn和In。在一些實施方案中,步驟b)提供式XII化合物與下式之非鏡像異構物的混合物,其非鏡像異構物比例係大於約10:1。
在一些實施方案中,步驟b)的烯丙基化試劑是烯丙基溴化鎂,而有機溶劑是2-甲基四氫呋喃與二氯甲烷的混合物。
在一些實施方案中,通過脫保護步驟將式IIIa的化合物進一步轉化為式IIIb的化合物
在一些實施方案中,通過用選自二苯甲酮、二苯甲酮亞胺和二苯甲酮二烷基縮醛的成員進行保護,將式IIIb的化合物進一步轉化為式IIIc的化合物
在一些實施方案中,通過用二碳酸二叔丁酯保護,將IIIa進一步轉化為式IIId的化合物
在一些實施方案中,本發明提供一種用於製備IIIe的方法 其中,RA選自芳基和雜芳基,以及RB和RC選自H、烷基和芳基,所述方法包括:a)使式XII的化合物氧化 以提供式XVb的化合物 ;以及 b)將式XVb的化合物轉化為式IIIe的化合物。
在一些實施方案中,通過這樣的方法來製備式XII的化合物,所述方法包括:a)將式X的化合物
轉化為式XI的化合物
;以及 b)將式AL的烯丙基化試劑添加至式XI的化合物中 AL,其中n是1至4之間的值,以提供式XII的化合物。
在一些實施方案中,RA是2-甲基-噻唑-4-基 以及RB是甲基。
在一些實施方案中,本發明提供一種用於製備式II的化合物的方法 其中Z是磺內醯胺ST’ ,以及 R1和R2獨立地選自氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS);所述方法包括:a)活化式XVI’的化合物 c)在路易斯酸存在下,用式XVII的化合物處理經活化的式 XVI’的化合物 以提供式XVIII’的化合物 c)視情況用選自三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)的保護基,保護式XVIII’化合物的羥基以提供式XIX’的化合物 ;以及 d)使式XVIII’的化合物或式XIX’的化合物活化,然後使經活化的化合物與式XX的化合物反應
以提供式II的化合物,其中R2是H;e)視情況用選自三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)的保護基保護式II化合物的羥基以提供式II的化合 物,其中R1和R2均是獨立地選自三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)的羥基保護基。
在一些實施方案中,步驟a)中活化式XVI’的化合物包括:使式XVI’的化合物與矽烷基三氟甲磺酸酯試劑和鹼接觸。在一些實施方案中,其中所述矽烷基三氟甲磺酸酯試劑是第三丁基二甲基矽烷基三氟甲酸酯(TBSOTf),而所述鹼是三乙胺。
在一些實施方案中,步驟b)的路易斯酸是金屬鹵化物。在一些實施方案中,所述金屬鹵化物是四氯化鈦(TiCl4)。
在一些實施方案中,步驟d)的活化步驟通過在低溫下在胺鹼存在下用路易斯酸處理式XVIII’的化合物或式XIX’的化合物來進行。在一些實施方案中,所述胺鹼是N,N-二異丙基乙胺,而所述低溫等於或低於-50℃。
在一些實施方案中,R1和R2均是第三丁基二甲基矽烷基(TBS)。
在一些實施方案中,含環氧基的氮雜埃博黴素VII是伊沙匹隆。
IV. 實施例
提供以下實施例以進一步闡明本發明,但不限制本發明。
以上說明書和以下實施例中使用的符號、慣例和縮寫與當代科學文獻中使用者一致,例如,Journal of the American Chemical Society and The ACS Style Guide:effective communication of scientific information,第3版;Coghill,A.M.and Garson,L.R.編;Washington,DC,Oxford University Press,New York Oxford,2006。
縮寫:atm--大氣壓;AcOH--乙酸;aq.--水溶液;鹽水--飽和氯化鈉水溶液;Bu--丁基;BuOH-丁醇;t-Bu--第 三丁基;n-BuLi--正丁基鋰;9-BBN--9-硼雙環[3.3.1]壬烷;9-BBN二聚體--9-硼雙環[3.3.1]壬烷二聚體;BOC--第三丁氧羰基;(BOC)2O--二碳酸二叔丁酯(BOC酸酐);B.P.--沸點;d.e.--非鏡像異構物過量;d.r.--非鏡像異構物比例;DIPEA--N,N-二異丙基乙胺(Hünig鹼);DMDO--二甲二環氧乙烷;DMSO--二甲基亞碸;DCM--二氯甲烷;DCE--二氯乙烷;DIBAL--二異丁基氯化銨;DMAP--4-二甲基氨基吡啶;DME--二甲氧基乙烷;DMF--N,N-二甲基甲醯胺;dppf--(1,1'-雙(二苯基膦)二茂鐵)二氯化鈀;e.e.--對掌異構物過量;Et--乙基;Et2O--乙醚;EtOAc--乙酸乙酯;g--克;h--小時;HATU--(O-(7-氮雜苯幷三唑-1-基)-N,N,N’,N’-四甲基脲六氟磷酸酯/鹽;HMDS--六甲基二矽氮烷;HPLC--高效液相色譜;mg--毫克;L--升;LiHMDS--雙(三甲基矽烷基)氨基鋰;盧剔啶/2,6-盧剔啶--2,6-二甲基吡啶;mCPBA--間氯過氧苯甲酸;mL--毫升;M--摩爾濃度;MeOH--甲醇;mol--摩爾;mmol--毫摩爾;min--分鐘;Me--甲基;M.P.--熔點;MS--質譜(LCMS是液相色譜質譜);MTBE--第三丁基甲基醚;N--當量濃度;NaHMDS--雙(三甲基矽烷基)氨基鈉;NMP--N-甲基吡咯烷酮;NMR--核磁共振(波譜);NMO--N-甲基嗎啉-N-氧化物;MHz--兆赫;Pr--丙基;Ph--苯基(C6H5);i-PrOH--異丙醇;n-PrOH--正丙醇;PhMe--甲苯;PhCl--氯苯;R f --保留因子;sat.--飽和;SEM--2-(三甲基矽烷基)乙氧基甲基;SEMCl--2-(三甲基矽烷基)乙氧基甲基氯;TLC--薄層色譜;TBAF--四丁基氟化銨;TBAH--四正丁基氫氧化銨;TBS--第三丁基二甲基矽烷基;TBSCl--第三丁基二甲基氯矽烷;TBDPS--第三丁基二苯基矽烷基;TBDPSCl--第三丁基二苯基氯矽烷;TBSOTf--第三丁基二甲矽烷基三氟甲磺酸酯;TES--三乙基矽烷基;TESCl--三乙基氯矽烷;Tf--三氟甲磺醯基;TFA--三氟乙酸;THF--四氫呋喃;TIPS--三異丙基矽烷基;TIPSCl-- 三異丙基氯矽烷;TMSOTf--三甲基矽烷基三氟甲磺酸酯;UV--紫外光。
實施例1--製備XIXa和XIXa’
製備化合物XVIII’
在N2氣下在室溫下向化合物XVI’(100g,389mmol)的無水DCM(800mL)溶液中逐滴添加Et3N(73mL,506mmol)和TBSOTf(113g,428mmol)。將所得反應混合物在室溫下攪拌過夜(溶液A)。在另一個燒瓶中,在N2氣下在-78℃向XVII(80g,622mmol)的無水DCM(500mL)溶液中添加TiCl4(DCM中的1N溶液,650mL,650mmol)。在-78℃攪拌10分鐘後,將溶液A經1小時逐滴添加到XVII溶液中,然後使所得混合物升溫至室溫並攪拌過夜。在通過TLC證明完成之後,反應混合物用飽和NH4Cl水溶液淬熄(quench)。水層用DCM(400mL×2)萃取。合併的有機層用Na2SO4乾燥,過濾並蒸發。殘餘物用己烷(500mL)稀釋並攪拌過夜以沉澱。過濾固體並用己烷清洗以產生109g作為白色固體的XVIII’(d.r.>20:1,Rf=0.3,EtOAc/石油醚=1:5,KMnO4),產率為73%。M.P.=100-102℃,1HNMR(400M,CDCl3)δ 4.31(br s,1H),3.878(t,J=6Hz,1H),3.475(q,J=13.6Hz,2H),2.812(d,J=6Hz,2H),2.594-2.511(m,2H),2.171-2.042(m,2H),1.924-1.877(m,3H),1.433-1.355(m,2H),1.172(s,3H),1.158(s,3H),1.128(s,3H),1.031(t,J=6.8Hz,3H),0.968(s,3H)。13C NMR(100MHz,CDCl3):δ 215.7,171.3,73.1,65.3,53.0,51.2,48.6,47.9,44.7,38.4,37.8,39.2,31.6,26.5,21.8,20.9,20.0,19.2,8.0。
製備XVIII’
在N2氣下,在22℃下,向無水DCM(800mL)中的XVI’(200g,777mmol)溶液中逐滴添加三乙胺(146mL,1047mmol)和TBSOTf(231g,874mmol)。在室溫下攪拌混合物3小時,並在-70至-78℃下在2小時中向混合物逐滴添加無水DCM(1000mL)中的XVII(160g,1248mmol)和TiCl4(1M於DCM中,1300mL,1300mmol)溶液。將所得混合物以15℃/小時的速率緩慢升溫至22℃。在22℃下再攪拌反應混合物1小時,通過添加飽和NH4Cl(1000mL)水溶液和H2O(800mL)淬熄。層分離之後,用H2O(1000mL×3)洗滌,用Na2SO4乾燥4小時,過濾,在40-65℃下濃縮,並與正庚烷(600mL×2)共蒸發。隨後通過在正庚烷(1000mL)中過夜攪拌來沉澱期望的產物,過濾並用正庚烷(400mL×2)洗滌,以產生作為油狀固體的XVIII'(262g,產率:87%,92.5% HPLC純度,d.r.=24.7:1)。
製備XVIII
在N2氣下在0℃向化合物XVI(21.45g,83.33mmol)的無水DCM(215mL)溶液中添加Bu2BOTf(100mL,1M)。將反應混合物攪拌30分鐘,然後添加DIPEA(17.3mL,104.16mmol),將反應混合物再攪拌30分鐘。將所得混合物冷却至-78℃之後,逐滴添加XVII(14.95g,116.67mmol)。將反應溫度升高至室溫並攪拌過夜。反應混合物用飽和NH4Cl水溶液淬熄,然後用EtOAc萃取。合併的有機層用Na2SO4乾燥,過濾並蒸發。殘餘物通過 柱用石油醚:EtOAc=20:1至5:1洗脫純化以產生23g作為白色固體的XVIII(產率:71.9%)。1H NMR(400MHz,CDCl3)δ4.30(m,1H),3.87(m,1H),3.45(m,2H),3.25(m,1H),2.80(m,2H),2.55(m,2H),2.08(m,2H),1.89(m,3H),1.37(m,2H),1.17(s,3H),1.15(s,3H),1.12(s,3H),1.02(t,J=7.2Hz,3H),0.97(s,3H);13C NMR(100MHz,CDCl3)δ216.1,171.5,73.0,65.4,53.1,51.2,48.7,48.0,44.9,38.6,38.0,33.1,31.4,26.6,21.8,21.06,20.1,19.4,8.1。
製備化合物XIXa’
在N2氣下在-45℃向XVIII’(69g,179mmol)的無水DCM(600mL)溶液中逐滴添加2,6-盧剔啶(57.6g,537mmol)和TBSOTf(104g,394mmol)。將反應混合物在該溫度下攪拌2小時,然後在室溫下繼續攪拌過夜。反應混合物用MeOH(50mL)淬熄,用飽和檸檬酸水溶液清洗,用Na2SO4乾燥,過濾並蒸發。殘餘物用石油醚(100mL,B.P.=60~90℃)稀釋並攪拌過夜。過濾沉澱物並用石油醚(30mL×3)清洗以產生作為白色固體的XIXa’(Rf=0.6,EtOAc/石油醚=1:5,KMnO4)(62.6g,產率:70%)。M.P.=91-93℃;1HNMR(400MHz,CDCl3)δ4.729(t,J=4.8Hz,1H),3.84(dd,J=7.6Hz,2.8Hz,1H),3.446(q,J=14Hz,2H),2.811(d,J=4.4Hz,2H),2.568-2.459(m,2H),2.191-2.145(m,1H),2.086-2.032(m,1H),1.905-1.865(m,3H),1.394-1.343(m,2H),1.161(s,3H),1.065(s,3H),0.991(t,J=6.8Hz,3H),0.963(s,3H),0.824(s,9H),0.065(s,3H),0.013(s,3H);13C NMR(100MHz,CDCl3)δ 214.9,170.1,71.8,65.6,53.0,52.7,48.5,47.8,44.8,40.5, 38.6,33.1,31.5,26.6,26.0,20.9,20.8,20.6,20.0,18.2,7.8,-4.1,-5.0。
製備化合物XIXa’
在N2氣下,在-45至-50℃下,向無水DCM(2260mL)中的XVIII'(282g,731mmol,93% HPLC純度)溶液中逐滴添加2,6-盧剔啶(219g,2.04mol)和TBSOTf(396g,1.50mol)。反應混合物在-45至-50℃下攪拌2小時,並在22℃下再攪拌1小時。通過HPLC判斷反應完成之後,通過添加MeOH(225mL)使反應淬熄,並用飽和檸檬酸水溶液(1410mL×2)洗滌混合物,用Na2SO4(423g)乾燥4小時,並濃縮。通過在正庚烷(846mL)中攪拌4小時來沉澱期望的產物,過濾,用正庚烷(564mL×2)洗滌以產生作為白色固體的XIXa'(235g,產率:64%,98.1% HPLC純度)。
製備XIXa
在N2氣下在-45℃向XVIII(23g,59.66mmol)的無水DCM(160mL)溶液中逐滴添加2,6-盧剔啶(10.4mL,89.49mmol)和TBSOTf(16.8mL,71.59mmol)。將反應混合物在該溫度下攪拌2小時,然後在室溫下繼續攪拌過夜。反應混合物用MeOH淬熄,並蒸發。將殘餘物溶解於EtOAc,用檸檬酸溶液清洗兩次,用Na2SO4乾燥,過濾並蒸發。殘餘物通過管柱層析法純化(沖提液:石油醚/EtOAc=10:1)以產生作為白色固體的XIXa(19.2g,產率:64.4%)。1HNMR(400MHz,CDCl3)δ4.65(m,1H),3.83(m, 1H),3.45(m,2H),2.93(m,1H),2.65(m,1H),2.50(m,2H),2.10(m,2H),1.86(m,3H),1.36(m,2H),1.14(s,3H),1.13(s,3H),1.05(s,3H),0.95(m,6H),0.83(s,9H),0.06(s,3H),0.04(s,3H)。
