TWI509232B - 壓力測定儀器、壓力測定方法及工件處理裝置 - Google Patents
壓力測定儀器、壓力測定方法及工件處理裝置 Download PDFInfo
- Publication number
- TWI509232B TWI509232B TW097115165A TW97115165A TWI509232B TW I509232 B TWI509232 B TW I509232B TW 097115165 A TW097115165 A TW 097115165A TW 97115165 A TW97115165 A TW 97115165A TW I509232 B TWI509232 B TW I509232B
- Authority
- TW
- Taiwan
- Prior art keywords
- pressure
- reading
- sensor
- range
- measurement
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/02—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
- G01D3/024—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation for range change; Arrangements for substituting one sensing member by another
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L15/00—Devices or apparatus for measuring two or more fluid pressure values simultaneously
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Technology Law (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measuring Fluid Pressure (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Description
本發明所揭示之實施例係關於測定儀器。更具體而言,係關於具有複數感測器之測定儀器。
對於諸如氣體的壓力或密度等多種物理量的測定,已有不同類型之感測器可供使用。由於不同類型之感測器具有不同之測定範圍,因此為了測定範圍之擴大有將不同類型之感測器組合成單一之壓力測定儀器之需求。例如,當抽除氣體壓力成為真空時,首先儀器之輸出值可相當於其中一個感測器之讀數。然後,當輸出值達到閾值(threshold value)時,該輸出值則被轉換至相當於來自另一個在低壓具有較佳準確性之感測器之讀數。雖然此類型之儀器有利於在保持適當之準確度下擴大壓力或密度的測定範圍,但仍有一些缺點。特別是在兩個感測器間之轉換上可能發生問題。假如兩個感測器於閾值無法產生完全相同之讀數,則當儀器實行感測器間之轉換時,其輸出值可能發生突變。即使兩個感測器間之讀數差距很小,該突變可導致遲滯效應。例如,當此輸出值作為回授迴路之一部分而用以控制壓力時可能發生問題。若在回授迴路中將輸出值之導數作為回授信號使用,問題將更大,因為在轉換閾值時導數將會很高。因此需要有一種不僅可結合來自兩個或兩個以上感測器之讀數且允許在各讀數間順利轉換的壓力測定儀器。
本發明之第一實施例係提供具有處理器、第一感測器及第二感測器之測定儀器。該處理器係適用於輸出含有一個物理量測定值之測定信號。該第一感測器及第二感測器係與處理器連接,用於分別產生物理量測的第一測定值及第二測定值。處理器界定第一測定值範圍,在此範圍內測定信號係依據第一測定值而非依據第二測定值。處理器亦界定第二測定值範圍,在此範圍內測定信號係依據第二測定值而非依據第一測定值。上述之第一測定範圍與第二測定範圍於預定之轉換點交會。於該轉換點,第一測定值與第二測定值係不相同且含在測定信號中之測定值可在不發生突變下與轉換點交會。
依本發明之第二實施例,壓力計含有壓力指示器。第一壓力感測器連接於該指示器,用以產生第一壓力讀數。第二壓力感測器亦連接於該指示器,用於產生第二壓力讀數。當第一壓力讀數高於預設之壓力閾值並正下降時,壓力指示器可用以指示響應第一壓力讀數之壓力,而不指示響應第二壓力讀數之壓力。當第一壓力讀數低於預先判定之壓力閾值並正下降時,壓力指示器可用以指示響應第二壓力讀數之壓力,而不指示響應第一壓力讀數之壓力。又,當第一壓力讀數實質上等於預設之壓力閾值,壓力指示器可用以指示壓力為超過包含壓力閾值在內之壓力指示範圍之一連續函數,且第二壓力讀數與第一壓力讀數係不同。
本發明之第三實施例提供含有壓力指示器之壓力計。第一壓力感測器係與該壓力指示器連接,用以產生第一壓力讀
數。第二壓力感測器與該壓力指示器連接,用以產生第二壓力讀數。當第一壓力讀數低於預設之壓力閾值並正上升時,壓力指示器可用以指示響應第一壓力讀數之壓力,而不指示響應第二壓力讀數之壓力。當第一壓力讀數高於預先決定之壓力閾值並正上升時,壓力指示器則用以指示對應第二壓力讀數之壓力,而不指示對應第一壓力讀數之壓力。又,當第一壓力讀數實際上等於預先判定之壓力閾值,壓力指示器乃用以指示壓力為超過包含壓力閾值在內之指示壓力範圍之一連續函數,且第二壓力讀數與第一壓力讀數係不同。
本發明之第四實施例包括一種使用第一感測器產生一可計量之物理性質之第一讀數之方法。該方法更包括使用第二感測器產生一可計量之物理性質之第二讀數。又,該方法包括只有當第一讀數超過物理量之第一範圍時,指示對應之一物理性質量。又,該方法包括只有當與第一範圍毗連之第二讀數超過物理量之第二範圍時,於物理性質量轉換時指示對應之一物理性質量。又,該方法包括調整所指示之物理性質量位於第一或第二範圍其中之一,使得該指示物理性質量於第一與第二範圍間轉換時不會突變,而第一與第二讀數在物理性質量轉換時係不相同。
茲參照附圖,詳細說明本發明之實施例。
圖1為基板處理裝置100之示意圖。該裝置可具有如本發明實施例之壓力測定儀器400。茲僅以基板處理裝置為範例詳述壓力測定儀器400之應用。然該壓力測定儀器可用於任
何合適之應用一諸如可置於任何合適之壓力或真空室內部用以測定壓力或氣體密度、或在任何壓力或真空室上獨立運作。故如本發明所述之實施例係為參考範例,其亦可具體實現於其他類型之實施例。此外,亦可使用任何合適之尺寸、形狀、元件類型、或材料。為方便說明,圖1之基板處理裝置100具有前端200及後端300。該前端200可具有機架230並可包含於可控環境105內部運作之基板輸送裝置210。基板輸送裝置210具有機械手臂215及用以操作機械臂移動之驅動裝置220。該機械手臂具有用以支撐基板之末端作用器250。
基板處理裝置100之前端200亦可包括裝載埠120、125(於圖中僅顯示2個裝載埠以做為範例說明)。該裝載埠提供一介面予基板匣130。每個基板匣可容納複數基板,且可保持該等基板於一密封殼體內。裝載埠120、125係可裝卸的保持基板匣130且具有一可打開匣門之機構(未顯示於圖中),俾供可從前端200之可控環境105內部接近位於匣130內之基板。該可控環境105可由殼體包持,並可連接至一用以測定可控環境105之壓力之壓力計470。基板輸送裝置210之裝載埠120、125的反向位置設有加載鎖真空室(以下簡稱真空室)135、140。該真空室135、140連接前端200與後端300。每一真空室135、140設有閥405、410連接至前端200之可控環境105,並設有另一組閥415、420連接至位於後端300之輸送室305內之隔離環境310。該輸送室305之隔離環境310可為真空或氮氣等惰性氣體、或其他流體。該前端200之可控環境105可為含微粒污染物非常低的大氣壓之乾淨空
氣。因此,真空室135、140可保持可控環境105與隔離環境310隔離狀態下讓基板在前端200與後端300之間通過。如圖1所顯示,真空室140連接至用以加壓真空室之進口閥480,及連接至用以減壓真空室之真空泵465。
於此基板處理裝置100實施例中,後端300包括用以界定輸送室305範圍之機架315。如前所述,該輸送室305可容納一例如真空室之隔離環境310。壓力計470可連接至該輸送室305以顯示隔離環境310之壓力讀數。基板輸送裝置320可位於輸送室305內部。該基板輸送裝置320可包括一連接至機架315之驅動裝置325,並可包括一雙連接至末端作用器365之一對對向機械手臂335、340。
