TWI519820B - 自動立體顯示裝置及顯示自動立體影像的方法 - Google Patents

自動立體顯示裝置及顯示自動立體影像的方法 Download PDF

Info

Publication number
TWI519820B
TWI519820B TW098118246A TW98118246A TWI519820B TW I519820 B TWI519820 B TW I519820B TW 098118246 A TW098118246 A TW 098118246A TW 98118246 A TW98118246 A TW 98118246A TW I519820 B TWI519820 B TW I519820B
Authority
TW
Taiwan
Prior art keywords
lens
refractive index
layer
display device
autostereoscopic
Prior art date
Application number
TW098118246A
Other languages
English (en)
Other versions
TW201003123A (en
Inventor
史瓦特 西比 提傑克 迪
馬席里納 佩勒斯 卡羅路 邁可 可瑞恩
費茲 皮吉曼
奧斯卡 漢德瑞克斯 威廉森
馬汀 傑拉德 漢德瑞克 希汀克
Original Assignee
皇家飛利浦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 皇家飛利浦電子股份有限公司 filed Critical 皇家飛利浦電子股份有限公司
Publication of TW201003123A publication Critical patent/TW201003123A/zh
Application granted granted Critical
Publication of TWI519820B publication Critical patent/TWI519820B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1833Diffraction gratings comprising birefringent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12116Polariser; Birefringent

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Lenses (AREA)

Description

自動立體顯示裝置及顯示自動立體影像的方法
本發明係關於一種用於一自動立體顯示裝置的光學配置,及一種包含該光學配置的自動立體顯示裝置。
在圖1中繪示一種已知的自動立體顯示裝置。此已知的裝置1包括一個二維液晶顯示面板(LCD)3,該二維液晶顯示面板(LCD)3具有一列與行顯示像素5陣列,該列與行顯示像素5陣列充當一空間光調變器以用一靜態影像或動態影像(舉例言之,諸如視訊)形式產生顯示畫面。為了清楚,圖1中僅繪示少數顯示像素5。實際上,舉例言之,該顯示面板3可包括約一千列及幾千行顯示像素5。
該液晶顯示面板3的結構為完全習知的。特定言之,該液晶顯示面板3包括一對隔開的透明玻璃基板,在該等透明玻璃基板之間提供一對準扭轉向列或其他液晶材料。該等基板在其等面對表面上攜載透明氧化銦錫(ITO)電極的圖案。偏振層亦提供在該等基板的外表面上。
每個顯示像素5係與一切換元件(諸如一薄膜電晶體(TFT)或薄膜二極體(TFD))相關聯。操作該等顯示像素以藉由提供定址信號至該等切換元件而產生顯示畫面,且適當的定址方案將為熟悉此項技術者所知。
藉由一光源7照明該顯示面板3,在此情況中,該光源7包括延伸於該顯示像素陣列的區域上的一平面背光。來自該光源7的光被導引通過該顯示面板3,使該等個別顯示像素5被驅動以調變該光並產生顯示畫面。
該顯示裝置1亦包括一雙凸薄片9形式的一透鏡配置,該透鏡配置配置在該顯示面板3的該顯示側上,該顯示面板3執行一檢視畫面形成功能。該雙凸透鏡9包括一半圓柱雙凸元件11。每個雙凸透鏡11有一縱向軸10且該等透鏡延伸使得每個雙凸透鏡之縱向軸定向平行於彼此。為了清楚,在圖1中僅顯示誇大尺寸的一個透鏡11。因此,一拉長的雙凸元件11陣列平行於彼此延伸在該顯示像素陣列上,並且一使用者或觀看者透過此等雙凸元件11觀察該等顯示像素5。該等雙凸元件11充當一光輸出導引構件,以自該顯示面板3提供不同的影像或檢視畫面至位於該顯示裝置1前面之一使用者的眼睛。
如果產製的顯示畫面或影像包括多個檢視畫面,則上面描述的裝置提供一有效率的自動立體或三維顯示裝置。在下文中,此一顯示畫面或影像將指示為具有至少兩個子影像的一自動立體影像,每一子影像代表藉由該影像顯示的物件的一不同檢視畫面。其後藉由該透鏡配置顯示該至少兩個檢視畫面,致使一觀看者感知該物件的一立體、3D或觀看印象。舉例言之,在使每個雙凸元件11與兩行顯示像素5相關聯之一配置中,在每行中之該等顯示像素5提供一個別二維子影像的一垂直切片(slice)。該雙凸薄片9導引該兩個切片及來自與另一雙凸元件11相關聯的顯示像素行之對應切片至位於該薄片前面的一使用者的左眼及右眼,致使該使用者觀察一單個立體影像。
在此一裝置的修改案中,該等雙凸透鏡可經定向以使其等縱向軸相對於該顯示面板或自動立體影像的像素行方向以一傾斜角傾斜。該修改案提供在水平顯示面板方向與垂直顯示面板方向之間分擔像素解析度損失方面之優點。因為此非本發明的目的,所以在US6064424中提出對於關於申請案參考之效果及模式之一更詳細說明。
本發明的一目的係提供具有改良效能的一種光學配置及一種包含此一光學配置之自動立體顯示裝置。
此目的係藉由如在獨立技術方案中定義的光學配置、採用該光學配置之自動立體顯示裝置以及運用該光學配置顯示一自動立體影像的方法予以達成。
附屬技術方案定義有利的實施例。
本發明提供一種光學配置,當該光學配置在其透鏡模式時,該光學配置具有一透鏡配置,該透鏡配置具有一雙凸透鏡陣列,該等雙凸透鏡各自具有一特定透鏡表面形狀,當追蹤光線進入該雙凸透鏡之一側之後穿過該雙凸透鏡時,存在至少一個光線垂直地命中該雙凸透鏡表面。此一光學配置在其透鏡模式中給出最佳化光學效果在於,當在大偏法線檢視角度下透過光學配置觀看一影像時,影像失真減小。因此,當應用於顯示自動立體影像時,獲得關於所謂的條帶現象及/或關於日光串擾及/或自動立體效果對一觀看者在一自動立體顯示裝置上觀察該自動立體影像之角度之相依性的顯著改良。
發明者發現一與使用圓柱雙凸透鏡相關聯的特徵,舉例言之,諸如在[先前技術]中描述的先前技術中,因為場曲率,強度佔據區隨檢視角度改變。該強度佔據區可視為一照明區域的大小,照明區域係衍生自一具有一個透鏡之一寬度的平行光束,該平行光束透過該透鏡以一給定角度傳遞。在該顯示像素平面測量該佔據區大小。一窄佔據區意謂該透鏡係焦點對準於該顯示像素平面,反之,一較大的佔據區意謂該透鏡係焦點對準於一不同位置,在該顯示像素平面上面或下面的某處。一大佔據區對應於檢視畫面的角散度(angular divergence)。
圖2係一繪示在y軸(任意單位a.u.)上強度(I)與在x軸(毫米)上像素平面上位置(P)之間關係的圖表,其促成一用於在0°與50°之間檢視角度(VA)(注釋在圖2的左邊)的影像。該等圖表對應於一具有一雙凸透鏡的顯示器,該雙凸透鏡為光學等向,且為此在該透鏡與空氣的折射率之間,於該透鏡表面有一折射率差0.5。在圖2中,顯示促成一特定檢視畫面之像素在x軸上的位置。可見對於大於30°之檢視角度該佔據區的尺寸非常大,其中像素之大的實體寬度促成檢視畫面。注意,虛線係以考量到像素尺寸及雙凸相對於像素行方向傾斜之傾斜角之效果之一高頂(top-hat)分佈迴旋後的結果。一大的佔據區大小非係所要的,因為大佔據區大小引起檢視畫面之間過多的重疊,在檢視畫面之間產生過多的串擾且因此減弱3D印象。
除了對於大檢視角度而加寬上文顯示的檢視畫面之外,一條帶效應(其經常稱作波紋(Moir)型假像)亦可在較小檢視角度內出現。此起因於事實上該等雙凸透鏡的焦點隨著遞增的離法線檢視角度而偏移朝向觀看者。
本發明的該光學配置的該透鏡配置減小及/或減輕此等及其他效應。
在該等技術方案中,該等術語「第一層及第二層」不應視為必然意謂係指連續層。因此,舉例言之,第一層可由具有嵌入於具有第二折射率的第二層中的第一折射率的多樣量所組成。此進一步參考關於根據本發明之可切換光學配置的描述說明。
本發明的所要優點效果隨技術方案1中定義的乘積的遞增量值而遞增。因此,舉例言之,可觀察經改良品質的此裝置顯示之自動立體影像的檢視角度隨著在技術方案1中定義的乘積遞增而遞增。因此較佳地,該透鏡配置被設計使得該乘積大於0.6、0.7、0.8、0.9、1.0或甚至1.1。較佳地該乘積大於0.8,此提供介於所獲得的效果與關於所需材料的光學配置的可製造性之間的一平衡。
該所要效果相依於在該雙凸透鏡陣列內的透鏡節距。該透鏡節距應視為在一曲率方向上測量的一雙凸透鏡的寬度。舉例言之,因此垂直於該雙凸透鏡11的縱向軸而測量該透鏡節距。在該透鏡中心的曲率半徑係如在該雙凸透鏡的中間或採用垂直於該縱向軸10的該雙凸透鏡之一區段內的一透鏡節距中途所測量的曲率半徑。
可由藉由待顯示的該自動立體影像所決定的一最小值定該透鏡節距之界限。舉例言之,可藉由在一顯示裝置中的一自動立體影像檢視畫面的解析度或數量並且因此藉由與一雙凸透鏡相關聯的顯示面板像素的數量及尺寸,決定該透鏡節距的較低邊界。當使用最小可適用透鏡節距時,可藉由以適當的曲率半徑或第一折射率設計該透鏡而調整如在技術方案1中定義的乘積。
該所要有利效果可相依於該透鏡相對於待由該透鏡投射或待透過該透鏡觀察之一自動立體影像的定向。當介於該第一折射率與該第二折射率之間的折射率差愈大時,此相依性將愈大。可定義該光學配置且隨即定義該透鏡配置以具有一觀看者側及一顯示側。該光學配置較佳地具有該第一層作為其觀看者側,因為其後獲得的該有利效果為最大。
在該透鏡配置的一實施例中,該第一折射率係該第一折射率及該第二折射率中的最低折射率。此優勢在於,達成對於特定設計基於在技術方案1中定義之設計準則的所要效果,且獨立於該透鏡配置相對於待顯示的一自動立體影像的定向。
在個別材料的折射率之間的差異△n較佳地小於習知的透鏡中之差異,特定言之在0.05至0.22範圍中。此不僅減小對上文說明的定向的相依性且隨其建立使用自由度,而且亦提供一具有較小反射係數的透鏡配置,可使影像的觀察具有藉由此等反射引起的較少干擾。其他可能的折射率差異範圍為0.05至0.15及0.09至0.12。該差異可為0.1。
該第一折射率及該第二折射率的最高折射率可係在1.4至1.65範圍中。舉例言之,此可達成方式係藉由提供該相應第一層或第二層,使得第一層或第二層包括丙烯酸材料或聚碳酸酯。如果高折射率係該第一折射率,則高折射率對於該所要效果為特定有利,因為其後可使用一較高曲率半徑,轉變為比更彎曲透鏡更易於製造的較少彎曲透鏡。
具有最低折射率的該層可有在1.3至1.5範圍中之一折射率,舉例言之,藉由提供具有包括矽酮材料的此折射率的該層。該第一材料與該第二材料可有實質上相同的阿貝(Abbe)數。
該第一層及該第二層可由全部固體材料製成,致使不需要支撐層或基板層。另一選擇為,該等層之一者(例如該第一層)可係一固體層,而另一層(例如該第二層)係液體或氣體。其後該一固體層可具有根據技術方案1的定義所需的雙凸透鏡表面的形狀。在此等案例中,可加入支撐層至該光學配置,使得該透鏡配置夾在該等支撐層之間。
該第一基板及該第二基板較佳地包括平面玻璃或聚合體材料,舉例言之,諸如聚碳酸酯或其他透明材料。
該第一層可包括定義雙凸透鏡形狀的一透鏡層,且具有高於該第二材料的一折射率,該第二材料包括一複製品層且填充介於該等雙凸透鏡之間的間距。
該光學配置可係一可切換配置,其可在該透鏡模式與進一步操作模式之間切換。舉例言之,該進一步模式可無實質透鏡效果。具有一無透鏡效果之進一步模式的此一光學配置將可使自動立體觀看具有該透鏡模式的優點,並且在該進一步模式中的二維觀看具有對例如文字顯示的高解析度理想的優點。該可切換配置可包括一個或多個電極及一電光材料或層,諸如與一個或多個偏振器組合的一液晶材料。
根據本發明,提供一種自動立體顯示裝置,該自動立體顯示裝置包括一影像提供構件及位於該影像提供構件前面的光學配置。該影像提供構件較佳地包括以列及行配置之一影像像素或顯示像素陣列,用於定義一自動立體影像。該光學配置經配置致使在該光學配置的該透鏡模式中,該等影像像素或顯示像素群組的輸出方向係往個別不同方向投射以作為複數個檢視畫面。該影像提供構件可為用於提供以任何類型形式的一靜態影像(舉例言之,諸如一自動立體明信片或照片)之一構件。另一選擇為,該影像提供構件可為一提供靜態及/或動態自動立體影像的電子顯示構件。此一電子顯示構件包含(但不限於)一液晶顯示器、一電漿顯示器、陰極射線管顯示器或基於發光二極體的顯示器。自動立體顯示器受益於本文上文說明的優點。尤其,一種顯示器(其中該光學配置定位使得當在該透鏡模式中時,該第一層係在該光學配置的觀看者側上)對如本文上文描述的獲得的優點有利。
該光學配置可係自該影像顯示構件機械可附接及/或可卸離。
根據本發明,提供一種顯示一自動立體影像的方法,該方法包括:提供一自動立體影像及透過根據本發明之一透鏡配置投射該自動立體影像。
圖3顯示典型已知的自動立體或3D顯示裝置30的一示意性視圖。該3D顯示裝置30係由一顯示面板(液晶顯示器(LCD)之顯示器31的形式)與一玻璃間隔板32組成。該3D顯示裝置具有一透鏡配置33,該透鏡配置33係作為該3D顯示裝置之光學配置,該透鏡配置33(舉例言之)包括在一玻璃基板34上的丙烯酸透鏡35。圖3顯示垂直於該等雙凸透鏡之縱向軸的圖1之顯示裝置的一截面圖。繪示的三個透鏡35具有等於該透鏡節距陣列p的一寬度。在此設計中,在透鏡邊界(即,在相對於該玻璃基板34的該等透鏡35之側的該等透鏡35之表面)的折射率差異約為0.5,因為界面係在透鏡層(舉例言之,具有一折射率1.5)與空氣之間。
在此特定案例中,9個顯示像素與每個雙凸透鏡35相關聯,意謂每個透鏡覆蓋在含9個像素的一群組36上且隨其原則上可建立9個檢視畫面,因為每個像素影像發送至不同方向的一個上伏透鏡。
圖4A繪示光強度(I)作為對於根據圖3之幾何形狀的42英寸(107公分)產品之檢視角度(VA)的函數。最低組曲線繪示個別檢視畫面41,為了清楚未以參考數字全部指示。上部曲線42中繪示整合全部檢視畫面的總強度。
對於超過0.4弧度的遞增角度,檢視畫面41的寬度(舉例言之,按半峰全寬測量)顯著遞增且此亦伴隨強度I的一下降。來自超過0.5弧度檢視角度的檢視畫面41之強度下降特別明顯。亦自圖4A的圖表中向下彎曲的上部曲線42發現強度下降。因為曲線的側變得較小陡峭而可看出檢視畫面寬度遞增。作為一圖解,圖4B繪示介於相鄰檢視畫面41之間的重疊(O)作為檢視角度(VA)的函數。該重疊(O)定義在圖4C中。依據定義,兩個完全分離的檢視畫面具有零重疊,且同樣的檢視畫面具有等於一的一重疊。在圖4B中,對於超過0.4弧度的角度,一相對陡峭遞增在重疊中發生。重疊愈大,檢視畫面之間串擾愈多。
自上部曲線42進一步觀察,強度變化特別發生在範圍43中之檢視角度,亦即,大約在檢視角度-0.1至-0.6或0.1至0.6弧度之間。觀看者如前文提及的條帶而察覺到此等變化。
本發明提供一種光學配置,該光學配置在其透鏡模式中具有一透鏡陣列,該透鏡陣列係由兩個不種材料的波狀界面所組成。如下文進一步說明,設計透鏡幾何形狀及材料組合物之方式致使最佳化透鏡效能,以獲得本發明的優點效果。
圖5繪示根據本發明的一自動立體顯示裝置50的一實施例。該顯示裝置具有含一玻璃板52之一顯示面板51之形式的一影像形成構件。該自動立體顯示裝置在該影像形成構件上具有根據本發明的一光學配置53。在此特定案例中,該配置係不可切換且永久處於其透鏡模式中。該實施例包括一半圓柱雙凸透鏡55陣列,該等半圓柱雙凸透鏡之縱向 軸彼此平行地定向。該透鏡陣列包括夾在平面玻璃基板54、57之間的第一層55A及第二層55B。在該第一層55A與第二層55B之間的界面定義波狀透鏡表面58。在此特定案例中,該第一層及該第二層為光學等向且具有用於在可見光譜內輻射之0.05與0.22之間的一折射率差異。
該第一層55A包括定義雙凸透鏡形狀的一透鏡層。在本實施例中,此層包括具有一折射率約1.5的一材料,舉例言之,具有一折射率約1.53的丙烯酸材料,其包含:80%乙氧基化雙酚A二丙烯酸酯(「Sartomer Company,Inc」之SR-349)及20%三羥甲基丙烷三丙烯酸酯(TMPTA)。該第二層55B由一矽酮橡膠材料(「Wacker chemicals Inc」之Elastosil RT604)製成且具有一折射率約1.41。
儘管以上述第一層及第二層的組合描述該實例,但是在本發明的一般概念內同樣可應用其他層組合。因此,舉例言之,該第一層的折射率可為在1.4與1.6之間,致使具有一折射率約1.59的聚碳酸酯可與矽酮橡膠材料一起使用。然而,可使用具有適當折射率的其他材料,而不損失本發明的效果。
同樣,本發明不限制於此等折射率範圍或對在上文定義的該等材料的折射率差異的範圍。提及的該等材料可藉由具有經選擇適當折射率的其他材料予以替代,使得關於用於根據本發明之該透鏡表面的所要曲率半徑及透鏡節距獲得所要的折射率差異。多種修改案對熟悉此等技術者將為顯然。
可藉由一複製處理程序製成本實施例的丙烯酸材料透鏡結構。在此一處理程序中,提供具有一凹凸表面之一鑄模,其與該透鏡(即,舉例言之,該層55A)的形狀互補。在一複製步驟中,該層材料與該鑄模接觸,使得該層材料呈該鑄模的該凹凸形狀且固定於此形狀。所得透鏡可附接至一基板層57,舉例言之,用於在模製或隨後期間提供強度。如果該基板僅在該複製處理程序期間撐住該透鏡結構,則可移除該基板。接著,具有或可能沒有該基板層的該複製透鏡被嵌入於矽酮層中,該矽酮層藉由一支撐層(諸如舉例言之,一玻璃板或塑膠板)予以支撐。本文前文提及的丙烯酸材料可為方便地用於此一處理程序中。然而,可使用以此一方法模製的任何其他材料,只要當與其他層相比時,最終結果為具有適當折射率的一層。另一選擇為,該矽酮層被施用於藉由該複製透鏡,其後接著施用該支撐層。舉例言之,該基板層或該支撐層的任何一者可由玻璃製成。玻璃尤其具有一平坦表面之優點且其通常使用在顯示產業內。顯而易見,該基板層及/或支撐層必須能夠耐受在製造步驟期間的可能條件,致使防止所得結構非所要變形等等。
另一選擇為,可機械地加工該透鏡結構。大致上,此需要在加工條件下(溫度及壓力)為固體的透鏡材料。舉例言之,以此方式有利地製成聚碳酸酯透鏡。
在圖5的實施例中,該透鏡配置53已併入在根據本發明之一自動立體顯示裝置50中。於此,該透鏡配置附接至具有一玻璃間隔板32的一LCD 31形式的一顯示面板。
圖6繪示光強度(I)作為對於根據圖5之幾何形狀的42英寸(107公分)產品之檢視角度(VA)的函數。如圖4中,較低組曲線61(並非全部有參考數字注釋)繪示個別檢視畫面。總強度顯示在上部曲線62中。
用於圖3的該結構之一典型透鏡半徑為2.212毫米,但在圖6中,透鏡半徑(R)係僅0.519毫米。此係因為焦距大約等於透鏡半徑(R)與定義透鏡表面之該等層的折射率差異的商,並且因此對於待在相同於圖3之已知透鏡結構的應用中使用的本發明之透鏡結構的焦距參數大約保持恆定。可決定精確所要半徑以最小化條帶強度,且此在下文說明。如果透鏡係待覆蓋相同區域,即,覆蓋一顯示構件的相同數目行之像素,則減小的透鏡半徑引起較深的透鏡。在此情況中,分別在圖3及圖5的群組36或56中此將為9個檢視畫面。
圖6繪示,除一低強度尾部外,對於本發明的設計,檢視畫面的加寬為更少。此外,條帶已顯著減小。此部分歸因於稍微較小的透鏡場曲率。對於一相似幾何形狀,運用朝向觀看者定向的透鏡之丙烯酸部分,觀察一相似行為,但是具有朝向遠離原點定向的檢視畫面之低強度尾部。
圖7繪示重疊作為檢視角度的函數,用於與圖4B相比較。對於本發明的透鏡設計,重疊曲線非常平坦。該設計給出在較大偏離法線檢視角度(VA)下觀看體驗方面的顯著改良。
除串擾及條帶方面減小外,圖5的設計具有一低反射率的額外優點。上部玻璃板的上部平坦表面可易於塗布一抗反射塗層。歸因於低折射率差異,透鏡結構自身具有低反射。另一優點為,裝置的外部表面為平坦且堅固。由於透鏡配置基板中之一者可提供保護板功能,所以不需要在顯示器前面的一附加保護板。
因此,本發明的透鏡設計提供角相依串擾減小、條帶減小、低反射率及一設計,其可經配置具有用於本文上文提及的幾個原因之優點的堅固平面側。
儘管在上文給定的實例中,該第一層及該第二層夾在基板層之間,此為非強制的。在一實施例中,該第一層55A與該基板層57係同一個層。因此,該第二層55B與該基板層54可為同一個層。尤其係當該第一層及該第二層足夠強致使不需要基板層時。
在根據本發明的一種自動立體顯示裝置的一替代實施例中,該層52係在本文上文給定的實施例中該顯示面板之部分,其可形成該透鏡配置的該基板層,因此兼備此等層的功能連同以減小成本重量或製造時間的機會。
如上文提及,設計該透鏡陣列不僅係基於折射率差異,而且亦基於透鏡的幾何形狀,特定言之,透鏡半徑R與透鏡節距p。
圖8示意性繪示具有高折射率差異且因此小曲率(圖8的頂部)的一透鏡80的效能,如何不同於具有低折射率差異異因此大曲率(圖8的底部)的一透鏡。圖8頂部繪示的透鏡 在一界面處具有對空氣之折射率差異0.5,且透鏡半徑係焦距之0.333倍。圖8底部繪示的透鏡具有折射率0.1且透鏡半徑係焦距之0.067倍。
來自左邊的光進入透鏡80。高折射率空氣透鏡提供具有良好定義的焦點81之一良好塑形光束。低折射率差異透鏡具有較大曲率及因此更多球面像差。在區域82中,在該透鏡後面之光束呈現所謂的「焦散」。在此區域82中,光線追上彼此上,給出一局部高強度。焦距f係在光線接近於該軸相交之透鏡後的距離。
圖9繪示自圖8的較低實例的一展開圖。繪示在沿著光束的數個位置之強度分佈。在焦散發生之區域82中,光束展現具有最大強度的兩個軌跡(參看標繪圖90)。在焦散尖端(標繪圖92),該兩個軌跡重合以形成一高強度點。至此點的右邊,強度分佈變得再次平滑。標繪圖90可應視為透鏡的「焦散邊緣」,及標繪圖92係「焦散尖端」。
本發明係基於理解到,遭受到更壞光學像差的此光學效能如何引起如上文說明改良的角效能。為了理解透鏡設計如何影響光學系統的效能,透鏡功能可應視為探查像素結構的功能。此在圖10中示意性說明。圖左邊部分繪示由透鏡(圖中未繪示)建立的一光束分佈100,調變與像素陣列110之像素相關聯的光。此係如繪示在圖10的右邊的一低通濾光器捲積函數(low pass filter convolution function)。
該捲積函數導致資訊熵的一損失(關於術語「資訊熵」的更詳細說明,請參閱(例如)關於1948年7月、10月《A Mathematical Theory of communication, The Bell System Technical Journal》第27冊第379至423頁、第623至656中的「C.E.Shannon」)。
圖11A繪示作為一值I(y)的光束強度分佈函數100,其中y係自中心軸的位移。
熵損失係基於函數100的傅立葉變換:
熵損失定義為:
圖11B繪示用於導出熵損失的log值。
具有最慢衰減log函數(亦即最低衰減功率譜)的一光束分佈將具有最少資訊損失(在圖11的曲線與x軸之間的最小區域),並且因此包含最高頻率。此可應視為代表一「清晰度」函數。
圖12右邊繪示在不同截面之光束分佈譜的功率譜衰減。明顯地,在焦散尖端的分佈具有最慢衰減功率譜。如果焦散尖端不存在(其係光束以足夠大角度入射在透鏡的情況下),則在焦散邊緣的分佈具有次於最佳的光束分佈。
上文分析可使待定義的一最大清晰度點,作為分佈的功率譜衰減最慢的點。在低折射率差異透鏡與習知透鏡之間有一明顯差異,如圖13中繪示。
標繪圖130係定義為照射在接近於透鏡中心之透鏡表面的相鄰光線交叉(例如透鏡表面與光學軸的交叉點)的焦點位置。標繪圖132係光束的均方根(RMS)寬度最小之點位置。換言之,光束截面最小之點。顯著的差異係藉由標繪圖134繪示的最大清晰度點。對於低△n透鏡,當與正常透鏡相比時,此曲線具有一更大曲率半徑。此意謂對於較大的入射角度,最大清晰度點仍是相對更接近於原始焦平面。事實上,用於低△n透鏡的曲線係藉由圍繞透鏡中心(在此情況中,中心意謂形成透鏡的球體中心)旋轉的焦散尖端點製作。對於正常透鏡,用於較大角度的曲線係藉由在焦散邊緣區域(無尖端)上的一點製作。
因此,可見,如果可設計透鏡以提供涵蓋所有入射角的一焦散尖端區域,則可改良清晰度。圖14繪示最大清晰度標繪圖並且繪示焦散尖端區域140及焦散邊緣區域142。如果進入之光線中之一者垂直地命中透鏡表面,則焦散尖端存在。此光線穿過定義透鏡表面之球體中心。如果光線的入射角太大(對於透鏡的給定孔徑),則焦散尖端不再存在。
此可使能夠決定用於透鏡的一組設計參數。如圖15中繪示,進入之光線被彎曲朝向法線,使角度範圍侷限在光學配置的第一層內。可設計透鏡以具有足夠小△n,即,透鏡足夠彎曲,使得對於每個進入角度(對應於空氣中全角度範圍),至少一個光線垂直地命中透鏡表面。於是,此設計規則提供接近像素平面的最大清晰度區域,並因此提供上文略述的優點。
顯示器的像素平面係在垂直線150附近,且觀看者在左邊。為簡便,圖15繪示自觀看者導引光線朝向顯示器,但是當考慮到導引光線穿過顯示像素至觀看者時,分析不改變。
存在許多特徵化透鏡設計之方式,以提供此連續焦散尖端,繼而引起上文說明的改良清晰度。
圖16用於繪示多種透鏡幾何參數。
檢視畫面數量係藉由透鏡節距p予以決定。藉由主要錐角γ定義的檢視角度範圍係藉由透鏡節距p、自像素平面40至透鏡的距離d及折射率n2予以決定。
假設對於最小條帶,最佳化p、d、n1、n2及透鏡半徑R。此透鏡半徑R決定焦距f,在所繪示之實例中,焦距f稍微大於距離d。已知自該焦距偏移該像素陣列,以便減小該LCD板的該黑遮罩層之影像的效果。
除了上文論述的低折射率差異之外,亦可藉由參數n1(p/2R)特徵化透鏡的光學效能,其中在圖16中繪示全部n1、p及R的值且參考圖16予以說明。此無因次參數(dimensionless parameter)考慮透鏡曲率及焦距,及當光進入透鏡主體時彎曲。特定言之,以n1定義為在觀看者側上的透鏡配置之部分,此考慮在觀看者側處空氣界面的彎曲。此n1參數可使滿足光線垂直於透鏡表面之入射的需求。
圖17之陰暗區域繪示確保垂直入射之區域。該陰暗區域的傾斜左邊界定義為:
右垂直邊界給定為:
p/2R=1。
對於一圓形透鏡,節距無法超過半徑之兩倍,並且此指示右邊界。
圖17中區域邊界係基於n1(p/2R)=1,並且在邊界內的點滿足n1(p/2R)>1。
本發明更大致上應用於n1(p/2R)>0.6的值。更佳地,n1(p/2R)>0.8。甚至更佳地,n1(p/2R)>1。
在圖17中,區域180代表可行透鏡幾何形狀,及區域182代表用於透鏡主體(排除n1=1)之當前最易可用材料。此給定基於當前可用材料且滿足本發明的最佳透鏡設計參數範圍之一區域184。
圖8至圖17的實例具有n1<n2,且向外彎曲之透鏡面係指向觀看者。對於透鏡指向相反方向的幾何形狀(舉例言之,如圖5中繪示),維持相同關係。在此情況中,向外彎曲之透鏡面係指向顯示面板,且n1>n2,以建立一正透鏡。
本發明適用於所有類型正透鏡,且在所有基於雙凸透鏡的自動立體顯示器類型中具有其有利效果。因此,只要實現根據本發明的折射率、透鏡節距及透鏡表面曲率的關係,由於接著獲得有利效果,所以介於形成透鏡界面之層之間的折射率差異不需要為小。
實務上,透鏡系統可由兩種或三種以上介質(例如,中間玻璃板/層或氣隙)組成。
上文論述及分析係基於球面透鏡。然而,可使用非球面透鏡(舉例言之,具有兩個有效半徑)。於是,上文的分析可視為係基於在透鏡中心(沿著中心光學軸)的有效透鏡半徑。
一材料的折射率相依於光波長。此通常按照所謂的「阿貝數」表達。歸因於波長相依性,透鏡的焦點相依於光顏色。當製作由僅具有小折射率差異的兩種材料製成的一透鏡時,透鏡的顏色相依性總體上將粗略以一因數(nacrylic-nair)/(nacrylic-nsilicone)5按比例增加,導致顏色相依性條帶。為避免此,應匹配不同材料的阿貝數。
阿貝數定義為: 其中nD、nF、nC係在D-F-及C-光譜線(分別589.2奈米、486.1奈米、656.3奈米)的材料折射率。
上文提及的「在可見光譜中」之折射率差異可假定為在該可見光譜內一單個點測量,舉例言之在587.5618奈米的D3氦線。
雙凸透鏡較佳地相對於顯示器的像素行傾斜,並且此為 一已知措施以在顯示器的列與行方向之間分攤起因於透鏡陣列的解析度損失。
未詳細地說明液晶顯示器的設計,或產生所要多個檢視畫面所需要的影像處理。此等全部係標準,且本發明提供僅對透鏡設計之改變。
在上文實例中,透鏡層55A係丙烯酸材料,但其可替代為聚碳酸酯材料(折射率n=1.59至1.60),及此可與矽酮材料組合作為第二材料層55B。
在如圖18A及圖18B代表的實施例中,光學配置可具有一如圖18B描繪的區域200,其中定義透鏡表面之層之間的界面實質上平坦。接著可使用此非透鏡區域來顯示(舉例言之)任何種類的2D資料。於是,該非透鏡區域(200)具有相同於圖18A之透鏡區域的折射率差異,並且具有介於該兩個區域之間的邊界將被遮罩的優點,即,與非透鏡區域未配備具有低折射率差異的分層式結構透鏡區域的情形相比,觀看者較不會可見介於該兩個區域之間的邊界。因此改良一顯示器外觀。顯而易見,根據需要,可提供多個此等區域,並且可提供多個透鏡區域。此對於必須同時提供3D資料及2D資料的顯示器系統係重要的。此配置及具有含兩個低折射率層之非透鏡區域的對應顯示器可獨立於如本發明之特徵「其中該透鏡節距除以兩倍該曲率半徑乘以該第一折射率所得的乘積大於0.6」定義的透鏡半徑需要,而且不損失所描述的優點。
一般而言,可在顯示器中使用本發明,且這包含電子相框及其他顯示輸出裝置。
多種修改案對此等熟悉此項技術者將為顯而易見。
相對於形成透鏡表面之該第一層及該第二層的表面兩者宜係平面。雖然此等表面之一者允許易於在一顯示裝置(諸如常規液晶顯示器(LCD))之一平面表面上安裝透鏡配置,但是此等表面之另一者可具有額外層,舉例言之,諸如抗反射塗層,及/或其他光學層,及/或抗刮痕塗層及/或其他保護塗層。因此,該等額外層係有利地非位在透鏡配置與顯示面板表面之間,藉此不妨礙運用透鏡配置所達成之自動立體顯示裝置的光學效果或光學輸出。
本發明適用於具有一透鏡功能的所有光學配置,特別是用於自動立體顯示器時。因此,該光學配置可為在一模式中具有根據本發明之透鏡功能且在進一步模式中具有另一光學功能的可切換配置。舉例言之,一種可切換的光學配置可建構如WO1998/021620A1中所描述所者。接著,光學配置包括一電極結構及一液晶(LC)材料,以用作該光學配置之該第一層或該第二層。液晶層的折射率係各向異性,並且係相依於液晶分子的定向。電極結構係用於提供跨層的電場,以便在光學配置之模式之一者中對準LC分子。因此,在透鏡模式中,LC分子被定向使得在該第一層及該第二層之間存在折射率差異,而在進一步模式中,由於LC分子的適當重新定向,藉此受益於LC層的不同折射率,使折射率差異可實質上不存在。
提供可切換透鏡配置的其他原理可用於製備根據本發明的光學配置。因此(舉例言之)可使用液體焦點透鏡。
在請求項中,在圓括號之間放置的任何參考符號將不應視為限制請求項。單詞「包括」不排除存在除請求項列出元件或步驟之的元件或步驟。元件前面的單詞「一」或「一個」不排除存在複數個此等元件。在裝置請求項中列舉幾個構件,數個此等構件可藉由同一件硬體予以體現。純粹事實為,在互相不同的附屬請求項中列舉的一定措施不指示無法有利地使用此等措施的組合。
1‧‧‧裝置
3‧‧‧液晶顯示面板
5‧‧‧顯示像素
7‧‧‧光源
9‧‧‧雙凸薄片
10‧‧‧縱向軸
11‧‧‧雙凸透鏡/半圓柱雙凸元件
30‧‧‧自動立體顯示裝置
31‧‧‧液晶顯示器
32‧‧‧玻璃間隔板
33‧‧‧透鏡配置
34‧‧‧玻璃基板
35‧‧‧透鏡
36‧‧‧群組
40‧‧‧像素平面
41‧‧‧檢視畫面
42‧‧‧上部曲線
43‧‧‧範圍
51‧‧‧顯示面板
52‧‧‧玻璃板/層
54‧‧‧基板層
55‧‧‧半圓柱雙凸透鏡
55A‧‧‧第一層/透鏡層
55B‧‧‧第二層/第二材料層
57‧‧‧平面玻璃基板/基板層
61‧‧‧較低組曲線
62‧‧‧上部曲線
80‧‧‧透鏡
81‧‧‧焦點
82‧‧‧區域
140‧‧‧焦散尖端區域
142‧‧‧焦散邊緣區域
150‧‧‧垂直線
180‧‧‧區域
182...區域
184...區域
200...非透鏡區域
圖1係已知的自動立體顯示裝置之示意性透視圖;圖2係繪示促成對於0°及50°之間的檢視角度由圖1之該裝置在像素平面產製之影像的強度與位置之間的例示性關係的圖表;圖3係已知的自動立體裝置之示意性截面圖;。圖4(包括圖4A、圖4B及圖4C)呈現更詳細繪示運用圖4的已知透鏡結構而可引起在大檢視角度下檢視畫面重疊、檢視畫面加寬及強度損失的圖表;圖5係根據本發明實施例之自動立體顯示裝置的實例之示意性截面圖;圖6繪示藉由本發明的透鏡配置達成在大檢視角度下的檢視畫面加寬中縮減及強度之改良;圖7繪示藉由本發明的透鏡配置達成的檢視畫面重疊中縮減;圖8繪示按照本發明的透鏡的效能如何與習知透鏡不同;圖9繪示圖8的一展開圖;圖10繪示透鏡功能可如何應為探查像素結構的一功能;圖11(包括圖11A及圖11B)繪示光束強度分佈函數;圖12繪示在不同截面的光束分佈譜的功率衰弱;圖13用於說明介於本發明的透鏡與習知透鏡之間關於跨輸入角範圍之清晰度的差異;圖14繪示本發明的透鏡的最大清晰度標繪圖;圖15示意性繪示本發明的透鏡如何提供改良的清晰度;圖16用於繪示多種透鏡幾何參數;圖17用於繪示用於確保垂直光入射的區域;及圖18(包括圖18A及18B)係根據本發明的實施例之自動立體顯示裝置的實例之示意性截面圖。
33...透鏡配置
51...顯示面板
52...玻璃板/層
54...基板層
55...半圓柱雙凸透鏡
55A...第一層
55B...第二層
57...平面玻璃基板/基板層

Claims (11)

  1. 一種自動立體顯示(autostereoscopic display)裝置,其包含:一顯示面板(display panel,3),用於產生具有至少二個子影像(sub-images)的一自動立體影像,該等子影像中每一者代表待藉由該影像顯示的物件(object)之一不同視圖(view);及一光學配置,定位於該顯示面板之前,其中該光學配置具有至少一透鏡模式(lens mode),在該透鏡模式中該光學係配置為一透鏡配置,該透鏡配置包括一正雙凸透鏡(positive lenticular lenses,11)陣列(9),該等正透鏡之每一者分別包括具有在彼此之間定義雙凸透鏡表面之一界面的第一層及第二層,該第一層具有一第一折射率且該第二層具有不同於該第一折射率之一第二折射率,該透鏡陣列具有一透鏡節距(pitch),及該等雙凸透鏡表面在其等中心(centre)具有一曲率半徑(radius of curvature),其中該第一折射率與該透鏡節距的乘積除以兩倍該曲率半徑係大於0.6,其中該第一折射率與該第二折射率間的折射率差之絕對值係在0.05至0.15之間。
  2. 如請求項1之自動立體顯示裝置,其中該乘積大於0.8。
  3. 如請求項1之自動立體顯示裝置,其中該乘積大於1。
  4. 如請求項1之自動立體顯示裝置,其中該透鏡配置具有一相對於一顯示側的觀看者側,且該第一層在該透鏡配置之該觀看者側上。
  5. 如請求項1、2、3或4之自動立體顯示裝置,其中該第一折射率為該第一折射率及該第二折射率中的最低折射率。
  6. 如請求項1、2、3或4之自動立體顯示裝置,其中該第一折射率及該第二折射率中的最高折射率係在1.4至1.65範圍中。
  7. 如請求項1、2、3或4之自動立體顯示裝置,其中該第一折射率及該第二折射率中的該最低折射率係在1.3至1.5範圍中。
  8. 如請求項1、2、3或4之自動立體顯示裝置,其中該第一層及該第二層係光學等向(isotropic)。
  9. 如請求項1、2、3或4之自動立體顯示裝置,其中該第一層及該第二層具有實質上相同的阿貝數(Abbe number)。
  10. 如請求項1、2、3或4之自動立體顯示裝置,其中該透鏡配置被定位使得該第二層比該第一層更接近於該影像提供構件,且其中該第二折射率為該第一折射率及該第二折射率中的最低折射率。
  11. 一種顯示一自動立體影像的方法,其包括提供包括多個視圖的一影像,及利用如請求項1至10中任一項之自動立體顯示裝置投射該影像。
TW098118246A 2008-06-02 2009-06-02 自動立體顯示裝置及顯示自動立體影像的方法 TWI519820B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08157432 2008-06-02
EP08165805 2008-10-03

Publications (2)

Publication Number Publication Date
TW201003123A TW201003123A (en) 2010-01-16
TWI519820B true TWI519820B (zh) 2016-02-01

Family

ID=41137530

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118246A TWI519820B (zh) 2008-06-02 2009-06-02 自動立體顯示裝置及顯示自動立體影像的方法

Country Status (11)

Country Link
US (2) US20110075256A1 (zh)
EP (2) EP3144719A1 (zh)
JP (2) JP5792616B2 (zh)
KR (2) KR101934890B1 (zh)
CN (1) CN102047169B (zh)
BR (1) BRPI0909609B1 (zh)
ES (1) ES2606712T3 (zh)
PL (1) PL2286298T3 (zh)
RU (1) RU2507550C2 (zh)
TW (1) TWI519820B (zh)
WO (1) WO2009147588A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748874B (zh) * 2011-08-24 2017-03-22 皇家飞利浦有限公司 自动立体显示设备
JP2015525370A (ja) 2012-06-01 2015-09-03 コーニンクレッカ フィリップス エヌ ヴェ 自動立体視表示装置及び駆動方法
TWI459036B (zh) * 2012-07-18 2014-11-01 Au Optronics Corp 立體顯示裝置
WO2014033010A1 (en) * 2012-08-30 2014-03-06 Ultra-D Coöperatief U.A. Anti-banding layer for autostereoscopic display
CA2891383C (en) 2012-11-16 2020-09-08 Koninklijke Philips N.V. Autostereoscopic display device
ES2759250T3 (es) * 2013-06-03 2020-05-08 Koninklijke Philips Nv Dispositivo de visualización de múltiples vistas
EP3084513A1 (en) 2013-12-20 2016-10-26 Koninklijke Philips N.V. Autostereoscopic display device
KR102210375B1 (ko) * 2014-07-11 2021-02-01 엘지디스플레이 주식회사 디스플레이 표시장치
KR102527314B1 (ko) * 2014-12-24 2023-05-03 코닌클리케 필립스 엔.브이. 무안경 입체영상 디스플레이 디바이스
US10459238B2 (en) * 2014-12-24 2019-10-29 Koninklijke Philips N.V. Autostereoscopic display device
KR102340855B1 (ko) * 2015-01-15 2021-12-17 삼성디스플레이 주식회사 신축성 표시 장치
AT517266B1 (de) * 2015-05-27 2017-03-15 Zkw Group Gmbh Verbundanordnung zur abdeckung einer flächigen leuchte
US9952426B2 (en) * 2015-05-28 2018-04-24 Seefront Gmbh Autostereoscopic system
CN104898291A (zh) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 一种视镜分离器件及其制作方法
CN104898292B (zh) * 2015-06-30 2018-02-13 京东方科技集团股份有限公司 3d显示基板及其制作方法、3d显示装置
US11143794B2 (en) 2015-07-08 2021-10-12 Shine Optoelectronics (Kunshan) Co., Ltd Optical film
CN113311595B (zh) * 2015-07-08 2023-05-02 昇印光电(昆山)股份有限公司 悬浮成像光学薄膜
CN205374782U (zh) * 2015-07-08 2016-07-06 昇印光电(昆山)股份有限公司 一种微光学成像系统
US10375379B2 (en) * 2015-09-17 2019-08-06 Innolux Corporation 3D display device
CN108027528A (zh) 2015-09-23 2018-05-11 皇家飞利浦有限公司 显示设备和驱动方法
CN110596797B (zh) * 2015-10-14 2021-11-26 昇印光电(昆山)股份有限公司 成像薄膜
CN108432245B (zh) 2015-12-29 2021-03-02 皇家飞利浦有限公司 自动立体显示设备和显示方法
JP2017181787A (ja) * 2016-03-30 2017-10-05 ソニー株式会社 表示装置、光学素子、及び、電子機器
KR102547821B1 (ko) 2016-11-25 2023-06-26 삼성전자주식회사 3d 디스플레이 장치
CN109164587B (zh) * 2018-10-29 2023-08-08 基腾(成都)科技有限公司 一种显示装置用立体显示光学膜片
NL2022328B1 (en) * 2018-12-30 2020-07-23 Zhangjiagang Kangde Xin Optronics Mat Co Ltd Lenticular lens with a gradient
JP6919673B2 (ja) 2019-05-07 2021-08-18 オムロン株式会社 表示切替装置
KR102262538B1 (ko) * 2020-08-12 2021-06-08 이상환 입체영상필름 및 입체영상필름의 제조방법
JP2021060617A (ja) * 2020-12-29 2021-04-15 ソニー株式会社 表示装置、及び、電子機器

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039359A (en) * 1961-03-10 1962-06-19 Voigtlaender Ag Triplet lens objective assembly
US3528723A (en) * 1967-08-30 1970-09-15 Polaroid Corp Light polarizing device
FR2094205A5 (zh) * 1970-03-06 1972-02-04 Anvar
JPH0659218A (ja) * 1992-08-05 1994-03-04 Matsushita Electric Ind Co Ltd 光学的ローパスフィルタ
US5359454A (en) * 1992-08-18 1994-10-25 Applied Physics Research, L.P. Apparatus for providing autostereoscopic and dynamic images
DE4344908A1 (de) * 1993-01-08 1994-07-14 Nikon Corp Kondensorlinsensystem
JPH08114764A (ja) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd 立体画像表示装置
US5642226A (en) * 1995-01-18 1997-06-24 Rosenthal; Bruce A. Lenticular optical system
US6064424A (en) * 1996-02-23 2000-05-16 U.S. Philips Corporation Autostereoscopic display apparatus
GB9623682D0 (en) 1996-11-14 1997-01-08 Philips Electronics Nv Autostereoscopic display apparatus
US6010747A (en) * 1996-12-02 2000-01-04 Alliedsignal Inc. Process for making optical structures for diffusing light
US6734838B1 (en) * 1998-05-18 2004-05-11 Dimension Technologies Inc. Enhanced resolution for image generation
US6628460B1 (en) * 1998-08-05 2003-09-30 Mitsubishi Rayon Co., Ltd. Lens sheet and method for producing the same
AU6182200A (en) * 1999-08-02 2001-02-19 Comoc Corporation Microlens array and display comprising microlens array
JP2001042805A (ja) * 1999-08-02 2001-02-16 Comoc:Kk マイクロレンズアレイおよびマイクロレンズアレイを用いた表示装置
AU2001245787A1 (en) * 2000-03-17 2001-10-03 Zograph, Llc High acuity lens system
US6665118B2 (en) * 2000-08-30 2003-12-16 Matsushita Electric Industrial Co., Ltd. Rear-projection screen and rear-projection image display
JP2002182008A (ja) * 2000-10-04 2002-06-26 Sharp Corp 光学レンズシステム、画像表示装置、マイクロレンズアレイ、液晶表示素子および投影型液晶表示装置
JP2003029205A (ja) * 2001-07-13 2003-01-29 Dainippon Printing Co Ltd カラー立体表示装置
GB2389192B (en) * 2001-08-06 2004-05-12 Occuity Ltd Direct view reflective display apparatus
JP4014837B2 (ja) * 2001-10-05 2007-11-28 三菱電機株式会社 透過型スクリーンおよび投写型表示装置
ATE497323T1 (de) * 2001-10-11 2011-02-15 Koninkl Philips Electronics Nv 2d/3d anzeigevorrichtung
US6894840B2 (en) * 2002-05-13 2005-05-17 Sony Corporation Production method of microlens array, liquid crystal display device and production method thereof, and projector
JP4164493B2 (ja) * 2002-07-29 2008-10-15 三井化学株式会社 光重合性組成物およびその用途
GB2398130A (en) * 2003-02-05 2004-08-11 Ocuity Ltd Switchable active lens for display apparatus
JP4207599B2 (ja) * 2003-02-24 2009-01-14 ソニー株式会社 液晶パネルの製造方法
JP2004264587A (ja) * 2003-02-28 2004-09-24 Nec Corp 立体画像表示装置、携帯端末装置及びレンチキュラレンズ
JP3717486B2 (ja) * 2003-03-10 2005-11-16 フジノン株式会社 撮像レンズ
US7150531B2 (en) * 2003-08-26 2006-12-19 The Regents Of The University Of California Autostereoscopic projection viewer
JP2006039263A (ja) * 2004-07-28 2006-02-09 Seiko Epson Corp マイクロレンズアレイ板、並びに電気光学装置及び電子機器
WO2006032002A1 (en) * 2004-09-13 2006-03-23 Fusion Optix, Inc. High contrast optical path corrected screen
JP4584133B2 (ja) * 2004-11-30 2010-11-17 株式会社クラレ 照明装置およびこれを用いた表示装置
JP5294845B2 (ja) * 2005-04-29 2013-09-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 立体ディスプレイ装置
JP4270164B2 (ja) * 2005-05-09 2009-05-27 セイコーエプソン株式会社 マイクロレンズ基板の製造方法、マイクロレンズ基板、液晶パネル用対向基板、液晶パネルおよび投射型表示装置
US7518664B2 (en) * 2005-09-12 2009-04-14 Sharp Kabushiki Kaisha Multiple-view directional display having parallax optic disposed within an image display element that has an image display layer sandwiched between TFT and color filter substrates
KR101290839B1 (ko) * 2005-09-16 2013-07-29 스테레오그래픽스 코포레이션 평면 영역을 지닌 입체화상 렌즈 시트
EP1967017B1 (en) 2005-12-20 2019-12-04 Koninklijke Philips N.V. Autostereoscopic display device
GB0601287D0 (en) * 2006-01-23 2006-03-01 Ocuity Ltd Printed image display apparatus
CN101395928B (zh) * 2006-03-03 2011-04-20 皇家飞利浦电子股份有限公司 使用可控液晶透镜阵列用于3d/2d模式切换的自动立体显示设备
KR101255210B1 (ko) * 2006-05-04 2013-04-23 삼성전자주식회사 다시점 입체 영상 디스플레이 장치
KR101259011B1 (ko) * 2006-09-15 2013-04-29 삼성전자주식회사 고해상도 다시점 입체 영상 디스플레이 장치
EP2095158A1 (en) 2006-12-19 2009-09-02 Koninklijke Philips Electronics N.V. A lens structure for an autostereoscopic display device
JP5127530B2 (ja) * 2008-03-26 2013-01-23 株式会社東芝 立体画像表示装置
WO2009156968A2 (en) 2008-06-27 2009-12-30 Koninklijke Philips Electronics N.V. Autostereoscopic display device

Also Published As

Publication number Publication date
CN102047169A (zh) 2011-05-04
RU2010154064A (ru) 2012-07-20
CN102047169B (zh) 2013-04-24
BRPI0909609B1 (pt) 2021-07-13
JP6093800B2 (ja) 2017-03-08
EP2286298B1 (en) 2016-10-19
JP2011524541A (ja) 2011-09-01
PL2286298T3 (pl) 2017-05-31
KR20110016461A (ko) 2011-02-17
BRPI0909609A2 (pt) 2020-09-15
EP2286298A1 (en) 2011-02-23
ES2606712T3 (es) 2017-03-27
US20110075256A1 (en) 2011-03-31
US20170343826A1 (en) 2017-11-30
JP2015187736A (ja) 2015-10-29
KR101934890B1 (ko) 2019-01-04
US10429659B2 (en) 2019-10-01
JP5792616B2 (ja) 2015-10-14
RU2507550C2 (ru) 2014-02-20
WO2009147588A1 (en) 2009-12-10
EP3144719A1 (en) 2017-03-22
KR20150085096A (ko) 2015-07-22
TW201003123A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
TWI519820B (zh) 自動立體顯示裝置及顯示自動立體影像的方法
JP5110350B2 (ja) 光学素子およびこれを用いた照明光学装置、表示装置、電子機器
US8493520B2 (en) Optical system and display that converts a flat image to a non-flat image
KR101103463B1 (ko) 입체영상 형성장치
KR100210992B1 (ko) 화상 표시장치
US20180252932A1 (en) Three-dimensional display panel, three-dimensional display apparatus having the same, and fabricating method thereof
TW201426686A (zh) 使用最小化影像加工的沉浸式顯示器
US20140055835A1 (en) Illumination device and display unit
US20080259157A1 (en) Lenticular Design By Applying Light Blocking Feature
TW201310123A (zh) 三維影像顯示設備
US20220350056A1 (en) System and method for holographic displays
US8378940B2 (en) Display apparatus
CN108605121B (zh) 使用具有正方形元件轮廓的折射光束映射器减少自动立体显示器中的莫尔干涉的方法和系统
Chen et al. Harnessing and cloaking optical boundary in lens-array based display
CN109164587A (zh) 一种显示装置用立体显示光学膜片
US7421180B2 (en) Light guide apparatus for use in rear projection display environments
JPH0743501A (ja) マイクロレンズアレイシートおよびそれを用いた液晶ディスプレイ
KR101090496B1 (ko) 입체 영상 표시 장치 및 그 제조 방법
Dekker et al. 2D/3D switchable displays
WO2018213407A1 (en) Method and system for reducing fresnel depolarization to improve image contrast in display system including multiple displays
JP2012093631A (ja) 3次元映像表示装置