實施例2--製備XIVax
製備XIa
在N2氣下在室溫下向Xa(35g,200mmol,Rf=0.5,EtOAc:石油醚=1:3,UV)的無水THF(414mL)溶液中添加(R)-第三丁基亞磺醯胺(29g,400mmol)和Ti(i-PrO)4(118mL,400mmol),然後將反應混合物攪拌過夜。用冰浴使混合物冷却至5℃並小心地添加鹽水(150mL)。所得懸浮液用EtOAc(100mL)稀釋,通過矽藻土(diatomaceous earth)墊過濾,濾餅用EtOAc(150mL×2)清洗。濾液用鹽水(260mL×3)清洗,用Na2SO4乾燥,過濾並在減壓下濃縮。通過管柱層析法(EtOAc/石油醚=1:5)純化殘餘物以產生作為黃色固體的XIa(42g,產率:77%,Rf=0.4,EtOAc/石油醚=1:3,UV)。1H NMR(400MHz,CDCl3)δ8.25(s,1H),7.31(s,1H),7.04(s,1H),2.74(s,3H),2.37(s,3H),1.22(s,9H);13C NMR(100MHz,CDCl3)δ 166.8,165.6,152.1,135.6,121.4,57.5,22.5,19.4,13.3。
製備XIIa
在N2氣下在-50℃向XIa(30g,111mmol,Rf=0.7,EtOAc/石 油醚=1:1,UV)的無水DCM(750mL)溶液中添加烯丙基溴化鎂(185mL,555mmol,Et2O中的3N溶液)。添加之後,將反應混合物在該溫度下再攪拌1.5h。在-50℃添加飽和NH4Cl水溶液(580mL)以使反應淬熄,然後使混合物升溫至室溫。分離有機層並用DCM(300mL×3)萃取水相。合併的有機相用鹽水(500mL×3)清洗,用Na2SO4乾燥,過濾並在減壓下濃縮。粗品經HPLC分析顯示d.e.為98.0%。通過管柱層析法(EtOAc/石油醚=1:1)純化粗品以產生作為黃色油狀的XIIa(29g,產率:83.8%,通過HPLC分析表明d.e.為99.4%。1H NMR(400MHz,CDCl3)δ6.85(s,1H),6.45(s,1H),5.70-5.60(m,1H),5.08-5.02(m,2H),3.87(t,J=6.4Hz,1H),3.35(s,1H),2.58(s,3H),2.40-2.22(m,2H),1.92(s,3H),1.10(s,9H);13C NMR(100MHz,CDCl3)δ 164.5,152.4,139.3,134.0,121.5,117.7,116.2,62.8,56.0,38.0,22.6,19.2,14.9。
在N2氣下在室溫下向銦粉(170mg,1.48mmol)和XIa(100mg,0.37mmol)的飽和NaBr(3.7mL)懸浮液中添加烯丙基溴(0.13mL,1.48mmol)。然後,將反應混合物在室溫下攪拌20h。然後通過添加鹽水(7.4mL)和EtOAc(7.4mL)使混合物淬熄,經矽膠墊過濾並用EtOAc洗脫。分離有機相並用EtOAc萃取水層。合併的有機相用MgSO4乾燥,過濾並在減壓下濃縮。粗品通過HPLC測定(轉化率:44%,d.e.=100%)。
在N2氣下在室溫下向活化鋅粉(72mg,1.1mmol)和XIa(100mg,0.37mmol)的無水THF(7.0mL)懸浮液中添加烯丙基溴(0.10mL,1.1mmol)。然後將反應混合物在室溫下攪拌1h。然後通過添加飽和NH4Cl水溶液和EtOAc(8.0mL)使混合物淬熄。收集有機層並用EtOAc萃取水層。合併的有機相用MgSO4乾燥,過濾並在減壓下濃縮。粗品通過HPLC測定(轉化率:100%,d.e.=71.9%)。
在N2氣下在室溫下向活化鋅粉(78mg,1.2mmol)、In(OTf)3(340mg,0.6mmol)和XIa(110mg,0.4mmol)的無水THF(7.6mL)懸浮液中添加烯丙基溴(0.10mL,1.2mmol)。然後將反應混合物 在室溫下攪拌2h。然後通過添加飽和NH4Cl水溶液(8.0mL)和EtOAc(8.0mL)使混合物淬熄。收集有機層並用EtOAc萃取水層,合併的有機相用MgSO4乾燥,過濾並在減壓下濃縮。粗品通過HPLC檢測(轉化率:>97%,d.e.=93.8%)。
在N2氣下在室溫下向活化鋅粉(75mg,1.16mmol)、InCl3(128mg,0.58mmol)和XIa(104mg,0.38mmol)的THF(7.7mL)懸浮液中添加烯丙基溴(0.10mL,1.2mmol)。然後將反應混合物在室溫下攪拌12h。然後通過添加飽和NH4Cl水溶液(8.0mL)和EtOAc(8.0mL)使混合物淬熄。收集有機層並用EtOAc萃取水層,合併的有機相用MgSO4乾燥,過濾並在減壓下濃縮。粗品通過HPLC檢測(轉化率:83.6%,d.e.=70.2%)。
在N2氣下在室溫下將活化鋅粉(150mg,2.32mmol)和烯丙基溴(0.20mL,2.4mmol)的無水THF(7.8mL)懸浮液攪拌1.5h。然後將混合物冷却至-78℃下並添加無水THF(1mL)中的XIa(104mg,0.38mmol)。將反應混合物在-78℃攪拌6h。然後通過添加飽和NH4Cl水溶液(16.0mL)和EtOAc(16.0mL)使混合物淬熄,收集有機相並用EtOAc萃取水層。合併的有機相用MgSO4乾燥,過濾並在減壓下濃縮。粗品通過管柱層析法純化以產生作為白色固體的XIIa(84mg,產率:70%,d.e.=70%)。
製備XIIa
在N2氣下,在室溫下向Xa(100g,0.60mol,93% HPLC純度)的無水甲苯(800mL,KF<200ppm)溶液中添加(R)-第三丁基-亞磺醯胺(94.2g,0.78mol)和KHSO4(163g,1.20mol)。在25-35℃下攪拌2小時,反應混合物過濾通過矽膠墊並用甲苯(100mL×3)洗滌濾器。合併的濾液用飽和NaHCO3(500mL)水溶液和H2O(500 mL)洗滌,並在真空下濃縮以產生作為黃色固體的XIa(170g,93.7% HPLC純度)其直接用於下一步。
在N2氣下,在35-45℃在2小時中向Mg(100g,4.11mol,100-200mesh)的無水2-Me-THF懸浮液(1.5L,KF<200ppm)中添加I2(2.00g,7.88mmol)。冷却至-25℃之後,緩慢滴逐滴添加烯丙基溴(484g,4.00mol)的無水2-Me-THF(0.5L,KF<200ppm)溶液,同時控制溫度在-25至-15℃(在約2.5小時中)。攪拌1小時之後,將混合物緩慢滴升溫至25℃,並再攪拌2小時。使所產生的懸浮液沉降,並通過從反應器中傾瀉澄清的上層而獲得期望的烯丙基溴化鎂試劑。
在N2氣下,在<-40℃向粗製XIa(170g,來自0.60mol Xa)的無水DCM(800mL)溶液中逐滴添加所製備的烯丙基溴化鎂的2-Me-THF(480mL)溶液。在<-40℃攪拌0.5小時之後,向反應混合物中緩慢地逐滴添加飽和NH4Cl水溶液(500mL),同時維持內部溫度<-20℃。將所產生的化合物升溫至10-20℃,將層分離。水層用MTBE(400mL)萃取,以及合併的有機層用H2O(800mL)洗滌,並濃縮至200mL。溶劑與正庚烷(500mL×3)共蒸發至300mL。所產生的懸浮液緩慢滴冷却至0℃,攪拌2小時並過濾。固體用正庚烷(170mL)洗滌,並在真空下在40℃乾燥16小時以產生作為灰白色固體的XIIa(172g,產率:92%(從Xa的兩步驟中),93% HPL純度,>99% d.e.)。
製備XIIIa
在5℃向XIIa(29g,93mmol,Rf=0.6,EtOAc,UV)的二氧六環(dioxane)(280mL)溶液中逐滴添加二氧六環(150mL,4N)中的HCl水溶液。添加之後,反應混合物在室溫下攪拌過夜。然後將 溶劑在減壓下揮發掉,並將殘餘物用水(500mL)稀釋。水層用EtOAc(150mL×2)萃取。水層用NaOH(1N)水溶液鹼化直到pH=9,並用EtOAc(150mL×3)萃取。將有機層合併,用鹽水(100mL×3)洗滌,在加壓下乾燥並濃縮以產生作為棕色油狀的XIIIa(14g,產率:73%,Rf=0.5,MeOH/DCM=1:10,UV),其不經任何純化直接使用。1H NMR(400MHz,CDCl3)δ6.83(s,1H),6.42(s,1H),5.74-5.64(m,1H),5.06-4.98(m,2H),3.42-3.39(m,1H),2.62(s,3H),2.31-2.26(m,2H),1.96(s,3H),1.42(brs,2H);13C NMR(100MHz,CDCl3)δ 164.2,153.0,143.3,135.4,118.5,115.1,58.9,40.2,29.8,19.1,14.8。
製備XIVax
在室溫下,向化合物XIIIa(3g,14.4mmol,Rf=0.5,MeOH/DCM=1:10,UV)的THF(30mL)溶液中添加Et3N(3g,28.8mmol),然後添加THF(30mL)中的(Boc)2O(3.5g,15.8mmol)。將反應物攪拌過夜。在TLC分析(石油醚/EtOAc=5:1)顯示反應完成之後,混合物用飽和NH4Cl水溶液(50mL)和EtOAc(50mL)稀釋。分離有機層,並用EtOAc(30mL×3)萃取水層。合併的有機層用鹽水(30mL×3)洗滌,用Na2SO4乾燥,並在真空下濃縮以產生粗製產品,其通過管柱層析法純化以產生作為白色固體的單保護的胺XIVax(4g,產率:90.0%,Rf=0.9,EtOAc/石油醚=1:3,UV)。1HNMR(400MHz,CDCl3)δ 6.91(s,1 H);6.44(s,1 H),5.79-5.69(m,1 H),5.14-5.07(m,1H),4.68(brs,1 H),4.22(brs,1H),2.70(s,3H),2.39-2.36(m,2H),2.05(s,3H),1.43(s,9 H);13C NMR(100MHz,CDCl3)δ 164.4,155.2,152.9,139.6,134.1,118.9,118.0,115.5,76.7,56.8,38.1,33.3,28.4,19.2,16.0。
實施例3--製備IIIa’
製備化合物XVa
在0℃下向XIVax(10g,32.5mmol,Rf=0.9,EtOAc/石油醚=1:3,UV)的THF/t-BuOH/H2O(1:1:0.1,210mL)溶液中添加NMO(9.13g,50%水溶液,39mmol)和OsO4(8.3mL,0.65mmol,1g於50mL t-BuOH中),然後在23℃攪拌18h。在TLC分析(石油醚/EtOAc=1:1)顯示反應完成之後,通過在0℃添加飽NaHSO3水溶液(80mL)和H2O(200mL)使反應混合物淬熄,攪拌30分鐘,並用MTBE(100mL×4)萃取。所收集的有機層用鹽水(100mL×2)洗滌,用Na2SO4乾燥,並在真空下濃縮以產生作為黃色油狀的粗製產品XXIa(22g,Rf=0.2,EtOAc/石油醚=1:3,UV)。
在0℃向XXIa(22g,由32.5mmol XIVax粗製,Rf=0.2,EtOAc/石油醚=1:3,UV)的THF/H2O(1:1,200mL)溶液中添加NaIO4(16.7g,78.0mmol),並攪拌40分鐘。在TLC分析(石油醚/EtOAc=1:1)顯示反應完成之後,混合物用H2O(500mL)淬熄,並用EtOAc(100mL×4)萃取。所收集的有機層用鹽水(100mL×3)洗滌,用Na2SO4乾燥,濃縮並通過管柱層析法在短矽膠墊上純化(石油醚/EtOAc=2:1)以產生作為黃色油狀的產物XVa(6.72g,產率:66.7%,Rf=0.8,EtOAc/石油醚=1:3,UV)。1H NMR(400MHz,CDCl3)δ 9.757(s,1H),6.941(s,1H),6.460(s,1H),4.889(s,1H),4.708(s,1H),2.764-2.725(m,2H),2.694(s,3H),2.087(s,3H),1.428(s,9H)。
製備XVa
在30℃下向攪拌中的XIVax(1.57g,5.09mmol)在丙酮(35mL)和水(25mL)中的溶液中依次添加NMO單水合物(1.18g,8.73mmol)和K2OsO4‧2H2O(33.1mg,90μmol)。所得混合物在30℃攪拌3小時。在通過HPLC判斷反應完全之後,通過在30℃添加DMAP(275mg,2.25mmol)來去活化鋨酸鹽,以及再攪拌混合物30分鐘,然後添加NaIO4(1.61g,7.53mmol)以繼續氧化切割。在30℃下攪拌1小時之後,將所得懸浮液過濾,並將濾液在減壓下濃縮以除去丙酮。殘餘水溶液用2-Me-THF(30mL×2)萃取,並將合併的有機層用10%檸檬酸水溶液(30mL)和鹽水(30mL)洗滌,用Na2SO4(11.7g)乾燥,過濾並濃縮以產生粗製Xva,其通過管柱層析法純化(沖提液EtOAc/正庚烷=40:60)以產生作為淺棕色固體的純的XVa(907mg,產率:57%,Rf=0.22,EtOAc/正庚烷=40:60)。
製備化合物IIIa’