如圖1之基板處理裝置100實施例所示,複數之處理模組370係位於輸送室305之週邊。該處理模組370可在基板上藉由操作各種沈積、蝕刻、拋光、清潔、或其他類型之製程,使在基板上得以形成電子電路或其他所要求構造,或在基板上執行量測或其他功能。該處理模組370係連接至輸送室305以讓基板在輸送室與處理模組之間可以雙向地通過。於本實施例中,該處理模組係可藉由例如槽形閥或其他合適之閘門而與輸送室隔離,因此一或多個之處理模組可容納例如惰性氣體(諸如:氦、氬)等類之氣體並使其與輸送室305內之氣體或真空隔離。一或多個之處理模組可受到例如在工件處理(諸如:於低真空狀態)時之操作壓力、在裝卸工件(諸如:於高真空狀態)時之裝載壓力、及在維護模組(諸如:於周遭大氣壓狀態)時之存取壓力等不同之壓力。同樣
地,輸送室305亦受到不同之壓力。本發明實施例中,一或多個之處理模組可具有用以測定處理模組上之壓力之壓力計或壓力測定儀器400。
真空室140可連接於壓力測定儀器400。真空室135亦可連接於相仿之壓力測定儀器。該壓力測定儀器400可測定基板處理裝置100的特定區域(例如真空室140、輸送室305、或處理模組370)內部之氣體450之絕對壓力。但於另一實施例中,該壓力測定儀器可測定相對壓力或壓力差,或可同時測定兩者。於其他實施例中,測定儀器400可測定氣體密度或其他物理特性,作為壓力測定之替代物。於又一其他實施例中,壓力測定儀器可測定任何合適之物理特性。
圖2為依本發明實施例之測定儀器400之示意圖。於本發明實施例中,測定儀器400可為一位於例如殼體400C內之整合性儀器。依本發明實施例,測定儀器400係可模組化地安裝在處理裝置100的一或多個之特定區域(例如輸送室、處理模組、或真空室)。但於另一實施例中,可安裝該測定儀器用以測定於任何特定裝置內之氣體之所要的物理特性。於其他實施例中,測定儀器可被整合在容納氣體之裝置或工具內部,用以測定該氣體。如圖2所示,該殼體400C可被形成壓力氣囊425用以與容納於處理裝置100的測定區域(例如真空室140、或處理模組370)內部之氣體450相連通。因此,壓力氣囊425內部之壓力與真空室140內部之壓力大致相同(以下真空室140一詞只指處理裝置100之一代表區域)。本實施例中,係將壓力氣囊置於殼體內部以做為範例說明(例
如可在處理裝置內部與壓力氣囊425之間提供通道以做為氣體450與壓力氣囊425之聯繫用)。但於另一實施例中,測定儀器之壓力氣囊係為必要裝備且可置於測定儀器殼體外部。本實施例中,顯示3個感測器係連接至壓力氣囊以測定壓力氣囊內部之壓力。但於另一實施例中,更多個或更少個的感測器可連接至壓力氣囊以感測其內部之壓力。又,於其他實施例中,不一定需要有壓力氣囊並且可具有任何數量之感測器。本實施例中,壓力感測器435可包含壓電阻性膜片(PRD)。膜片之一側可連接至壓力氣囊425。膜片之另一側可在高真空狀態下被封閉,故該PRD係為一膜片絕對壓力感測器。此外亦可操作該PRD感測器435以查出壓力氣囊425之絕對壓力。例如,壓力之變化可導致應力產生,或導致在PRD內部對膜片之電阻率有影響的應力或應變(strain)之改變。因此,藉由測定膜片上之電阻變化,該感測器435可感測壓力氣囊425上之壓力或其壓力之變化。感測器440亦可連接至壓力氣囊425。感測器440係可例如為一熱耗感測器。藉由感測來自一電導體之熱耗損,該熱耗感測器440可感測壓力氣囊425內部之絕對壓力。該熱耗損係相當於壓力氣囊425內部之壓力,因此亦相當於真空室140內部之壓力。感測器445亦可連接至壓力氣囊425。感測器440係可例如為一電離感測器。該感測器445可發射電子使其與所測定氣體之氣體微粒碰撞。藉由碰撞可產生供傳導電流之離子。該電流量係相當於壓力氣囊425內部之氣體密度及氣體壓力,因此亦相當於真空室140內部之壓力。
於本發明實施例中,各個感測器435、440、445各有不同之壓力測定範圍。如圖2所示,例如,高真空(諸如:從10^-10 Torr到10^-2 Torr範圍)狀態使用游離壓力計(IG)445以測定壓力係最準確的。中真空(諸如:從10^-3 Torr到1000 Torr範圍)狀態使用熱耗損(HL)感測器以測定壓力係最準確的。而在低真空到大氣壓力狀態下係可使用PRD感測器435。測定儀器400可包括一連接至感測器435、440、445並與其分別聯繫之信號處理器455。一般而言,信號處理器係可接收感測器之信號並將其轉換為所需要之測定信號以輸出。由於在處理裝置100的一或多個之必要室或模組內部,壓力範圍係可從大氣壓力至高真空(例如,13 decades),故可使用測定儀器400以測定暫態及穩態壓力。於大約10^-10 Torr至大約1000 Torr範圍間,該信號處理器455係可使用來自感測器435、440、445之信號產生測定信號輸出值以表示所測定之壓力(或其他所測定之物理特性)。
圖3為測定儀器400與基板處理裝置100之各種連接方式的示意圖。如前所述,本發明之測定儀器(如圖2所示)可為一可被模組化地安裝於處理裝置100或可從其上拆卸之整合性裝置。該測定儀器模組可被機械地連接至處理裝置100(例如輸送室305、處理模組370、或真空室135、140)之所要部位,使該測定儀器模組之壓力外殼425可與處理裝置內部之氣體450連通。舉例而言,可藉由適合之固定件(例如螺絲、快速夾鉗之類等)將儀器殼體400C附加於處理裝置100之機架上。該儀器模組400亦可藉由例如有線(如USB)
或無線耦合458電氣地連接至處理裝置100以做電力及聯繫之用。信號處理器455可藉由有線(例如USB)或無線聯結器458連接至處理裝置100之控制系統460。於本實施例中,該信號處理器係可使用與控制系統460聯繫之感測器435、440、445之複數信號產生一測定信號輸出值。此外,控制系統460亦可連接於處理裝置100之其他元件(例如基板輸送裝置210及320),更可連接於處理裝置100之例如真空室135、140、處理模組370、其他任何合適之元件,以及處理裝置100之任何外部元件。又上述控制系統460可連接於真空泵或系統465以調整處理裝置100之輸送室305、處理模組、或真空室140內部之壓力。於本實施例中,控制系統也可連接於絕對壓力感測器470以監測前端200之被控氣氛105之內部壓力。上述控制系統460亦可連接於排氣閥480以實行真空室140之排氣,亦可連接於真空室之負載閥410、420及處理模組。如此,控制系統460便可與處理裝置100協調實行例如通過真空室135、140及其他處理模組輸送基板等作業。儀器模組400之處理器455及/或控制系統460亦可直接地或遠距地連接於一合適之I/O裝置510(如圖3所示),該I/O裝置510能輸入資訊至控制系統460及處理器455,亦能顯示例如來自處理器455之壓力測定值(或其他物理特性)等資訊。
於處理裝置100操作之一實施例中,基板係藉由輸送裝置210從停靠在裝載埠125之基板匣130移出。使用壓力感測器470測定控制室105內部之壓力並傳送該測定壓力至控
制系統460。控制系統460亦可監控基板處理裝置100之運作狀況。舉例而言,控制系統460可使用測定儀器400測定或確認輸送室305及處理模組內之壓力或真空狀態是否為如所要求的。若其狀態未符合所要求之標準時,該控制系統可發出一錯誤信號或啟動(自動地或藉人工輸入)矯正程序。例如,當控制系統接收到來自測定儀器400之表示輸送室未處於所要求的真空狀態之測定輸出時,該控制系統即啟動真空泵建立所要求之真空狀態。若是接收自測定儀器400之指示顯示輸送室已達所要求的真空狀態,該控制系統即自動地停止真空泵。對於處理裝置100之任何必要區域或模組,其所需求之氣體狀態之產生或維持亦可同樣地運作。控制系統460亦可使用連接至裝載埠之測定儀器以判定真空室135、140之狀態並控制其運作。舉例而言,測定儀器400可使用感測器435、440、445測定真空室140內部之壓力,並傳送該測定之指示值(來自信號處理器455)至控制系統460。控制系統460可對照真空室140與可控環境兩者之測定壓力指示值,並操作真空泵465以控制真空室140使其內部氣體450與可控環境間之壓力相等。可將真空室140之閥410、420皆密封以使其壓力相等。在使壓力相等之過程中,控制系統460可使用來自信號處理器455經統一後之輸出值做為回授信號以控制真空泵465。因真空室140內之壓力變化(例如,輸送室與前端間之壓力時)係很大(例如,以十進位為單位),導致於整個壓力變化過程中,各感測器435、440、445無法在測定範圍內精確地測定壓力。因此,測定真空室140內之壓力時,
測定儀器之壓力指示值以感測器435、440、445中之2或多個為根據。舉例而言,當真空室、或其他室/模組處於高真空狀態時,測定儀器之指示值係可以IG感測器445為根據,當處於中真空狀態時,其指示值可以HL感測器440為根據,當處於大氣壓力狀態下,其指示值係可以PRD感測器435為根據。如圖1及圖3所示,當控制系統460一接收來自處理器455指示值時,可將位於真空室140與可控環境105間之閥410打開,使控制系統得以判定整個測定儀器400之壓力為平衡的。另外,亦可顯示來自感測器之壓力指示值於I/O裝置510。因為實際上真空室140內部氣體450與可控環境間之壓力相等,故閥410打開時並不會有氣體噴出,從而不會導致微粒污染物散佈於基板上。然後,控制系統460可指令基板輸送裝置210在真空室140與前端之間移送基板。當完成基板移送時可關閉閥410,此使得真空室之氣體不僅與前端之可控環境105隔絕,亦與後端300之隔離環境310隔絕。控制系統可使用真空泵465抽空真空室內部使壓力下降,以使真空室之氣體450與隔離環境310兩者間之壓力相等。測定儀器400可提供一用以控制真空泵465之回授信號給控制系統460。控制系統460亦可使用壓力感測器475監控隔離環境310內部之壓力。當控制系統已判定真空室之氣體450與輸送室305之隔離環境310兩者間之壓力實際上平衡時,控制系統可打開真空室與輸送室305間之閥,供真空室與輸送室305間移送基板用。另,為了於處理裝置100之前端與後端間裝卸基板,可重複此程序。同樣地,安裝在一或多個處理模組及
傳送室之測定儀器400於處理程序中係有助於基板在傳送室與處理模組(其係與傳送室隔離)間之裝卸。前述之操作說明僅為闡明測定儀器400於本實施例之應用。然,測定儀器400可做任何合適之應用,例如壓力或氣體密度之測定。於其他實施例中,測定儀器400可測定任何合適之物理量。
於本實施例中,在有需要之室/模組裡可讓壓力測定儀器400使用3個感測器435、440、445以測定整個壓力變化(例如,13 decades;從10^-10 Torr到10^-3 Torr)之壓力(但於其他實施例中,根據室內部壓力變化之範圍,可使用較多個或較少個感測器)。又,於本實施例中,各感測器435、440、445可具有不同之壓力測定範圍,測定儀器400可同時使用該3個感測器使其具有所需求的全部測定範圍。於本實施例中,可將處理器455(如圖2及圖3所示)程式化以使其測定壓力輸出值(亦即,得自測定儀器之壓力指示值)係依據感測器435、440、445中之最佳資料。因此於本實施例中,在一特定壓力之下,該處理器455可程式化的使用具最大準確性之感測器之測定資料(亦即,最佳資料)以代表該特定壓力。又,於本實施例中,各感測器435、440、445中之壓力範圍(或者說,各感測器相較於測定儀器的其他感測器來說具有最大準確性之壓力範圍)可被程式設計在處理器455中。舉例而言,該處理器455(或可被處理器455使用之記憶體位置)可具有例如一合適的演算法或對照表等類之程式456以識別及選擇各個感測器之壓力範圍。又,例如,該處理器455可直接或間接使用來自各感測器有關於指示壓力之校準線(例如,代
表正確壓力之函數之輸出信號)及正確壓力以制訂壓力計之壓力範圍。各感測器435、440、445之校準資料可透過全域網路或區域網路下載,或透過其他途徑以任何合適之方式輸入至該處理器455。於其他實施例中,感測器之校準資料可儲存在遠端位置(位於儀器製造場所之個人電腦)且處理器可藉由一合適之雙向聯繫路徑供存取之。另,於其他實施例中,可將處理器455及儀器安裝於適當處,使用已知之感測器校準技術以產生校準資料。圖6顯示,二個感測器440、445之典型校準線(例如,增益)PS1,PS2。對於不同氣體種類(例如,可控氣體、氮氣、氬氣),其適用於不同類型感測器(例如IG感測器445或HL感測器440)之校準標繪或校準線亦可不相同。於本實施例中,可設計處理器455之程式實行對應於室內部待測定之氣體種類之感測器校準資料之選擇。舉例而言,可將各感測器之不同氣體種類之校準線儲存於處理器455之程式456中。該程式456可使各個校準線連繫至對應於各感測器之氣體種類,並且於接收來自例如I/O裝置510或其他裝置之輸入時選擇一適當之校準線,並識別室內之氣體種類。該室內之氣體壓力乃由儀器400測定。按其他實施例,處理器455在接受到室內之氣體種類之識別輸入後可從遠端位置讀取或下載適當之校準線。
再者,同一類型(例如,IG、HL或PRD)之感測器,各個感測器之校準線不相同。如圖6所示之校準線PS1、PS1'及PS2、PS2'係圖示相同類型之不同感測器間其校準線或增益之變化情形。圖6所示之線圖僅為範例之一。於該範例中,
校準線PS2、PS2'可相當於不同PRD感測器,而校準線PS1、PS1'可相當於不同HL感測器。校準線PS2、PS1可分別地相當於PRD及測定儀器400之HL感測器435、440。校準線PS1、PS1'、PS2、PS2'之特徵僅為一例,於其他實施例中,感測器之校準線可具有其他意欲的特徵。如圖所示,各種PRD感測器之校準線PS2、PS2'與不同HL感測器之校準線PS1、PS1'相比,係具有較高之相對增益。但於其他實施例中,不同類型之感測器之相對增益可不相同。IG感測器(未顯示於圖中)之校準線可具有如圖6所示之校準線大致類似之特徵,並且IG感測器(例如,感測器445)之校準線與HL感測器(例如,感測器440)之校準線間之關係與圖6所示之校準線PS1、PS1'、PS2、PS2'大致類似。又,於另一實施例中,處理器455可程式化,用以計算或例如在各感測器提供最佳資料情況下從對應之感測器435、440、445之校準線PS1、PS1'、PS2、PS2',識別特定氣體種類之壓力(或其他測定之物理特性)範圍。舉例而言,由處理器暫存之氣體種類之特定感測器435、440、445之校準線可與所期望之閾值比較,以建立各感測器435、440、445之該特定氣體種類之最佳資料壓力範圍(在下文中或僅稱壓力範圍)。又,於其他實施例中,感測器之壓力範圍可從遠端輸入處理器或由該處理器下載。故由上述可知,暫存於處理器之壓力範圍可為表示感測器及表示氣體種類。舉例而言,處理器程式456可包含用以規定各感測器435、440、445對應不同氣體種類之壓力範圍之資訊(例如,演算法或對照表)。如上所述,當處理器455紀錄有各感測器
435、440、445之壓力範圍時,該處理器455可使用來自具有合適壓力範圍之感測器之壓力讀數做為感測器,測定室內部壓力之變化。此外,當測定之壓力超過特定感測器之壓力範圍時,處理器可在感測器間轉換。
為了防止測定儀器400之測定範圍有空隙,可使各感測器435、440、445之壓力範圍形成適當之重疊。因此,PRD感測器435之壓力範圍可與HL感測器440之壓力範圍重疊,進而使HL感測器440之壓力範圍與IG感測器445之壓力範圍重疊。圖4a係圖感測器435、440、445間代表性重疊區,其中線501、502代表對應感測器壓力範圍內之感測器讀數。由圖4a可知,感測器性能曲線501、502(即,感測器之實際壓力與感測器讀數之關係)與圖6所示之感測器校準線PS1、PS2大致類似。又,於本實施例中,曲線501、502亦可代表處理器之指示壓力(PIND
)(相當於實際壓力)。因此,將於下面詳述,處理器455所指示之壓力,即使在重疊區,亦可為感測器435、440、445中之一個之顯示值(即,壓力讀數)之函數。因此由圖4a可知,重疊之量可減至遠較傳統系統所要求之重疊範圍為小。於下面亦將詳述,例如,感測器435、440、445中之一個位於重疊範圍之終端時,來自其他感測器之讀數係有效的,因其可使處理器得以在複數的感測器間轉換。但如前所述,感測器壓力範圍,亦即重疊範圍之兩端點可隨量計(相同型)及氣體種類而改變。於本實施例中,可將處理器配置得能選擇感測器壓力範圍之兩端點,亦即例如選擇處理器在感測器間轉換時之轉換壓力(Pind
),
以利可只用來自感測器435、440、445中之一個壓力讀數(讀值)使測定儀器400之壓力指示可根據最佳資料。但,於其他實施例中,即壓力指示轉換感測器時,轉換壓力(PSW
)可由操作者通過例如I/O裝置510(如圖3所示)輸入至處理器,或從遠端由處理器下載。
再參照圖4a,圖中顯示來自2個感測器之壓力讀數依實際壓力改變之範例。於圖4a中,線501可代表例如來自電離感測器445之壓力讀數,線502可代表例如來自熱耗感測器440之壓力讀數。如前所述,熱耗感測器440與電離感測器445具有不同之測定範圍。因此,壓力低於轉換壓力PSW
時最好使用來自電離感測器445之壓力讀數做為測定儀器400之指示壓力之基礎,而壓力高於閾壓力PSW
時使用來自熱耗感測器440之壓力讀數做為測定儀器400之指示壓力之基礎。如圖4a所示,2個感測器間之讀數有差異(亦如圖6所示)。因此,於閾壓力PSW
時感測器440、445可能不會產生相同之壓力讀數。因此在該壓力下轉換二感測器間之壓力讀數時,可導致來自測定儀器400之指示壓力之突變或中斷。在處理過程中在資料流上出現中斷係極為困擾的事。舉例而言,在或接近閾壓力PSW
時發生指示壓力之變異時,可導致壓力之顯著變化,進而在壓力控制回授系統中發生遲滯效應或在處理系統中產生錯誤。再者,當監控壓力下降之環境時,可首先使用來自熱耗感測器440之壓力讀數判定指示壓力PIND
,如線502所示。當熱耗感測器440之壓力讀數達到閾壓力PSW
時,則可使用電離感測器445之壓力讀數決定指示壓力PIND
,
此如PIND
線501所示。然而,如圖4a所示,當熱耗感測器440之壓力讀數與閾壓力PSW
點相等時,實際壓力為PC
而電離感測器445之壓力讀數為PB
。由於PB
不相等於PSW
,因此會發生指示壓力PIND
之劇變。該壓力劇變不反映實際物理壓力之變化,只是由測定儀器引出之瑕疵(artifact)。類似之現象亦可能發生在壓力上升之環境,即首先感測器445之壓力讀數PIND
沿著線501,然後PIND
轉換到沿著感測器440之壓力讀數線502。當感測器445之壓力讀數達到閾壓力PSW
點時,實際壓力為PD
而感測器440之壓力讀數為PA
。由於PA
與PSW
之值不相等,因此只從一個感測器讀數轉換到另一感測器之讀數,即可能會產生指示壓力PIND
之劇變或中斷。
如圖4b所示,當處理器在轉換感測器間之讀數時,可在某些範圍內逐漸調變兩感測器壓力讀數之差而調整指示壓力PIND
。依本實施例,在轉換時,信號處理器455可使用來自〝轉換自〞=感測器(例如,處理器轉換前之感測器)之先前壓力讀數調整來自該〝轉換到〞感測器(例如,處理器轉換後之感測器)之現壓力讀數,產生輸出信號。圖4b例示,在感測器之間轉換時輸出信號PIND
是如何對實際壓力變化之情形。由圖示可知,當實際壓力由較高點往下下降時,指示之壓力PIND
直接相當於且大致相等於熱耗感測器440之讀數,此壓力讀數PIND
如線502所示。當感測器440之讀數下降到閾壓力PSW
以下時,PIND
即變為由感測器445之讀數決定。然而,當PIND
之判定由感測器440(〝轉換自〞感測器)之讀數轉換至由感測器445(〝轉換到〞感測器)之讀數決定時,需將PIND
對感測器445之讀數作對應之調整以補償兩感測器讀數之差異。因此實際壓力持續下降時,PIND
即沿線504變化。線504與線501之交會點係表示PIND
係相等於感測器445之壓力讀數。低於該壓力時,PIND
直接地相當於及實際上相等於感測器445之讀數。於本實施例中,PIND
並非隨時由感測器435、440、445之現壓力讀數決定而是由在測定儀器400之總壓力範圍所測得之單一感測器之讀數決定。圖4b亦顯示代表在壓力上升環境中之PIND
轉換曲線505。當壓力為較低且正在上升時,指示壓力PIND
可由感測器445之壓力讀數決定且大致相等於感測器445之壓力讀數,直到PIND
達到PSW
點時處理器才將讀數從感測器445轉換至感測器440。由於壓力持續上升,故PIND
沿曲線505轉換,且可由感測器440之現壓力讀數決定。在沿該曲線轉換中該PIND
係為相當於感測器440讀數之調整值。此可避免當PIND
由感測器445決定之狀況轉換為由另一感測器440決定之狀況時,發生PIND
值之突變。壓力持續上升,曲線505會與線502交會,以致PIND
相等於感測器440之讀數。在較高壓力時,PIND
可直接地相當於或大致相等於感測器440之讀數。
圖5為說明本發明之一實施例之流程圖,其顯示信號處理器455使用來自感測器435、440、445之讀數產生例如裝置100之室之指示壓力之程序。信號處理器455依該流程圖步驟操作所產生之結果則顯示於圖6。圖5所示之實施例中,區塊600及605(分別標以PS1及PS2)可分別代表一個感測器,例如熱耗感測器440之壓力讀數PS1(如前所述,亦可參
見圖6),及另一個感測器,例如壓敏電阻薄膜壓力感測器435之壓力讀數PS2(如前所述,亦可參見圖6)。同樣地,PS2及PS1亦可分別代表HL感測器440及IG感測器445之讀數。於區塊600I中,系統可開始操作。此系統操作可在例如儀器400的處理器455之起動/驅動等任何時間開始。舉例而言,處理器可執行一可確保儀器各組件(包括感測器435、440、445)正常運作之必要操作程序。處理器不僅可選擇,例如當處理器在轉換感測器時使用之各感測器之壓力範圍與轉換點(即PSW
)等操作參數,亦可選擇在感測器之間轉換時用以調整各感測器讀值之程式演算法(或對照表)。又,處理器445可例如藉登錄室內區塊600A之氣體種類選擇操作參數(如前所述,感測器壓力範圍,於是轉移壓力可隨氣體種類改變)。可藉由操作者通過輸入/輸出I/O裝置510(如圖3所示)或任何能與氣體聯繫之系統或裝置將氣體種類(例如,大氣、氮氣、氬氣)輸入至處理器予以登錄。在氣體種類登記後,處理器可選擇區塊600B中之各感測器435、440、445之對應於登錄氣體種類之壓力範圍。處理器亦可藉存取來自內部記憶體456中使各感測器之壓力範圍與氣體種類互相關聯之對照表實行操作參數之選擇。如前所述,處理器亦可從遠端位置存取各感測器之壓力範圍與所記錄氣體種類互相關聯之資訊。另,於其他實施例中,各感測器435、440、445之壓力範圍可由操作者通過I/O裝置或其他選擇器輸入各感測器之特定範圍予以選擇。藉由感測器之壓力範圍之選擇,可決定轉換壓力PSW
。舉例而言,如圖4a、圖4b顯示,當感測器之壓力範圍
依上述方式決定後,可將轉換壓力PSW
設定相當於感測器壓力範圍之終端點(例如,將PSW
設定相等於感測器壓力範圍終端點所示壓力,即分別位於曲線502、501之壓力PC
、PD
)。轉換壓力PSW
值可預設且儲存於處理器記憶體456中,或例如可被處理器存取之任何其他記憶體中,因而當處理器選定感測器壓力範圍之後,對應於該選擇之轉換壓力PSW
值便成為可識別。換言之,處理器已獲得壓力範圍選擇所用之PSW
值。另,於其他實施例中,為了利用感測器之最佳資料,可將處理器程式化以決定PSW
值。如前所述,不同感測器(相同類型)之準確性及範圍可不同(如圖6所示)。因此,對特定氣體種類而言,有些感測器可能比其他同類型感測器具有較大之操作範圍。此乃如圖4a中之延伸到終端壓力PC'
之延伸線502a所示,與線502所示之感測器範圍相較顯示有增加之範圍。鑑於感測器之增加之操作範圍,最好建立如圖4a之PSW
所示之轉換壓力以利用感測器之較大操作範圍,因而將PSW'
值設定低於PSW
值(具有較小壓力範圍之感測器)。舉例而言,具有較大操作範圍之感測器(相較於其他型感測器)比測定儀器之其他感測器435、440、445之一或多個具有優點(例如,較快速之回應、較高之準確性、各種氣體有實質獨立之讀數),因此最好使用此種有較大操作範圍之感測器。舉例而言,PRD感測器435比HL感測器有較快速之回應,於是最好盡可能廣泛使用該PRD感測器,並將轉換壓力PSW'
(用以在PRD感測器與HL感測器間轉換)大致設定於PRD感測器之極限/終端PC'
。因此,可將處理器445用前述之選擇
準則或要素予以程式化,以設定在PRD感測器與HL感測器間轉換之轉換壓力PSW
、PSW'
值位於PRD感測器範圍之下端,並如上所述,調整HL感測器之識別壓力範圍終於相當於設定之轉換壓力PSW'
之壓力PD'
。另,可將處理器445程式化,使其可使用資料或可存取資料(例如來自識別之終端點PC
、PC'
與感測器校準值)以計算PSW
、PSW'
值並且同樣地可調整HL感測器之壓力範圍。另,可將處理器445程式化,使其使用其他特定之要素在感測器間選擇轉換壓力PSW'
以利設定轉換壓力值對應於具有較高準確性之感測器或其他任何特定之選擇要素。
每個絕對讀數PS1、PS2均經由區塊620作為輸入使用。此外,於區塊610中預定設定啟動模式。於區塊610中,模式係設定為PS2-。該模式指示那一感應器讀數正在被處理器455用以決定指示壓力PIND
以及指示壓力是上升抑或下降中。於此範例中,壓力係先高隨後下降,因此將模式設定為PS2-,用以指示PIND
應由PS2先決定(即,例如根據PRD感測器而不根據熱耗或電離感測器)以及指示壓力是下降中。另外,於區塊610中,處理器亦可存取選定之轉換參數並設定變數KS1值為1而變數KS2值為0。接著,如下所述,可在其他區塊併用這些變數值與轉換參數決定PIND
。於區塊625中,決定PS1讀數是否有效(例如,是否落於感測器壓力範圍內)之判定。於此範例中,若是PS1讀數之數值小於預先設定之數值PHH
,則決定PS1讀數為有效。PHH
可為熱耗感測器440之操作範圍之上端點,超過該上端點時熱耗感測器之
讀數PS1會變為不夠準確。於區塊630中,回讀當前之模式以決定壓力為上升中或下降中。若是壓力為下降中則執行區塊635。於區塊635中,比較PS2與選定之PSW
兩者數值。若是PS2小於PSW
,則執行區塊640。反之,如下所述,執行區塊690。於區塊640中,模式係設定為PS1-,用以指出PIND
係易受熱耗感測器之PS1讀數之影響。於區塊645中,比較PS1與閾值PL
兩者數值,該PL
為PIND
直接相當於熱耗感測器PS1讀數之範圍時,該範圍之上端點之值。若是PS1小於PL時,執行區塊650,否則執行區塊705以產生PIND
數值。於區塊650中,比較PS1與閾值PLL
兩者數值,該PLL
為PRD感測器435之操作壓力範圍之下端點,當PS1讀數低於PLL
時PRD感測器不能產生足夠準確之讀數。又若PS1小於PLL
時,則執行區塊655,否則執行區塊665。於區塊665中,模式係設定為PS1+,用以指出PIND
係易受熱耗感測器440之PS1讀數之影響且壓力為上升中。於區塊660中,KS2係設定為PS2-PS1。換言之,KS2係被設定為由PRD感測器435產生之壓力讀數PS2與熱耗感測器440之壓力讀數PS1的差(difference)。於區塊665中,係設定PIND
等於熱耗感測器440之讀數PS1,然後重新執行區塊620。
假如於區塊630中,判定模式為正(亦即指示升壓)時,執行區塊670。於區塊670中,比較PS1與PSW
兩者數值。若是PSW
之數值係小於PS1,執行區塊675,反之,則執行區塊655。於區塊675中,設定模式為PS2+,此表示指示壓力PIND
對PRD感測器435之壓力讀數PS2敏感,即壓力上升。於區
塊680中,比較PS2與PH兩者數值,此PH
可為指示壓力PIND
直接相當於PRD感測器435的壓力讀數PS2範圍時之該範圍之終端點。若是PS2之數值大於PH
,執行區塊685。反之,則執行區塊710以產生PIND
數值。於區塊685中,比較PS2與PHH
兩者數值,此PHH
可為熱耗感測器440測定範圍之上終端點,PS2讀數超過PHH
時熱耗感測器440產生之讀數可能不夠準確。反之,若PS2之讀數大於PHH
,執行區塊690,反之,則執行區塊700。於區塊690中,KS1被設定等於PS2對PS1之比率。於區塊695中,模式被設定為PS2-,此表示PIND
對PS2敏感,即壓力下降。於區塊700中,設定PIND
等於PS2。然後重新執行區塊620。
於壓力下降,PRD感測器435之讀數PS2低於閾值PSW
,而熱耗感測器440之讀數PS1超過閾值PL
時,執行區塊705。此為PIND
受PS1而非受PS2之影響之範圍,其PIND
為調整PS1後之數值,該調整包括使PIND
曲線平順及避免中斷、突變、以及消除大差距。區塊705依下式決定PIND
值:
在壓力上升及熱耗感測器440之讀數PS1高於閾值PSW
,同時PRD感測器435之讀數PS2低於閾值PH
時,執行區塊710。此為PIND
受PS2而非受PS1之影響範圍,其中PIND
為調整PS2後之數值,該調整包括使PIND
曲線平順化同時避免
中斷、突變、以及消除大差距。區塊710依下式決定PIND
值:
爰再說明圖6,在該圖中亦顯示圖5流程圖所示步驟操作產生之PIND
值線圖。由圖可知,於閾值PSW
時,無論壓力之升降,指示之PIND
值皆無中斷。此乃由於PIND
值無如PIND
於閾值PSW時,於PIND
=PS2與PIND
=PS1之間單純地轉換時發生之突變,同時在計算位於或接近於閾值PSW(或在PIND
曲線之其他處)之PIND
衍生值或PIND
斜率時並不會產生高數值。因此可能需要使用PIND
衍生值作為回授以控制例如真空室內部氣體450等之壓力。
如前所述,本發明實施例之測定儀器除了具有PRD感測器435與熱耗感測器440外還可具有電離感測器445。可使用各該3個感測器之讀數產生一可在廣大測定範圍使用之指定壓力輸出。例如,壓力低於熱耗感測器440之操作壓力範圍時,可由比感測器440低壓範圍操作之電離感測器445之讀數決定指示壓力。由感測器440讀數決定之狀態轉換至由感測器445讀數決定之狀態之操作方法大致與參照圖5與圖6所述之使用感測器435讀數與使用感測器440讀數的轉換相同。因此,該測定儀器可在包含電離感測器445之操作範圍,熱耗感測器440之操作範圍以及PRD感測器435之操作範圍之廣大操作範圍做壓力之測定。在測定儀器400之整個廣大
操作範圍,其指示壓力常可僅由一個感測器之讀數決定,但由一個感測器之讀數轉換至另一感測器之讀數來指示壓力時,該指示之壓力亦不會有任何突變或中斷。於其他實施例中,測定儀器可具有例如2個感測器,或任何合適數目之感測器。又,於其他實施例中,任何合適之物理特性(例如,質量、力強度、光強度、磁場強度、或其他物理量或物理特性)可藉由感測器測定並由儀器指示之。
本發明已依實施例說明於上,但是在不背離本發明之精神及申請專利範圍界定之範圍內仍可作諸多變更及修飾,而這些變更及修飾應屬於本發明之範圍。
100‧‧‧基板處理裝置
105‧‧‧可控環境
120、125‧‧‧裝載埠
130‧‧‧基板匣
135、140‧‧‧真空室
210、320‧‧‧基板輸送裝置
215、335、340‧‧‧機械手臂
220、325‧‧‧驅動裝置
230、315‧‧‧機架
250、365‧‧‧末端作用器
305‧‧‧輸送室
310‧‧‧隔離環境
370‧‧‧處理模組
400‧‧‧壓力測定儀器
400C‧‧‧殼體
405、410、415、420‧‧‧閥
425‧‧‧壓力氣囊
435、440、445‧‧‧感測器
PRD‧‧‧壓組式
455‧‧‧信號處理器
458‧‧‧無線耦合
460‧‧‧控制系統
465‧‧‧真空泵
470、475‧‧‧壓力感測器
480‧‧‧進口閥
510‧‧‧輸出/輸入裝置
圖1為設置有本發明實施例之測定儀器之基板處理裝置的平面圖;圖2為圖1之測定儀器實施例之示意圖;圖3為圖1之處理裝置之各組件間之連接之系統示意圖;圖4a為本發明實施例之感測器信號之信號線圖;圖4b為本發明實施例之感測器信號之另一信號線圖;圖5為本發明實施例之流程圖;及圖6為本發明實施例之另一信號線圖。
100‧‧‧基板處理裝置
105‧‧‧可控環境
120、125‧‧‧裝載埠
130‧‧‧基板匣
135、140‧‧‧真空室
210、320‧‧‧基板輸送裝置
215、335、340‧‧‧機械手臂
220、325‧‧‧驅動裝置
315‧‧‧機架
250、365‧‧‧末端作用器
305‧‧‧輸送室
310‧‧‧隔離環境
370‧‧‧處理模組
400‧‧‧壓力測定儀器
405、410、415、420‧‧‧閥
465‧‧‧真空泵
470、475‧‧‧壓力感測器
Claims (22)
- 一種壓力測定儀器,包括:處理器,適用於輸出含有物理特性的量度之測定信號;第一感測器,連接於該處理器且可操作來產生該物理特性的第一量度;第二感測器,連接於該處理器且可操作來產生該物理特性的第二量度;及轉換選擇器,連接於該處理器且用以達成在該第一感測器與該第二感測器之間的預定轉換之選擇;其中該處理器界定第一測定範圍,在此範圍內該測定信號係取決於該第一量度而非取決於該第二量度;及界定第二測定範圍,在此範圍內該測定信號係取決於該第二量度而非取決於該第一量度;該第一測定範圍與該第二測定範圍係於該預定轉換時交會,被含於該測定信號中之該量度在該第一測定範圍與該第二測定範圍間轉換;該第一量度與該第二量度在該轉換係不相同,且被含於該測定信號中之該量度相對於該第一測定範圍與該第二測定範圍的其中一者被調整,使得該測定信號可在實質上沒有突然改變的情況下渡過該轉換,其中相較於對下降的物理特性之該轉換,對上升的物理特性之該轉換發生在較高的實際值。
- 如請求項1之壓力測定儀器,其中被含於該測定信號中之該量度係在該第二測定範圍之至少一部份相對於該第二量度被調整,使該量度在渡過從該第一測定範圍至該 第二測定範圍的該轉換時不會突然改變。
- 如請求項1之壓力測定儀器,其中該物理特性係壓力。
- 如請求項1之壓力測定儀器,其中該物理特性係氣體密度。
- 如請求項1之壓力測定儀器,其中被含於該測定信號中之該量度於該第一測定範圍之至少一部份係大致等於該第一量度,且其中被含於該測定信號中之該量度於該第二測定範圍之至少一部份係大致等於該第二量度。
- 如請求項1之壓力測定儀器,其中該第一感測器與該第二感測器之至少一個係選自壓敏電阻薄膜(PRD)感測器、熱耗(HL)感測器、及電離感測器的至少一個。
- 如請求項1之壓力測定儀器,進一步包括第三感測器,其係連接至該處理器且可操作來產生該物理特性的第三量度,該轉換選擇器係用以達成在該第一感測器、該第二感測器及該第三感測器之間的預定轉換之選擇。
- 一種工件處理裝置,該裝置包括內部含有氣體之至少一個模組,及連接於該至少一個模組之如請求項1之壓力測定儀器,以測定該模組內的氣體之物理特性。
- 一種壓力計,包括:壓力指示器;第一壓力感測器,連接於該壓力指示器且可操作來產生第一壓力讀數;及第二壓力感測器,連接於該壓力指示器且可操作來產 生第二壓力讀數;其中,當該第一壓力讀數高於可選擇之預定壓力值且下降時,該壓力指示器係用以響應該第一壓力讀數,而非響應該第二壓力讀數來指示壓力,其中對下降壓力的該可選擇之預定壓力值係低於對上升壓力的可選擇之預定壓力值;其中,當該第一壓力讀數低於該可選擇之預定壓力值且下降時,該壓力指示器係用以響應該第二壓力讀數,而非響應該第一壓力讀數來指示壓力;及其中,該壓力指示器係用以藉由指示相對於該第一壓力讀數與該第二壓力讀數的其中一者被調整之調整壓力讀數來在含有該預定壓力值之一指示壓力之範圍以大致連續之函數來指示壓力,而於該第一壓力讀數大致等於該預定壓力值時,指示該第二壓力讀數與該第一壓力讀數不相同。
- 如請求項9之壓力計,其中在該第一壓力讀數高於該可選擇之預定壓力值時,該壓力指示器係用以指示大致等於該第一壓力讀數之壓力。
- 如請求項10之壓力計,其中在該第一壓力讀數小於低於該預定壓力值之第二預定壓力值時,該壓力指示器進一步用以指示大致等於該第二壓力讀數之壓力。
- 如請求項11之壓力計,其中該第二預定壓力值係可選自一些不同之預定壓力值,且其中該壓力指示器具有一選擇器,用以選擇該可選擇之預定壓力值與該第二預定 壓力值。
- 如請求項11之壓力計,其中該壓力指示器係用以在含有該第二預定壓力值之範圍以一連續可微分函數來指示壓力。
- 如請求項13之壓力計,其中該被指示的壓力在該等預定壓力值之間不具有反曲點。
- 如請求項11之壓力計,其中該預定壓力值界定一轉換壓力範圍之端點,且其中該壓力指示器係用以在該轉換壓力範圍內,相對於該第二壓力讀數來指示調整壓力讀數,該調整壓力讀數係響應該第二壓力讀數而被調整,使得該調整壓力讀數在該預定壓力值相等於該第一壓力讀數。
- 一種壓力計,包括:壓力指示器;第一壓力感測器,連接於該壓力指示器且可操作來產生第一壓力讀數;及第二壓力感測器,連接於該壓力指示器且可操作來產生第二壓力讀數;其中,當該第一壓力讀數低於可選擇之預定壓力值且上升時,該壓力指示器係用以響應該第一壓力讀數,而非響應該第二壓力讀數來指示壓力,其中對上升壓力的該可選擇之預定壓力值係高於對下降壓力的可選擇之預定壓力值;其中,當該第一壓力讀數高於該可選擇之預定壓力值 且上升時,該壓力指示器係用以響應該第二壓力讀數,而非響應該第一壓力讀數來指示壓力;及其中,該壓力指示器係用以藉由指示相對於該第一壓力讀數與該第二壓力讀數的其中一者被調整之調整壓力讀數來在含有該預定壓力值之一指示壓力之範圍以大致連續之函數來指示壓力,而於該第一壓力讀數大致等於該預定壓力值時,指示該第二壓力讀數與該第一壓力讀數不相同。
- 如請求項16之壓力計,其中在該第一壓力讀數低於預定壓力值且上升時,該壓力指示器係用以指示大致等於該第一壓力讀數之壓力。
- 如請求項17之壓力計,其中在該第一壓力讀數小於低於該預定壓力值的第二預定壓力值時,該壓力指示器係進一步用以指示大致等於該第二壓力讀數之壓力。
- 如請求項18之壓力計,其中該壓力指示器係用以在含有該第二預定壓力值之範圍以一連續可微分函數來指示壓力。
- 一種壓力測定方法,包括:以第一感測器產生可計量之物理特性之第一量度;以第二感測器產生該可計量之物理特性之第二量度;以處理器來從一些不同之可選擇轉換量度中選擇一轉換量度;只在該第一量度超過該可計量之物理特性之第一範圍時,響應該第一量度來指示該可計量之物理特性之量度; 只在該第二量度超過該物理特性之第二範圍時,響應該第二量度來指示該可計量之物理特性的量度,該第二範圍係於該可計量之物理特性的該轉換量度與該第一範圍相連;在該第一範圍及該第二範圍的其中之一內調整該可計量之物理特性的該被指示之量度,使該被指示之量度於在該第一範圍與該第二範圍之間轉換時不會突然改變,且在該轉換量度時該第一量度與該第二量度係不相同,其中相較於對下降的物理特性之轉換量度,對上升的物理特性之轉換量度發生在較高的實際值。
- 如請求項20之壓力測定方法,其中當該可計量之物理特性下降時,該被指示之量度係只於該第二範圍中被調整。
- 如請求項21之壓力測定方法,其中當該可計量之物理特性上升時,該被指示之量度係只於該第一範圍中被調整。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/739,986 US8195418B2 (en) | 2007-04-25 | 2007-04-25 | Pressure measurement instrument and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200912270A TW200912270A (en) | 2009-03-16 |
TWI509232B true TWI509232B (zh) | 2015-11-21 |
Family
ID=39888008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097115165A TWI509232B (zh) | 2007-04-25 | 2008-04-28 | 壓力測定儀器、壓力測定方法及工件處理裝置 |
Country Status (6)
Country | Link |
---|---|
US (3) | US8195418B2 (zh) |
EP (1) | EP2140241A4 (zh) |
JP (2) | JP2010525366A (zh) |
CN (1) | CN101688813B (zh) |
TW (1) | TWI509232B (zh) |
WO (1) | WO2008133927A1 (zh) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8195418B2 (en) * | 2007-04-25 | 2012-06-05 | Brooks Automation, Inc. | Pressure measurement instrument and method |
GB2462309B (en) * | 2008-08-01 | 2012-05-30 | Cary Ratner | Pressure gauge |
US7779699B2 (en) * | 2009-01-13 | 2010-08-24 | Kulite Semiconductor Products, Inc. | Apparatus for measuring multiple pressures within different pressure ranges |
US9181097B2 (en) * | 2009-02-19 | 2015-11-10 | Sundew Technologies, Llc | Apparatus and methods for safely providing hazardous reactants |
US7997143B2 (en) * | 2009-04-09 | 2011-08-16 | Kulite Semiconductor Products, Inc. | Internally switched multiple range transducer |
JP5059054B2 (ja) * | 2009-05-25 | 2012-10-24 | 東京エレクトロン株式会社 | 基板処理システム、基板検出装置および基板検出方法 |
EP2345876B1 (en) * | 2010-01-18 | 2019-09-11 | Flow-Tronic S.A. | Method for avoiding jumps in measurement results and improving accuracy in hybrid flow meters |
US8616043B2 (en) * | 2010-04-30 | 2013-12-31 | Applied Materials, Inc. | Methods and apparatus for calibrating pressure gauges in a substrate processing system |
US8276458B2 (en) * | 2010-07-12 | 2012-10-02 | Rosemount Inc. | Transmitter output with scalable rangeability |
US8838421B2 (en) | 2011-09-30 | 2014-09-16 | Freescale Semiconductor, Inc. | Method and circuit for calculating sensor modelling coefficients |
US8942958B2 (en) * | 2011-09-30 | 2015-01-27 | Freescale Semiconductor, Inc. | Method and apparatus for calculating sensor modelling coefficients |
US8930157B2 (en) | 2012-02-21 | 2015-01-06 | Dresser, Inc. | Temperature compensated digital pressure transducer |
JP5773223B2 (ja) * | 2012-12-21 | 2015-09-02 | 村田機械株式会社 | 型締装置と型締方法 |
US9454158B2 (en) | 2013-03-15 | 2016-09-27 | Bhushan Somani | Real time diagnostics for flow controller systems and methods |
EP3066418A1 (en) * | 2013-11-06 | 2016-09-14 | Hexagon Metrology (Israel) | Method and system for analyzing spatial measuring data |
US20150160646A1 (en) * | 2013-12-06 | 2015-06-11 | Ben Ward | Systems and methods for preventing tool damage in a computer controlled resurfacing machine |
JP6234325B2 (ja) * | 2014-05-23 | 2017-11-22 | 株式会社荏原製作所 | 圧力校正用治具、及び、基板処理装置 |
JP2017022933A (ja) * | 2015-07-14 | 2017-01-26 | 株式会社ミツトヨ | フィードバック制御装置 |
US10192763B2 (en) * | 2015-10-05 | 2019-01-29 | Applied Materials, Inc. | Methodology for chamber performance matching for semiconductor equipment |
US10083883B2 (en) * | 2016-06-20 | 2018-09-25 | Applied Materials, Inc. | Wafer processing equipment having capacitive micro sensors |
US10983537B2 (en) | 2017-02-27 | 2021-04-20 | Flow Devices And Systems Inc. | Systems and methods for flow sensor back pressure adjustment for mass flow controller |
US10612991B1 (en) * | 2017-08-25 | 2020-04-07 | Fluke Corporation | High dynamic range capacitive pressure sensor |
JP6851348B2 (ja) * | 2018-08-15 | 2021-03-31 | 日本電子株式会社 | 真空装置及び復旧支援方法 |
CN111638023B (zh) * | 2020-05-15 | 2022-04-26 | 北京山太公务机维修技术有限公司 | 一种飞机油箱压力测试方法及系统 |
KR102563390B1 (ko) * | 2020-12-29 | 2023-08-04 | 한국전자기술연구원 | 지자기 센서의 자기장 측정 구간 및 범위 자동 조정 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6318183B1 (en) * | 1998-12-22 | 2001-11-20 | Motorola, Inc. | Multiple element pressure sensor having a selectively pressure sensor range |
JP2001526419A (ja) * | 1997-12-05 | 2001-12-18 | ローズマウント インコーポレイテッド | プロセス制御センサ用多レンジ遷移方法および装置 |
JP2003021566A (ja) * | 2001-07-10 | 2003-01-24 | Teijin Seiki Co Ltd | シリコンダイアフラム型真空圧力センサ装置およびその装置を用いた圧力測定方法 |
US7007551B2 (en) * | 2003-12-11 | 2006-03-07 | Proteus Biomedical, Inc. | Pressure sensors having transducers positioned to provide for low drift |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3750151A (en) * | 1971-08-25 | 1973-07-31 | H Dill | Three-phase rotating ring display |
US4949274A (en) * | 1987-05-22 | 1990-08-14 | Omega Engineering, Inc. | Test meters |
JPH05133763A (ja) * | 1991-11-11 | 1993-05-28 | Yamatake Honeywell Co Ltd | センサの切替装置 |
CH688210A5 (de) * | 1993-12-15 | 1997-06-13 | Balzers Hochvakuum | Druckmessverfahren und Druckmessanordnung zu dessen Ausfuehrung |
US6085156A (en) * | 1998-03-20 | 2000-07-04 | National Instruments Corporation | Instrumentation system and method having instrument interchangeability |
NO310322B1 (no) * | 1999-01-11 | 2001-06-18 | Flowsys As | Maling av flerfasestromning i ror |
CA2314573C (en) * | 2000-01-13 | 2009-09-29 | Z.I. Probes, Inc. | System for acquiring data from a facility and method |
CA2803914C (en) * | 2004-09-03 | 2016-06-28 | Watlow Electric Manufacturing Company | Power control system |
JP4534995B2 (ja) | 2006-02-02 | 2010-09-01 | 株式会社明電舎 | ディジタル形保護継電装置のリスタート方式 |
US7490512B2 (en) * | 2006-09-01 | 2009-02-17 | Jacob Fraden | Detector of low levels of gas pressure and flow |
US8195418B2 (en) * | 2007-04-25 | 2012-06-05 | Brooks Automation, Inc. | Pressure measurement instrument and method |
-
2007
- 2007-04-25 US US11/739,986 patent/US8195418B2/en not_active Expired - Fee Related
-
2008
- 2008-04-24 JP JP2010506251A patent/JP2010525366A/ja active Pending
- 2008-04-24 CN CN2008800214802A patent/CN101688813B/zh not_active Expired - Fee Related
- 2008-04-24 WO PCT/US2008/005262 patent/WO2008133927A1/en active Search and Examination
- 2008-04-24 EP EP08743228.2A patent/EP2140241A4/en not_active Withdrawn
- 2008-04-28 TW TW097115165A patent/TWI509232B/zh not_active IP Right Cessation
-
2012
- 2012-06-01 US US13/487,018 patent/US8589107B2/en not_active Expired - Fee Related
-
2013
- 2013-11-18 US US14/082,894 patent/US20140081581A1/en not_active Abandoned
-
2015
- 2015-02-27 JP JP2015038138A patent/JP5905137B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001526419A (ja) * | 1997-12-05 | 2001-12-18 | ローズマウント インコーポレイテッド | プロセス制御センサ用多レンジ遷移方法および装置 |
US6318183B1 (en) * | 1998-12-22 | 2001-11-20 | Motorola, Inc. | Multiple element pressure sensor having a selectively pressure sensor range |
JP2003021566A (ja) * | 2001-07-10 | 2003-01-24 | Teijin Seiki Co Ltd | シリコンダイアフラム型真空圧力センサ装置およびその装置を用いた圧力測定方法 |
US7007551B2 (en) * | 2003-12-11 | 2006-03-07 | Proteus Biomedical, Inc. | Pressure sensors having transducers positioned to provide for low drift |
Also Published As
Publication number | Publication date |
---|---|
US20140081581A1 (en) | 2014-03-20 |
JP2010525366A (ja) | 2010-07-22 |
EP2140241A4 (en) | 2017-01-11 |
JP5905137B2 (ja) | 2016-04-20 |
EP2140241A1 (en) | 2010-01-06 |
US8589107B2 (en) | 2013-11-19 |
WO2008133927A8 (en) | 2009-12-17 |
CN101688813A (zh) | 2010-03-31 |
JP2015143692A (ja) | 2015-08-06 |
US8195418B2 (en) | 2012-06-05 |
CN101688813B (zh) | 2013-07-17 |
TW200912270A (en) | 2009-03-16 |
US20080270046A1 (en) | 2008-10-30 |
US20120239307A1 (en) | 2012-09-20 |
WO2008133927A1 (en) | 2008-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI509232B (zh) | 壓力測定儀器、壓力測定方法及工件處理裝置 | |
JP4502590B2 (ja) | 半導体製造装置 | |
US6672171B2 (en) | Combination differential and absolute pressure transducer for load lock control | |
US8510071B2 (en) | High-frequency measuring device and high-frequency measuring device calibration method | |
TWI495889B (zh) | 用以基於馬達電流判定泵壓力的系統及方法 | |
CN104750125B (zh) | 一种质量流量控制器的校准方法及装置 | |
TWI305372B (zh) | ||
TWI642912B (zh) | 用於暫態氣流之度量衡方法 | |
US20010029889A1 (en) | Combination differential and absolute pressure transducer for load lock control | |
US8616043B2 (en) | Methods and apparatus for calibrating pressure gauges in a substrate processing system | |
US20190139796A1 (en) | Monitoring apparatus and semiconductor manufacturing apparatus including the same | |
US20120053860A1 (en) | Differential pressure sensor and method | |
JP2007019431A (ja) | 基板処理監視装置、基板処理監視システム、基板処理監視プログラム及び記録媒体 | |
JP2004273682A (ja) | 処理装置 | |
US20100119351A1 (en) | Method and system for venting load lock chamber to a desired pressure | |
KR102670546B1 (ko) | 기판 처리 시스템에서 액체 유량계의 에러를 판단하는 장치 및 방법 | |
CN217765351U (zh) | 电离真空变送器检测装置 | |
US20050204824A1 (en) | Device and system for pressure sensing and control | |
EP1388888B1 (en) | Combination differential and absolute pressure transducer for load lock control | |
JP2021056806A (ja) | バルブ装置の検査システム、検査方法および半導体製造装置 | |
KR20050089215A (ko) | 반도체 소자 제조장치 | |
KR20030060434A (ko) | 진공 게이지 교정 장치 | |
KR20040063048A (ko) | 진공 게이지 교정 장치 | |
JP2010283211A (ja) | プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |