TWI509820B - 薄膜太陽能電池及其製造方法 - Google Patents

薄膜太陽能電池及其製造方法 Download PDF

Info

Publication number
TWI509820B
TWI509820B TW102129241A TW102129241A TWI509820B TW I509820 B TWI509820 B TW I509820B TW 102129241 A TW102129241 A TW 102129241A TW 102129241 A TW102129241 A TW 102129241A TW I509820 B TWI509820 B TW I509820B
Authority
TW
Taiwan
Prior art keywords
layer
tco
top electrode
solar cell
thin film
Prior art date
Application number
TW102129241A
Other languages
English (en)
Other versions
TW201413994A (zh
Inventor
Chih Ching Lin
Yong Ping Chan
Wei Chun Hsu
chen yun Wang
Original Assignee
Tsmc Solar Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsmc Solar Ltd filed Critical Tsmc Solar Ltd
Publication of TW201413994A publication Critical patent/TW201413994A/zh
Application granted granted Critical
Publication of TWI509820B publication Critical patent/TWI509820B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

薄膜太陽能電池及其製造方法
本發明係有關於光伏太陽能電池,特別係有關於薄膜太陽能電池及其製造方法。
薄膜光伏(PV)太陽能電池是一種能源裝置,其以光的形式轉換成有用的電能產生再生能源,可用於許多應用。薄膜太陽能電池係由在基底上沉積多個半導體或其他材料層與膜所形成的多層半導體結構。這些太陽能電池可製成輕量(light-weight)可撓式薄片的形式,其包括多個獨立電性互連的電池(cell)。輕量與可撓性的特性賦予薄膜太陽能電池板應用為電力來源(electric power source)的潛力,可用於行動電子產品、航空、及住宅與商業大樓(可與各種建築材料結合,例如屋頂瓦、壁面、天窗等)。
薄膜太陽能電池半導體封裝通常包括形成於基底上的底接點或電極、以及形成於底電極上的頂接點或電極。頂電極可由,例如,光透明導電氧化物(transparent conductive oxide,TCO)材料所形成。TCO材料易受環境因素侵襲與降解(degradation),環境因素包括水、氧氣、二氧化碳。這樣的TCO降解會導致高串聯電阻(series resistance,Rs)並降低太陽能電池的太陽能轉換效率。因此,需要一種經改善的薄膜太陽能電 池以解決上述問題。
根據一範例實施例,提供一種薄膜太陽能電池,包括:一底電極層,形成於一基底上;一半導體吸收層,形成於底電極層上;一緩衝層,形成於吸收層上;一透明導電氧化物(transparent conductive oxide,TCO)晶種層,形成於緩衝層上;以及一TCO頂電極主體層,形成於TCO晶種層上。TCO頂電極主體層透過一P2切割線電性連接至底電極層,P2切割線定義出延伸入緩衝層與吸收層的一垂直通道。TCO晶種層具有不同於TCO頂電極主體層的一微結構,進而提升頂電極層對吸收、緩衝層的附著力。一實施例中,TCO晶種層之微結構具有小於該TCO頂電極主體層的一粒徑。
根據另一實施例,提供一種帶有雙層(bi-layer)頂電極層的薄膜太陽能電池,包括:一底電極層,形成於一基底上;一半導體吸收層,形成於底電極層上;一緩衝層,形成於吸收層上;一TCO晶種層,形成於緩衝層上;以及一雙層TCO頂電極主體層,形成於TCO晶種層上。雙層TCO頂電極主體層透過一P2切割線電性連接至底電極層,該P2切割線定義出延伸入緩衝層與吸收層的一垂直通道。雙層TCO頂電極主體層包括一下TCO層與形成於下TCO層上的一上TCO層,上TCO層之摻質濃度不同於下TCO層之摻質濃度。一實施例中,上TCO層的摻質量高於下TCO層的摻質量,下TCO層具有低摻質量或為未摻雜的。TCO晶種層具有小於下TCO層或上TCO層的粒徑。
根據一實施例,提供一種薄膜太陽能電池之製造方法,包括:沉積一導電底電極層於一基底上;沉積一吸收層於底電極層上;沉積一緩衝層於吸收層上;在一第一溫度下,沉積一TCO晶種層於緩衝層上;以及在高於該第一溫度的一第二溫度下,沉積一TCO頂電極主體層於TCO晶種層上。
100、200、300、400‧‧‧薄膜太陽能電池
110‧‧‧基底
120‧‧‧底電極
130‧‧‧吸收層
140‧‧‧緩衝層
150‧‧‧TCO頂電極主體層
152‧‧‧下TCO層
154‧‧‧上TCO層
160‧‧‧TCO晶種層
P1、P2、P3‧‧‧切割線
20‧‧‧CVD設備組
22‧‧‧緩衝室
24、26‧‧‧反應室
30‧‧‧製程氣體(process gas)供應系統
32‧‧‧混合室
34‧‧‧集流管
36‧‧‧氣體注射散射器
38‧‧‧加熱台
第1圖係根據本發明第一實施例之薄膜太陽能電池的剖面示意圖;第2圖為第一實施例之薄膜太陽能電池的範例製造流程圖;第3圖為在基底上沉積TCO薄膜層的裝置之示意圖;第4圖、第5圖分別為TCO晶種層與TCO頂電極主體層的掃描式電子顯微(scanning electron microscope,SEM)圖;第6圖係根據本發明所形成之TCO晶種層與TCO頂電極主體層的光繞射(X-ray diffraction,XRD)之對比譜圖;第7圖係根據本發明第二實施例之薄膜太陽能電池的剖面示意圖;第8圖第二實施例之薄膜太陽能電池的範例製造流程圖;第9圖係根據本發明第三實施例之薄膜太陽能電池的剖面示意圖;第10圖係第三實施例之薄膜太陽能電池的範例製造流程圖;第11圖係根據本發明第四實施例之薄膜太陽能電池的剖 面示意圖;第12圖係第四實施例之薄膜太陽能電池的範例製造流程圖。
本發明範例實施例之敘述應搭配圖式而閱讀,圖式應被當作說明書的一部分。在本發明實施例的敘述中,任何有關方向或方位的用字僅係為了敘述的方便性,並非用以限定本發明的範圍。相關的用語,例如”下”、”上”、”水平”、”垂直”、”上方”、”下方”、”向上”、”向下”、”頂部”、”底部”等等及其衍生詞(例如,”水平地”、”向下地”、”向上地”等等)應被對照於說明書所敘述或圖式所顯示的相關方位。這些相關用語係為了敘述的方便性,而不需按照特定的方位製造或操作裝置。如“貼上”、“固定”、“連接”、與“互連”等用語,係代表直接地或間接地透過一中間結構而將結構固定或貼合於另一結構,除非明確地敘述,這些相關用語易包括可動式或牢固式貼合。再者,本發明的特徵及優點搭配著實施例作說明。然而,每一申請專利範圍構成個別的實施例,且本發明之保護範圍也包括各個申請專利範圍及實施例的組合。此處所用之“晶片”與“晶粒”可互相替換。
發明人發現,一些實施例中,在吸收層(absorber layer)與較厚的TCO頂電極主體層之間形成薄膜TCO晶種(seed)層可改善(例如,提高)頂電極層與吸收層之間的附著力。有利的,帶有TCO晶種層的TCO頂電極層更能防止剝落損害(peeling damage),從而改善太陽能電池(solar cell)的效能 與可靠度,特別是在太陽能電池經歷熱循環而引發TCO頂電極層的剝落與分離時。
一些實施例中,可藉由溫度低於習知技術的沉積製程以達到前述的附著力改善與益處。這樣的製程可形成具有不同微結構(microstructure)的晶種層,晶種層之粒徑(grain size)細於(finer)或小於隨後形成於晶種層上的TCO頂電極主體層。較小的粒徑伴隨著較大的附著特性於TCO主體層。因此,本發明之實施例中,相較於TCO頂電極層,TCO晶種層具有不同粒徑。
第1圖繪示出第一實施例中,在形成太陽能電池半導體封裝期間,薄膜太陽能電池100具有原位(in-situ)形成的TCO晶種層。太陽能電池100包括基底110、底電極層120(亦稱為“背接點(back contact)”)形成於基底110上、吸收層130形成於底電極120層上、緩衝層140形成於吸收層130上、TCO晶種層160形成於緩衝層140上、以及TCO頂電極層150形成於TCO晶種層上。
太陽能電池100進一步包括多個微通道(micro channels),其係在形成太陽能電池之製程期間被圖案化且被刻劃(scribe)於半導體結構中,以使各個導電材料層互聯並分離相鄰的太陽能電池。在本領域中,這些微通道或切割線(scribe lines)通常被賦予代號“P”,此代號係有關於微通道或切割線在半導體太陽能電池製程期間的功能與步驟。P1與P3切割線大抵上係用於晶粒隔離。P2切割線形成一連線(connection)。P1切割線使銅銦鎵硒化物(Copper Indium Gallium Selenide,CIGS)吸收層與基底互連,並圖案化TCO板成獨立的(individual)晶粒。P2切割線移除吸收(absorber)材料以使頂TCO電極與底電極互連,從而防止中間的緩衝層成為頂電極與底電極之間的阻障(barrier)。P3切割線完全穿過TCO、緩衝層、與吸收層而延伸至底電極,以隔離每個由P1切割線、P2定義出的晶粒。
以下將詳細說明太陽能電池100與一範例實施例中具有TCO晶種層160的太陽能電池100之製造方法(如第2圖所示)。
請參照第1、2圖,首先,於步驟200中,以任何合適的傳統方法清潔基底110,使基底準備接受底電極層的製作。一實施例中,可在刷塗工具(brushing tool)或超音波清潔工具(ultrasonic cleaning tool)中使用清潔劑(detergent)或化學品,以清潔基底110。
可用於基底110的合適傳統材料包括,但不限於:玻璃(例如,但不限於,鹼石灰玻璃)、陶瓷、金屬(例如,但不限於,不鏽鋼、鋁薄片)、或聚合物(例如,但不限於,聚亞醯胺(polyimide)、聚對苯二甲酸乙二酯(polyethylene terephthalate)、聚萘乙烯(polyethylene naphthalate)、碳氫聚合物(polymeric hydrocarbon)、纖維素聚合物(cellulosic polymer)、聚碳酸(polycarbonate)、聚醚(polyether))等。一較佳實施例中,可使用玻璃做為基底110。
接著,藉由本領域常用之傳統方法在基底110上形成底電極層120(步驟105),方法包括,但不限於,濺鍍 (sputter)、原子層沉積(atomic layer deposition,ALD)、化學氣相沉積(chemical vapor deposition,CVD)、或其他技術。
一實施例中,底電極層120可由鉬(Mo)形成,然而,可使用本領域常用其他合適的導電性金屬與半導體材料,例如,Al、Ag、Sn、Ti、Ni、不鏽鋼、ZnTe等。
在其他代表性的實施例中,但不限於,底電極層120之厚度可為約0.1~1.5微米(μm)。一實施例中,底電極層120之厚度為約0.5μm。
請繼續參照第1、2圖,如圖所示,接著,在底電極層120中形成P1切割線(步驟210)以暴露基底110的頂表面。可使用本領域中任何合適的刻劃方法,例如,但不限於,帶有探針(stylus)的機械式刻劃或雷射刻劃(laser scribing)。
接著,在底電極層120上形成p型摻雜半導體光吸收層130。如圖所示,吸收層130進一步填充P1切割線並接觸基底110露出的頂表面以使吸收層130與基底110互連。
一實施例中,吸收層130可為本領域常用的p型摻雜硫化物(chalcogenide)材料,在一些實施例中,硫化物材料可為,但不限於,CIGS Cu(In,Ga)Se2 。可使用其他合適的硫化物材料,包括,但不限於,Cu(In,Ga)(Se,S)2 或“CIGSS”、CuInSe2 、CuGaSe2 、CuInS2 、及Cu(In,Ga)S2
可使用合適的p型半導體硫化物材料形成吸收層130,包括,但不限於,Cu(In,Ga)(Se,S)2 、Ag(In,Ga)(Se,S)2 、Cu(In,Al)(Se,S)2 、Cu(In,Ga)(Se,S)2 、CuInSe2 、CuGaSe2 、CuInS2 、及Cu(In,Ga)S2 、或其他第II、III、或VI族的元素。
由CIGS形成的吸收層130可藉由本領域中任何合適的習知真空(vacuum)或非真空製程。製程包括,但不限於,硒化(selenization)、硒後硫化製程(sulfurization after selenization,SAS)、蒸鍍(evaporation)、濺鍍電沉積(sputtering electrodeposition)、化學氣相沉積、或噴墨(ink spraying)等。
在一些代表性實施例中,但不限於,吸收層130之厚度為約0.5~5.0微米(μm)。一實施例中,吸收層130之厚度為約2μm。
繼續參照第1、2圖,接著,在吸收層130上形成n型緩衝層140以產生電性主動(electrically active)的n-p接面(junction)(步驟220),n型緩衝層140可為CdS。可藉由本領域任何合適的方法形成緩衝層140。一實施例中,可由傳統的電解液(electrolyte)化學浴沈積(chemical bath deposition,CBD)並使用含硫的電解液溶液形成緩衝層140。在一些代表性實施例中,但不限於,緩衝層140之厚度為約0.005~0.15微米(μ m)。一實施例中,緩衝層140之厚度為約0.015μ m。
在形成CdS緩衝層140後,切割P2切割線並穿透吸收層130以將底電極120之頂表面暴露於切割線或通道中(步驟222)。如上所述,可使用本領域中任何合適的刻劃方法切割P2切割線,例如,但不限於,機械(例如,探針切割)或雷射刻劃(laser scribing)。隨後將導電材料填入P2切割線以使頂電極150與底電極層120互連。
繼續參照第1、2圖,形成P2切割線後,接著,在緩衝層140上形成發光n型摻雜晶種層160與由TCO材料 組成的頂電極層150,以接收來自電池的電流(電子),發光n型摻雜晶種層160可理想地將太陽能電池上大部份的入射光傳送至光吸收層130(步驟230)。在第一實施例中,係先形成晶種層160,接著形成主層150。頂電極將接收的電荷運載至外部電路。如第1圖所示,來自於TCO晶種層與主TCO層的TCO材料亦填入至少部份的P2切割線以覆蓋P2切割線的垂直側壁及P2切割線中的底電極層120頂部,進而形成頂電極層150與底電極層120之間的電性連接,並產生電子流動路徑(electron flow path)。前述垂直的側壁係至少被吸收層130與緩衝層140露出的側邊所定義。在第1圖所示的第一實施例中,TCO晶種層160散置(intersperse)於TCO頂電極層150主體與P2切割線之側壁之間。
鋁(Al)與硼(B)為兩個用於薄膜太陽能電池中TCO頂電極的n型摻質;然而,可使用其他合適的習知摻質,例如,但不限於,鋁(Al)、硼(B)、鎵(Ga)、銦(In)、或其他的第III族元素。可使用本領域中任何合適的方法摻雜TCO頂電極層150,包括,但不限於,離子植入(ion implantation)。
一實施例中,頂電極層150所使用的TCO可為本領域中任何常用於薄膜太陽能電池的習知材料。可使用的合適TCO包括,但不限於,氧化鋅(ZnO)、硼摻雜氧化鋅(boron doped ZnO,BZO)、鋁摻雜氧化鋅(aluminum doped ZnO,AZO)、鎵摻雜氧化鋅(gallium doped ZnO,GZO)、銦摻雜氧化鋅(indium doped ZnO,IZO)、氧化氟錫(fluorine tin oxide,FTO或SnO2 :F)、氧化銦錫(indium tin oxide,ITO)、奈米碳管層、或其 他具有頂電極層之理想特性的合適鍍料(coating material)。在一較佳實施例中,所使用的TCO為BZO。
在一些實施例中,頂電極層可由硼摻雜氧化鋅或BZO所形成,應注意的是,在較厚的n型摻雜TCO頂電極層150的製程期間,吸收層130上可形成本質(intrinsic)ZnO薄膜(未顯示)。
第3圖顯示適用於形成TCO晶種層160與主TCO頂電極層150的裝置。一實施例中,此裝置為CVD工集束型設備(cluster tool)20,且其為此技藝人士習知的,具有緩衝室22及至少兩個製程反應(process reaction)室24、26以在基底110上形成TCO晶種層和主頂電極層。CVD設備20包括製程氣體(process gas)供應系統30,其引入製程氣體至混合室(mixing chamber)32,以為每個反應室24、26作準備,製程氣體包含化學TCO層前驅物(例如,但不限於,DEZ以形成ZnO TCO材料)、在一些實施例中有晶種層160的摻質(非必需的)與TCO主體層150的摻質、以及其他製程氣體。氣體從混合室32透過集流管(header tube)34流至氣體注射散射器(gas injection diffuser)36,氣體注射散射器36位於每個反應室24、26的頂部。散射器36(在本領域中亦被稱為噴頭(showerhead))包括多個開口以使氣體平均分布於反應室中。在各個反應室裡設置加熱台(heating susceptor)或板(plate)38,配置加熱台38以在膜(film)沉積製程期間支撐並加熱基底110。緩衝室22包括加熱板38,且緩衝室22可包括惰性氣體供應器(例如,氮氣)。緩衝室僅是用於預熱太陽能電池基底110的溫度,使其 能在反應室24、26中被進行處理,基底110的溫度在經過預熱後由室溫提升到近於或略低於反應室中所使用的基底製程溫度,進而減少在反應室中的製程時間與CVD設備的處理量。
前述的CVD設備為市售可得的,且其配置與操作為此技藝人士熟知的,故不作進一步詳述。
請參照第1~3圖,一實施例中,藉由在緩衝室22中預熱太陽能電池基底110以形成TCO晶種層160。基底110已具有吸收層130與CdS緩衝層,以及如上述完整的P2切割線。提升此結構的溫度至一期望值,理想的值為接近或約基底在反應室24裡的製程溫度,晶種層160形成於反應室24中。預熱基底110後,轉移基底至反應室24中。加熱基底110至期望的製程溫度。一實施例中,基底的製程溫度為約100~400℃。理想地,形成TCO晶種層較佳的溫度為小於用以形成TCO頂電極主體層的基底溫度,這會使晶種層之粒徑小於主體層,進而提供較佳的附著特性給頂電極層以吸附於緩衝層140與吸收層130上。
一旦達到理想的基底製程溫度,便藉由導入製程氣體至反應室24中以開始TCO晶種層的製作。持續進行膜沉積製程一段足夠的時間,以形成期望的晶種層厚度。在範例實施例中,TCO晶種層160之厚度小於主TCO頂電極層150。在一代表性範例實施例中,但不限於,TCO晶種層之厚度為約50~300nm。這足以形成滿意的晶種層以提高主TCO頂電極層150的附著特性進而降低/消除剝落。相較之下,在一些實施例中的TCO頂電極層150之厚度為約1000~3000nm以提供好的 電流接收效能。因此,一些實施例中,TCO晶種層160之厚度小於主TCO層150厚度的一半。
因為形成晶種層之溫度較低使其具有高於頂電極主體層的電阻,這會抑制電流並降低太陽能電池的效能,因此,一些實施例中,TCO晶種層160之厚度較佳為小於TCO頂電極層150之厚度。故TCO晶種層160的厚度應足以提升TCO主體層150對吸收層130之附著力,不應過厚到會降低太陽能電池的效能。接著,基底110與形成於其上的TCO晶種層160皆直接轉移至TCO主體反應室26,或者,可在送入反應室26之前轉移至緩衝室22進行基底的預熱。在後者的情況下,加熱基底110至接近或近於TCO主體反應室26中所用的基底製程溫度。在一些範例實施例中,因為TCO主體層150的沉積製程係在高於TCO晶種層160的形成溫度下進行的,在緩衝室22中的預熱步驟可降低在TCO主體反應室26中的製程時間。預熱後,轉移基底至反應室26。
繼續參照第1~3圖,接著,主TCO頂電極層以相似於上述形成TCO晶種層160的方式的形式直接形成於基底110的晶種層160上。然而,藉由加熱板38加熱基底至一較高的製程溫度。一實施例中,在主TCO反應室26中所使用的基底製程溫度為,但不限於,約至少190℃。如此一來,可產生粒徑大於晶種層160的主TCO頂電極層。當完成此步驟後,薄膜太陽能電池的半成品將如同第1圖所示。一些實施例中,係在195~200℃之間形成高溫主TCO頂電極層150。
第4圖與第5圖係根據本發明實施例所形成的晶 種層160之微結構(microstructure)與較高溫形成的TCO主體層150之粒子結構(grain structure)的掃描式電子顯微(scanning electron microscope,SEM)實際對照圖。相較於較高溫下形成的TCO主體層,晶種層160多晶結構的較小粒徑明顯地改善TCO頂電極層150的附著特性。製得的TCO晶種層160與頂電極主體層150以X光繞射(X-ray diffraction,XRD)進行分析。第6圖為反射強度(reflected intensities)對XRD分析的探測器角度的譜圖,其顯示TCO晶種層160多晶結構的結晶具有約34.4度方位角(orientation angle),而TCO主體層的方位角約32度,進一步證實晶種層具有不同的結晶方位與晶粒結構。根據本發明,TCO晶種層的不同結構與附著特性係透過較低的CVD沉積溫度而達成。
雖然TCO晶種層160與頂電極層150的形成係配合一非限制性的實施例而在此敘述,值得注意的是,可使用其他半導體領域中合適的膜形成製程,包括,但不限於,原子層沉積(atomic layer deposition,ALD)與物理氣相沉積(physical vapor deposition,PVD)為兩個合適的例子。再者,可在具有單一製程反應室且沒有用於預熱基底的緩衝室之薄膜沉積設備形成TCO晶種層160與頂電極層150。因此,根據本發明的實施例並不限於在此敘述的半導體加工設備。
根據本發明,上述的製程之一優點為TCO晶種層160與頂電極層150皆係在同一機台裡形成並包括相同材料。這在太陽能電池的製造流程中有節約效果並降低成本。
繼續參照第1、2圖,如第1圖所示,在形成上述 TCO晶種層160與頂電極層150後,P3切割線形成於薄膜太陽能電池100中(步驟240)。P3切割線穿過(由上至下)TCO頂電極層150、TCO晶種層160、緩衝層140、吸收層130、以及底電極層120延伸至基底110的頂部。
如第2圖所示,此技藝人士可熟悉並理解到,在此揭露的薄膜太陽能結構形成後可實施額外的傳統後端處理製程與貼合(lamination)。這包括貼合頂遮蓋玻璃至太陽能電池結構以保護頂電極層150,頂遮蓋玻璃與頂電極層150之間包括合適的封膠(encapsulant),例如,但不限於,以乙烯/醋酸乙烯酯共聚物(ethylene vinyl acetate,EVA)與丁基(butyl)的組合封膠將電池密封(第2圖中的步驟245與250)。在此實施例中,EVA與丁基封膠為本領域常用的,將EVA與丁基封膠直接塗於頂電極層150上,再將頂遮蓋玻璃鋪於其上。
如第2圖所示,可完成進一步合適的後端製程,其可包括以本領域習知的傳統方法在頂電極150上方形成前導電柵接點(front conductive grid contact)與一或多個抗反射塗層(未顯示)。柵接點將突出並超出於任何抗反射塗層的頂表面以連接外部電路。此太陽能電池之製造方法生產出完全且完整的薄膜太陽能電池模組。
第7圖與第8圖分別顯示第二實施例的薄膜太陽能電池200及其製造方法。第二實施例與方法相似於上述的第一實施例與薄膜太陽能電池100之製造流程(參考第1、2圖)並包括形成TCO晶種層160與頂電極主體層150。然而,如第8圖所示,相同的TCO晶種層160、頂電極層150、與P2切割 線形成步驟之順序係不同的,這產生如第7圖所示之些微不同的結構。TCO晶種層160形成於P2切割線之前,因此,僅有主TCO頂電極層150遮蓋P2切割線的側壁與底部(相較於第1圖)。如第7圖所示,P2移除了切割線內的TCO晶種層。
第9圖與第10圖分別顯示第三實施例的薄膜太陽能電池300及其製造方法。第三實施例與方法相似於上述的第一實施例與薄膜太陽能電池100之製造流程(參考第1、2圖)並包括形成TCO晶種層160與頂電極主體層150。然而,TCO頂電極層的形成包括形成兩段(two-part)或雙層(bi-layer),其包括:下TCO層152與上TCO層154。一實施例中,如圖所示,上TCO層154直接形成於下TCO層152上,而下TCO層152係直接形成於TCO晶種層160上。雙層構造可提供形成摻雜量(dopant level)不同於上TCO層154的下TCO層152。一些範例實施例中,下TCO層152具有低摻雜濃度(doping)或完全未摻雜,而一些實施例中,上TCO層154具有高摻雜濃度。相較於一些單TCO頂電極層,雙層構造被認為能在頂電極層提升電流傳輸(current transmission)以及降低電阻,進而提升太陽能電池之效能與效率。
下TCO主體層152具有低摻雜量或完全無摻質(即未摻雜(undoped)),而相較於下層,上TCO主體層154具有較高的摻雜量。可使用任何合適的摻質,包括前述用於摻雜太陽能電池中的TCO之摻質。
繼續參照第9圖、第10圖,雙層TCO頂電極主體層150的形成步驟包括先沉積下TCO層152,隨後摻雜上 TCO層154。一實施例中,相似於第1、2圖的單TCO頂電極層150,下與上TCO層152、154皆是在較高溫(例如,190℃或更高)下形成,前述高溫高於形成較小粒TCO晶種層160所用之低溫。一些實施例中,可在同個反應室26相繼地形成下TCO層152與上TCO層154,係藉由隨著時間改變導入於反應室中的摻質之濃度並配合前驅氣體而達成。一實施例中,下與上TCO層152、154係由相同TCO材料所形成。在其他可能的實施例中,可以不同TCO材料形成下與上TCO層152、154。
在一範例實施例中,但不限於,上TCO層154之厚度可為約500~1500nm,而下TCO層152之厚度可為約1000~3000nm。根據一些實施例,下與上TCO層152、154可具有相同或不同的厚度。
一些實施例中,頂電極雙層結構的下TCO層152與上TCO層154具有類似於如第1、7圖所示之單層TCO頂電極層的粒徑微結構。
如第9圖所示的實施例中,TCO晶種層160形成於P2切割線之後,因此使雙層TCO頂電極層150(包括下與上TCO層152、154)以及晶種層160皆覆蓋切割線的側壁與底部。
第11圖與第12圖分別顯示第四實施例的薄膜太陽能電池400及其製造方法。第四實施例與方法相似於上述的第三實施例與薄膜太陽能電池300之製造流程(參考第9、10圖)並包括形成TCO晶種層160與高溫形成的包括雙層構造之頂電極層150,雙層構造包含下TCO層152與上TCO層154。 然而,太陽能電池400中TCO晶種層160係形成於P2切割線之前,因此,僅有主雙層TCO頂電極層150覆蓋P2切割線的側壁與底部(對照第11圖與第9圖)。如第7圖所示,P2移除了切割線內的TCO晶種層。如第11圖所示,P2移除了切割線內的TCO晶種層(亦相似於第7、8圖的單層TCO頂電極層150)。因為P2切割線移除了晶種層160的側壁,使電流流經側壁中的TCO主體而不是晶種層,進而提升電流流動(current flow)與太陽能電池的效能/效率。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動、替代與潤飾。舉例來說,任何所屬技術領域中具有通常知識者可輕易理解此處所述的許多特徵、功能、製程及材料可在本發明的範圍內作更動。
再者,本發明之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本發明揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大體相同功能或獲得大體相同結果皆可使用於本發明中。因此,本發明之保護範圍包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本發明之保護範圍也包括各個申請專利範圍及實施例的組合。
100‧‧‧薄膜太陽能電池
110‧‧‧基底
120‧‧‧底電極
130‧‧‧吸收層
140‧‧‧緩衝層
150‧‧‧TCO頂電極主體層
160‧‧‧TCO晶種層
P1、P2、P3‧‧‧切割線

Claims (10)

  1. 一種薄膜太陽能電池,包括:一底電極層,形成於一基底上;一半導體吸收層,形成於該底電極層上;一緩衝層,形成於該吸收層上;一透明導電氧化物(transparent conductive oxide,TCO)晶種層,形成於該緩衝層上;以及一TCO頂電極主體層,形成於該TCO晶種層上,該TCO頂電極主體層透過一P2切割線電性連接至該底電極層,該P2切割線定義出延伸入該緩衝層與該吸收層的一垂直通道;其中該TCO晶種層具有不同於TCO頂電極主體層的一微結構,其中該TCO晶種層具有一多晶結構,且該TCO頂電極主體層具有一結晶結構。
  2. 如申請專利範圍第1項所述之薄膜太陽能電池,其中該TCO晶種層具有一微結構,該微結構的粒徑小於該TCO頂電極主體層。
  3. 如申請專利範圍第1項所述之薄膜太陽能電池,其中TCO晶種層的膜厚小於該TCO頂電極主體層的膜厚,且其中該TCO晶種層之膜厚為約50~300nm,而該TCO頂電極主體層之膜厚為1000nm或更厚。
  4. 如申請專利範圍第1項所述之薄膜太陽能電池,其中該TCO晶種層之多晶結構的結晶不同於該TCO頂電極主體層中的結晶的方位角。
  5. 如申請專利範圍第1項所述之薄膜太陽能電池,其中該其中該TCO晶種層延伸至P2切割線中。
  6. 如申請專利範圍第5項所述之薄膜太陽能電池,其中該TCO晶種層散佈於P2切割線中的該TCO頂電極主體層與多個側壁之間,該些側壁係由該吸收層與該緩衝層所定義。
  7. 如申請專利範圍第1項所述之薄膜太陽能電池,其中該TCO頂電極主體層為一雙層(bi-layer)TCO頂電極主體層,包括:一下TCO層與形成於該下TCO層上的一上TCO層,該上TCO層之摻質濃度不同於該下TCO層之摻質濃度,其中該TCO晶種層具有不同於該雙層TCO頂電極主體層之該下TCO層或該上TCO層的一微結構。
  8. 一種薄膜太陽能電池之製造方法,包括:沉積一導電底電極層於一基底上;沉積一吸收層於該底電極層上;沉積一緩衝層於該吸收層上;在一第一溫度下,沉積一TCO晶種層於該緩衝層上;以及在高於該第一溫度的一第二溫度下,沉積一TCO頂電極主體層於該TCO晶種層上,其中該TCO晶種層具有一多晶結構,且該TCO頂電極主體層具有一結晶結構。
  9. 如申請專利範圍第8項所述之薄膜太陽能電池之製造方法,更包括在沉積該TCO晶種層後,形成穿透該吸收層的一開放式(open)P2切割線。
  10. 如申請專利範圍第8項所述之薄膜太陽能電池之製造方法,更包括: 沉積一下TCO層於該TCO晶種層上;以及沉積一上TCO層於該下TCO層上,其中該上TCO層之摻質濃度不同於該下TCO層之摻質濃度。
TW102129241A 2012-09-18 2013-08-15 薄膜太陽能電池及其製造方法 TWI509820B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/621,879 US20140076392A1 (en) 2012-09-18 2012-09-18 Solar cell

Publications (2)

Publication Number Publication Date
TW201413994A TW201413994A (zh) 2014-04-01
TWI509820B true TWI509820B (zh) 2015-11-21

Family

ID=50181857

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102129241A TWI509820B (zh) 2012-09-18 2013-08-15 薄膜太陽能電池及其製造方法

Country Status (4)

Country Link
US (1) US20140076392A1 (zh)
CN (1) CN103681892B (zh)
DE (1) DE102013104232B4 (zh)
TW (1) TWI509820B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130153015A1 (en) * 2011-12-15 2013-06-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming solar cells
US9130076B2 (en) * 2012-11-05 2015-09-08 Solexel, Inc. Trench isolation for monolithically isled solar photovoltaic cells and modules
US10090430B2 (en) * 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
US9130113B2 (en) 2012-12-14 2015-09-08 Tsmc Solar Ltd. Method and apparatus for resistivity and transmittance optimization in TCO solar cell films
US9105799B2 (en) * 2013-06-10 2015-08-11 Tsmc Solar Ltd. Apparatus and method for producing solar cells using light treatment
US9136408B2 (en) * 2013-11-26 2015-09-15 Hunt Energy Enterprises, Llc Perovskite and other solar cell materials
US11942561B2 (en) 2014-05-27 2024-03-26 Maxeon Solar Pte. Ltd. Shingled solar cell module
US11482639B2 (en) 2014-05-27 2022-10-25 Sunpower Corporation Shingled solar cell module
US9911874B2 (en) * 2014-05-30 2018-03-06 Sunpower Corporation Alignment free solar cell metallization
US10861999B2 (en) * 2015-04-21 2020-12-08 Sunpower Corporation Shingled solar cell module comprising hidden tap interconnects
CN105304732B (zh) * 2015-09-18 2017-08-25 河北曹妃甸汉能薄膜太阳能有限公司 制备透明导电氧化物薄膜的方法及其应用
KR20230115298A (ko) * 2022-01-24 2023-08-02 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 태양전지 및 그 제조 방법, 광전지 모듈 및 전기 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197967A1 (en) * 2008-10-20 2011-08-18 Idemitsu Kosan Co., Ltd Photovoltaic element and method for manufacturing same
TW201233656A (en) * 2011-02-08 2012-08-16 Asahi Glass Co Ltd Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091483A2 (en) * 2001-05-08 2002-11-14 Bp Corporation North America Inc. Improved photovoltaic device
JP4681352B2 (ja) * 2005-05-24 2011-05-11 本田技研工業株式会社 カルコパイライト型太陽電池
JP4439492B2 (ja) * 2006-05-25 2010-03-24 本田技研工業株式会社 カルコパイライト型太陽電池およびその製造方法
KR101000057B1 (ko) * 2008-02-04 2010-12-10 엘지전자 주식회사 다층 투명전도층을 구비한 태양전지 이의 제조방법
CN101748405B (zh) * 2008-11-28 2014-02-12 北京北方微电子基地设备工艺研究中心有限责任公司 透明导电膜及其制造方法、太阳能电池及平板显示装置
EP2497123A2 (en) * 2009-11-05 2012-09-12 Dow Global Technologies LLC Manufacture of n-type chalcogenide compositions and their uses in photovoltaic devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197967A1 (en) * 2008-10-20 2011-08-18 Idemitsu Kosan Co., Ltd Photovoltaic element and method for manufacturing same
TW201233656A (en) * 2011-02-08 2012-08-16 Asahi Glass Co Ltd Glass composition, glass substrate for solar cells using glass composition, and glass substrate for display panel

Also Published As

Publication number Publication date
DE102013104232A1 (de) 2014-03-20
CN103681892A (zh) 2014-03-26
TW201413994A (zh) 2014-04-01
CN103681892B (zh) 2016-10-05
US20140076392A1 (en) 2014-03-20
DE102013104232B4 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
TWI509820B (zh) 薄膜太陽能電池及其製造方法
US7741560B2 (en) Chalcopyrite solar cell
US9166094B2 (en) Method for forming solar cells
TWI493736B (zh) 薄膜太陽能電池及其製造方法
US20120279556A1 (en) Photovoltaic Power-Generating Apparatus and Method For Manufacturing Same
US20140034126A1 (en) Thin film solar cell module and method of manufacturing the same
EP2695200B1 (en) Solar cell
EP2680320B1 (en) Thin film solar cell module and method of manufacturing the same
US10134932B2 (en) Solar cell and method of fabricating the same
KR101231364B1 (ko) 태양전지 및 이의 제조방법
US9640685B2 (en) Solar cell and method of fabricating the same
NL2008742C2 (en) Method for forming interconnect in solar cell.
US20130167916A1 (en) Thin film photovoltaic cells and methods of forming the same
US9214575B2 (en) Solar cell contact and method of making the contact
KR20110036173A (ko) 태양전지 및 이의 제조방법
US9520530B2 (en) Solar cell having doped buffer layer and method of fabricating the solar cell
KR101173429B1 (ko) 태양전지 및 이의 제조방법
KR101349596B1 (ko) 태양전지 및 이의 제조방법
KR20150135692A (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
KR101528455B1 (ko) 박막형 태양전지 및 그 제조방법
JP2015149393A (ja) 光電変換装置の製造方法
JP2014067745A (ja) 光電変換装置の製造方法
US20150090322A1 (en) Solar cell apparatus and method of fabricating the same
JP2015204305A (ja) 光電変換装置の製造方法
JP2015099836A (ja) 光電変換装置