在N2下,在17℃向乙基三苯基碘化膦(18.2g,43.4mmol)的THF(270mL)懸浮液中添加n-BuLi(17.4mL,2.5M,43.4mmol)以形成紅色溶液。固體消失之後,在-75至-80℃將混合物逐滴添加至I2(11g,43.4mmol)的THF(250mL)溶液中以形成黃色懸 浮液。混合物在-75℃攪拌5分鐘,隨後升溫至-20℃。在20分鐘內逐滴添加NaHMDS(20.3mL,2M,40.6mmol)以形成紅色溶液,並將混合物攪拌5分鐘。在20分鐘內向該混合物中逐滴添加XVa(6.72g,21.7mmol,Rf=0.3,EtOAc/石油醚=1:5,UV)的THF(15mL)溶並在-20至10℃攪拌1小時。在TLC分析(石油醚/EtOAc=2:1)顯示反應完成之後,反應混合物過濾通過矽藻土墊,濃縮並通過管柱層析法純化(石油醚/EtOAc=5:1)以產生作為單異構體的IIIa’的黃色油(3.7g,產率:38%,M.P.=65-67℃,Rf=0.6,EtOAc/石油醚=1:5,UV)。1HNMR(400MHz,CDCl3)δ6.93(s,1H),6.46(s,1H),5.44(t,J=6.4,1H),4.69(d,J=7.2,1H),4.3(m,1H),2.70(s,3H),2.50(s,3H),2.35(m,2H),2.06(s,3H),1.43(s,9H);13C NMR(100MHz,CDCl3)δ 164.5,155.2,152.8,139.4,131.3,119.1,115.7,103.7,79.5,76.7,56.8,41.0,33.7,28.4,19.2,16.1,14.2。
實施例4--製備IIIa’
製備XXIa
向冷却的MeOH(2.0L,0-10℃)添加37% wt.HCl水溶液(200mL),同時出於安全考慮而保持溫度<30℃,以及固體XIIa(276g,0.88mol,95% HPLC純度)。在10-30℃下1小時,通過HPLC判斷反應完成之後,在減壓下將溶劑蒸發。殘餘物用水(1.3L)和MTBE(1.3L)稀釋,並分層。收集水層,添加MTBE(1.3L)並使用10%NaOH水溶液(約550mL)鹼化至pH=10-11。收集有機層,並用MTBE(1.3L)萃取水層。用鹽水和(1.3L)和H2O(1.3L)洗滌合併的有機層,並濃縮以產生作為油狀的XIIIa(186g,94% HPLC純度),其直接用於下一步。
在0-15℃向粗製XIIIa(186g,from 0.88mol of XIIa)的DCM(1.1L)溶液中添加Boc2O(202g,0.93mmol)的DCM(276mL)溶液。在0-25℃下1小時,在通過HPLC判斷反應完成之後,通過添加H2O(15.8g)淬熄反應,混合物在0-25℃再攪拌0.5小時,並濃縮(至約300mL)。殘餘物的標準溶劑換成正庚烷(1.4L×2)產生作為黃色固體的XIVax(280g,96% HPLC純度),其可直接用於下一步。
在0-10℃向XIVax(209g,來自0.54mol XIIa)和(DHQ)2PHAL(21g,0.027mol)的THF(1.7L)溶液中添加4-甲基嗎啉N-氧化物(63g,0.54mol)和K2OsO4‧2H2O(10g,0.027mol)的H2O(170mL)懸浮液。反應混合物在15-25℃攪拌1小時,通過HPLC判斷反應完成之後,將反應混合物冷却至0-10℃並添加飽和NaHSO3(850mL)水溶液。攪拌0.5小時之後,混合物通過矽藻土墊過濾,並用MTBE(850mL)洗滌濾器。收集濾液的有機層,水層用MTBE(850mL)萃取。合併的有機層用鹽水(1.7L×2)洗滌,並在真空下濃縮以產生作為黃色油狀的粗製XXIa(237g),其通過管柱層析法純化(1.4Kg,沖提液/EtOAc/正庚烷=1:3至EtOAc/MeOH=100:2)以產生作為非鏡像異構物混合物的純的XXIa(107g,產率:58%(從XIIa的3步中),99% HPLC純度),同時回收XIVax(38g,產率:23%(從XIIa),98% HPLC純度)。
製備化合物IIIa’
在0-10℃下,在45分鐘中向XXIa(107g,0.31mol)的THF/H2O(2.0L,1:1)溶液中分10份添加NaIO4(80g,0.37mol)。 0.5小時之後,當通過HPLC判斷反應完成時,直接用EtOAc(1.0L×2)萃取混合物。組合的有機層用鹽水(1.0L)洗滌並濃縮以產生作為灰白色固體的XVa(91g,98% HPLC純度),其直接用於下一步驟。
在N2氣下,在-25至-20℃向MeCHIPPh3I(264g,0.49mol)的THF(2.0L)懸浮液中添加NaHMDS(480mL,2.0M於THF中)以形成紅色溶液,其在-25至-20℃攪拌0.5小時,然後將其進一步冷却至-60至-50℃。在-60至-50℃將XVa(100g,0.32mol)的THF(300mL)溶液添加至上述混合物中。在-50℃攪拌0.5小時,通過添加飽和NH4Cl(700mL)水溶液淬熄反應,同時控制溫度為-60至-30℃。隨後將懸浮液升溫至10-25℃並過濾,並用TBE(500mL)洗滌濾器。收集濾液的有機層,水層用MTBE(500mL)萃取。合併的有機層在真空下濃縮以產生作為黑色油狀的IIIa’(245g,43.6% HPLC純度),其通過管柱層析法純化(EtOAc/正庚烷=1:8)易產生作為黃色油狀的IIIa’(52.5g,產率:36%,96.2% HPLC純度,Z/E比例=98.3:1.7)。
實施例5--製備IIIb’
由IIIa’製備IIIb’
在0℃向IIIa’(1.2g,2.7mmol)的無水DCM(5mL)溶液中添加TFA(5mL)。所產生的棕色溶液在該溫度下攪拌1h,並在減壓下除去溶劑。殘餘物重新溶於DCM(10mL)中,用飽和NaHCO3水溶液洗滌,用Na2SO4乾燥,並在真空下濃縮以得到作為棕色油的IIIb’(860mg,產率:92%),其不經純化直接使用。1H NMR(400MHz,CDCl3)δ 6.92(s,1H),6.45(s,1H),5.42(t,J=6.0Hz,1H),3.80(brs,2H),3.58(t,J=6.8Hz,1H),2.66(s,3H),2.41-2.34 (m,2H),2.02(s,3H),1.21(s,3H)。
由IIIe’製備IIIb’
在0℃向IIIe’(200mg,0.43mmol)的無水DCM(13mL)溶液中添加茴香醚(110mg,1mmol)和0.2N CF3SO3H(13mL)。 將所得深棕色溶液在該溫度下攪拌1.5h,然後緩慢添加飽和Na2CO3水溶液以使反應淬熄。分離有機層並用DCM(10ml×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥,過濾並在真空下濃縮。使用(沖提液:DCM/MeOH=20:1)通過管柱層析法純化殘餘物以獲得作為棕色油狀的IIIb’(150mg,產率:85%)。1H NMR(400MHz,CDCl3)δ 6.94(s,1H),6.49(s,1H),5.45(t,J=6.0Hz,1H),3.86-3.80(brs,2H),3.60(t,J=6.8Hz,1H),2.68(s,3H),2.41-2.38(m,2H),2.05(s,3H),1.24(s,3H)。
由IIIa’製備IIIb’.HCl
在0℃將IIIa’(100mg,0.22mmol)溶於MeOH(5mL)中的6N HCl中,並將所產生的溶液在室溫下攪拌2h。反應完成之後,在減壓下除去溶劑以產生作為棕色固體的期望的IIIb’‧HCl(79mg,產率92%)。
實施例6--製備IIId’
製備XIVb’
在-78℃向單保護的胺XIVax(6g,19.5mmol)的THF(50mL)溶液中添加NaHMDS(25mL,25mmol)。將混合物在該溫度下攪拌30分鐘,然後,添加(Boc)2O(5g,23mmol)。將混合物升溫至室溫並攪拌過夜。TLC分析(石油醚:EtOAc=5:1)表明反應完成,添加水以使反應淬熄,混合物用EtOAc和水稀釋。分離有機層並用EtOAc(50mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥,過濾並在真空下濃縮以產生粗製產物,其通過管柱層析法純化以產生作為黃色油狀的XIVb’(7g,產率89%,兩步驟)。
製備XVb’
在0℃向化合物XIVb’(6.3g,15.4mmol)的THF/t-BuOH/H2O(1/1/0.1,100mL)溶液中添加NMO(4.34g,50%水溶液,18.5mmol)和OsO4(3.9mL,1g於50mL t-BuOH中)。將混合物升溫至室溫並攪拌18h。TLC分析(石油醚:EtOAc=1:1)表明反應完成之後,在0℃用飽和NaHSO3(40mL)水溶液和H2O(100mL)使反應淬熄30分鐘,並攪拌30分鐘。混合物用MTBE(50mL×4)萃取,以及收集的有機層用鹽水(50mL×2)清洗,用Na2SO4乾燥並濃縮以產生粗製產物XXIb’(15g)。
在0℃向XXIb’(粗品,來自15.4mmolXIVb’)的THF/H2O (1/1,80mL)溶液中添加NaIO4(7.91g,37mmol),攪拌40分鐘。TLC分析(石油醚:EtOAc=2:1)表明反應完成之後,反應用水(200mL)淬熄。用EtOAc(50mL×4)萃取,以及收集的有機層用鹽水(50mL×3)清洗,用Na2SO4乾燥並在真空下濃縮以產生粗製產物,其通過快速管柱層析法(石油醚:EtOAc=2:1)純化以產生作為黃色油狀的醛XVb’(4.06g,產率64%,經兩步驟)。1HNMR(400MHz,CDCl3)δ 9.807(s,1H),6.948(s,1H),6.362(s,1H),5.386(t,J=7.2Hz,1H),3.251-3.089(m,2H),2.709(s,3H),2.084(s,3H),1.482(s,18H)。
製備IIId’
在N2下在17℃向乙基三苯基碘化膦(8.36g,20mmol)的THF(170mL)懸浮液中添加n-BuLi(8mL,2.5M,20mmol)以形成紅色溶液。在-75℃至-80℃將混合物逐滴添加至I2(5.08g,20mmol)的THF(130mL)溶液中以形成黃色懸浮液。將溶液在-75℃攪拌5分鐘,然後將混合物加熱至-20℃。逐滴添加NaHMDS(9.35mL,2M,18.7mmol)以形成紅色溶液,並將溶液攪拌5分鐘,向溶液中逐滴添加XVb’(4.06g,10mmol)的THF(5mL)溶液並在-20℃至10℃攪拌1h。TLC分析(石油醚:EtOAc=2:1)表明反應完成。反應混合物通過矽藻土墊過濾、濃縮並通過管柱層析法(石油醚:EtOAc=5:1)純化以產生作為黃色油狀的產物IIId’(2.2g,產率:40%)。1HNMR(400MHz,CDCl3)δ 6.93(s,1 H),6.46(s,1 H),5.48(t,J=6.4,1H),4.92(dd,J=9,6.2Hz,1H),2.88(m,1H),2.74(m,1H),2.70(s,3H),2.48(m,2H),2.03(s,3H),1.46(s,18H)。
實施例7--製備IIIe’
製備化合物XIVe’
在0℃向XIIa(9.6g,30mmol)的DCM(90mL)溶液中逐份添加mCPBA(7.4g,70%,30mmol)。將所得混合物在室溫下攪拌過夜,隨後反應用飽和Na2SO3(120mL)水溶液淬熄。分離有機層並用DCM(60mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥,過濾並在真空下濃縮。經管柱層析法(石油醚/EtOAc=20:1)純化殘餘物以產生作為黃色油狀的XIVe’(8.9g,產率:87%)。1H NMR(400MHz,CDCl3)δ 6.903(s,1H),6.412(s,1H),5.758-5.654(m,1H),5.099(t,2H),4.578(d,J=9.2Hz,1H),4.039(dd,J=15.6,6.5Hz,1H),2.658(s,3H),2.499-2.379(m,2H),2.050(s,3H),1.327(s,9H)。
製備Xve’
在0℃向XIVe’(1.7g,5.2mmol)的THF/t-BuOH/H2O(1:1:0.1,50mL)溶液中添加NMO(1.5g,50%水溶液,6.2mmol)和OsO4(1.3mL,0.104mmol,1g於50mL t-BuOH中),並將混合物在23℃下攪拌18h。TLC分析(石油醚:EtOAc=1:1)表明反應完成之後,在0℃反應混合物用飽和NaHSO3水溶液(15mL)和H2O(40mL)淬熄,攪拌混合物30分鐘,然後用EtOAc(50mL×4)萃 取。收集的有機層用鹽水(50mL×2)清洗,用Na2SO4乾燥並濃縮以產生粗製產物XXIe’(6g)。
在0℃向XXIe’(粗品,6g,5.2mmol)的THF/H2O(1:1,80mL)溶液中添加NaIO4(7.91g,37mmol)並攪拌60min。TLC分析(石油醚:EtOAc=1:1)表明反應完成。混合物用H2O(60mL)淬熄,並用EtOAc(50mL×4)萃取。收集的有機層用鹽水(50mL×3)清洗,用Na2SO4乾燥,濃縮並經管柱層析法的短墊(石油醚:EtOAc=1:1)純化以產生產物XVe’(1.3g,產率:76%)。1H NMR(400MHz,CDCl3)δ 9.697(s,1H),6.915(s,1H),6.488(s,1H),5.415(d,J=9.2Hz,1H),4.477(dd,J=15.6,6.8Hz,1H),2.872-2.730(m,2H),2.625(s,3H),2.061(s,3H),1.300(s,9H)。
製備IIIe’
在N2下在17℃向乙基三苯基碘化膦(3.3g,7.88mmol)的THF(60mL)懸浮液中添加n-BuLi(3.2mL,2.5M,7.88mmol),形成紅色溶液。在-75℃至-80℃將混合物逐滴添加至I2(2g,7.88mmol)的THF(45mL)溶液中以形成黃色懸浮液,其在-75℃攪拌5分鐘。然後,將混合物加熱至-20℃並逐滴添加NaHMDS(3.7mL,2M,7.37mmol)以形成紅色溶液,將溶液再攪拌5分鐘。向該溶液中逐滴添加XVe’(1.3g,3.94mmol)的THF(5mL)溶液並在-20℃至10℃攪拌1h。TLC分析(石油醚:EtOAc=2:1)表明反應完成之後,反應混合物通過矽藻土墊過濾,濃縮並通過管柱層析法(石油醚:EtOAc=5:1)純化以產生作為無色油狀的產物IIIe’(730mg,產率35%)。1HNMR(400MHz,CDCl3)δ 6.96(s,1H),6.47(s,1H),5.48(t,J=6Hz,1H),4.14(m,2H),2.71(s,3H),2.51(m,5H),2.12(s,3H),1.37(s,9H)。
實施例8--製備IIIc’
在室溫下向二苯甲酮(1.56g,8.6mmol)的DME(50mL)溶液中添加IIIb’(1.5g,8.6mmol)和Et3N(3.6mL,25.8mmol)。 將混合物冷却至-78℃並添加TiCl4(8.6mL,8.6mmol,1N於DCM中)。將所得混合物升溫至室溫並攪拌過夜。TLC分析表明反應完成之後,添加H2O(50mL)和EtOAc(200mL),並將層分離。 水層用EtOAc(100mL×2)萃取,合併的有機層用飽和NaHCO3溶液(50mL×3)和鹽水(50mL×3)清洗,用Na2SO4乾燥,過濾並在真空下濃縮。通過管柱層析法純化殘餘物以產生作為黃色油狀的IIIc’(890mg,產率:50%)。1HNMR(400MHz,CDCl3)δ 7.67-7.65(m,2H),7.43-7.42(m,3H),7.39-7.30(m,3H),7.15-7.13(m,2H),6.91(s,1H),6.42(s,1H),5.34(t,J=6Hz,1H),4.02(t,J=6.4Hz,1H),2.70(s,3H),2.53(m,2H),2.44(s,3H),2.16(s,3H);13C NMR(100MHz,CDCl3)δ 166.9,164.3,153.2,142.0,139.9,136.8,132.3,130.1,129.9,128.7,128.4,128.3,128.0,127.8,119.5,115.2,102.3,68.9,42.3,33.7,19.2,15.8。
實施例9--製備XXVax
製備XXIIa和XXIIa’
在-78℃向化合物XIXa’(15.0g,30mmol,Rf=0.5,EtOAc: 石油醚=1:3,KMnO4)的無水DCM(87mL)溶液中添加DCM(33mL)中的1N TiCl4(6.26g,33mmol),10分鐘後添加DIPEA(5.46mL,33mmol)。將所得混合物在-78℃再攪拌1h,然後逐滴添加XX(4.4g,45mmol)的DCM(13mL)溶液。將反應混合物經3h緩慢升溫至室溫。TLC分析表明反應完成之後,添加磷酸鹽緩衝水溶液(43.6mL,2N,pH=7.0,NaH2PO4/Na2HPO4)以使反應淬熄。分離有機層,並用EtOAc(100mL×4)萃取水相。將合併的有機層乾燥,過濾並在真空下濃縮。殘餘物經管柱層析法(EtOAc:石油醚=1:10,KMnO4)純化以產生作為無色油狀的XXIIa’(13.5g,產率:75%,d.r.高至5:1,Rf=0.4,EtOAc:石油醚=1:3,KMnO4)。1H NMR(400MHz,CDCl3)δ 5.787-5.683(m,1H),5.040-4.945(m,2H),4.620(t,J=4.4Hz,1H),3.807(dd,J=7.6,4.8Hz,1H),3.499(s,1H),3.42(q,J=13.6Hz,2H),3.275(d,J=9.6Hz,1H),3.195(q,J=7.2Hz,1H),2.764(d,J=4.4Hz,2H),2.475(dd,J=13.6,1.2Hz,1H),2.130-2.102(m,1H),2.023(dd,J=13.6,7.6Hz,1H),1.901-1.801(m,4H),1.619-1.550(m,1H),1.384-1.272(m,2H),1.153(s,3H),1.115(s,3H),1.102(s,3H),1.011(d,J=6.8Hz,3H),0.925(s,3H),0.814(s,6H),0.804(s,3H),0.781(d,J=6.8Hz,3H),0.063(s,3H),0.014(s,3H);13C NMR(100MHz,CDCl3)δ 221.7,169.6,137.0,116.3,74.3,71.2,65.5,53.8,52.9,48.4,47.7,44.7,41.2,40.9,38.5,37.3,35.1,33.0,26.4,26.0,22.2,20.7,19.9,19.5,18.1,15.0,9.7,-4.3,-4.9。
用於製備XXIIa的流程與XXIIa’相同。
製備IIax'
在-60℃向XXIIa’(13.5g,22.5mmol,Rf=0.4,EtOAc:石油醚=1:3,KMnO4)的無水DCM(200mL)溶液中添加2,6-盧剔啶(7.2g,67.5mmol)。攪拌20min後,在該溫度下添加TBSOTF(12g,45mmol)並將所得混合物在室溫下攪拌過夜。TLC分析表明XXIIa’反應完成後,添加飽和NH4Cl(300mL)水溶液以使反應淬熄。分離有機層並用DCM(200mL×2)萃取水層。合併的有機層用Na2SO4乾燥,過濾並在減壓下濃縮。通過管柱層析法純化殘餘物以產生作為白色固體的IIax’(16g,產率:100%,d.r.高至5:1,Rf=0.8,EtOAc:石油醚=1:3,KMnO4)。M.P.=116-118℃,1H NMR(400MHz,CDCl3)δ 5.768-5.667(m,1H),5.007-4.949(m,2H),4.682(brs,1H),3.869-3.817(m,2H),3.724-3.709(m,1H),3.428(q,J=14Hz,2H),3.172-3.096(m,1H),2.773(d,J=5.2Hz,2H),2.252-2.148(m,2H),2.072(dd,J=13.6,8Hz,1H),1.932-1.802(m,4H),1.404-1.315(m,3H),1.235(s,3H),1.148(s,3H),1.083(s,3H),0.955(s,3H),0.901(s,12H),0.853(s,6H),0.833(s,3H),0.098(s,3H),0.061(s,6H),0.004(s,3H);13C NMR(100MHz,CDCl3)δ 217.9,169.7,137.9,115.6,78.0,71.0,70.4,65.5,53.7,52.9,48.4,47.7,45.7,44.8,41.8,41.0,39.6,38.6,37.6,34.9,26.3,26.1,23.6,20.8,19.9,19.6,18.7,18.6,18.3,18.2,16.5,16.1,13.0,-3.4,-3.6,-4.2,-4.8。
製備IIax
在-60℃向XXIIa(2.08g,3.5mmol)的無水DCM(30mL)溶液中添加2,6-盧剔啶(1.13g,10.5mmol),然後在20min後添加TBSOTf(1.8g,7mmol)。將所得混合物在室溫下攪拌過夜。 TLC分析表明XXIIa消耗完之後,添加飽和NH4Cl水溶液(30mL)以使反應淬熄。分離有機層,用DCM(20mL×2)萃取水相。合併的有機層用Na2SO4乾燥,過濾並濃縮以產生殘餘物,其經管柱層析法(石油醚/EtOAc=10/1)純化以產生作為黃色油狀的IIax(2.38g,產率96%)。
製備IIax’
在N2氣下,在0.5小時中將1M TiCl4的DCM(123.5mL,123.5mmol)溶液逐滴添加到攪拌中的XIXa’(41.15g,82.3mmol)的DCM(823mL)溶液中,同時維持溶液溫度為-75℃。將反應混合物攪拌0.5小時,然後緩慢添加DIPEA(20.4mL,123.4mmol)。 將所產生的暗紅色溶液再攪拌1小時之後,-75℃在1小時中添加XX(32.32g,329.3mmol)的正庚烷(600mL)溶液。所產生的混合物在該溫度下攪拌2小時,並升溫至0℃,隨後再攪拌0.5小時。當通過TLC(EtOAc/正庚烷=1:4)判斷反應完成後,通過在10℃添加磷酸鹽緩衝水溶液(pH=7.0,496mL,2N,由NaH2PO4和Na2HPO4製備)淬熄反應,並攪拌0.5小時。收集有機層,水層用EtOAc(450mL×2)萃取。合併的有機層用飽和NaHCO3水溶液(450mL)和20%NaCl水溶液(450mL)洗滌,用MgSO4(20g)乾燥,過濾並在真空中濃縮以產生粗製XXIIa’(d.r.=86:14),其不經純化直接用於下一步。
在N2氣下,將來自以上的XXIIa’溶於DCM(1029mL)並依次用2,6-盧剔啶(38.3mL,328.8mmol)和TBSOTf(47.3mL,206.0mmol)處理,同時維持溶液溫度為<-73℃。反應化合物在25℃攪拌2小時,隨後在通過TLC(EtOAc/正庚烷=1:8)判斷反應完全之後,通過添加10%檸檬酸水溶液(1275mL)淬熄。收集有機層, 水層用DCM(600mL)萃取。合併的有機提取物用20%NaCl水溶液(900mL)洗滌,用MgSO4(20g)乾燥,過濾並濃縮至約620mL。 將溶劑換成MeOH(600mL×3)以獲得懸於MeOH(約600mL)的粗製IIax’,將其加熱至65-70℃以溶解。將澄清的溶液輕微冷却,並在57℃維持0.5小時,然後將其進一步冷却至25℃。在25℃下2小時之後,將所產生的懸浮液過濾,並將固體用MeOH(205mL)洗滌以產生作為純白色固體的純的IIax’(35.55g,產率:61%,d.r.=99.2:0.79,M.P.=141-142℃)。
製備XXIVax
在0℃向IIax’(16g,22.5mmol,Rf=0.6,EtOAc:石油醚=1:5,KMnO4)的THF/MeOH H2O(104mL/17.2mL/25.9mL)溶液中添加LiOH/H2O(3.8g,89.9mmol)和30% H2O2(25.5g,225mmol)。 將所得混合物在室溫下攪拌過夜。將反應物用飽和NaHSO3水溶液(195mL)淬熄,用EtOAc(100mL×3)萃取水相。將合併的有機層乾燥,過濾並在減壓下濃縮。殘餘物(XXIVax,Rf=0.3,EtOAc:石油醚=1:5,KMnO4)不需進一步純化直接用於下一步。
製備XXVax
在室溫下向化合物XXIVax(16g,31.1mmol,粗品,Rf=0.3,EtOAc:石油醚=1:5,KMnO4)的DMF(59mL)溶液中添加SEMCl(5.9mL,34.2mmol)和DMAP(0.40g,3.11mmol)。將混合物冷却至0℃並添加Et3N(5.9mL,46.6mmol)。將混合物升溫至室溫並攪拌過夜。TLC分析(石油醚:EtOAc=5:1)表明反應完成之後,將混合物用EtOAc(100mL)和水(50mL)稀釋。分離有機層並用EtOAc(50mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在減壓下濃縮以產生產物,其通過管柱層析法(石油醚/EtOAc=80:1)純化以產生作為無色油狀的化合物XXVax(9.4g,產率64.7%,兩步驟,Rf=0.9,EtOAc:石油醚=1:5,KMnO4)。1H NMR(400MHz,CDCl3)δ 5.77-5.66(m,1H),5.26(q,J=10.4,6.4Hz,2H),5.00-4.95(m,2H),4.58-4.39(m,1H),3.85-3.78(dd,J=18.4,7.6Hz,1H),3.69(t,J=8.8Hz,2H),3.20-3.08(m,1H),2.51-2.41(m,1H),2.36-2.21(m,1H),1.88-1.79(m,1H),1.24(s,3H),1.07-1.04(m,6H),0.97-0.84(m,25H),0.09-0.01(m,21H)。
實施例10--製備單元ABC
製備IVax’
在室溫下向化合物IIax’(2.44g,3.426mmol)的THF(17.0mL)的攪拌溶液中添加9-硼雙環[3.3.1]壬烷(9-BBN;13.70mL,6.582mmol,0.5M於THF中)。將反應混合物在室溫下攪拌3h。 反應完成之後(通過TLC判斷(正庚烷/EtOAc=4:1)),向混合物 中添加水(0.70mL)並再攪拌30min。將所得硼烷溶液轉移至DMF(13.0mL)中的化合物IIIa’(1.00g,2.230mmol)、Pd(dppf)Cl2(82mg,0.112mmol)和Cs2CO3(2.23g,6.582mmol)的混合物中。將反應混合物在50℃攪拌過夜。反應完成之後(通過TLC判斷(正庚烷/EtOAc=4:1)),反應混合物用EtOAc(60mL)和水(60mL)稀釋。分離有機層並用EtOAc(60mL×2)萃取水層。 合併的有機層用鹽水清洗,用MgSO4乾燥並在真空下濃縮。殘餘物用管柱層析法純化(沖提液:正庚烷/EtOAc=6:1)以獲得作為白色泡沫的IVax’(2.14g,產率:93%,Rf=0.24,正庚烷:EtOAc=4:1)。1H NMR(400MHz,CDCl3)δ6.90(s,1H),6.43(s,1H),5.27(q,2H),5.09(t,J=8.0Hz,1H),4.64-4.55(m,1H),4.38(brs,1H),4.14-4.11(m,1H),3.83-3.74(dd,J=28.4,6.8Hz,1H),3.69(t,J=8.0Hz,2H),3.16-3.07(m,1H),2.7(s,3H),2.52-2.26(m,4H),2.17(s,1H),2.04(s,3H),1.99-1.97(m,2H),1.67(s,3H),1.42(s,9H),1.24(s,3H),1.05-1.03(m,6H),0.97-0.85(m,25H),0.09-0.01(m,21H);LCMS 1034.6[M+H]+,1034.4[M+H]+
在室溫下向IIax’(9.25g,12.988mmol)和9-硼雙環[3.3.1]壬烷二聚體(2.19g,8.974mmol)的混合物中添加THF(90.0mL)。 將反應混合物在室溫下攪拌3h,反應完成之後(通過TLC判斷(正庚烷/EtOAc=4:1)),向反應混合物中添加水(1.16mL)並再攪拌30min。將所得硼烷溶液轉移至DMF(58.0mL)中的化合物IIIa’(4.48g,9.992mmol)、Pd(dppf)Cl2(365mg,0.499mmol)和Cs2CO3(9.77g,29.986mmol)的混合物中。將反應混合物在50℃攪拌1.0h。反應完成之後(通過TLC判斷(正庚烷/EtOAc=4:1)),將反應混合物倒入乙酸乙酯(200mL)和水(200mL)的混合物中。分離有機層並用EtOAc(200mL×2)萃取水層。 合併的有機層用鹽水清洗,用MgSO4乾燥並在真空中濃縮。殘餘物用通過管柱層析法純化(正庚烷/EtOAc=6:1)以獲得作為白色泡沫的IVax’(9.58g,產率:93%,Rf=0.24,正庚烷 /EtOAc=4:1)。
製備XXVIIax’
在N2氣下在室溫下向化合物XXIIa’(280mg,0.47mmol)的THF(2.4mL)溶液中添加9-硼雙環[3.3.1]壬烷(1.89mL,0.94mmol,0.5M於THF中)。將混合物在室溫下攪拌2h。TLC分析(石油醚/EtOAc=3:1)表明反應完成之後,添加水(0.1mL)以使反應淬熄並將混合物再攪拌30min。在50℃將所得硼烷溶液轉移至DMF(1.3mL)中的包含化合物IIIa’(100mg,0.22mmol)、Pd(dppf)Cl2(8mg,0.011mmol)和Cs2CO3(215mg,0.66mmol)的混合物中。反應混合物由橙紅色變為深棕色溶液。將混合物在50℃攪拌5h。TLC分析(石油醚/EtOAc=3:1)表明反應完成之後,混合物用EtOAc(5mL)和水(5mL)稀釋。分離有機層並用乙酸乙酯(5mL×2)萃取水層。合併的有機層用鹽水(5mL×3)清洗,用Na2SO4乾燥並在真空下濃縮以產生粗製產物,其通過管柱層析法純化以產生作為無色油狀的化合物XXVIIax’(120mg,產率58.5%)。1H NMR(400MHz,CDCl3)δ6.88(s,1H),6.40(s,1H),5.05(t,J=8.0Hz,1H),4.68(brs,1H),4.63(s,1H),3.81(t,J=5.2Hz,3H),3.52-3.37(m,3H),3.28-3.20(m,2H),2.77(d,J=2.8Hz,2H),2.67(s,3H),2.31-2.05(m,4H),2.01(s,9H),1.86-1.83(m,4H),1.64(s,3H),1.39(s,9H),1.30-1.28(m,2H),1.17(s,3H),1.12(s,3H),1.11(s,3H),1.01(d,J=6.4Hz,3H),0.94(brs,1H),0.93(s,3H),0.824(s,9H),0.79(d,J=4.0Hz,3H),0.073(s,3H),0.004(s,3H);13C NMR(100MHz,CDCl3)δ221.8,171.2, 169.8,164.3,155.4,153.2,140.2,138.8,120.1,118.7,115.3,79.3,74.9,71.3,65.6,60.4,53.9,53.0,48.5,47.8,45.3,44.8,41.4,41.1,38.6,38.4,35.5,32.6,33.1,32.1,32.8,32.5,32.1,28.5,26.5,26.1,25.1,23.6,22.4,21.1,20.8,20.0,19.5,19.3,18.2,15.5,14.3,9.8,-4.2,-4.8。
製備IVbx
在室溫下向化合物XXVax(1.06g,1.65mmol)的THF(14mL)溶液中添加9-硼雙環[3.3.1]壬烷(6.6mL,3.3mmol)。將混合物在室溫下攪拌1h,TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,向反應混合物添加水(0.9mL)並再攪拌30min。將所得硼烷溶液轉移至DMF(10mL)中的包含化合物IIId’(0.6g,1.1mmol)、(dppf)PdCl2(0.16g,0.22mmol)、AsPh3(0.067g,0.22mmol)和Cs2CO3(1.1g,3.3mmol)的混合物中。反應混合物由橙紅色快速變為深棕色溶液。將混合物在室溫下攪拌30分鐘。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,混合物用乙酸乙酯(50mL)和水(50mL)稀釋。分離有機層並用EtOAc(30mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在真空下濃縮以產生產物,其通過管柱層析法純化以產生作為無色油狀的化合物IVbx(1.04g,產率88.9%)。1H NMR(400MHz,CDCl3)δ6.90(s,1H),6.48(s,1H),5.26(q,2H),5.12(t,J=8.0Hz,1H),4.79-4.76(m,1H),4.38(brs,1H),3.84-3.74(m,1H),3.69(t,J=8.4Hz,2H),3.17-3.11(m,1H),2.87-2.79(m,1H),2.7(s,3H),2.54-2.48(m,2H),2.28(dd,J=16.8,6.8Hz,1H),2.19-2.09(m, 2H),2.02(s,3H),1.91-1.86(m,1H),1.66(s,3H),1.61(d,J=4.4Hz,1H),1.45(s,18H),1.25(s,3H),1.07-1.02(m,6H),0.97-0.85(m,25H),0.09-0.01(m,21H)。
製備Ivcx
在室溫下向化合物XXVax(1.28g,2.6mmol)的THF(17mL)溶液中添加9-硼雙環[3.3.1]壬烷(8mL,4mmol)。將混合物在室溫下攪拌1h。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,添加水(1.1mL)並將混合物再攪拌30min。將所得硼烷溶液轉移至DMF(10mL)中的包含化合物IIIa’(0.6g,1.34mmol)、(dppf)PdCl2(0.2g,0.27mmol)、AsPh3(0.083g,0.27mmol)和Cs2CO3(1.3g,4.0mmol)的混合物中。添加之後,反應混合物由橙紅色快速變為深棕色溶液。將混合物在室溫下攪拌30分鐘。 TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,混合物用EtOAc(50mL)和水(50mL)稀釋。分離有機層並用EtOAc(30mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在真空下濃縮以產生粗製產物,其通過管柱層析法純化以產生作為淡黃色油狀的化合物IVcx(1.1g,產率:85.3%)。1H NMR(400MHz,CDCl3)δ6.90(s,1H),6.43(s,1H),5.27(q,2H),5.09(t,J=8.0Hz,1H),4.64-4.55(m,1H),4.38(brs,1H),4.14-4.11(m,1H),3.83-3.74(dd,J=28.4,6.8Hz,1H),3.69(t,J=8.0Hz,2H),3.16-3.07(m,1H),2.7(s,3H),2.52-2.26(m,4H),2.17(s,1H),2.04(s,3H),1.99-1.97(m,2H),1.67(s,3H),1.42(s,9H),1.24(s,3H),1.05-1.03(m,6H),0.97-0.85(m,25H),0.09-0.01(m,21H)。
製備IVcx
在室溫下向化合物XXVax(165mg,0.255mmol)的THF(2mL)溶液中添加9-硼雙環[3.3.1]壬烷(1.1mL,0.55mmol)。將混合物在室溫下攪拌1h,在TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,添加水(0.2mL)並將混合物再攪拌30min。 在50℃將所得硼烷溶液轉移至DMF(2mL)中的包含化合物IIIb’(60mg,0.17mmol)、(dppf)PdCl2(1.25mg,0.0017mmol)、(Boc)2O(45mg,0.2mmol)和Cs2CO3(170mg,0.52mmol)的混合物中。反應混合物由橙紅色快速變為深棕色溶液。將混合物在50℃下攪拌2小時。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,混合物用EtOAc(5mL)和水(5mL)稀釋。分離有機層並用EtOAc(5mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在真空下濃縮以產生粗品,其通過製備型TLC純化以產生作為無色油狀的化合物IVcx(130mg,產率:79%)。
製備IVdx
在室溫下向化合物XXVax(2.0g,4.06mmol)的THF(26.5mL)溶液中添加9-硼雙環[3.3.1]壬烷(12.5mL,6.24mmol)。將混合物在室溫下攪拌1h。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,添加水(1.7mL)並將混合物再攪拌30min。將 所得硼烷溶液轉移至DMF(10mL)中的包含化合物IIIb’(0.6g,1.73mmol)、(dppf)PdCl2(0.256g,0.35mmol)、AsPh3(0.107g,0.35mmol)和Cs2CO3(1.7g,5.19mmol)的混合物中。
反應混合物由橙紅色快速變為深棕色溶液。將混合物在室溫下攪拌30分鐘。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,混合物用EtOAc(50mL)和水(50mL)稀釋。分離有機層並用EtOAc(30mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在真空下濃縮以產生粗製產物,其通過管柱層析法純化以產生作為深棕色油狀的化合物IVdx(0.9g,產率:60%)。1H NMR(400MHz,CDCl3)δ6.91(s,1H),6.50(s,1H),5.27(q,2H),5.13(t,J=6.8Hz,1H),4.38(brs,1H),3.84-3.74(dd,J=28.8,7.2Hz,1H),3.69(t,J=8.4Hz,2H),3.41(t,J=6.0Hz,1H),3.16-3.08(m,1H),2.70(s,3H),2.50-2.48(m,1H),2.41-2.16(m,5 H),2.03(s,3H),1.99-1.97(m,2H),1.68(s,3H),1.65-1.61(m,2H),1.48-1.38(m,3H),1.24(s,3H),1.07-1.03(m,6H),0.97-0.85(m,25H),0.09-0.01(m,21H)。
在室溫下向化合物XXVax(150mg,0.23mmol)的THF(1.5 mL)溶液中添加9-硼雙環[3.3.1]壬烷(0.93mL,0.46mmol)。將混合物在室溫下攪拌1h。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,添加水(0.1mL)並將混合物再攪拌30min。在50℃將所得硼烷溶液轉移至DMF(1.5mL)中的包含化合物IIIb’.HCl(60mg,0.156mmol)、(dppf)PdCl2(5.7mg,0.0078mmol)和Cs2CO3(305mg,0.936mmol)的混合物中。反應混合物由橙紅色快速變為深棕色溶液。將混合物在50℃攪拌過夜。混合物用EtOAc(5mL)和水(5mL)稀釋。分離有機層並用EtOAc(5mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在真空下濃縮以產生粗品,其經製備型TLC純化以產生作為黃色油狀的化合物IVdx(64mg,產率:50%)。
製備IVex
在室溫下向化合物XXVax(1.24g,1.92mmol)的THF(16mL)溶液中添加9-硼雙環[3.3.1]壬烷(7.7mL,3.86mmol)。將混合物在室溫下攪拌1h,在TLC分析(石油醚/EtOAc=5:1)表明反應完成,添加水(1.1mL)並將混合物再攪拌30min。將所得硼烷溶液轉移至DMF(10mL)中的包含化合物IIIe’(0.6g,1.28mmol)、(dppf)PdCl2(0.19g,0.256mmol)、AsPh3(0.078g,0.256mmol)和Cs2CO3(1.25g,3.84mmol)的混合物中。反應混合物由橙紅色快速變為深棕色溶液。將混合物在室溫下攪拌30分鐘,以及在TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,將混合物用EtOAc(50mL)和水(50mL)稀釋。分離有機層並用EtOAc (30mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾 燥並在真空下濃縮以產生粗製產物,其經管柱層析法純化以產生作為黃色油狀的化合物IVex(1.1g,產率:87.3%)。1H NMR(400MHz,CDCl3)δ6.93(s,1H),6.44(s,1H),5.27(q,2H),5.09(t,J=6.8Hz,1H),4.38(brs,1H),4.03-3.99(m,2H),3.83-3.75(dd,J=18.4,7.6Hz,1H),3.69(t,J=8.4Hz,2H),3.17-3.08(m,1H),2.71(s,3H),2.51-2.38(m,3H),2.32-2.26(dd,J=17.2,6.8Hz,1H),2.17(s,1H),2.09(s,3H),2.04-1.99(m,2H),1.68(s,3H),1.36(s,9H),1.24(s,3H),1.07-1.01(m,6H),0.97-0.85(m,25H),0.10-0.01(m,21H)。
製備IVfx
在室溫下向化合物XXVax(1.13g,1.76mmol)的THF(14.8mL)溶液中添加9-硼雙環[3.3.1]壬烷(7.1mL,3.5mmol)。將混合物在室溫下攪拌1h,以及在TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,添加水(1mL)並將混合物再攪拌30min。將所得硼烷溶液轉移至DMF(10mL)中的包含化合物IIIc’(0.6g,1.17mmol)、(dppf)PdCl2(0.17g,0.23mmol)、AsPh3(0.072g,0.23mmol)和Cs2CO3(1.14g,3.51mmol)的混合物中。反應混合物由橙紅色快速變為深棕色溶液。將混合物在室溫下攪拌30分鐘。TLC分析(石油醚/EtOAc=5:1)表明反應完成之後,混合物用EtOAc(50mL)和水(50mL)稀釋。分離有機層並用EtOAc(30mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥並在真空下濃縮以產生粗製產物,其通過管柱層析法純化以產生作為黃色油狀的化合物IVfx(0.97g,產率:80.8%)。1H NMR (400MHz,CDCl3)δ7.63(d,J=7.6Hz,2H),7.41-7.29(m,6H),7.12(d,J=6.8Hz,2H),6.89(s,1H),6.32(s,1H),5.27(q,2H),4.95(t,J=6.8Hz,1H),4.37(brs,1H),3.88(t,J=6.4Hz,1H),3.82-3.73(dd,J=27.6,7.2Hz,1H),3.70(t,J=8.4Hz,2H),3.16-3.11(m,1H),2.69(s,3H),2.53-2.36(m,3H),2.32-2.26(dd,J=16.4,6.4Hz,1H),2.16(s,1H),1.99-1.84(m,2H),1.60(s,3H),1.36(s,9H),1.24(s,3H),1.08-1.01(m,6H),0.98-0.85(m,25H),0.09-0.02(m,21H)。
製備XXVIax
在0℃向IVax’(9.14g,8.834mmol)的THF(60.0mL)和MeOH(15.0mL)混合物的攪拌溶液中添加10%LiOH水溶液(8.46mL,35.336mmol),然後添加30% H2O2水溶液(5.01mL,44.170mmol)。將所得混合物緩慢升溫至室溫並在室溫下攪拌過夜。反應混合物在0℃用飽和NaHSO3水溶液(10.94mL,44.170mmol)淬熄並再攪拌30min。所得混合物在真空下濃縮,以及用NH4Cl水溶液(40mL)和EtOAc(40mL)萃取殘餘物。分離有機層並用EtOAc(40mL×2)萃取水層,合併的有機層用鹽水清洗,用MgSO4乾燥,過濾並在真空下濃縮。殘餘物通過管柱層析法純化(沖提液:2% MeOH/DCM至5% MeOH/DCM)以產生作為白色泡沫的XXVIax(4.44g,產率:60%,Rf=0.33,DCM中的2% MeOH)。1H NMR(400MHz,CDCl3)δ10.92(brs,1H),6.85(s,1H),6.42(s,1H),5.05(t,J=8.0Hz,1H),4.71-4.70(m,1H),4.35(m,1H),4.09-4.04(m,1H),3.81-3.72(m,1H),3.11-3.07(m,1H),2.64 (s,3H),2.42-2.39(m,2H),2.27-2.22(m,3H),1.97(s,3H),1.96-1.90(m,3H),1.63(s,3H),1.37(s,9H),1.20-1.01(m,12H),0.87-0.85(d,J=4.0Hz,3H),0.85(s,9H),0.82(s,9H),0.05-0.01(3s,12H);13C NMR(100MHz,CDCl3)δ217.7,176.0,164.7,152.8,140.4,138.4,120.3,115.0,53.7,53.6,44.9,40.0,39.1,39.0,38.9,32.5,32.1,31.0,28.4,26.3,26.2,26.1,25.9,23.6,(3×)23.5(3×),23.4(3×),19.4,18.9,18.6,18.4,18.2,17.4,16.3,15.8,-3.7,-3.9,-4.2,-4.7;LCMS 837.5[M+H]+,837.3[M+H]+
製備XXVIax
在0℃向攪拌中的2-Me-THF(24mL)和MeOH(6mL)的混合溶劑中的IVax’(2.38g,2.30mmol)溶液中添加10%NaOH水溶液(3.68mL,10.21mmol)和30%H2O2水溶液(1.30mL,13.07mmol)。 將所得的化合物升溫至25℃並攪拌過夜。通過在25℃添加飽和NaHSO3水溶液(2.85mL,14.79mmol)使反應淬熄,並再攪拌化合物30分鐘,然後向其中添加10%檸檬酸水溶液(20mL),並用EtOAc(20mL)萃取。收集有機層,並用EtOAc(10mL×2)萃取水層。合併的有機層用鹽水(20mL)洗滌,MgSO4(5g)乾燥,過濾並在真空中濃縮以獲得粗製XXVIax,其通過管柱層析法純化(沖提液:2% MeOH/DCM至5% MeOH/DCM)以產生作為白色泡沫的純的XXVIax(1.46g,產率:76%,Rf=0.33,2% MeOH/DCM)。
由XXVIax製備Vax
在0℃向XXVIax(7.25g,8.658mmol)的DCM(180.0mL)攪拌溶液中添加2,6-盧剔啶(10.08mL,86.582mmol)和TMSOTf(12.54mL,69.266mmol)。將所得混合物升溫至室溫,並攪拌1h。將反應混合物傾倒到飽和NH4Cl水溶液中(100mL)。分離有機層,以及用DCM(100mL×2)萃取,以及將合併的有機層用鹽水洗滌,用Na2SO4乾燥,過濾並在真空中濃縮。殘餘物通過管柱層析法純化(沖提液:從5% MeOH/DCM至10% MeOH/DCM)以產生作為淺黃色泡沫的Vax(5.90g,產率:92%,Rf=0.5,MeOH/DCM=1:10,UV)。 1H NMR(400MHz,CDCl3)δ6.98(s,1H),6.55(s,1H),6.45-6.36(brs,2H),4.99(t,J=2.8Hz,1H),4.44(brs,1H),3.89-3.82(m,1H),3.66(brs,1H),3.12-3.09(m,1H),2.67(s,3H),2.54-2.33(m,3H),2.26-2.13(m,2H),2.10(s,1H),1.81-1.79(brs,1H),1.65(s,3H),1.48(brs,2H),1.14-1.03(m,12H),0.89(s,9H),0.84(s,9H),0.82-0.81(d,J=4.0Hz,3H),0.07(s,3H),0.06(s,6H),0.04(s,3H);13C NMR(100MHz,CDCl3)δ 218.1,177.6,164.7,152.1,139.7,136.4,122.5,118.7,117.2,116.9,74.6,59.4,53.9,44.5,42.3,39.2,32.6,31.6,31.0,29.7,26.4,26.3,26.2,26.1,23.5,23.0,19.1,18.6,18.4,18.2,18.1,16.9,16.5,14.6,-3.8,-4.0,-4.8;LCMS 737.4[M+H]+,737.3[M+H]+
製備XXVIbx’
在N2氣下,在0℃將IVax’(95mg,0.09mmol)溶解於無水DCM(2.5mL)中,然後添加2,6-盧剔啶(0.103mL,0.92mmol)和TMSOTf(0.165mL,0.92mmol)。將所得混合物升溫至室溫並在室溫下攪拌2h。當TLC表明所有的原料都被消耗時,添加MeOH(0.165mL)以使反應淬熄。將混合物在室溫下攪拌10min,然後在減壓下除去溶劑。殘餘物通過管柱層析法純化(沖提液:2%MeOH/DCM至10%MeOH/DCM)以獲得作為無色油狀的XXVIbx’(77mg,產率:90%,Rf=0.55,MeOH/DCM=1:10,UV)。 1H NMR(400MHz,CDCl3)δ6.90(s,1H),6.49(s,1H),5.12(t,J=8.0Hz,1H),4.76(br,2H,NH),4.66-4.65(m,1H),3.84(t,J=6.0Hz,1H),3.78(d,J=8.0Hz,1H),3.42(dd,J=16.0,6.0Hz,2H),3.13-3.09(m,1H),2.76(d,J=3.6Hz,1H),2.69(s,3H),2.51-2.20(m,6H),2.16(s,3H),2.14-2.02(m,3H)1.87-1.84(m,3H),1.67(s,3H),1.65(s,3H),1.25-1.22(m,9H),1.14(s,3H),1.07(s,6H),0.95(s,3H),0.88(s,9H),0.84(s,9H),0.09-0.00(3s,12H);13C HNMR(100MHz,CDCl3)δ217.7,169.6,164.2,153.1,143.7,137.9,121.4,118.3,114.9,78.0,71.1,65.4,59.8,53.5,52.8,48.3,47.6,45.2,44.7,41.6,38.5,38.3,34.1,32.9,32.5,31.8,30.3,28.9,26.3,26.2(×3),26.1(×3),23.4,22.6,20.7,19.8,19.1,18.8,18.4,18.1,18.0,15.9,-3.8,-4.0,-4.3,-4.8;LCMS 934.5[M+H]+,934.4[M+H]+
由XXVIbx’製備Vax
在0℃向XXVIbx’(75mg,0.08mmol)在THF(0.365mL)和MeOH(0.073mL)混合物中的攪拌溶液中添加10%LiOH水溶液(0.176mL,0.64mmol),然後添加30% H2O2水溶液(0.18μL,1.60mmol)。將所得混合物緩慢升溫至室溫並在室溫下攪拌過夜。 反應通過在0℃添加飽和NaHSO3水溶液(0.396mL)淬熄並再攪拌混合物30min。所得混合物在真空下濃縮,用飽和NH4Cl水溶液(10mL)和EtOAc(10mL)稀釋。分離有機層並用EtOAc(10mL×2)萃取水層,合併的有機層用鹽水清洗,用Na2SO4乾燥,過濾並在真空下濃縮。殘餘物經管柱層析法純化(MeOH/DCM=1:9)以獲得作為淡黃色泡沫的Vax(13mg,產率:22%,Rf=0.5,MeOH/DCM=1:10,UV)。1H NMR(400MHz,CDCl3)δ6.98(s,1H),6.55(s,1H),6.45-6.36(brs,2H),4.99(t,J=2.8Hz,1H),4.44(brs,1H),3.89-3.82(m,1H),3.66(brs,1H),3.12-3.09(m,1H),2.67(s,3H),2.54-2.33(m,3H),2.26-2.13(m,2H),2.10(s,1H),1.81-1.79(brs,1H),1.65(s,3H),1.48(brs,2H),1.14-1.03(m,12H),0.89(s,9H),0.84(s,9H),0.82-0.81(d,J=4.0Hz 3H),0.07(s,3H),0.06(s,6H),0.04(s,3H);13C NMR(100MHz,CDCl3)δ 218.1,177.6,164.7,152.1,139.7,136.4,122.5,118.7,117.2,116.9,74.6,59.4,53.9,44.5,42.3,39.2,32.6,31.6,31.0,29.7,26.4,26.3,26.2,26.1,23.5,23.0,19.1,18.6,18.4,18.2,18.1,16.9,16.5,14.6,-3.8,-4.0,-4.8;LCMS 737.4[M+H]+,737.3[M+H]+
由XXVIax製備IXa
將XXVIax(470mg,0.56mmol)溶解於無水DCM(20.0mL)中並冷却至0℃,並緩慢添加TFA(10.0mL)。將所得混合物在0℃攪拌6h。通過TLC判斷反應完成之後,將所得混合物在真空下濃縮並向殘餘物添加DCM(30mL)和飽和NaHCO3水溶液(20mL)。分離有機層並用DCM(30mL×2)萃取水層。合併的有機層用鹽水清洗,用Na2SO4乾燥,過濾並在真空下濃縮。殘餘物通過管柱層析法純化(沖提液:2%MeOH/DCM至15%MeOH/DCM)以獲得作為淡黃色泡沫狀的IXa(275mg,產率:96%,Rf=0.35,MeOH/DCM=1:10,UV)。1H NMR(400MHz,CD3OD)δ7.34(s,1H),6.56(s,1H),5.11(t,J=7.2Hz,1H),4.32(d,J=9.6Hz,1H),3.82(t,J=7.2Hz,1H),3.50(t,J=5.6Hz,1H),3.37(s,1H),2.72(s,3H),2.57(t,J=7.2Hz,1H),2.45(d,J=15.2Hz,1H),2.36-2.29(m,1H),2.12-2.08(m,4H),2.05(s,3H),1.72(s,3H),1.68-1.55(m,3H)1.48-1.25(m,3H),1.19(s,3H),1.15(s,3H),1.08(d,J=6.4Hz,3H),0.92(d,J=6.4Hz,3H);13C NMR(100MHz,CD3OD)δ220.6,179.3,165.8,151.3,140.1,134.6,123.2,117.8,117.7,76.1,73.2,59.1,52.1,43.1,38.0,35.8,32.2,30.6,30.0,25.4,22.4,20.9,17.7,17.4,15.7,13.1,12.4;LCMS 509.3[M+H]+,509.1[M+H]+
由IVbx製備Vax
在N2氣下在0℃將IVbx(55mg,0.05mmol)溶解於無水DCM(1mL),然後添加甲基(苯基)硫烷(13mg,0.1mmol)、2,6-盧剔啶(110mg,1mmol)和TMSOTf(180mg,0.8mmol)。將所得混合物在室溫下攪拌2h。在TLC分析表明所有的原料都被消耗時,添加MeOH(0.1mL)以使反應淬熄。將混合物在室溫下攪拌10min,添加DIPEA(260mg,2mmol)並在減壓下濃縮以產生作為白色固體的粗品Vax(360mg),其不需任何的進一步純化直接用於下一步。
實施例10--製備伊沙匹隆
由Vax製備VIax
在30℃通過注射泵(syringe pump)向HATU(4.56g,12.004mmol)和DIPEA(4.18mL,24.008mmol)的THF(60.0mL)攪拌溶液中經5小時添加Vax(2.95g,4.001mmol)的THF(400.0mL)溶液。添加完成之後,將所得混合物在30℃再攪拌30min,然後通過矽藻土墊過濾,然後在真空下濃縮。殘餘物用EtOAc(100mL)和10%檸檬酸水溶液(100mL)稀釋。分離有機層並用EtOAc (100mL)萃取水層兩次。合併的有機層用飽和NaHCO3水溶液 和鹽水清洗,用MgSO4乾燥,過濾並在真空下濃縮。殘餘物通過管柱層析法分離(正庚烷/EtOAc=6:1)以獲得作為白色泡沫的VIax(1.67g,產率:58%,Rf=0.28,正庚烷/EtOAc=4:1)。1H NMR(400MHz,CDCl3)δ 6.96(s,1H),6.47(s,1H),5.66(brs,1H),5.19(t,J=8.4Hz,1H),4.23(brs,1H),4.11(d,J=9.2Hz,1H),3.91(dd,J=6.6,1.6Hz,1H),3.00-2.94(m,1H),2.83(d,J=14.8Hz,1H),2.72(s,3H),2.50(dd,J=14.4,10.8Hz,1H),2.33(t,J=6.8Hz,2H),2.18(brs,1H),2.09(s,3H),1.81(brs,1H),1.74(s,3H),1.63(m,1H),1.50(t,J=13.2Hz,2H),1.38-1.22(m,2H),1.19(s,3H),1.18(s,3H),1.13(d,J=6.8Hz,3H),1.01(d,J=6.8Hz,3H),0.96(s,9H),0.87(s,9H),0.14(s,3H),0.120(s,3H),0.115(s,3H),-0.03(s,3H);13C NMR(100MHz,CDCl3)δ 221.9,169.8,164.3,153.0,140.0,139.1,119.6,118.3,115.3,75.3,75.2,60.4,54.8,54.4,48.2,40.9,34.6,31.5,31.2,27.8,26.3,26.2,26.1,26.0,25.0,24.8,21.0,19.2,18.6,18.4,17.0,16.8,14.5,14.2,-3.7,-4.1,-4.8;LCMS 719.4[M+H]+,719.4[M+H]+
由VIax製備Ia
在0℃向VIax(450mg,0.626mmol)的DCM(4.5mL)攪拌溶液中添加TFA(1.5mL),並將所得混合物在0℃攪拌6h。通過TLC判斷反應完成之後(正庚烷/EtOAc=1:1追踪),將反應混合物用DCM(45mL)稀釋並倒入冰和飽和NaHCO3水溶液的混合物中。分離有機層並用DCM(50mL×2)萃取水層。合併的有機層用飽和NaHCO3水溶液和鹽水清洗,用MgSO4乾燥,過濾並在真空下濃縮。殘餘物通過管柱層析法分離(正庚烷/EtOAc= 1:2)以獲得作為白色泡沫的Ia(255mg,產率:83%,Rf=0.22,正庚烷/EtOAc=1:2)。1H NMR(400MHz,CDCl3)δ6.92(s,1H),6.47(s,1H),6.16(d,J=8.0Hz,1H),5.12(t,J=8.0Hz,1H),4.32(m,1H),4.07(d,J=8.0Hz,1H),3.83-3.73(m,2H),3.15(m,1H),2.68(s,3H),2.48-2.31(m,3H),2.25-2.21(m,1H),2.04(s,3H),2.0-1.99(m,1H),1.77-1.69(m,4H),1.69(s,3H),1.29(s,3H),1.26-1.24(m,2H),1.17(d,J=4.0Hz,3H),1.08(s,3H),0.99(d,J=4.0Hz,3H);13C NMR(100MHz,CDCl3)δ 221.0,170.7,164.9,152.6,140.0,139.5,120.9,118.3,115.4,74.9,73.4,56.4,53.4,42.6,40.4,38.6,32.6,31.6,31.5,29.9,25.9,23.3,22.8,22.5,19.7,19.2,17.1,15.9,14.4,14.1;LCMS 491.29[M+H]+
由IXa製備Ia
在30℃通過注射泵向HATU(3.04g,8.00mmol)和DIPEA(2.79mL,16.00mmol)的THF(20.0mL)攪拌溶液中經10小時添加IM3a(407mg,0.80mmol)的THF(40.0mL)溶液。將所得混合物在30℃再攪拌12小時,然後通過矽藻土墊過濾,然後在真空下濃縮。殘餘物用EtOAc(20mL)和10%檸檬酸水溶液(20mL)稀釋。分離有機層並用EtOAc(20mL×2)萃取水層。 合併的有機層用飽和NaHCO3水溶液和鹽水清洗,用MgSO4乾燥,過濾並在真空下濃縮。殘餘物通過管柱層析法分離(正庚烷/EtOAc=1:2)以獲得作為白色泡沫的Ia(192mg,產率:49%,Rf=0.22,正庚烷/EtOAc=1:2)。
製備伊沙匹隆
向裝備有攪拌棒的250mL三頸燒瓶中添加10.0mL去離子水、10.0mL丙酮和2.50g NaHCO3。將所得混合物在24℃的浴中劇烈攪拌15分鐘。在減壓(約50~100mm Hg)下向該混合物中每10~15分鐘添加3份的過氧單硫酸鉀(potassium peroxymonosulfate)(1.67g)。在每次添加過氧單硫酸鉀之後,將DMDO作為丙酮中的溶液蒸出並作為丙酮溶液而獲得。在N2氣下,使用套管(cannula)將DMDO(10mL)緩慢地轉移至Ia(61mg,0.124mmol)的無水DCM(2.0mL)溶液中,同時控制溶液溫度為-78℃。然後將反應混合物升溫至-50℃並攪拌1.5h。當TLC分析表明反應完成時,通過在-50℃添加二甲基硫醚(0.1mL)使過量的DMDO淬熄,然後將混合物升溫至室溫。將混合物在減壓下濃縮。通過管柱層析法(EtOAc/正庚烷=2:1)純化殘餘物以產生作為無色油狀的伊沙匹隆(27mg,產率:42.8%)。1H NMR(400MHz,CDCl3)δ7.00(m,1H),6.96(s,1H),6.55(s,1H),4.66-4.64(m,1H),4.43(brs,1H),4.06-4.04(m,1H),3.79(m,1H),2.82-2.79(m,1H),2.77(brs,1H),2.69(s,3H),2.52-2.39(m,2H),2.48(brs,1H),2.31-2.26(dd,J=12.0,4.0Hz,1H),1.96(t,J=8.0Hz,2H),1.62-1.53(m,4H),1.37(m,3H),1.33(s,3H),1.27(s,3H),1.16(d,J=4.0Hz,3H),1.09(s,3H),0.98(d,J=8.0Hz,3H);13C NMR(100MHz,CDCl3)δ 220.8,170.6,165.0,152.5,138.0,119.2,116.0,75.2,73.6,61.5,61.2,54.6,52.7,43.8,40.4,37.9,31.9,31.8,30.7,23.9,23.0,21.8,21.0,19.3,17.3,17.1,14.4;LCMS 507.28[M+H]。
雖然為了理解清楚的目的通過舉例說明和實施例相當詳細地描述了以上發明,但是本領域技術人員應理解在所附權利要求的範圍內可進行某些改變和修改。此外,本文中提供的每個參考文獻均通過引用整體併入本文,其程度視同每個參考文獻均通過引用被單獨併入。當在本申請和本文所提供參考文獻之間存在衝突時,本申請將占優勢。

Claims (35)

  1. 一種製備式I的氮雜埃博黴素(azaepothilone)的方法 其中,RA選自由:取代或未取代的芳基和取代或未取代的雜芳基所組成群組;RB選自由:氫、烷基和取代或未取代的芳基所組成群組;以及RC選自由:氫、烷基、氟烷基、取代或未取代的芳基和取代或未取代的雜芳基所組成群組;所述方法包括:a)在一過渡金屬催化劑存在下,使一式II化合物的一硼烷衍生物 其中Z選自 且R1和R2獨立地選自由:氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組,與一式III的乙烯基鹵化物接觸, 其中R3和R4獨立地選自由:氫、第三丁氧羰基(BOC)和第三丁基磺醯基(SO2 t-Bu)所組成群組,或者R3與R4一併為CPh2,以提供一式IV的化合物 b)通過將Z轉化為OH且當R3和R4之一或二者不是氫時, 將R3和R4轉化為氫,將所述式IV的化合物轉化為一式V的化合物 其中所述轉化步驟以任意順序進行;c)使所述式V的化合物環化以提供一式VI的化合物 ;以及 d)使所述式VI的化合物脫保護以提供式I的氮雜埃博黴素。
  2. 一種製備式VII的含環氧基的氮雜埃博黴素的方法 其中,RA選自由:取代或未取代的芳基和取代或未取代的雜芳基所組成群組,RB選自由:氫、烷基和取代或未取代的芳基所組成群組, RC選自由:氫、烷基、取代或未取代的芳基、取代或未取代的雜芳基和氟烷基所組成群組,所述方法包括:a)在過渡金屬催化劑存在下,使一式II化合物的一硼烷衍生物 其中Z選自 且R1和R2獨立地選自由:氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組,與一式III的乙烯基鹵化物接觸, 其中R3和R4獨立地選自由:氫、第三丁氧羰基(BOC)和 第三丁基磺醯基(SO2 t-Bu)所組成群組,或者R3與R4一併為CPh2,以提供一式IV的化合物 ;以及 b)通過將Z轉化為氫氧基且當R3和R4之一或二者不是氫時,將R3和R4轉化為氫,將所述式IV的化合物轉化為一式V的化合物 其中所述轉化步驟以任意順序進行;以及c)使所述式V的化合物環化成所述式VI的化合物 d)用環氧化劑處理式VI的化合物以形成一式VIII的化合物 ;以及 e)使所述式VIII的化合物脫保護以提供所述含環氧基的氮雜埃博黴素VII。
  3. 一種製備式I的化合物的方法 其中RA選自由:取代或未取代的芳基和取代或未取代的雜芳基所組成群組,RB選自由:氫、烷基和取代或未取代的芳基所組成群組,RC選自由:氫、烷基、氟烷基、取代或未取代的芳基和取代或未取代的雜芳基所組成群組,所述方法包括:a)在過渡金屬催化劑存在下,使一式II化合物的一硼烷衍生物 其中Z選自 R1和R2獨立地選自由:氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組, 與一式III的乙烯基鹵化物接觸, 其中R3和R4獨立地選自由:氫、第三丁氧羰基(BOC)和第三丁基磺醯基(SO2 t-Bu)所組成群組,或者R3與R4一併為CPh2, 以提供一式IV的化合物 b)通過將Z轉化為氫氧基且當R1、R2、R3和R4中任意個或全部都不是氫時,將R1、R2、R3和R4轉化為氫,將所述式IV的化合物轉化為一式IX的化合物 其中所述轉化步驟以任意順序進行;以及c)使所述式IX的化合物環化以提供所述式I的化合物。
  4. 根據申請專利範圍第3項中所述的方法,其中雜芳基係包含噻唑和異噁唑。
  5. 根據申請專利範圍第1、2和3項中任一項所述的方法,其中所述硼烷衍生物由所述式II的化合物通過與選自由以下的硼烷所組成群組反應而製備:9-硼雙環-[3.3.1]壬烷(9-BBN)、9-硼雙環[3.3.1]壬烷二聚體(9-BBN二聚體)、二異戊基硼烷和二環己基硼烷。
  6. 根據申請專利範圍第5項所述的方法,其中所述硼烷選自由:9-硼雙環-[3.3.1]壬烷(9-BBN)和9-硼雙環[3.3.1]壬烷二聚體(9-BBN二聚體)所組成群組。
  7. 根據申請專利範圍第1、2和3項中任一項所述的方法,其中所述過渡金屬催化劑包括選自由:鎳和鈀所組成群組的一金屬。
  8. 根據申請專利範圍第1、2和3項中任一項所述的方法,其中通過用包含H2O2、一氫氧化物和一溶劑的一混合物處理所述式IV的化合物,將Z轉化為氫氧基。
  9. 根據申請專利範圍第8項所述的方法,其中所述氫氧化物選自由:氫氧化鈉和氫氧化鋰所組成群組。
  10. 根據申請專利範圍第9項所述的方法,其中所述氫氧化物是氫氧化鈉。
  11. 根據申請專利範圍第8項的方法,其中所述溶劑包括2-甲基四氫呋喃與甲醇的一混合物。
  12. 根據申請專利範圍第1或3項所述的方法,其進一步包括:通過使所述式I的化合物環氧化,將所述式I的化合物轉化為式VII的一含環氧基的氮雜埃博黴素
  13. 根據申請專利範圍第1項所述的方法,其中RA是2-甲基-噻唑-4-基,且RB和RC是甲基。
  14. 一種製備式II的化合物的方法 其中Z是 R1和R2獨立地選自由:氫、三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組; 所述方法包括:a)活化一式XVI’的化合物 b)在路易斯酸存在下,用一式XVII的化合物處理所述經活化的式XVI’的化合物 以提供一式XVIII’的化合物 c)用選自由:三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組的保護基,保護所述式XVIII’化合物的羥基以提供一式XIX’的化合物 d)使所述式XVIII’的化合物或所述式XIX’的化合物活化,然後使經活化的化合物與一式XX的化合物反應 以提供所述式II的化合物,其中R2是氫, e)用選自由:三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組的保護基,保護所述式II化合物的羥基以提供所述式II化合物,其中R1和R2均是羥基保護基,其獨立地選自由:三乙基矽烷基(TES)、三異丙基矽烷基(TIPS)、第三丁基二甲基矽烷基(TBS)和第三丁基二苯基矽烷基(TBDPS)所組成群組。
  15. 根據申請專利範圍第14項所述的方法,其中步驟a)中活化所述式XVI’的化合物包括:使所述式XVI’的化合物與一矽烷基三氟甲磺酸酯試劑和一鹼接觸。
  16. 根據申請專利範圍第15項所述的方法,其中所述矽烷基三氟甲磺酸酯試劑是第三丁基二甲基矽烷基三氟甲磺酸酯。
  17. 根據申請專利範圍第15項所述的方法,其中所述鹼是三乙胺。
  18. 根據申請專利範圍第14項所述的方法,其中所述步驟d)的活化步驟是通過在低溫胺鹼存在下,用路易斯酸處理所述式XVIII’的化合物或所述式XIX’的化合物來進行。
  19. 根據申請專利範圍第14或18項所述的方法,其中所述路易斯酸是一金屬鹵化物。
  20. 根據申請專利範圍第19項所述的方法,其中所述金屬鹵化物是四氯化鈦(TiCl4)。
  21. 根據申請專利範圍第18項所述的方法,其中所述胺鹼是N,N-二異丙基乙胺,以及所述低溫是等於或低於-50℃。
  22. 根據申請專利範圍第14項所述的方法,其中R1和R2均是第三丁基二甲基矽烷基(TBS)。
  23. 根據申請專利範圍第2項所述的方法,其中含環氧基的氮雜埃博黴素VII是伊沙匹隆(ixabepilone)
  24. 一種製備式III’的化合物的方法 其中RA是芳基或雜芳基,且RB和RC選自由:氫、烷基、氟烷基、未取代或取代的芳基、以及未取代或取代的雜芳基所組成群組,所述方法包括:a)在一活化劑存在下,在一有機溶劑中使一式X的化合物 與第三丁基亞磺醯胺接觸以提供一式XI的化合物 b)在一有機溶劑中使所述式XI的化合物與一烯丙基化試劑AL反應 其中值n為1至4,以提供一式XII的化合物 c)通過用一酸處理,在一有機溶劑中將所述式XII的化合物轉化為一式XIII的化合物, 其中X是一鹵素,且下標m是0、1或2;d)通過所述式XIII的化合物與二碳酸二叔丁酯在一有機溶劑中的反應來保護所述式XIII的化合物,以產生一式XIVa的化合物 ;以及 e)將一式XIVa的化合物轉化為一式III’的化合物。
  25. 根據申請專利範圍第24項所述的方法,其中步驟a) 的所述有機溶劑是甲苯,且所述活化試劑是KHSO4
  26. 根據申請專利範圍第24項所述的方法,其中步驟b)提供式XII化合物與下式之一非鏡像異構物的一混合物,其非鏡像異構物比例係大於10:1
  27. 根據申請專利範圍第24項的方法,其中步驟b)的烯丙基化試劑是烯丙基溴化鎂,且步驟b)的所述有機溶劑是2-甲基四氫呋喃與二氯甲烷的一混合物。
  28. 根據申請專利範圍第24項的方法,其中所述式III’的化合物通過一脫保護步驟進一步轉化為一式IIIb的化合物
  29. 根據申請專利範圍第24項的方法,其中通過在一鹼的存在下,用二碳酸二叔丁酯保護將III’進一步轉化為式IIId的化合物
  30. 根據申請專利範圍第24、28和29項中任一項所述的方法,其中RA是2-甲基-噻唑-4-基,且RB和RC是甲基。
  31. 根據申請專利範圍第24項所述的方法,其中步驟c)的 所述有機溶劑是甲醇,且所述酸是濃HCl水溶液。
  32. 根據申請專利範圍第24項所述的方法,其中步驟d)的所述有機溶劑是二氯甲烷。
  33. 根據申請專利範圍第24項所述的方法,其中步驟e)的所述轉化包括用氧化試劑處理所述式XIVa的化合物以形成一式XVa的化合物 以及用鏻葉立德(phosphonium ylide)試劑處理式XVa的化合物。
  34. 根據申請專利範圍第33項所述的方法,其中所述鏻葉立德試劑在用一鹼處理(1-碘乙基)三苯基碘化膦後形成。
  35. 根據申請專利範圍第34項所述的方法,其中所述鹼是雙(三甲基矽烷基)氨基鈉。
TW103107816A 2013-03-08 2014-03-07 伊莎匹隆及其中間體之製備方法 TWI520956B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361775461P 2013-03-08 2013-03-08
CN201410077611 2014-03-04

Publications (2)

Publication Number Publication Date
TW201504234A TW201504234A (zh) 2015-02-01
TWI520956B true TWI520956B (zh) 2016-02-11

Family

ID=51488592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107816A TWI520956B (zh) 2013-03-08 2014-03-07 伊莎匹隆及其中間體之製備方法

Country Status (6)

Country Link
US (1) US9309259B2 (zh)
EP (1) EP2964645B1 (zh)
JP (1) JP6401190B2 (zh)
CN (1) CN105308041B (zh)
TW (1) TWI520956B (zh)
WO (1) WO2014136099A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867305B2 (en) 1996-12-03 2005-03-15 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US6605599B1 (en) 1997-07-08 2003-08-12 Bristol-Myers Squibb Company Epothilone derivatives
US6365749B1 (en) 1997-12-04 2002-04-02 Bristol-Myers Squibb Company Process for the preparation of ring-opened epothilone intermediates which are useful for the preparation of epothilone analogs
TW509672B (en) * 1998-05-12 2002-11-11 Ono Pharmaceutical Co Novel intermediate compounds and processes for the production of optical active octanoic acid derivatives
WO2001064650A2 (en) 2000-03-01 2001-09-07 Sloan-Kettering Institute For Cancer Research Center Synthesis of epothilones, intermediates thereto and analogues thereof
US6518421B1 (en) 2000-03-20 2003-02-11 Bristol-Myers Squibb Company Process for the preparation of epothilone analogs
WO2008141130A1 (en) 2007-05-11 2008-11-20 Kosan Biosciences, Inc. Process for the preparation of epothilones

Also Published As

Publication number Publication date
EP2964645A1 (en) 2016-01-13
US9309259B2 (en) 2016-04-12
EP2964645B1 (en) 2018-07-11
CN105308041A (zh) 2016-02-03
TW201504234A (zh) 2015-02-01
WO2014136099A1 (en) 2014-09-12
JP2016510069A (ja) 2016-04-04
JP6401190B2 (ja) 2018-10-03
EP2964645A4 (en) 2016-09-07
CN105308041B (zh) 2018-06-01
US20140256952A1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
WO2000000485A1 (de) Epothilon-derivate, verfahren zu deren herstellung, zwischenprodukte und ihre pharmazeutische verwendung
KR20020005737A (ko) 6-알케닐-,6-알키닐- 및 6-에폭시-에포틸론 유도체, 그의제조 방법 및 제약 제제로서 그의 용도
WO2007043621A1 (ja) プラジエノライド b及びプラジエノライド dの全合成方法
JP2001504856A (ja) エポチロン類似体
AU1944001A (en) Bryostatin analogues, synthetic methods and uses
CN111433211A (zh) 软海绵素的合成
HUT62251A (en) Process for producing cytotoxic bicyclo/7.3.1/tridec-4-ene-2,6-diine derivatives and pharmaceutical compositions comprising such compounds
JP2002536450A (ja) エポチロン誘導体、それらの製造方法、及びそれらの医薬としての使用
US6350878B1 (en) Intermediates for the synthesis of epothilones and methods for their preparation
TWI520956B (zh) 伊莎匹隆及其中間體之製備方法
JP6368351B2 (ja) ジフルオロラクタムアナログを合成する方法
JP5960130B2 (ja) テセタキセルおよび関連化合物ならびに対応する合成中間体の調製
CN101654410B (zh) 二环[3.1.0]己烷衍生物的制备方法及其中间体
CA3117113A1 (en) 1,2,3,4-tetrahydroquinoxaline derivative, preparation method therefor and application thereof
JP4903956B2 (ja) 7−オキサビシクロ[2.2.1]ヘプト−5−エン−2−カルボン酸誘導体の製造方法
CN110218213B (zh) 吡喃稠环类化合物、其制备方法和用途
JP7421573B2 (ja) エルデカルシトールを調製するための方法および中間体
Micklefield et al. Alkylation and acylation of 5-phenylsulphonyl-and 5-cyanobutyrolactones
DE10041470A1 (de) 12,13-Cyclopropyl-Epothilon-Derivate, Verfahren zu deren Herstellung sowie ihre Verwendung in pharmazeutischen Präparaten
JP2022530882A (ja) エリブリンの中間体、その合成方法および使用
UA73118C2 (en) Derivatives of 6-alkenyl, 6-alkinyl and 6-epoxyepothilone, method for obtaining thereof and use in pharmaceutic preparates
MXPA05002785A (es) Un nuevo proceso para la preparacion de derivados de epotilona, nuevos derivados de epotilona, asi como nuevos productos intermediarios para el proceso, y los metodos para su preparacion.
Gimalova et al. New captodative polyheterofunctionalized cyclopentenones from 2, 3, 5-Trichloro-4, 4-dimethoxy-5-(2-methylfuran-3-yl) cyclopent-2-en-1-one and secondary amines
El-Awa Asymmetric synthesis of dipropionate stereotetrads and application towards the total synthesis of Aplyronine A
JP2019513808A (ja) ビマトプロストの調製方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees