TWI495970B - Method and arrangement for detecting in-situ fast transient event - Google Patents

Method and arrangement for detecting in-situ fast transient event Download PDF

Info

Publication number
TWI495970B
TWI495970B TW099121513A TW99121513A TWI495970B TW I495970 B TWI495970 B TW I495970B TW 099121513 A TW099121513 A TW 099121513A TW 99121513 A TW99121513 A TW 99121513A TW I495970 B TWI495970 B TW I495970B
Authority
TW
Taiwan
Prior art keywords
data
fast transient
fast
sensor
situ
Prior art date
Application number
TW099121513A
Other languages
Chinese (zh)
Other versions
TW201115288A (en
Inventor
Luc Albarede
Vijayakumar C Venugopal
Original Assignee
Lam Res Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Res Corp filed Critical Lam Res Corp
Publication of TW201115288A publication Critical patent/TW201115288A/en
Application granted granted Critical
Publication of TWI495970B publication Critical patent/TWI495970B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Description

原位快速暫態事件之偵測方法及裝置Method and device for detecting in-situ fast transient event

本發明主張美國臨時專利申請案第61/222,102號之優先權,其名稱為「Methods and Systems for Advance Equipment Control/Advance Process Control for Plasma Processing Tools」,申請於2009年6月30日,發明人為Venugopal等人,其全文係以參考文獻之方式合併於此。The present invention claims priority to US Provisional Patent Application No. 61/222,102, entitled "Methods and Systems for Advance Equipment Control/Advance Process Control for Plasma Processing Tools", filed on June 30, 2009, inventor Venugopal The entire text is incorporated herein by reference.

本案為美國專利申請案第12/555,674號之部份連續案且主張其優先權,其名稱為「Arrangement for Identifying Uncontrolled Events at the Process Module Level and Methods Thereof」,發明人為Huang等人,申請於2009年9月8日,此美國專利申請案更主張美國臨時專利申請案第61/222,024號之優先權,其名稱為「Arrangement for Identifying Uncontrolled Events at the Process Module Level and Methods Thereof」,發明人為Huang等人,申請於2009年6月30日,前述兩案係以參考文獻之方式合併於此。This is a continuation of the U.S. Patent Application Serial No. 12/555,674, which is entitled "Arrangement for Identifying Uncontrolled Events at the Process Module Level and Methods Thereof", invented by Huang et al. On September 8, the U.S. Patent Application No. 61/222,024, the name of which is "Arrangement for Identifying Uncontrolled Events at the Process Module Level and Methods Thereof", the inventor is Huang et al. The application was filed on June 30, 2009, and the aforementioned two cases are hereby incorporated by reference.

本發明係關於電漿處理,特別是關於在基板處理期間偵測處理室內的快速暫態事件之方法與裝置。This invention relates to plasma processing, and more particularly to methods and apparatus for detecting rapid transient events within a processing chamber during substrate processing.

電漿處理的進步已為半導體工業帶來成長。為了更具競爭力,製造商必須能夠處理基板成為高品質的半導體裝置。通常需要嚴格控制製程參數,以在基板處理期間達成令人滿意的結果。當製程參數(例如RF功率、壓力、偏壓電壓、離子流量、電漿密度等等)超出預定區間(window)時,可能會造成不想要的處理結果(例如粗劣的蝕刻輪廓、低選擇性、對基板的損傷、對處理室的損傷等等)。因此,在半導體裝置製程中,識別出當製程參數超出預定區間時之狀況的能力是很重要的。Advances in plasma processing have brought growth to the semiconductor industry. To be more competitive, manufacturers must be able to handle substrates into high-quality semiconductor devices. Process parameters are often tightly controlled to achieve satisfactory results during substrate processing. When process parameters (eg, RF power, pressure, bias voltage, ion flow, plasma density, etc.) exceed a predetermined window, undesired processing results may be caused (eg, poor etch profile, low selectivity, Damage to the substrate, damage to the processing chamber, etc.). Therefore, in the semiconductor device process, it is important to recognize the ability to condition when the process parameters exceed a predetermined interval.

在基板處理期間,可能損傷基板和/或造成處理室組件損傷之某些不可控制事件可能會發生。為了識別出這些不可控制事件,可在基板處理期間收集資料。可使用偵測裝置(例如感應器)在基板處理期間來收集與各種製程參數(例如偏壓電壓、反射功率、壓力等等)有關之資料。如本文所述,感應器意指可用以偵測電漿處理組件之狀況和/或訊號之裝置。為了方便敘述,「組件」一詞將用以表示處理室中之原子或多重組件。Certain uncontrollable events that may damage the substrate and/or cause damage to the process chamber components may occur during substrate processing. In order to identify these uncontrollable events, data can be collected during substrate processing. Materials associated with various process parameters (eg, bias voltage, reflected power, pressure, etc.) may be collected during substrate processing using a detection device (eg, an inductor). As used herein, an inductor means a device that can be used to detect the condition and/or signal of a plasma processing component. For convenience of description, the term "component" will be used to refer to an atom or multiple components in a processing chamber.

近年來,由感應器收集之資料類型和資料量已增加。藉由分析由感應器收集之與製程模組資料和處理內容資料(處理室事件資料)相關之資料,可識別出超過預定區間之參數。因此,可提供改正動作(例如配方調整)以停止不可控制事件,藉此進一步防止對基板和/或處理室組件產生損傷。In recent years, the types of data and the amount of data collected by sensors have increased. By analyzing the data collected by the sensor related to the process module data and the processing content data (processing room event data), parameters exceeding the predetermined interval can be identified. Thus, corrective actions (e.g., recipe adjustments) can be provided to stop uncontrollable events, thereby further preventing damage to the substrate and/or process chamber components.

本發明提供一種原位快速暫態事件之偵測方法,此事件發生於基板處理期間之處理室內。此方法包含一組感應器,用以將一資料組與一組標準值(原位快速暫態事件)相比較,以判定是否此第一資料組包含潛在原位快速暫態事件。若第一資料組包含潛在原位快速暫態事件,此方法亦包含儲存發生於潛在原位快速暫態事件發生期間的電子簽章。此方法更包含將電子簽章與一組儲存之弧光簽章相比較。若判定為符合,此方法更加包含將電子簽章分類為第一原位快速暫態事件,以及基於一組預定之閾值範圍來判定此第一原位快速暫態事件之嚴重性程度。The present invention provides a method for detecting in-situ fast transient events that occurs during processing in a processing chamber during substrate processing. The method includes a set of sensors for comparing a data set with a set of standard values (in-situ fast transient events) to determine if the first data set contains potential in-situ fast transient events. If the first data set contains potential in-situ fast transient events, the method also includes storing electronic signatures that occur during the occurrence of a potential in-situ fast transient event. This method also includes comparing the electronic signature with a set of stored arc signatures. If the determination is met, the method further includes classifying the electronic signature as the first in-situ fast transient event, and determining the severity of the first in-situ fast transient event based on a predetermined set of threshold ranges.

本發明將參照其一些如隨附之圖式所展示之實施例加以詳述。在以下敘述中,為提供對本發明之完整了解,提出許多特定細節。然而,熟悉本技藝者應當了解,本發明可在沒有部份或全部此等特定細節下加以實施。在其它例子中,為了不模糊本發明,將不再詳述習知處理步驟和/或結構。The invention will be described in detail with reference to some embodiments shown in the accompanying drawings. In the following description, numerous specific details are set forth to provide a complete understanding of the invention. It will be appreciated by those skilled in the art, however, that the present invention may be practiced without some or all of the specific details. In other instances, well known process steps and/or structures are not described in detail in order not to obscure the invention.

以下敘述數種實施例,包括有方法以及技術。應記住本發明亦可涵蓋包括有電腦可讀媒體(在其上儲存有用以執行本發明技術之實施例的電腦可讀指令)之製造品。電腦可讀媒體可包含,例如,半導體、磁性、光磁、光學、或其它形式之用以儲存電腦可讀碼之電腦可讀媒體。再者,本發明亦可涵蓋用以實施本發明實施例之設備。此等設備可包含用以執行與本發明實施例相關之作業的專用和/或可程式化電路。此等設備的例子包含通用型電腦和/或經適當程式化之專用型計算裝置,且可包含用於與本發明實施例相關之各種作業的專用/可程式化電路以及電腦/計算裝置的組合。Several embodiments are described below, including methods and techniques. It should be borne in mind that the present invention may also encompass an article of manufacture including a computer readable medium having computer readable instructions stored thereon for performing embodiments of the present technology. The computer readable medium can comprise, for example, a semiconductor, magnetic, magneto-optical, optical, or other form of computer readable medium for storing computer readable code. Furthermore, the invention may also encompass apparatus for carrying out embodiments of the invention. Such devices may include dedicated and/or programmable circuitry to perform the operations associated with embodiments of the present invention. Examples of such devices include general purpose computers and/or suitably programmed special purpose computing devices, and may include dedicated/programmable circuits and computer/computing device combinations for various operations associated with embodiments of the present invention. .

如上所述,為獲得競爭力,製造商必須能夠有效且有效率地解決基板處理期間可能產生的問題。疑難排解通常牽涉分析於處理期間收集之過量資料。為幫助說明,圖1展示具有主機層次分析伺服器之互連工具環境的先前技術總邏輯圖。As noted above, in order to be competitive, manufacturers must be able to effectively and efficiently address issues that may arise during substrate processing. Troubleshooting often involves analyzing excess data collected during processing. To aid in the description, Figure 1 shows a prior art general logic diagram of an interconnect tool environment with a host analytics server.

考慮其中的情況,例如,製造商可能有一個以上的群組工具(例如蝕刻工具、清理工具、剝除工具等等)。每一個群組工具可有複數個製程模組,其中每一個製程模組用於一個以上之特定處理。每一個群組工具可由一個群組工具控制器(CTC),例如CTC 104、CTC 106和CTC 108,所控制。每一個群組工具控制器可與一個以上之製程模組控制器(PMC),例如PMC 110、112、114和116,互相作用。為簡化說明,將提供與PMC 110相關之例子。Consider the situation, for example, the manufacturer may have more than one group tool (such as etching tools, cleaning tools, stripping tools, etc.). Each group tool can have a plurality of process modules, each of which is used for more than one specific process. Each group tool can be controlled by a group tool controller (CTC), such as CTC 104, CTC 106, and CTC 108. Each group tool controller can interact with more than one process module controller (PMC), such as PMCs 110, 112, 114, and 116. To simplify the description, examples related to PMC 110 will be provided.

為了識別可能需要干預之狀況,可在基板處理期間採用感應器來收集有關製程參數之資料(感應資料)。在一例子中,於基板處理期間,複數個感應器(例如感應器118、120、122、124、126、128、130、132、134、136、138和140)可與製程模組控制器互相作用,以收集有關一個以上製程參數之資料。可利用的感應器種類可取決於可收集之資料種類。例如,可配置感應器118來收集電壓資料。在另一例子中,可配置感應器120來收集壓力資料。一般來說,可用以從製程模組收集資料之感應器可為不同品牌、型式和/或樣式。因此,一感應器與另一感應器可具有極小或沒有互相作用。In order to identify conditions that may require intervention, sensors may be used during substrate processing to collect data on process parameters (sensing data). In one example, during substrate processing, a plurality of inductors (eg, inductors 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, and 140) may interact with the process module controller Role to collect information about more than one process parameter. The type of sensor available can depend on the type of data that can be collected. For example, sensor 118 can be configured to collect voltage data. In another example, the sensor 120 can be configured to collect pressure data. In general, the sensors that can be used to collect data from the process modules can be of different brands, styles, and/or styles. Therefore, one sensor and another sensor can have little or no interaction.

通常,配置感應器以收集有關一個以上特定參數之量測資料。由於大部份感應器並非用以執行處理,每一個感應器可與計算模組(例如電腦、使用者界面等等)連接。通常配置計算模組來處理類比資料,並將原始類比資料轉換成數位格式。Typically, sensors are configured to collect measurement data for more than one specific parameter. Since most of the sensors are not used to perform processing, each sensor can be connected to a computing module (eg, computer, user interface, etc.). A computing module is typically configured to process analog data and convert raw analog data to a digital format.

在一例子中,感應器118經由感應器纜線144從PMC 110收集電壓資料。由計算模組118b處理感應器118所接收之類比電壓資料。將感應器所收集之資料傳送到主機層次分析伺服器(例如資料盒142)。在透過網路連接將資料向前傳送到資料盒142之前,先藉由計算模組將資料從類比格式轉換成數位格式。在一例子中,在將資料透過網路路徑146傳送到資料盒142之前,計算模組118b將感應器118所收集之類比資料轉換成數位格式。In an example, the inductor 118 collects voltage data from the PMC 110 via the inductor cable 144. The analog voltage data received by the inductor 118 is processed by the computing module 118b. The data collected by the sensor is transmitted to a host analytics server (eg, data box 142). Before the data is forwarded to the data box 142 via the network connection, the data is converted from the analog format to the digital format by the computing module. In one example, computing module 118b converts the analog data collected by sensor 118 into a digital format prior to transmitting the data to data cartridge 142 via network path 146.

資料盒142可為用以從複數個來源(包含感應器和製程模組)收集、處理和分析資料之中央式分析伺服器。通常,一個資料盒可用於處理在基板處理期間由單一製造商之所有群組工具收集之資料。The data box 142 can be a central analysis server for collecting, processing, and analyzing data from a plurality of sources, including sensors and process modules. Typically, a data cartridge can be used to process data collected by all group tools of a single manufacturer during substrate processing.

可傳送到資料盒142之實際資料量可顯著少於感應器所收集之資料量。通常,感應器可收集大量資料。在一例子中,感應器收集資料之速率可高達每秒1百萬位元。然而,只有一部份由感應器收集之資料會被傳送到資料盒142。The actual amount of data that can be transferred to the data box 142 can be significantly less than the amount of data collected by the sensor. Typically, sensors collect large amounts of data. In one example, the sensor can collect data at a rate of up to 1 million bits per second. However, only a portion of the data collected by the sensor is transmitted to the data box 142.

不將感應器所收集之整個資料流傳送到資料盒142的一個原因是由於當使用符合成本效應之商用通訊協定時的網路頻寬限制。到達資料盒142之網路線可能無法處理從複數個來源(例如感應器118、120、122、124、126、128、130、132、134、136、138和140)被傳送到單一接收器(例如資料盒142)的大量資料。換言之,當資料盒142嘗試接收來自所有感應器裝置之大量資料時,感應器裝置(感應器和計算模組)與資料盒142之間的網路路徑可能會經歷較大的流量壅塞。由上述可知,若資料盒142不能處理傳入之流量,傳送中之資料包可能會被中斷或需要重新傳送,因此將額外的負擔加諸於已經嚴重壅塞之網路線。One reason for not transmitting the entire data stream collected by the sensor to the data box 142 is due to network bandwidth limitations when using a cost effective commercial communication protocol. The network route to the data box 142 may not be processed from a plurality of sources (eg, sensors 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, and 140) to a single receiver (eg, A large amount of information in the data box 142). In other words, when the data cartridge 142 attempts to receive a large amount of data from all of the sensor devices, the network path between the sensor devices (sensors and computing modules) and the data cartridge 142 may experience large traffic congestion. As can be seen from the above, if the data box 142 cannot process the incoming traffic, the data packet in the transmission may be interrupted or needs to be retransmitted, thus placing an additional burden on the network route that has been severely blocked.

此外,資料盒142可能無法處理來自多個來源之大量傳入資料,並同時執行其它重要功能,例如處理和分析資料。如上所述,例如,資料盒142不只用以接收傳入資料包,並且用以處理和分析所有傳入資料流。由於資料盒142是對於收集中之不同資料流的分析伺服器,資料盒142需要足夠的處理能力以對過量之資料流執行分析。In addition, data box 142 may not be able to process large amounts of incoming data from multiple sources while performing other important functions, such as processing and analyzing data. As noted above, for example, the data box 142 is not only used to receive incoming packets, but is also used to process and analyze all incoming data streams. Since the data box 142 is an analysis server for different data streams in the collection, the data box 142 requires sufficient processing power to perform analysis on the excess data stream.

由於資料盒142之處理資源有限,只有部份從各個感應器收集之資料被傳送到資料盒142。在一例子中,在可由單一感應器收集之數千筆資料項之中,只有10到15筆在1到5赫茲之資料項可被發送到資料盒142。在一例子中,只有由感應器118收集之資料的摘要可被傳送到資料盒142。Since the processing resources of the data box 142 are limited, only some of the data collected from the respective sensors is transmitted to the data box 142. In one example, among the thousands of items that can be collected by a single sensor, only 10 to 15 items of items between 1 and 5 Hz can be sent to the data box 142. In an example, only a summary of the data collected by sensor 118 can be transmitted to data box 142.

除了從複數個感應器接收資料,資料盒142亦可從製程模組控制器接收資料。在一個例子中,可由每一個製程模組控制器收集製程模組資料和處理內容資料(處理室事件資料),並發送到資料盒142。為簡化說明,製程模組資料和處理內容資料亦可稱為製程模組和處理室資料。例如,可由PMC 110收集製程模組資料和處理內容資料,並經由路徑148傳送到CTC 104。CTC 104不只管理來自PMC 110之資料,並且處理來自群組工具內之其它製程模組控制器(例如PMC 112、PMC 114和PMC 116)的資料。In addition to receiving data from a plurality of sensors, the data box 142 can also receive data from the process module controller. In one example, process module data and process content data (process room event data) may be collected by each process module controller and sent to a data box 142. To simplify the description, the process module data and processing content data can also be referred to as process module and processing room data. For example, process module data and processing content data may be collected by PMC 110 and transmitted to CTC 104 via path 148. The CTC 104 not only manages data from the PMC 110, but also processes data from other process module controllers (e.g., PMC 112, PMC 114, and PMC 116) within the group tool.

由群組工具控制器收集之資料接著經由半導體設備通訊標準/通用設備模組(SECS/GEM)界面被傳送到晶圓廠主機102。在一例子中,CTC 104將從PMC 110、112、114和/或116收集之資料經由路徑150透過SECS/GEM 156而傳送到晶圓廠主機102。例如,晶圓廠主機102不只可從CTC 104接收資料,並可從其它群組工具控制器(例如CTC 106和108)接收資料。由晶圓廠主機102收集之資料接著經由路徑158被發送到資料盒142。由於收集中之資料的龐大數量,並非所有傳送往晶圓廠主機102之資料都會被發送到資料盒142。在許多例子中,只有資料的摘要可被傳送到資料盒142。The data collected by the group tool controller is then transmitted to the fab host 102 via a semiconductor device communication standard/general device module (SECS/GEM) interface. In one example, the CTC 104 transmits the data collected from the PMCs 110, 112, 114, and/or 116 to the fab host 102 via the path 150 through the SECS/GEM 156. For example, fab host 102 can receive data not only from CTC 104, but also from other group tool controllers (e.g., CTCs 106 and 108). The data collected by the fab host 102 is then sent to the data box 142 via path 158. Due to the sheer volume of data collected, not all of the data transmitted to the fab host 102 will be sent to the data box 142. In many instances, only a summary of the data can be transferred to the data box 142.

資料盒142可處理、分析和/或關聯化由感應器和製程模組控制器收集之資料。例如,若識別出一個異常,資料盒120可接著判定問題之來源,例如與PMC 110中執行之配方步驟不一致之參數。一旦已識別此問題之來源,資料盒142可傳送乙太網路(Ethernet)訊息格式之封鎖訊息(interdiction)到晶圓廠主機102。在接收此訊息之後,晶圓廠主機102可透過SECS/GEM 156將訊息發送到CTC 104。群組工具控制器可接著將訊息轉達到預定之製程模組控制器(在本例子中為PMC 110)。The data box 142 can process, analyze, and/or correlate the data collected by the sensors and process module controllers. For example, if an anomaly is identified, the data box 120 can then determine the source of the problem, such as a parameter that is inconsistent with the recipe steps performed in the PMC 110. Once the source of the problem has been identified, the data box 142 can transmit an interception message of the Ethernet message format to the fab host 102. After receiving this message, the fab host 102 can send a message to the CTC 104 via the SECS/GEM 156. The group tool controller can then transfer the message to the predetermined process module controller (PMC 110 in this example).

不幸的是,封鎖訊息通常並非為即時提供。反而是,通常在已處理受影響基板之後或甚至在整個基板批次已離開製程模組之後,才由預期之製程模組接收此封鎖訊息。因此,不只已使基板/基板批次受到損傷,並且可能已使一個以上之處理室組件受到負面影響,因此增加廢棄物與增加所有權成本。Unfortunately, blocked messages are usually not provided on the fly. Rather, the block message is typically received by the intended process module after the affected substrate has been processed or even after the entire substrate batch has left the process module. Thus, not only has the substrate/substrate batch been compromised, but more than one of the process chamber components may have been adversely affected, thereby increasing waste and increasing the cost of ownership.

造成延遲的一個原因是由於來自過量來源之接收中的龐大資料量。即使資料盒142可配置有快速處理器且有足夠之記憶體來處理大量資料流,資料盒142可能仍需時間來處理、關聯化和/或分析所有收集中之資料。One reason for the delay is due to the sheer volume of data received from excess sources. Even though the data box 142 can be configured with a fast processor and has sufficient memory to process a large volume of data, the data box 142 may still take time to process, correlate, and/or analyze all of the collected data.

另一個使製程模組延遲接收封鎖訊息的原因是由於經由資料盒142接收之資料流的不完整。由於資料盒142會從過量來源接收資料,傳送至資料盒142的實際資料會顯著少於所收集之資料。在一例子中,取代了傳送由感應器118所收集之1千兆赫茲資料流,實際上只有一部份資料(約1-5赫茲)被傳送。因此,即使資料盒142會從其所有來源接收大量資料,所接收之資料通常是不完整的。因此,有鑑於資料盒142可能無法存取來自所有來源之完整資料組,判定不可控制事件可能會耗費時間。Another reason for delaying the receipt of the block message by the process module is due to the incompleteness of the data stream received via the data box 142. Since the data box 142 will receive data from an excessive source, the actual data transmitted to the data box 142 will be significantly less than the collected data. In one example, instead of transmitting a 1 GHz data stream collected by the sensor 118, only a portion of the data (about 1-5 Hz) is actually transmitted. Therefore, even if the data box 142 receives a large amount of data from all its sources, the received data is usually incomplete. Therefore, in view of the fact that the data box 142 may not be able to access a complete data set from all sources, determining an uncontrollable event may be time consuming.

此外,資料傳送到資料盒142所經之路徑可能不同。在一例子中,在已將類比資料轉換成數位資料之後,直接從感應器裝置(即感應器和其計算模組)傳送出資料。相反的,將由製程模組收集之資料透過較長網路路徑(至少經由群組工具控制器和晶圓廠主機)傳送。因此,資料盒142直到已接收所有相關資料流才能完成其分析。In addition, the path through which data is transferred to the data box 142 may vary. In one example, after the analog data has been converted to digital data, the data is transmitted directly from the sensor device (ie, the sensor and its computing module). Instead, the data collected by the process module is transmitted over a longer network path (at least via the group tool controller and the fab host). Therefore, the data box 142 does not complete its analysis until all relevant data streams have been received.

不只製程模組和資料盒142之間的網路路徑較長,並且透過此路徑傳送之資料流通常會面臨至少兩個瓶頸。第一個瓶頸是在群組工具控制器。由於群組工具內之製程模組所收集之資料被傳送到單一群組工具控制器,第一個瓶頸會因為必須經由單一群組工具控制器來處理來自各個製程模組之資料流而產生。有鑑於可從每個製程模組傳送龐大資料量,到達群組工具控制器之網路路徑通常會經歷嚴重的流量壅塞。Not only is the network path between the process module and the data box 142 long, but the data stream transmitted through this path usually faces at least two bottlenecks. The first bottleneck is in the group tool controller. Since the data collected by the process modules in the group tool is transferred to the single group tool controller, the first bottleneck is generated because the data stream from each process module must be processed via a single group tool controller. In view of the large amount of data that can be transferred from each process module, the network path to the group tool controller typically experiences severe traffic congestion.

一旦群組工具控制器已接收資料,此資料會被傳送到晶圓廠主機102。第二個瓶頸可能會發生在晶圓廠主機102。有鑑於晶圓廠主機102可從各個群組工具控制器接收資料,進入晶圓廠主機102之流量亦可由於大量接收中之資料而經歷壅塞。Once the group tool controller has received the data, this data is transmitted to the fab host 102. The second bottleneck may occur at the fab host 102. In view of the fact that the fab host 102 can receive data from various group tool controllers, traffic entering the fab host 102 can also experience congestion due to the large amount of data being received.

由於資料盒142需要來自不同來源之資料以判定不可控制事件,製程模組和資料盒142之間的流量狀況會妨礙資料流到資料盒142的及時傳遞。因此,在資料盒142已收集所有必須資料以執行分析之前,會浪費寶貴的時間。再者,一旦準備要封鎖,此封鎖訊息必須在其可用以執行改正動作之前,透過相同的冗長路徑傳送回受影響之製程模組。Since the data box 142 requires data from different sources to determine uncontrollable events, the flow conditions between the process module and the data box 142 can impede the timely delivery of data to the data box 142. Therefore, valuable time is wasted before the data box 142 has collected all the necessary data to perform the analysis. Furthermore, once it is ready to be blocked, the block message must be transmitted back to the affected process module through the same lengthy path before it can be used to perform the corrective action.

另一個造成延遲的因素是關聯化來自各個資料源之資料的挑戰。由於資料盒142接收中之資料流通常是從每個感應器和/或製程模組收集之資料的摘要,因為此等資料流可能在不同時間間隔取得,使得關聯化這些資料成為具有挑戰性的任務。在一個例子中,所選擇之由感應器118傳送到資料盒142的資料流可以1秒為間隔,同時來自PMC 110之資料流可以2秒為間隔。因此,在可最終判定不可控制事件之前,可能需要時間來關聯化資料流。Another factor contributing to the delay is the challenge of associating data from various sources. Since the data stream received by data box 142 is typically a summary of the data collected from each sensor and/or process module, as such data streams may be acquired at different time intervals, correlating such data becomes challenging. task. In one example, the data stream selected by sensor 118 for transmission to data cartridge 142 may be spaced apart by one second while the data stream from PMC 110 may be spaced for two seconds. Therefore, it may take time to correlate the data stream before the uncontrollable event can be finally determined.

關聯化資料的另一個挑戰是由於將資料傳送到資料盒142所經過的不同路徑。當透過不同的電腦、伺服器等等來傳送資料時,資料可能會接觸到電腦偏差(drift)、網路延遲(latency)、網路負載等等。因此,資料盒142可能很難關聯化來自各個來源之資料。有鑑於需要緊密關聯化以快速識別不可控制事件,可能需要在可正確識別不可控制事件之前執行更多分析。Another challenge with associating data is the different paths that pass through the data to the data box 142. When transferring data through different computers, servers, etc., the data may be exposed to computer drift, network latency, network load, and so on. Therefore, the data box 142 may be difficult to correlate data from various sources. In view of the need for tight correlation to quickly identify uncontrollable events, it may be necessary to perform more analysis before the uncontrollable events can be correctly identified.

圖1提供之解決方案的另一個缺點是所有權成本。除了維持群組工具系統的成本,額外成本與感應器裝置有關。由於每個感應器可為不同的品牌/型式/樣式,每個感應器裝置通常包含一個感應器和一個計算模組。通常需要實體空間來置放每一個感應器裝置。因此,置放感應器裝置的成本可能會變得很高,特別是對房地產價格很高的地區來說。Another disadvantage of the solution provided in Figure 1 is the cost of ownership. In addition to maintaining the cost of the group tool system, the additional cost is related to the sensor device. Since each sensor can be of a different brand/type/style, each sensor device typically includes a sensor and a computing module. Physical space is typically required to place each sensor device. Therefore, the cost of placing the sensor device can become very high, especially in areas with high real estate prices.

為了減少製程模組內之不可控制事件之實際發生與對製程模組之封鎖配方之間的實際時間延遲,本發明提供了群組層次分析伺服器。圖2展示一互連工具環境的簡單方塊圖,其具有用以關聯化感應器與製程模組控制器之間的資料的群組工具層次解決方案。In order to reduce the actual time delay between the actual occurrence of uncontrollable events within the process module and the blocked recipe of the process module, the present invention provides a group hierarchy analysis server. 2 shows a simple block diagram of an interconnect tool environment with a group tool hierarchy solution for associating data between the sensor and the process module controller.

相似於圖1,群組工具可包含複數個製程模組控制器(例如PMC 210、212、214和216)。為了收集資料以做分析,每個製程模組控制器可與複數個感應器(例如感應器218、220、222、224、226、228、230、232、234、236、238和240)相連接。每個感應器可經由感應器纜線(例如感應器纜線244)與其對應之製程模組控制器互相作用,以收集製程參數資料。感應器收集之資料可為類比格式。計算模組(例如計算模組218b)可在將資料經由路徑246發送到群組層次分析伺服器(例如遠程控制器242)之前,將資料處理和轉換成數位格式。Similar to FIG. 1, the group tool can include a plurality of process module controllers (eg, PMCs 210, 212, 214, and 216). In order to collect data for analysis, each process module controller can be coupled to a plurality of sensors (eg, sensors 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, and 240). . Each sensor can interact with its corresponding process module controller via an inductor cable (eg, sensor cable 244) to collect process parameter data. The data collected by the sensor can be in analog format. A computing module (e.g., computing module 218b) can process and convert the data into a digital format prior to transmitting the data via path 246 to a group analytics server (e.g., remote controller 242).

相似於圖1,每個製程模組控制器亦可傳送資料(例如製程模組資料和處理內容資料)到群組工具控制器(例如CTC 204和206)。在一例子中,可將PMC 210收集之資料經由路徑248傳送到CTC 204。除了從PMC 210接收資料之外,CTC 204亦可從其它製程模組控制器(例如PMC 212、214和216)接收資料。群組工具控制器接收之資料接著經由路徑250被發送到晶圓廠主機202。Similar to Figure 1, each process module controller can also transfer data (such as process module data and process content data) to group tool controllers (e.g., CTCs 204 and 206). In an example, the data collected by the PMC 210 can be transmitted to the CTC 204 via path 248. In addition to receiving data from the PMC 210, the CTC 204 can also receive data from other process module controllers (e.g., PMCs 212, 214, and 216). The data received by the group tool controller is then sent to the fab host 202 via path 250.

在晶圓廠主機202和CTC 204之間,可將序列分接頭與網路路徑250連接,以複製發送到晶圓廠主機202之資料。在一例子中,序列分接頭208可截取由CTC 204發送到晶圓廠主機202之資料。此資料會被複製,且資料流的副本會經由路徑254被傳送到遠程控制器242。若晶圓廠主機與一個以上之群組工具控制器相連接,就每個群組工具控制器而言,專用遠程控制器會與群組工具控制器聯結。在一個例子中,由另一個序列分接頭(256)截取從CTC 206經由路徑252被傳送到晶圓廠主機202之資料。此資料被複製且經由路徑258被傳送到遠程控制器(260),其與和CTC 204聯結之遠程控制器(242)不同。Between the fab host 202 and the CTC 204, a sequence tap can be coupled to the network path 250 to replicate the data sent to the fab host 202. In one example, the sequence tap 208 can intercept data sent by the CTC 204 to the fab host 202. This material will be copied and a copy of the data stream will be transmitted to remote controller 242 via path 254. If the fab host is connected to more than one group tool controller, the dedicated remote controller will be associated with the group tool controller for each group tool controller. In one example, the data transmitted from the CTC 206 to the fab host 202 via the path 252 is intercepted by another sequence tap (256). This material is copied and transmitted via path 258 to the remote controller (260), which is different from the remote controller (242) associated with the CTC 204.

因此,可利用多個遠程控制器,來處理來自各個群組工具之資料,取代用以處理來自各個群組工具之所有資料的單一資料盒。換言之,每個群組工具與其擁有之遠程控制器聯結。由於每個遠程控制器將處理來自較少數目資料源(例如製程模組控制器和與單一群組工具聯結之感應器)之資料,每個遠程控制器能夠處理來自每個來源之較大量的資料。在一例子中,取代傳送中之30-100筆資料項,現在每個遠程控制器可接收在10赫茲之約40kB到100kB的資料項。Thus, multiple remote controllers can be utilized to process data from various group tools, replacing a single data box for processing all of the data from each group tool. In other words, each group tool is associated with the remote controller it owns. Since each remote controller will process data from a small number of data sources, such as process module controllers and sensors coupled to a single group tool, each remote controller can handle a larger amount from each source. data. In one example, instead of 30-100 data items in the transmission, each remote controller can now receive data items of approximately 40 kB to 100 kB at 10 Hz.

由遠程控制器分析從感應器和製程模組控制器接收之資料。若識別出一個問題,遠程控制器可傳送封鎖訊息到群組工具控制器。在一例子中,遠程控制器242識別在PMC 210內之一個問題。封鎖訊息經由路徑254和250透過序列分接頭208被傳送到CTC 204。接收到封鎖訊息之後,CTC 204發送封鎖訊息到預期之製程模組控制器(在此例子中,其為PMC 210)。The data received from the sensor and the process module controller is analyzed by the remote controller. If a problem is identified, the remote controller can send a block message to the group tool controller. In an example, remote controller 242 identifies a problem within PMC 210. The blocked message is transmitted to the CTC 204 via the sequence tap 208 via paths 254 and 250. Upon receipt of the blockade message, the CTC 204 sends a block message to the intended process module controller (in this example, it is PMC 210).

由於遠程控制器只負責處理來自一個群組工具而非來自複數個群組工具之資料(如資料盒142所做的),更多資料可被分析且在不同資料組之間可存在更好的關聯性。因此,遠程控制器可執行更好與更快的分析,因此提供更及時的干預以更正製程模組內之不可控制事件。在一例子中,取代接收封鎖訊息以防止識別之不可控制事件在下一個基板批次中發生(例如資料盒142提供之封鎖訊息),例如,遠程控制器242傳送之封鎖訊息能夠使製程工程師挽救至少一部份預定處理之基板批次。Since the remote controller is only responsible for processing data from a group tool rather than from multiple group tools (as done by data box 142), more data can be analyzed and better between different data sets. Relevance. As a result, the remote controller can perform better and faster analysis, thus providing more timely intervention to correct uncontrollable events within the process module. In one example, instead of receiving an unblocked message to prevent an uncontrolled event from occurring in the next substrate batch (e.g., a blocked message provided by data box 142), for example, the blocking message transmitted by remote controller 242 can cause the process engineer to save at least A portion of the substrate batch that is scheduled to be processed.

雖然遠程控制器解決方案比資料盒解決方案更好,遠程控制器解決方案仍取決於摘要資料以執行其分析。因此,基板處理期間可能發生的問題可能維持不明。再者,製程模組和遠程控制器之間的路徑仍不是一直接路徑。因此,電腦偏差、網路延遲和/或網路負載可能造成時間差異,其可能使得遠程控制器要關聯化來自感應器之資料與來自製程模組之資料變得困難。While the remote controller solution is better than the data box solution, the remote controller solution still depends on the summary data to perform its analysis. Therefore, problems that may occur during substrate processing may remain unclear. Furthermore, the path between the process module and the remote controller is still not a direct path. As a result, computer bias, network latency, and/or network load can cause time differences that can make it difficult for the remote controller to correlate data from the sensor with data from the process module.

因此,即使遠程控制器解決方案已增加封鎖訊息之及時性,遠程控制器解決方案仍是不適當的。充其量,此封鎖訊息能夠防止受影響基板所經歷之問題在下個基板處理期間發生。在其成本需要降到最低之極度競爭的市場中,由於損傷基板造成之廢棄物和/或由於損傷處理室造成之停工,可能會轉化成市場損失。因此,用以識別不可控制事件之即時解決方案是必須的。Therefore, even if the remote controller solution has increased the timeliness of blocking messages, the remote controller solution is still inadequate. At best, this blockade message prevents problems experienced by the affected substrate from occurring during the next substrate processing. In markets where the cost needs to be minimized to the extreme, waste due to damage to the substrate and/or downtime due to damage to the processing chamber may translate into market losses. Therefore, an immediate solution to identify uncontrollable events is a must.

依據本發明之實施例,提供一種製程層次疑難排解結構(process-level troubleshooting architecture,PLTA),其中是在製程模組層次執行疑難排解。本發明之實施例包含以即時封鎖訊息提供即時分析之製程層次疑難排解結構。本發明之實施例更包含在感應器之間平衡負載與容錯(fault tolerance)之裝置。According to an embodiment of the present invention, a process-level troubleshooting architecture (PLTA) is provided, wherein the troubleshooting is performed at a process module level. Embodiments of the present invention include a process level troubleshooting architecture that provides instant analysis with instant blocking messages. Embodiments of the present invention further include means for balancing load and fault tolerance between inductors.

在本發明之一實施例中,製程層次疑難排解結構是一網路系統,其中一分析伺服器與單一製程模組及其對應之感應器交流。在一實施例中,在網路中交換之資料為雙向的。在一例子中,分析伺服器可從製程模組和感應器連續接收製程資料。相反地,感應器可從製程模組接收資料,且製程模組可從分析伺服器接收指令。In an embodiment of the invention, the process level troubleshooting structure is a network system in which an analysis server communicates with a single process module and its corresponding sensor. In one embodiment, the data exchanged in the network is bidirectional. In one example, the analysis server can continuously receive process data from the process module and the inductor. Conversely, the sensor can receive data from the process module and the process module can receive commands from the analysis server.

考慮其中的狀況,例如,正處理一個基板。在基板處理期間,可收集複數個資料。在一個例子中,每隔100毫秒收集關於壓力之資料。若此處理花費一小時,會收集到36,000筆關於壓力參數之資料項。然而,除了壓力資料之外,亦可收集複數個其它製程資料(例如電壓偏壓、溫度等等)。因此,到基板處理已完成的時候,會收集到相當可觀的資料量。Consider the situation in which, for example, a substrate is being processed. Multiple data may be collected during substrate processing. In one example, information about pressure is collected every 100 milliseconds. If this process takes one hour, 36,000 items of information about the pressure parameters will be collected. However, in addition to the pressure data, a plurality of other process data (eg, voltage bias, temperature, etc.) may be collected. Therefore, when the substrate processing is completed, a considerable amount of data is collected.

在先前技術中,資料被傳送到可用以處理從複數個製程模組收集之資料的分析伺服器(例如圖2之遠程控制器242),或是被傳送到可用以處理從複數個群組工具收集之資料的分析伺服器(例如圖1之資料盒142)。由於資料流是來自複數個來源,需要時間來分析和/或關聯化此資料。再者,由於先前技術之分析伺服器可能無法處理和分析所有收集之資料,只有一部份從各個來源收集之資料會被傳送到分析伺服器。因此,協調、處理、關聯化和/或分析資料流之複雜任務需要不一定能輕易取得之時間。In the prior art, data is transmitted to an analysis server (e.g., remote controller 242 of Figure 2) that can be used to process data collected from a plurality of process modules, or is transmitted to be available for processing from a plurality of group tools. An analysis server for the collected data (e.g., data box 142 of Figure 1). Since the data stream comes from multiple sources, it takes time to analyze and/or correlate this data. Furthermore, since the prior art analysis server may not be able to process and analyze all of the collected data, only a portion of the data collected from various sources will be transmitted to the analysis server. Therefore, the complex task of coordinating, processing, correlating, and/or analyzing data streams requires time that is not necessarily easy to obtain.

在本發明之一態樣中,發明人在此了解到如果有更多精細資料(granular data)用於分析,則可執行更準確與更快的分析。為了分析來自單一來源之更多資料,分析伺服器必須分析來自較少來源之資料。在一實施例中,在製程模組層次提供裝置以處理和/或分析資料。換言之,提供製程模組層次分析伺服器以對每個製程模組及其對應之感應器執行分析。In one aspect of the invention, the inventors have learned here that if there is more granular data for analysis, a more accurate and faster analysis can be performed. In order to analyze more information from a single source, the analytics server must analyze data from fewer sources. In one embodiment, means are provided at the process module level to process and/or analyze data. In other words, a process module analytic server is provided to perform analysis on each process module and its corresponding sensor.

在一實施例中,製程模組層次分析伺服器包含可具有一個以上處理器之共享記憶體主幹(shared memory backbone)。每個處理器可用以與一個以上之感應器互相作用。在一例子中,可由處理器1處理感應器1所收集之資料,同時由處理器2處理感應器2所收集之資料。In one embodiment, the process module analytics server includes a shared memory backbone that can have more than one processor. Each processor can be used to interact with more than one sensor. In one example, the data collected by the sensor 1 can be processed by the processor 1 while the data collected by the sensor 2 is processed by the processor 2.

不同於先前技術,這些處理器可以彼此共享其處理能力,以執行負載平衡和容錯。在先前技術中,配置計算模組以處理感應器收集之資料。由於每個計算模組為個別單元且通常不會彼此互相作用,故通常不會執行負載平衡。不同於先前技術,製程模組層次分析伺服器內之處理器組可執行負載平衡。在一例子中,若處理器1經歷資料超載,同時處理器2接收少量或無資料時,處理器2可被用來協助處理器1以處理來自感應器1之資料。Unlike prior art, these processors can share their processing power with each other to perform load balancing and fault tolerance. In the prior art, a computing module is configured to process the data collected by the sensor. Since each computing module is an individual unit and typically does not interact with each other, load balancing is typically not performed. Different from the prior art, the processor group in the process module analytic server can perform load balancing. In one example, processor 2 can be used to assist processor 1 to process data from sensor 1 if processor 1 experiences data overload while processor 2 receives little or no data.

再者,在先前技術中,由於計算模組傾向為不同的品牌/型式/樣式,若一計算模組故障,其它計算模組則無法接管由故障之計算模組執行之處理。本發明不同於先前技術,若有需要,處理器之間的工作量可重新分配。例如,若處理器2無法執行其功能,此工作量可被重新分配到其它處理器直到處理器2被修好。由上述內容可了解到,本發明之處理器排除對個別計算模組之需要,因此亦減少置放計算模組所需之實體空間。Moreover, in the prior art, since the computing modules tend to be different brands/types/styles, if one computing module fails, other computing modules cannot take over the processing performed by the faulty computing module. The present invention differs from the prior art in that the workload between processors can be redistributed if needed. For example, if processor 2 is unable to perform its function, this workload can be reassigned to other processors until processor 2 is repaired. It can be seen from the above that the processor of the present invention eliminates the need for individual computing modules and therefore reduces the physical space required to place the computing module.

在本發明之一實施例中,處理器可被分為兩種處理器:初級處理器和次級處理器。配置初級和次級處理器兩者以處理來自感應器之資料。在一例子中,若次級處理器1與感應器1聯結,則次級處理器1通常只處理來自感應器1之資料。同樣地,若次級處理器2與感應器2和3聯結,則次級處理器2通常只處理來自這兩個感應器(2和3)之資料。In one embodiment of the invention, the processor can be divided into two types of processors: a primary processor and a secondary processor. Both the primary and secondary processors are configured to process the data from the sensors. In an example, if the secondary processor 1 is coupled to the sensor 1, the secondary processor 1 typically only processes the data from the sensor 1. Similarly, if the secondary processor 2 is coupled to the sensors 2 and 3, the secondary processor 2 typically only processes the data from the two sensors (2 and 3).

在一實施例中,共享記憶體主幹可包含一個以上之初級處理器。初級處理器組不只可用來處理來自感應器之資料並且可用來處理來自製程模組之資料。此外,配置初級處理器組以關聯化各個來源(例如感應器和製程模組)之間的資料。若需要封鎖訊息,初級處理器組可用來傳送封鎖訊息到製程模組控制器。In an embodiment, the shared memory backbone may include more than one primary processor. The primary processor group can be used not only to process data from the sensor but also to process data from the process module. In addition, a primary processor group is configured to correlate data between various sources, such as sensors and process modules. If a message needs to be blocked, the primary processor group can be used to transmit the blocking message to the process module controller.

本發明之特徵和優點當可參照以下圖式及說明而更加明白。The features and advantages of the present invention will become more apparent from the description and appended claims.

圖3展示,在本發明之一實施例中,製程層次疑難排解結構之簡單邏輯概要。雖然製造商可有一個以上之群組工具,單一群組工具被用來說明本發明之一實施例。雖然群組工具可有不同數量的製程模組,圖3所示之例子包含具有四個製程模組之單一群組工具。3 shows a simplified logical summary of a process level troubleshooting architecture in one embodiment of the invention. While a manufacturer may have more than one group tool, a single group tool is used to illustrate one embodiment of the present invention. Although the group tool can have a different number of process modules, the example shown in Figure 3 includes a single group tool with four process modules.

每個製程模組收集之資料由其對應之製程模組控制器(PMC 306、PMC 308、PMC 310和PMC 312)所收集,並經由連結組338、群組工具控制器(CTC)304、與連結340而傳送到晶圓廠主機302。可由PMC傳送之資料可與在先前技術中已經傳送之資料(製程模組資料和處理內容資料)為相同類型。不同於先前技術,傳送到晶圓廠主機302之資料並不依賴於藉由製程模組來執行疑難排解。反而是,此資料可被歸檔且可用於未來的分析。The data collected by each process module is collected by its corresponding process module controllers (PMC 306, PMC 308, PMC 310, and PMC 312) and is connected via group 338, group tool controller (CTC) 304, and The link 340 is transmitted to the fab host 302. The data that can be transmitted by the PMC can be of the same type as the data that has been transmitted in the prior art (process module data and processing content data). Unlike prior art, the information transmitted to the fab host 302 does not rely on the process module to perform troubleshooting. Instead, this material can be archived and used for future analysis.

在一實施例中,提供製程模組層次分析伺服器(APECS 314)來執行疑難排解所需之分析。考慮到在PMC 308中蝕刻基板的狀況。在基板處理期間,感應器316、318和320從PMC 308收集資料。在一例子中,配置感應器316從PMC 308收集電壓偏壓資料。從PMC 308收集之類比資料經由感應器纜線328被傳送到感應器316。同樣的,感應器318和320可分別經由感應器纜線330和332來收集資料。感應器收集之資料可接著經由路徑322、324和326其中之一被傳送到APECS 314以進行處理和/或分析。In one embodiment, a process module analytics server (APECS 314) is provided to perform the analysis required for troubleshooting. Consider the condition of etching the substrate in the PMC 308. Sensors 316, 318, and 320 collect data from PMC 308 during substrate processing. In one example, configuration sensor 316 collects voltage bias data from PMC 308. Analog data collected from PMC 308 is transmitted to inductor 316 via inductor cable 328. Similarly, sensors 318 and 320 can collect data via sensor cables 330 and 332, respectively. The data collected by the sensors can then be transmitted to APECS 314 via one of paths 322, 324, and 326 for processing and/or analysis.

不同於先前技術,感應器收集之資料在被傳送到分析伺服器(APECS 314)之前,不需要被預處理(例如被摘要化)。在一實施例中,取代用計算模組來處理資料,每個感應器可包含一簡單資料轉換器,可用以在發送資料到APECS 314之前將類比資料轉換成數位資料。或者,在一實施例中,資料轉換器,例如場效可程式閘極陣列(field-programmable gate array,FPGA),可內建於APECS 314。在一例子中,每個處理器可包含一資料轉換器演算法,使得將資料轉換成數位格式成為其處理功能的一部份。由上述內容可了解,藉由去除對計算模組的需求,則會需要較少的實體空間以置放群組工具及其硬體。因此,可減少所有權成本。Unlike prior art, the data collected by the sensor does not need to be pre-processed (eg, digested) before being transmitted to the analysis server (APECS 314). In one embodiment, instead of processing the data with a computing module, each sensor can include a simple data converter that can be used to convert analog data to digital data prior to transmitting the data to APECS 314. Alternatively, in an embodiment, a data converter, such as a field-programmable gate array (FPGA), may be built into APECS 314. In one example, each processor may include a data converter algorithm that converts the data into a digital format as part of its processing functionality. As can be seen from the above, by removing the need for a computing module, less physical space is required to place the group tool and its hardware. Therefore, the cost of ownership can be reduced.

由於APECS 314被專用來處理僅來自一製程模組及其對應之感應器的資料,使APECS 314能夠處理來自單一來源之較高資料量。換言之,取代必須減少從每個感應器傳送之資料量,配置APECS 314來處理大部份(若非全部)由每個感應器收集之資料。在一例子中,取代只傳送10到15筆資料項進行分析,現在來自每個感應器之兩千筆以上之資料項可由APECS 314進行分析。因此,可用於APECS 314以進行處理和分析之資料流為較完整之資料組。Since APECS 314 is dedicated to processing data from only one process module and its corresponding sensors, APECS 314 is capable of processing a higher amount of data from a single source. In other words, instead of having to reduce the amount of data transferred from each sensor, APECS 314 is configured to process most, if not all, of the data collected by each sensor. In one example, instead of transmitting only 10 to 15 data items for analysis, more than 2,000 data items from each sensor can now be analyzed by APECS 314. Therefore, the data stream that can be used for APECS 314 for processing and analysis is a more complete data set.

在一實施例中,APECS 314亦用來處理來自製程模組之資料。不同於先前技術(其中資料流在由分析伺服器(例如資料盒或遠程控制器)接收之前,會經由一通過各個伺服器(例如群組工具控制器、晶圓廠主機等等)之冗長資料路徑而傳送),製程模組收集之資料會被直接傳送到APECS 314,而不需經過其它伺服器。在一例子中,可將製程模組資料從PMC 308經由路徑334傳送到APECS 314。若識別出不可控制事件,可將封鎖訊息經由路徑336直接傳送到PMC 308,而不需先經過其它伺服器。In one embodiment, APECS 314 is also used to process data from the process module. Unlike prior art (where the data stream is received by an analytics server (such as a data cartridge or remote controller), it passes through a lengthy data through various servers (eg, group tool controllers, fab hosts, etc.) The path is transmitted. The data collected by the process module is directly transmitted to APECS 314 without going through other servers. In an example, process module data can be transferred from PMC 308 to APECS 314 via path 334. If an uncontrollable event is identified, the block message can be transmitted directly to the PMC 308 via path 336 without first passing through other servers.

圖4提供關於製程模組層次分析伺服器之進一步的細節。圖4展示,在本發明之一實施例中,製程模組層次分析伺服器之簡單功能圖。可指定製程模組層次分析伺服器(例如APECS 400)給每個製程模組。APECS 400為雙向伺服器,且用以處理傳入資料以及在識別出不可控制事件時傳送封鎖訊息。Figure 4 provides further details regarding the process module analytics server. 4 shows a simplified functional diagram of a process module hierarchy analysis server in an embodiment of the present invention. A process module analytic server (eg, APECS 400) can be assigned to each process module. The APECS 400 is a two-way server and is used to process incoming data and to send blocking messages when an uncontrollable event is identified.

資料源可來自兩個主要來源:感應器收集之資料和製程模組收集之資料。在一實施例中,APECS 400用以從複數個感應器(感應器410、412、414、416、420、422、424和426)接收傳入資料。有鑑於一些群組工具擁有者可能已經投資可觀的金錢在傳統感應器裝置(具有計算模組之感應器)中,APECS 400可用以從傳統感應器裝置與改良式感應器(不需要計算模組之感應器)兩者接收資料。Sources can come from two main sources: data collected by sensors and data collected by process modules. In an embodiment, APECS 400 is used to receive incoming data from a plurality of sensors (sensors 410, 412, 414, 416, 420, 422, 424, and 426). In view of the fact that some group tool owners may have invested considerable money in traditional sensor devices (sensors with computing modules), APECS 400 can be used from traditional sensor devices and improved sensors (no computing modules required) The sensor) both receive data.

在一實施例中,APECS 400可包含一界面,例如乙太網路交換器418,用以與傳統感應器裝置(例如感應器410、412、414和416)互相作用。在一例子中,在將數位資料傳送到APECS 400(經由路徑430、432、434或436)之前,先藉由計算模組410b將感應器410收集之資料從類比格式轉換成數位格式。配置乙太網路交換器418與傳統感應器裝置互相作用,以接收資料流。接著將資料流傳送到(經由路徑446、448、450或452)APECS 400內之處理器(402、404、406和408)的其中之一,以進行處理。In an embodiment, APECS 400 may include an interface, such as Ethernet switch 418, for interfacing with conventional sensor devices (eg, sensors 410, 412, 414, and 416). In one example, the data collected by the sensor 410 is first converted from the analog format to the digital format by the computing module 410b prior to transferring the digital data to the APECS 400 (via path 430, 432, 434, or 436). The Ethernet switch 418 is configured to interact with a conventional sensor device to receive the data stream. The data stream is then transmitted (via path 446, 448, 450 or 452) to one of the processors (402, 404, 406, and 408) within APECS 400 for processing.

取代利用傳統感應器裝置來測量製程參數,可採用改良式感應器(其沒有計算模組)。由於收集之資料不需要被摘要化,故不再需要計算模組來進行處理。反而是,在一實施例中,改良式感應器可包含資料轉換器(圖中未示),例如低價的FPGA,用以將資料從類比格式轉換成數位格式。或者,取代設置資料轉換器在感應器內,可設置資料轉換器(圖中未示)在APECS 400內。不論是否將資料轉換器設置於APECS 400外部或內部,去除計算模組節省了群組工具所有權之成本。在一例子中,實質上去除了用以購買、置放和維持計算模組之成本。Instead of using conventional sensor devices to measure process parameters, an improved sensor (which does not have a computing module) can be used. Since the collected data does not need to be summarized, the computing module is no longer needed for processing. Rather, in one embodiment, the improved sensor can include a data converter (not shown), such as a low cost FPGA, for converting data from an analog format to a digital format. Alternatively, instead of setting the data converter in the sensor, a data converter (not shown) may be provided in the APECS 400. The removal of the computing module saves the cost of ownership of the group tool, whether or not the data converter is placed externally or internally to the APECS 400. In one example, the cost of purchasing, placing, and maintaining a computing module is substantially eliminated.

在本發明之一實施例中,APECS 400包含一組處理器(402、404、406和408)以處理傳入資料。此處理器組可為實體處理單元、虛擬處理器、或其組合。每個處理器負責處理來自與此處理器聯結之來源的資料流。在一例子中,由處理器404來處理從感應器422經由路徑440流入之資料流。在另一例子中,感應器424收集之資料流經由路徑442被傳送到處理器406以進行處理。In one embodiment of the invention, APECS 400 includes a set of processors (402, 404, 406, and 408) to process incoming data. This processor group can be an entity processing unit, a virtual processor, or a combination thereof. Each processor is responsible for processing the data stream from the source associated with this processor. In one example, the flow of data flowing from sensor 422 via path 440 is processed by processor 404. In another example, the data stream collected by sensor 424 is transmitted to processor 406 via path 442 for processing.

處理器數目及其與感應器的關係可取決於使用者的配置。在一例子中,即使圖4只展示處理器和感應器之間的一對一關係,仍可存在其它關係。在一例子中,可配置處理器以處理來自一個以上來源之資料。在另一例子中,可配置一個以上之處理器以處理來自一個感應器之資料流。The number of processors and their relationship to the sensors may depend on the configuration of the user. In one example, even though Figure 4 shows only a one-to-one relationship between the processor and the sensor, other relationships may exist. In one example, the processor can be configured to process data from more than one source. In another example, more than one processor can be configured to process the data stream from one of the sensors.

在一實施例中,每一個處理器共享一共享記憶體主幹428。因此,當一個以上之處理器超載時可執行負載平衡。在一例子中,若從感應器426經由路徑444流入之資料流超出處理器408的處理能力,其它處理器可用來協助減少處理器408上之負載。In one embodiment, each processor shares a shared memory backbone 428. Therefore, load balancing can be performed when more than one processor is overloaded. In one example, if the data stream flowing from sensor 426 via path 444 exceeds the processing power of processor 408, other processors can be used to assist in reducing the load on processor 408.

除了負載平衡之外,共享記憶體主幹亦提供一容錯環境。換言之,若處理器其中之一未正常作用,先前由此故障之處理器支援的處理會被重新分配到其它處理器。在一例子中,若處理器406未正常作用且無法處理來自感應器424之資料流,可指示處理器404來處理來自感應器424之資料流。因此,重新分配工作量的能力使得未正常作用之處理器能被取代,而不會造成整個伺服器停工。In addition to load balancing, the shared memory backbone also provides a fault-tolerant environment. In other words, if one of the processors is not functioning properly, the processing previously supported by the processor of this failure is reassigned to the other processor. In one example, if processor 406 is not functioning properly and cannot process the data stream from sensor 424, processor 404 can be instructed to process the data stream from sensor 424. Therefore, the ability to redistribute the workload allows the processor that is not functioning properly to be replaced without causing the entire server to shut down.

在一實施例中,APECS 400內可存在兩種處理器。第一種處理器為次級處理器(例如處理器404、406或408)。配置每個次級處理器來處理從其對應之感應器接收之資料流。此外,在一實施例中,每個處理器用以分析資料以及識別其對應之感應器所存在之任何潛在的問題。In an embodiment, there may be two processors within the APECS 400. The first type of processor is a secondary processor (e.g., processor 404, 406 or 408). Each secondary processor is configured to process the data stream received from its corresponding sensor. Moreover, in one embodiment, each processor is used to analyze the data and identify any potential problems with its corresponding sensor.

第二種處理器被稱為初級處理器(402)。雖然圖4只展示一個初級處理器,初級處理器之數目可取決於使用者的配置。在一實施例中,可配置一個初級處理器來處理來自一個以上感應器之資料流。在一例子中,將感應器420收集之資料流經由路徑438傳送到初級處理器402以進行處理。The second type of processor is referred to as a primary processor (402). Although Figure 4 shows only one primary processor, the number of primary processors may depend on the configuration of the user. In an embodiment, a primary processor can be configured to process data streams from more than one sensor. In one example, the data stream collected by sensor 420 is transmitted via path 438 to primary processor 402 for processing.

初級處理器之另一個資料來源是製程模組。換言之,製程模組收集之製程模組資料和處理內容資料會由初級處理器來處理。在一例子中,將製程模組收集之資料透過製程控制匯流排經由路徑454傳送到APECS 400。此資料在經由路徑446流入初級處理器402之前,先穿過乙太網路交換器418。Another source of information for the primary processor is the process module. In other words, the process module data and processing content data collected by the process module are processed by the primary processor. In one example, the data collected by the process module is transmitted to the APECS 400 via the process control bus via path 454. This data passes through the Ethernet switch 418 before flowing into the primary processor 402 via path 446.

除了處理資料,初級處理器亦可用以分析來自多個來源之資料。在一例子中,由初級處理器402執行來自感應器422和424之資料流之間的資料關聯化。在另一例子中,亦由初級處理器402執行來自一個以上感應器之資料流與來自一製程模組之資料流之間的資料關聯化。In addition to processing data, the primary processor can also be used to analyze data from multiple sources. In an example, data correlation between data streams from sensors 422 and 424 is performed by primary processor 402. In another example, primary processor 402 also performs data association between data streams from more than one sensor and data streams from a process module.

由於對每個資料源之資料路徑現在為約相同長度,關聯化資料要比先前技術所經歷的挑戰簡單許多。在一例子中,由於資料不需要經過其它伺服器(例如群組工具控制器和/或晶圓廠主機)即可從製程模組流向APECS 400,來自製程模組之資料流不會經歷由於電腦和/或網路狀況(例如電腦偏差、網路延遲、網路負載等等)所造成之改變,而這些狀況在資料流必須經過其它伺服器(例如群組工具控制器、晶圓廠主機等等)而傳送時則會產生(如圖1和圖2所述)。此外,現在大幅減少了接收執行關聯化和分析所需之所有相關資料流的等待時間。因此,當已經實質上解除外來的狀況(例如電腦偏差、網路延遲、網路負載等等)時,會大幅簡化來自不同來源之資料的關聯化。Since the data path to each data source is now about the same length, the associative data is much simpler than the challenges experienced by prior art. In one example, since the data does not need to go through other servers (such as the group tool controller and/or the fab host) to flow from the process module to the APECS 400, the data flow from the process module does not go through the computer. And/or changes in network conditions (such as computer skew, network latency, network load, etc.) that must pass through other servers (such as group tool controllers, fab hosts, etc.) When it is transmitted, it will be generated (as shown in Figures 1 and 2). In addition, the latency of receiving all relevant data streams required to perform correlation and analysis is now greatly reduced. Therefore, when the external situation (such as computer deviation, network delay, network load, etc.) has been substantially removed, the association of data from different sources is greatly simplified.

除了資料路徑以外,由於來自單一來源之具有較佳精細度的較大量資料提供了更多資料點以執行關聯化,故可執行更快且更準確之分析。在先前技術中,因為可用於分析之資料通常是不完整的(這是由於習知分析伺服器無法處理來自過量資料源之高資料量),所以資料源之間的關聯化通常很困難。不同於先前技術,由於現在每個分析伺服器只負責分析來自有限數量之來源(製程模組及與此製程模組聯結之感應器)的資料,大幅降低了資料源之數量。由於已經大幅降低了資料源之數量,分析伺服器有能力處理來自單一來源之較大量資料量。有鑑於提供了更精細的細節,可達成在各個來源之資料流之間的更佳關聯化。In addition to the data path, faster and more accurate analysis can be performed because a larger amount of data from a single source with better granularity provides more data points to perform associations. In the prior art, the association between data sources is often difficult because the information available for analysis is often incomplete (since the conventional analysis server is unable to process high data volumes from excess data sources). Unlike prior art, each analysis server is now only responsible for analyzing data from a limited number of sources (process modules and sensors connected to the process module), significantly reducing the number of data sources. Since the number of data sources has been greatly reduced, the analytics server has the ability to handle larger amounts of data from a single source. In view of the finer detail provided, better correlation between data streams from various sources can be achieved.

若識別出問題(例如不可控制事件),初級處理器可用以傳送封鎖訊息到製程模組。在一實施例中,採用直接數位輸出線456將封鎖訊息從APECS 400傳送到製程模組。藉由在兩個裝置之間的數位輸出線,封鎖訊息不需要在可被傳送之前先轉換成乙太網路訊息。因此,實質上免去了正確地格式化封鎖訊息然後將其轉換回來所需之時間。所以,APECS 400能夠提供即時封鎖訊息或接近即時封鎖訊息到製程模組,以處理不可控制事件。If a problem is identified (eg, an uncontrollable event), the primary processor can be used to transmit a blocking message to the process module. In one embodiment, the blockade message is transmitted from the APECS 400 to the process module using the direct digital output line 456. With the digital output line between the two devices, the blocked message does not need to be converted to an Ethernet message before it can be transmitted. Therefore, the time required to properly format the blocked message and then convert it back is substantially eliminated. Therefore, APECS 400 can provide instant blocking messages or close to instant blocking messages to the process module to handle uncontrollable events.

在一實施例中,亦可配置初級處理器與其它裝置經由路徑458而互相作用。在一例子中,若群組工具控制器傳送一要求到APECS 400,此要求可經由路徑458而傳送且由初級處理器402來處理。在另一例子中,可經由路徑458和群組工具控制器來傳送對晶圓廠主機之通知。在一個以上之實施例中,APECS 400可經由路徑458與使用者介面(UI)相連接。In an embodiment, the primary processor and other devices may also be configured to interact via path 458. In an example, if the group tool controller transmits a request to APECS 400, the request can be communicated via path 458 and processed by primary processor 402. In another example, the notification to the fab host can be communicated via path 458 and the group tool controller. In one or more embodiments, APECS 400 can be coupled to a user interface (UI) via path 458.

由一個以上之本發明實施例可了解,本發明提供了製程層次疑難排解結構。藉由在製程模組層次定位分析伺服器,提供了資料精細度以進行分析,而產生更快且更準確之分析。藉由對各個資料源有相似之資料路徑,各個資料流之間存在有更佳的關聯性。藉由更快且更準確之分析,可隨著及時提供之封鎖訊息而在更及時的基礎上執行疑難排解,以提供可用以防止下一個基板被損傷以及修復衝擊受影響基板之不可控制事件的改正動作,藉此挽救受影響基板免於受損。因此,會浪費較少數量的基板,並可實質減少對處理室組件的損傷。It can be understood from more than one embodiment of the present invention that the present invention provides a process level troubleshooting structure. By locating the analysis server at the process module level, data fineness is provided for analysis, resulting in faster and more accurate analysis. By having a similar data path for each data source, there is a better correlation between the individual data streams. With faster and more accurate analysis, troubleshooting can be performed on a more timely basis with the timely provision of blocked messages to provide uncontrollable events that can be used to prevent damage to the next substrate and to repair damaged substrates. Correct the action to save the affected substrate from damage. As a result, a smaller number of substrates are wasted and the damage to the process chamber components can be substantially reduced.

在本發明之另一態樣,本案發明人在此了解到,藉由能夠執行及時、快速且準確分析之製程層次疑難排解結構,可識別及管理快速暫態事件(例如微發弧(micro-arcing)事件、釋放(dechucking)事件、尖突(spiking)事件等等)的即時原位偵測。如本文所述,快速暫態事件意指在基板處理期間可快速發生且通常維持短時間之事件(例如微發弧事件、釋放事件、尖突事件等等)。由於每個事件可維持之速度和短暫的時間,若完全可能的話,在處理完整個基板批次之後,通常是已離線執行識別快速暫態事件的工作。In another aspect of the present invention, the inventors of the present invention have learned that fast transient events (eg, micro-arc (micro-arc) can be identified and managed by a process level troubleshooting structure capable of performing timely, rapid, and accurate analysis. Arcing) Instant, in-situ detection of events, dechucking events, spiking events, etc. As described herein, a fast transient event means an event that can occur quickly during substrate processing and that typically lasts for a short period of time (eg, a micro-arc event, a release event, a spike event, etc.). Due to the speed and short duration that each event can be maintained, if it is entirely possible, after processing the entire batch of substrates, the task of identifying fast transient events is typically performed offline.

在一例子中,例如,可使用光學量測工具來檢查一個以上之基板。不幸的是,此檢查並未提供及時偵測。反而是,例如,在已經識別出發生在基板上之微發弧事件的時候,不只此基板已經受損,且剩餘之基板批次也可能已經受損。此外,亦可能產生對處理室內之硬體組件的損傷。In one example, for example, an optical metrology tool can be used to inspect more than one substrate. Unfortunately, this check did not provide timely detection. Rather, for example, when a micro-arc event occurring on the substrate has been identified, not only the substrate has been damaged, but the remaining substrate batch may have been damaged. In addition, damage to the hardware components within the processing chamber may also result.

近年來,已發展出快速暫態感應器,能夠捕捉到快速暫態電子簽章(其為快速暫態事件的結果)。然而,大部份快速暫態感應器並沒有分類電子簽章的能力。換言之,快速暫態感應器可能可以收集資料,但是快速暫態感應器通常沒有將此資料分類成有意義之電子簽章(可用以識別潛在傷害性事件)的能力。In recent years, fast transient sensors have been developed that capture fast transient electronic signatures (which are the result of fast transient events). However, most fast transient sensors do not have the ability to classify electronic signatures. In other words, fast transient sensors may be able to collect data, but fast transient sensors typically do not have the ability to classify this material into meaningful electronic signatures that can be used to identify potentially harmful events.

考慮到其中的狀況,例如,在蝕刻處理期間,可能會累積電荷而造成微發弧產生。如本文所述,微發弧意指當快速消除電力且此消除動作對基板上之圖案造成損傷(例如破壞材料層、破壞圖案、熔化層等等)時,所產生之事件。藉由使用VI探針,可收集關於微發弧之資料。然而,大部份快速暫態感應器(例如VI探針)缺少解讀資料與識別何時已發生快速暫態事件(例如微發弧事件)的理解力。In view of the conditions therein, for example, during the etching process, electric charges may be accumulated to cause micro-arc generation. As described herein, micro-arcing refers to an event that occurs when power is quickly removed and the cancellation action causes damage to the pattern on the substrate (eg, breaking a layer of material, breaking a pattern, melting a layer, etc.). Information on micro-arc can be collected by using a VI probe. However, most fast transient sensors (such as VI probes) lack the ability to interpret data and identify when fast transient events (such as micro-arc events) have occurred.

反而是,快速暫態感應器收集之資料可能必須由第三者(例如由使用者或由軟體程式)來分析。在一例子中,使用者可能需要分析過量的資料,且判斷出(基於其專業知識)是否在基板處理期間已產生快速暫態事件。分析資料的工作可能不是耗費數星期,就是耗費數小時。即使由軟體程式執行資料分析,仍可能需要時間來分析數以萬計的資料樣品。在識別出問題的時候,可能已經發生對一個以上之基板批次和/或對處理室之硬體組件的損傷。Instead, the data collected by the fast transient sensor may have to be analyzed by a third party (eg, by a user or by a software program). In one example, the user may need to analyze the excess data and determine (based on his expertise) whether a fast transient event has occurred during substrate processing. The analysis of the data may not take weeks or hours. Even if data analysis is performed by a software program, it may take time to analyze tens of thousands of data samples. Damage to more than one substrate batch and/or to the hardware components of the processing chamber may have occurred while identifying the problem.

由於微發弧事件通常不是可預期之現象,偵測快速暫態事件(例如微發弧事件)可能是困難之工作。換言之,例如,微發弧並非總是發生在每個基板上。在本發明之一態樣中,本案發明人在此了解到,即使微發弧事件的時間是不可預測的,但微發弧事件的電子簽章則可預測。換言之,每個微發弧事件可由一獨特簽章所代表。Since micro-arc events are usually not a predictable phenomenon, detecting fast transient events (such as micro-arc events) can be a difficult task. In other words, for example, micro-arcing does not always occur on each substrate. In one aspect of the invention, the inventors herein have learned that even though the time of the micro-arc event is unpredictable, the electronic signature of the micro-arc event is predictable. In other words, each micro-arc event can be represented by a unique signature.

圖5展示一微發弧事件(曲線502)的簡單曲線圖。由曲線502可見,當晶圓上之微發弧事件發生時,電壓和電流訊號會同時經歷陡降(504)。然後當電壓和電流訊號逐漸上升到高原區(506)時,電壓和電流訊號會經歷逆衰退,而高原區(506)可與兩個信號下降的位置在不同高度上。Figure 5 shows a simple graph of a micro-arc event (curve 502). As seen by curve 502, when a micro-arc event on the wafer occurs, the voltage and current signals experience a steep drop (504) at the same time. Then, as the voltage and current signals gradually rise to the plateau (506), the voltage and current signals experience a reverse dip, while the plateau (506) can be at different heights from where the two signals fall.

依據本發明之實施例,提供方法和裝置來處理在電漿處理系統之處理室內的快速暫態事件(例如微發弧事件)。本發明之實施例包含用以偵測快速暫態事件(例如微發弧)的方法。本發明之實施例亦包含藉由執行將一簽章與已知快速暫態簽章(例如弧光簽章)相比較來分類快速暫態電子簽章的方法。本發明之實施例更包含用以分類快速暫態事件之嚴重性的方法。本發明之實施例另包含用以管理快速暫態事件以在即時製造環境期間將損傷減至最小的方法。In accordance with an embodiment of the present invention, methods and apparatus are provided for processing fast transient events (e.g., micro-arc events) within a processing chamber of a plasma processing system. Embodiments of the invention include methods for detecting fast transient events, such as micro-arcs. Embodiments of the present invention also include methods for classifying fast transient electronic signatures by performing a comparison of known signatures with known fast transient signatures (e.g., arc signatures). Embodiments of the present invention further include methods for classifying the severity of fast transient events. Embodiments of the present invention further include methods for managing fast transient events to minimize damage during an immediate manufacturing environment.

在本案中,可使用微發弧作為例子來說明各個實施例。然而,本發明並不限定於微發弧,且可包含可能在基板處理期間發生之任何快速暫態事件。反而是,本案之說明係作為例示用,且本發明並不限定於所提出之實施例。In the present case, various embodiments may be described using micro-arc as an example. However, the invention is not limited to micro-arcing, and may include any fast transient events that may occur during substrate processing. Instead, the description of the present invention is for illustrative purposes, and the invention is not limited to the embodiments presented.

在本發明之一實施例中,提供方法和裝置以偵測潛在微發弧事件。如上所述,在基板處理期間,可採用能夠執行高取樣速率(例如每秒收集數百萬或數億的資料點)之快速暫態感應器(例如VI探針)來收集資料。在一實施例中,例如,在基板處理期間,於VI探針收集資料的同時,可執行快速取樣暫態偵測演算法。在一實施例中,快速取樣暫態偵測演算法可包含用以定義潛在快速暫態電訊號之標準值。在一例子中,為了識別潛在晶圓上微發弧事件,快速取樣暫態偵測演算法可檢索於其中電壓和電流訊號兩者皆同時下降的事件。在另一例子中,為了識別潛在處理室微發弧事件,可使用快速取樣暫態偵測演算法來檢索於其中電壓和電流訊號兩者皆呈峰狀的事件。In one embodiment of the invention, methods and apparatus are provided to detect potential micro-arc events. As noted above, during substrate processing, a fast transient sensor (eg, a VI probe) capable of performing high sampling rates (eg, collecting millions or hundreds of millions of data points per second) can be used to collect data. In one embodiment, for example, during substrate processing, a fast sampling transient detection algorithm can be performed while the VI probe collects data. In an embodiment, the fast sampling transient detection algorithm may include a standard value used to define a potential fast transient electrical signal. In one example, to identify potential micro-arc events on a wafer, a fast sampling transient detection algorithm can retrieve events in which both voltage and current signals drop simultaneously. In another example, to identify potential processing chamber micro-arc events, a fast sampling transient detection algorithm can be used to retrieve events in which both voltage and current signals are peaked.

在一實施例中,由感應器控制器(例如VI探針控制器)來執行快速取樣暫態演算法,配置與感應器(例如VI探針)連接之計算模組,以提供對感應器(例如VI探針)之界面以及從感應器(例如VI探針)接收資料。在另一實施例中,由與感應器控制器(例如VI探針控制器)互相作用之計算模組來執行快速取樣暫態演算法。在又一實施例中,由與感應器(例如VI探針)直接互相作用之分析模組來執行快速取樣暫態演算法。In one embodiment, a fast sampling transient algorithm is performed by an inductor controller (eg, a VI probe controller), and a computing module coupled to a sensor (eg, a VI probe) is configured to provide a pair of sensors ( For example, the VI probe) interface and receiving data from sensors such as VI probes. In another embodiment, the fast sampling transient algorithm is performed by a computing module that interacts with an inductor controller (eg, a VI probe controller). In yet another embodiment, the fast sampling transient algorithm is performed by an analysis module that interacts directly with an inductor (eg, a VI probe).

若由感應器(例如VI探針)或者是由與感應器(例如VI探針)互相作用之計算模組來識別出潛在微發弧事件,然後在一實施例中,約在此事件發生時所產生的電壓和電流訊號波形(例如電子簽章)可被儲存並發送到分析模組(例如製程模組層次分析伺服器(如APECS 314))以進行分析。換言之,藉由在感應器層次執行偵測,只有關於潛在快速暫態電子簽章(例如微發弧)的資料會被向前發送到分析模組以做進一步之分析。因此,可執行過濾以減少沿著資料路徑而傳送之資料流量,取代傳送所有資料到分析模組以進行分析,藉此減少頻寬要求以及減少分析模組之處理器能力。If a potential micro-arc event is identified by a sensor (eg, a VI probe) or by a computing module that interacts with a sensor (eg, a VI probe), then in one embodiment, approximately at the time of the event The resulting voltage and current signal waveforms (eg, electronic signatures) can be stored and sent to an analysis module (eg, a process module analytic server (eg, APECS 314)) for analysis. In other words, by performing detection at the sensor level, only data about potentially fast transient electronic signatures (eg, micro-arc) will be forwarded to the analysis module for further analysis. Therefore, filtering can be performed to reduce the amount of data traffic transmitted along the data path, instead of transmitting all of the data to the analysis module for analysis, thereby reducing bandwidth requirements and reducing the processor power of the analysis module.

然而,若由與感應器(例如VI探針)直接互相作用之分析模組來識別潛在微發弧事件,然後在一實施例中,不需要過濾資料。反而是,作為製程層次疑難排解結構之一部份的分析模組(例如APECS 314)可具有能夠處理大量資料的快速處理器。藉由本發明之特殊的製程層次疑難排解結構,可實質上去除在其它類型分析結構中可能產生的一般資料流量壅塞。因此,本發明之分析模組能夠快速且有效率地分析數以萬計的資料樣品。However, if an analysis module that interacts directly with an inductor (e.g., a VI probe) identifies a potential micro-arc event, then in one embodiment, no filtering of the data is required. Instead, an analysis module (such as APECS 314) that is part of the process level troubleshooting structure can have a fast processor that can process large amounts of data. With the special process level troubleshooting structure of the present invention, general data traffic congestion that may occur in other types of analysis structures can be substantially eliminated. Therefore, the analysis module of the present invention is capable of analyzing tens of thousands of data samples quickly and efficiently.

在本發明之一實施例中,可執行分類潛在快速暫態電子簽章。在一例子中,一旦分析模組接收到潛在快速暫態事件之波形,分析模組可將潛在快速暫態電子簽章與一組快速暫態簽章(例如一組弧光簽章)相比較。在一實施例中,可作為快速暫態事件(例如微發弧)之例子的各種已知波形,可被儲存在資料庫中。In an embodiment of the invention, the classification of potential fast transient electronic signatures can be performed. In one example, once the analysis module receives a waveform of a potential fast transient event, the analysis module can compare the potential fast transient electronic signature with a set of fast transient signatures (eg, a set of arc signatures). In one embodiment, various known waveforms that may be used as examples of fast transient events (e.g., micro-arc) may be stored in a database.

在一實施例中,若潛在快速暫態電子簽章與儲存於資料庫中的快速暫態簽章組的其中一個相符合,可接著判定此快速暫態事件的嚴重性。在一例子中,快速暫態事件可能對處理中之基板有很小的影響或沒有影響。因此,此事件可被分類為具有低嚴重性程度之事件。在另一例子中,快速暫態事件可能已經損傷了目前處理中之基板。因此,此快速暫態事件可被分類為具有高嚴重性程度。In one embodiment, if the potential fast transient electronic signature matches one of the fast transient signature groups stored in the database, then the severity of the fast transient event can be determined. In one example, a fast transient event may have little or no effect on the substrate being processed. Therefore, this event can be classified as an event with a low degree of severity. In another example, a fast transient event may have damaged the substrate currently being processed. Therefore, this fast transient event can be classified as having a high degree of severity.

藉由識別快速暫態事件之嚴重性,可判斷出如何最好地處理此快速暫態事件。在本發明之一實施例中,可取決於快速暫態事件之嚴重性來提供預定動作程序。在一例子中,具有低嚴重性程度的快速暫態事件可引起警告,而具有高嚴重性程度的快速暫態事件則可造成蝕刻處理(例如)被終止。By identifying the severity of a fast transient event, it can be determined how best to handle this fast transient event. In an embodiment of the invention, the predetermined operational procedure may be provided depending on the severity of the fast transient event. In one example, a fast transient event with a low severity can cause a warning, while a fast transient event with a high severity can cause the etch process to be terminated, for example.

為幫助說明,圖6A展示,在本發明之一實施例中,處理環境之簡單方塊圖。處理系統600可包含於其中處理基板604之處理室602。在基板處理期間,氣體(圖中未示)可與電力(透過一組RF產生器606經由一組匹配器(match box)608而提供)互相作用,以產生電漿來蝕刻基板。To aid in the description, FIG. 6A shows a simplified block diagram of a processing environment in one embodiment of the invention. Processing system 600 can include a processing chamber 602 in which substrate 604 is processed. During substrate processing, a gas (not shown) may interact with power (provided through a set of RF boxes 606 via a set of match boxes 608) to produce a plasma to etch the substrate.

在基板處理期間,若產生了電荷累積而造成快速暫態事件發生,此資料可由VI探針610收集且由快速取樣暫態偵測演算法模組616識別。在一實施例中,快速取樣暫態偵測演算法模組616可包含用以定義快速暫態事件之標準值。在一實施例中,可在基板處理期間來執行快速取樣暫態偵測演算法模組。During the processing of the substrate, if a rapid transient event occurs due to charge buildup, this data may be collected by the VI probe 610 and identified by the fast sampling transient detection algorithm module 616. In one embodiment, the fast sampling transient detection algorithm module 616 can include standard values for defining fast transient events. In an embodiment, the fast sampling transient detection algorithm module can be executed during substrate processing.

在一實施例中,收集之資料可沿著一組路徑614被發送到VI探針控制器612。VI探針控制器612至少用以管理VI探針610。在一實施例中,VI探針控制器612亦可包含快速取樣暫態偵測演算法模組616。In an embodiment, the collected data can be sent to the VI probe controller 612 along a set of paths 614. The VI probe controller 612 is at least used to manage the VI probe 610. In an embodiment, the VI probe controller 612 can also include a fast sampling transient detection algorithm module 616.

在另一實施例中,快速取樣暫態偵測演算法模組616可為能與VI探針控制器612交流之獨立式計算模組。換言之,VI探針610收集之資料可經由VI探針控制器612被傳送到快速取樣暫態偵測演算法模組616。藉由使快速取樣暫態偵測演算法模組616成為獨立式模組,若VI探針控制器612無法操作額外的處理,則不需要修正VI探針控制器612。In another embodiment, the fast sampling transient detection algorithm module 616 can be a stand-alone computing module that can communicate with the VI probe controller 612. In other words, the data collected by the VI probe 610 can be transmitted to the fast sampling transient detection algorithm module 616 via the VI probe controller 612. By having the fast sampled transient detection algorithm module 616 a stand-alone module, the VI probe controller 612 need not be modified if the VI probe controller 612 is unable to operate additional processing.

在另一實施例中,可將資料從VI探針610經由路徑650直接傳送到分析模組618(如圖6B所示),取代將資料傳送到VI探針控制器612,分析模組618可容置快速取樣暫態偵測演算法模組616。藉由將資料直接傳送到分析模組618,VI探針610收集之資料不需要被預處理。此外,可去除計算模組(例如VI探針控制器612)以減少不動產的費用。反而是,可採用分析模組618來識別潛在快速暫態電子簽章。In another embodiment, the data can be directly transmitted from the VI probe 610 via the path 650 to the analysis module 618 (as shown in FIG. 6B) instead of transmitting the data to the VI probe controller 612. The fast sampling transient detection algorithm module 616 is accommodated. By transmitting the data directly to the analysis module 618, the data collected by the VI probe 610 need not be pre-processed. Additionally, a computing module (eg, VI probe controller 612) can be eliminated to reduce the cost of real estate. Instead, an analysis module 618 can be employed to identify potential fast transient electronic signatures.

一旦基於預定標準值已經偵測出潛在快速暫態電子簽章,可由分析模組618(例如製程模組層次分析伺服器(如APECS 314))來分類潛在快速暫態電子簽章。在一實施例中,分析模組618可藉由將潛在快速暫態電子簽章與儲存於資料庫中之一組快速暫態簽章(例如一組弧光簽章)相比較來執行簽章比對。若識別出符合結果,則認定已發生快速暫態事件。Once the potential fast transient electronic signature has been detected based on the predetermined standard value, the potential fast transient electronic signature can be classified by the analysis module 618 (eg, the process module hierarchy analysis server (eg, APECS 314)). In an embodiment, the analysis module 618 can perform the signature ratio by comparing the potential fast transient electronic signature with a set of fast transient signatures (eg, a set of arc signatures) stored in the database. Correct. If a match is identified, a fast transient event has occurred.

在一實施例中,配置分析模組618以判定快速暫態事件之嚴重性。熟悉本技藝者當可了解快速暫態事件可具有不同的嚴重性(例如強度)程度。因此,提供演算法以判定每個快速暫態事件的嚴重性。在一實施例中,可預定及可由使用者配置嚴重性的程度/閾值範圍。如一例子,可將在電流或電壓訊號中大於4dB的下降與長於15微秒之持續時間(定義為從下降到回復之時間),視為用以偵測晶圓上之損傷的適當閾值。In one embodiment, analysis module 618 is configured to determine the severity of a fast transient event. Those skilled in the art will appreciate that fast transient events can have varying degrees of severity (e.g., intensity). Therefore, an algorithm is provided to determine the severity of each fast transient event. In an embodiment, the degree/threshold range of severity may be predetermined and configurable by the user. As an example, a greater than 4 dB drop in current or voltage signals and a duration longer than 15 microseconds (defined as the time from descent to recovery) can be considered as appropriate thresholds for detecting damage on the wafer.

一旦已經分類快速暫態事件的嚴重性程度,可採取一動作程序。在一實施例中,動作程序可被預定,且可與嚴重性程度/閾值範圍聯結。在一實施例中,動作程序可由使用者來配置。在一例子中,具有小的電壓和電流下降之快速暫態電子簽章(例如微發弧)可被視為無害的,且可能只需要將一通知傳送給操作者。在另一例子中,具有大的電壓和電流下降之快速暫態電子簽章可被視為有高嚴重性程度之事件,且可能引發基板處理之終止。Once the severity of the fast transient event has been categorized, an action procedure can be taken. In an embodiment, the action program can be predetermined and can be associated with a severity level/threshold range. In an embodiment, the action program can be configured by the user. In one example, a fast transient electronic signature (eg, micro-arc) with a small voltage and current drop can be considered harmless and may only require a notification to be communicated to the operator. In another example, a fast transient electronic signature with a large voltage and current drop can be considered an event of high severity and can trigger termination of substrate processing.

圖7展示,在本發明之實施例中,說明用以偵測在製造環境內之即時快速暫態事件之方法的簡單流程圖,其中快速取樣暫態偵測演算法不是分析模組的一部份。7 shows, in an embodiment of the invention, a simple flow diagram illustrating a method for detecting instant fast transient events in a manufacturing environment, wherein the fast sampling transient detection algorithm is not a component of the analysis module. Share.

在第一步驟702,開始基板處理。考慮到其中的狀況,例如,在處理室602內處理基板604。In a first step 702, substrate processing is initiated. In view of the conditions therein, for example, the substrate 604 is processed within the processing chamber 602.

在下一步驟704,偵測處理室內之基板處理。在步驟704a,快速暫態感應器(例如VI探針)可偵測電性參數(例如在不同階段之電壓和電流訊號、基波和諧波)。於大約相同之時間,在步驟704b,可執行快速取樣暫態偵測演算法。In the next step 704, substrate processing within the processing chamber is detected. At step 704a, a fast transient sensor (eg, a VI probe) can detect electrical parameters (eg, voltage and current signals, fundamentals, and harmonics at different stages). At approximately the same time, at step 704b, a fast sampling transient detection algorithm can be performed.

在下一步驟706,判斷出潛在快速暫態事件是否存在。換言之,例如,快速取樣暫態偵測演算法可包含用以定義潛在快速暫態事件(例如微發弧)之標準值。若VI探針收集之資料不符合快速取樣暫態偵測演算法所定義之標準值,則未發生潛在快速暫態事件,且VI探針會繼續偵測基板處理(步驟704)。In the next step 706, it is determined if a potential fast transient event exists. In other words, for example, a fast sampling transient detection algorithm may include a standard value to define a potential fast transient event (eg, a micro-arc). If the data collected by the VI probe does not meet the standard values defined by the fast sampling transient detection algorithm, no potential fast transient events occur and the VI probe continues to detect substrate processing (step 704).

然而,若識別出潛在快速暫態事件,則在下一步驟708,可儲存在潛在快速暫態事件發生時附近的電壓和電流波形。However, if a potential fast transient event is identified, then in a next step 708, voltage and current waveforms near the time the potential fast transient event occurs can be stored.

在下一步驟710,將儲存的波形傳送到分析模組。在一實施例中,只有與潛在快速暫態事件發生相關之資料會被儲存與傳送。藉由只傳送潛在快速暫態電子簽章,可使資料流失減至最小。此外,由於感應器控制器(例如VI探針控制器)已經執行預處理,分析模組可不需要包含用以分析資料並快速分類和判定對於潛在快速暫態事件之動作程序的快速處理器。In the next step 710, the stored waveform is transmitted to the analysis module. In one embodiment, only data related to the occurrence of a potential fast transient event is stored and transmitted. Data loss can be minimized by transmitting only potentially fast transient electronic signatures. In addition, since the sensor controller (eg, the VI probe controller) has performed pre-processing, the analysis module may not need to include a fast processor to analyze the data and quickly classify and determine the action program for potentially fast transient events.

在下一步驟712,由分析模組執行簽章比對。在一實施例中,分析模組可將潛在快速暫態電子簽章與一組快速暫態簽章相比較。在一實施例中,可將此組快速暫態簽章儲存在資料庫中。在一實施例中,此資料庫亦可包含非快速暫態簽章以使得關聯化能夠被執行。In the next step 712, the signature comparison is performed by the analysis module. In one embodiment, the analysis module can compare a potentially fast transient electronic signature with a set of fast transient signatures. In an embodiment, the set of fast transient signatures can be stored in a database. In an embodiment, this database may also contain non-fast transient signatures to enable associations to be performed.

在下一步驟714,判斷出潛在快速暫態電子簽章之類別。若簽章比對的結果是沒有識別出符合者,則此潛在快速暫態電子簽章不會被分類為感興趣之快速暫態電子簽章(步驟716)。在一實施例中,可摒棄此潛在快速暫態電子簽章。在另一實施例中,可將此潛在快速暫態電子簽章加入資料庫中,作為新的快速暫態電子簽章(步驟718)。In the next step 714, a category of potential fast transient electronic signatures is determined. If the result of the signature comparison is that no match is identified, then the potentially fast transient electronic signature is not classified as a fast transient electronic signature of interest (step 716). In an embodiment, this potentially fast transient electronic signature can be discarded. In another embodiment, the potential fast transient electronic signature can be added to the database as a new fast transient electronic signature (step 718).

然而,若簽章比對的結果是識別出快速暫態電子簽章,則在下一步驟720,判定此快速暫態事件之嚴重性。在一例子中,嚴重性可分佈為從低到高。在一實施例中,嚴重性可基於一組預定的閾值範圍。在一實施例中,可將快速暫態電子簽章加入資料庫中(步驟718)。步驟718為選擇性步驟,且不需用於偵測即時快速暫態事件。However, if the result of the signature comparison is to identify a fast transient electronic signature, then in a next step 720, the severity of the fast transient event is determined. In one example, the severity can be distributed from low to high. In an embodiment, the severity may be based on a predetermined set of threshold ranges. In an embodiment, a fast transient electronic signature may be added to the database (step 718). Step 718 is an optional step and is not required to detect an immediate fast transient event.

在下一步驟722,判定動作程序。一旦已經判定嚴重性程度,可執行動作程序。在一實施例中,可預定動作程序。在一例子中,具有低嚴重性程度之快速暫態電子簽章可引發對操作者之通知。在另一例子中,具有中等嚴重性程度之快速暫態電子簽章可引發警告。在又一例子中,具有高嚴重性程度之快速暫態電子簽章可引發基板處理之終止。由上述可知,可由使用者來配置嚴重性程度以及與嚴重性程度聯結之動作程序。In the next step 722, an action program is determined. Once the severity level has been determined, an action procedure can be performed. In an embodiment, an action program can be scheduled. In one example, a fast transient electronic signature with a low severity can trigger an operator notification. In another example, a fast transient electronic signature with a medium severity level can trigger a warning. In yet another example, a fast transient electronic signature with a high degree of severity can initiate termination of substrate processing. From the above, it can be seen that the user can configure the severity level and the action procedure associated with the severity level.

圖7展示,執行用以偵測在製造環境內之即時快速暫態事件之方法的一實施例。在另一例子中,亦可使用此方法以偵測即時快速暫態事件,其中快速取樣暫態偵測演算法是分析模組的一部份(在一實施例中)。在此類環境中,可由分析模組(例如APECS 314)取代VI探針控制器,來執行快速取樣暫態偵測演算法。在一實施例中,分析模組為能夠處理大量資料之快速處理計算模組。在一實施例中,分析模組與感應器直接連接。所以,資料由感應器收集並直接傳送到分析模組。FIG. 7 illustrates an embodiment of a method of detecting an instant fast transient event within a manufacturing environment. In another example, the method can also be used to detect real-time fast transient events, wherein the fast sampling transient detection algorithm is part of an analysis module (in an embodiment). In such an environment, a fast sampling transient detection algorithm can be performed by an analysis module (eg, APECS 314) instead of a VI probe controller. In one embodiment, the analysis module is a fast processing computing module capable of processing a large amount of data. In an embodiment, the analysis module is directly connected to the inductor. Therefore, the data is collected by the sensor and transmitted directly to the analysis module.

由上述可知,本發明提供了用以偵測原位即時快速暫態事件之裝置和方法。在先前技術中,通常在已經完成一基板批次的基板處理之後才執行快速暫態事件偵測。再者,可能需要複雜的量測工具以判定快速暫態事件是否存在。由於快速暫態事件的存在與否是不可預期的,可能必須量測一基板批次中的每個基板以判定可能已發生之潛在損傷。From the foregoing, it will be appreciated that the present invention provides an apparatus and method for detecting in-situ transient fast transient events. In the prior art, fast transient event detection is typically performed after substrate processing of a substrate batch has been completed. Furthermore, sophisticated metrology tools may be required to determine if a fast transient event exists. Since the presence or absence of a fast transient event is unpredictable, it may be necessary to measure each substrate in a batch of substrates to determine potential damage that may have occurred.

與先前技術相比,本發明之實施例提供了在基板處理期間即時的快速暫態事件偵測,因此使對剩餘基板批次和/或處理室之損傷減至最低。此外,不同於先前技術,此偵測處理為需要較少或沒有人為干擾的自動化處理。反而是,一旦已經定義可由使用者配置之條件/標準值/閾值,此系統可用以自動偵測快速暫態事件。In contrast to the prior art, embodiments of the present invention provide for rapid transient event detection during substrate processing, thereby minimizing damage to the remaining substrate batches and/or processing chambers. Moreover, unlike prior art, this detection process is an automated process that requires little or no human intervention. Instead, the system can be used to automatically detect fast transient events once the condition/standard value/threshold that can be configured by the user has been defined.

有鑑於可在製造環境中即時識別快速暫態事件(例如微發弧事件),可減少實際發生事件與管理此發生事件所採取之動作程序之間的延遲。在先前技術中,此延遲可能耗費數小時或甚至數星期。然而,藉由本案所述之方法和/或裝置,可將此延遲減少為只有數毫秒,藉此減少所有權之總成本。In view of the ability to instantly identify fast transient events (such as micro-arc events) in a manufacturing environment, the delay between the actual occurrence of an event and the action taken to manage the event can be reduced. In the prior art, this delay may take hours or even weeks. However, with the method and/or apparatus described herein, this delay can be reduced to only a few milliseconds, thereby reducing the total cost of ownership.

儘管本發明已就數個較佳實施例加以說明,其仍存在屬於本發明範疇中之變化、變更和均等物。雖然在此提供了數種例子,這些例子係作為說明之用,而非用以限定本發明。While the invention has been described in terms of several preferred embodiments, modifications and Although several examples are provided herein, these examples are for illustrative purposes and are not intended to limit the invention.

並且,為了方便而在此提供本案之名稱和摘要,其不應用以解釋本案申請專利範圍之範疇。再者,此摘要係以高度簡化之形式而撰寫,且為了方便而提供於此,因此不應用以解釋或限制本發明整體,本發明係陳述於申請專利範圍中。若本文用到「組」這個詞語,此等詞語意指其通常理解的數學意義,包含零、一、或一個以上之組件。吾人亦應了解,有許多其它的方式來實現本發明之方法和設備。因此,以下隨附之申請專利範圍應以包含屬於本發明之真實精神和範疇中的所有變化、變更和均等物的原則下加以解釋。Moreover, the names and abstracts of the present disclosure are hereby provided for convenience, and are not intended to be used in the scope of the claims. Furthermore, the abstract is written in a highly simplified form and is provided for convenience, and thus is not intended to limit or limit the invention as a whole. If the word "group" is used herein, it is intended to mean a mathematical meaning that is generally understood to include zero, one, or more. It should also be appreciated that there are many other ways to implement the methods and apparatus of the present invention. Therefore, the scope of the appended claims should be construed as including all the changes, modifications and equivalents in the true spirit and scope of the invention.

102...晶圓廠主機102. . . Fab host

104...群組工具控制器(CTC)104. . . Group Tool Controller (CTC)

106...群組工具控制器(CTC)106. . . Group Tool Controller (CTC)

108...群組工具控制器(CTC)108. . . Group Tool Controller (CTC)

110...製程模組控制器(PMC)110. . . Process Module Controller (PMC)

112...製程模組控制器(PMC)112. . . Process Module Controller (PMC)

114...製程模組控制器(PMC)114. . . Process Module Controller (PMC)

116...製程模組控制器(PMC)116. . . Process Module Controller (PMC)

118...感應器118. . . sensor

118b...計算模組118b. . . Computing module

120...感應器120. . . sensor

122...感應器122. . . sensor

124...感應器124. . . sensor

126...感應器126. . . sensor

128...感應器128. . . sensor

130...感應器130. . . sensor

132...感應器132. . . sensor

134...感應器134. . . sensor

136...感應器136. . . sensor

138...感應器138. . . sensor

140...感應器140. . . sensor

142...資料盒142. . . Data box

144...感應器纜線144. . . Sensor cable

146...路徑146. . . path

148...路徑148. . . path

150...路徑150. . . path

156...半導體設備通訊標準/通用設備模組(SECS/GEM)156. . . Semiconductor Equipment Communication Standard / General Equipment Module (SECS/GEM)

158...路徑158. . . path

202...晶圓廠主機202. . . Fab host

204...群組工具控制器(CTC)204. . . Group Tool Controller (CTC)

206...群組工具控制器(CTC)206. . . Group Tool Controller (CTC)

208...序列分接頭208. . . Sequence tap

210...製程模組控制器(PMC)210. . . Process Module Controller (PMC)

212...製程模組控制器(PMC)212. . . Process Module Controller (PMC)

214...製程模組控制器(PMC)214. . . Process Module Controller (PMC)

216...製程模組控制器(PMC)216. . . Process Module Controller (PMC)

218...感應器218. . . sensor

218b...計算模組218b. . . Computing module

220...感應器220. . . sensor

222...感應器222. . . sensor

224...感應器224. . . sensor

226...感應器226. . . sensor

228...感應器228. . . sensor

230...感應器230. . . sensor

232...感應器232. . . sensor

234...感應器234. . . sensor

236...感應器236. . . sensor

238...感應器238. . . sensor

240...感應器240. . . sensor

242...遠程控制器242. . . Remote controller

244...感應器纜線244. . . Sensor cable

246...路徑246. . . path

248...路徑248. . . path

250...路徑250. . . path

252...路徑252. . . path

254...路徑254. . . path

256...序列分接頭256. . . Sequence tap

258...路徑258. . . path

260...遠程控制器260. . . Remote controller

302...晶圓廠主機302. . . Fab host

304...群組工具控制器(CTC)304. . . Group Tool Controller (CTC)

306...製程模組控制器(PMC)306. . . Process Module Controller (PMC)

308...製程模組控制器(PMC)308. . . Process Module Controller (PMC)

310...製程模組控制器(PMC)310. . . Process Module Controller (PMC)

312...製程模組控制器(PMC)312. . . Process Module Controller (PMC)

314...製程模組層次分析伺服器(APECS)314. . . Process Module Analytic Server (APECS)

316...感應器316. . . sensor

318...感應器318. . . sensor

320...感應器320. . . sensor

322...路徑322. . . path

324...路徑324. . . path

326...路徑326. . . path

328...感應器纜線328. . . Sensor cable

330...感應器纜線330. . . Sensor cable

332...感應器纜線332. . . Sensor cable

334...路徑334. . . path

336...路徑336. . . path

338...連結組338. . . Link group

340...連結340. . . link

400...製程模組層次分析伺服器(APECS)400. . . Process Module Analytic Server (APECS)

402...處理器402. . . processor

404...處理器404. . . processor

406...處理器406. . . processor

408...處理器408. . . processor

410...感應器410. . . sensor

410b...計算模組410b. . . Computing module

412...感應器412. . . sensor

414...感應器414. . . sensor

416...感應器416. . . sensor

418...乙太網路交換器418. . . Ethernet switch

420...感應器420. . . sensor

422...感應器422. . . sensor

424...感應器424. . . sensor

426...感應器426. . . sensor

428...共享記憶體主幹428. . . Shared memory backbone

430...路徑430. . . path

432...路徑432. . . path

434...路徑434. . . path

436...路徑436. . . path

438...路徑438. . . path

440...路徑440. . . path

442...路徑442. . . path

444...路徑444. . . path

446...路徑446. . . path

448...路徑448. . . path

450...路徑450. . . path

452...路徑452. . . path

454...路徑454. . . path

456...數位輸出線456. . . Digital output line

458...路徑458. . . path

502...曲線502. . . curve

504...陡降504. . . Steep down

506...高原區506. . . Plateau area

600...處理系統600. . . Processing system

602...處理室602. . . Processing room

604‧‧‧基板604‧‧‧Substrate

606‧‧‧一組RF產生器606‧‧‧A group of RF generators

608‧‧‧一組匹配器608‧‧‧A set of matchers

610‧‧‧VI探針610‧‧‧VI probe

612‧‧‧VI探針控制器612‧‧‧VI probe controller

614‧‧‧路徑614‧‧‧ Path

616‧‧‧快速取樣暫態偵測演算法模組616‧‧‧Fast sampling transient detection algorithm module

618‧‧‧分析模組618‧‧‧Analysis module

650‧‧‧路徑650‧‧‧ Path

702‧‧‧開始基板處理702‧‧‧Starting substrate processing

704‧‧‧偵測基板處理704‧‧‧Detecting substrate processing

704a‧‧‧感應器偵測電性參數704a‧‧‧Detector detection electrical parameters

704b‧‧‧執行快速取樣暫態偵測演算法704b‧‧‧ Perform fast sampling transient detection algorithm

706‧‧‧潛在快速暫態事件是否存在?706‧‧‧ Is there a potential fast transient event?

708‧‧‧儲存電壓和電流波形之快照708‧‧‧ Snapshot of stored voltage and current waveforms

710‧‧‧將波形傳送到分析模組710‧‧‧Transfer waveforms to the analysis module

712‧‧‧執行簽章比對712‧‧‧ Execution of signature comparison

714‧‧‧是否符合?714‧‧‧ Is it consistent?

716‧‧‧識別為不是感興趣之快速暫態電子簽章716‧‧‧ Identifying fast transit electronic signatures that are not of interest

718‧‧‧加入資料庫中718‧‧‧Add to the database

720‧‧‧判定嚴重性程度720‧‧‧Determination of severity

722‧‧‧判定及執行動作程序722‧‧‧Determining and executing operational procedures

在隨附圖式中,本發明係以例示之方式而非以限定之方式加以說明,在圖式中相同參照符號表示相同之元件,其中:The present invention is illustrated by way of example and not by way of limitation.

圖1展示先前技術中具有主機層次分析伺服器之互連工具環境的總邏輯圖;1 shows a general logic diagram of an interconnect tool environment having a host hierarchy analysis server in the prior art;

圖2展示具有群組工具層次解決方案之互連工具環境的簡單方塊圖,其中解決方案用以關聯化感應器與製程模組控制器之間的資料;Figure 2 shows a simplified block diagram of an interconnect tool environment with a group tool level solution, where the solution is used to correlate data between the sensor and the process module controller;

圖3展示,在本發明之實施例中,製程層次疑難排解結構的簡單邏輯總圖;3 shows a simple logical overview of a process level troubleshooting structure in an embodiment of the present invention;

圖4展示,在本發明之實施例中,製程模組層次分析伺服器的簡單作用圖;4 shows a simple action diagram of a process module hierarchical analysis server in an embodiment of the present invention;

圖5展示微發弧事件之簡單曲線圖;Figure 5 shows a simple graph of a micro-arc event;

圖6A和6B展示,在本發明之實施例中,處理環境之簡單方塊圖;6A and 6B show a simplified block diagram of a processing environment in an embodiment of the present invention;

圖7展示,在本發明之實施例中,用以偵測在製造環境內之即時快速暫態事件之方法的簡單流程圖,其中快速取樣暫態偵測演算法不是分析模組的一部份。7 shows a simplified flow diagram of a method for detecting instant fast transient events in a manufacturing environment in an embodiment of the invention, wherein the fast sampling transient detection algorithm is not part of the analysis module .

302...晶圓廠主機302. . . Fab host

304...群組工具控制器(CTC)304. . . Group Tool Controller (CTC)

306...製程模組控制器(PMC)306. . . Process Module Controller (PMC)

308...製程模組控制器(PMC)308. . . Process Module Controller (PMC)

310...製程模組控制器(PMC)310. . . Process Module Controller (PMC)

312...製程模組控制器(PMC)312. . . Process Module Controller (PMC)

314...製程模組層次分析伺服器(APECS)314. . . Process Module Analytic Server (APECS)

316...感應器316. . . sensor

318...感應器318. . . sensor

320...感應器320. . . sensor

322...路徑322. . . path

324...路徑324. . . path

326...路徑326. . . path

328...感應器纜線328. . . Sensor cable

330...感應器纜線330. . . Sensor cable

332...感應器纜線332. . . Sensor cable

334...路徑334. . . path

336...路徑336. . . path

338...連結組338. . . Link group

340...連結340. . . link

Claims (10)

一種原位快速暫態事件之偵測方法,所述事件發生於基板處理期間之電漿處理系統的處理室內,所述方法包含:使用操作於一高取樣速率的一快速暫態感應器接收指示在該處理室內的電子條件的資料,其中該快速暫態感應器包含一感應器控制器,該感應器控制器係與接收該資料同時地實施一快速取樣暫態演算法,其中該快速取樣暫態演算法基於應用預定標準值而在所接收的資料中識別出潛在原位快速暫態事件,其中該預定標準值包含在所接收資料中的一同時的電壓和電流的尖波;當在所接收資料中的一潛在原位快速暫態事件藉由該感應器控制器加以識別時,自所接收資料擷取對應該潛在原位快速暫態事件的一電子簽章,其中該擷取係由該快速取樣暫態演算法加以實施,且係執行在於期間發生該潛在原位快速暫態事件的一時間段中;藉由獨立於該快速暫態感應器的一分析模組,直接自該快速暫態感應器接收該電子簽章,其中該分析模組係一製程模組層次分析之伺服器,用以對一製程模組以及與該製程模組聯結之一組快速暫態感應器來執行分析;藉由該分析模組分析所接收的電子簽章,其中該分析包含將所接收的電子簽章與一組儲存之弧光簽章相比較;當所接收的電子簽章符合該組儲存之弧光簽章其中之一,藉由該分析模組,分類所接收的電子簽章為一第一原位快速暫態事件;當所接收的電子簽章不符合該組儲存之弧光簽章其中之一,藉由該分析模組,將所接收的電子簽章加入一資料庫中作為一非快速暫態事件;及藉由該分析模組,基於一組預定之閾值範圍來判定該第一原位快速暫態事件之一嚴重性程度。 A method for detecting an in-situ fast transient event, the event occurring in a processing chamber of a plasma processing system during substrate processing, the method comprising: receiving an indication using a fast transient sensor operating at a high sampling rate Information of an electronic condition in the processing chamber, wherein the fast transient sensor includes an inductor controller that performs a fast sampling transient algorithm simultaneously with receiving the data, wherein the fast sampling temporary The state algorithm identifies a potential in-situ fast transient event in the received data based on applying a predetermined standard value, wherein the predetermined standard value includes a simultaneous voltage and current spike in the received data; Receiving, by the sensor controller, a potential in-situ fast transient event in the received data, extracting an electronic signature corresponding to the potential in-situ fast transient event from the received data, wherein the capturing is performed by the electronic signature The fast sampling transient algorithm is implemented and executed during a period of time during which the potential in-situ fast transient event occurs; by being independent of the fast An analysis module of the transient sensor receives the electronic signature directly from the fast transient sensor, wherein the analysis module is a server for hierarchical analysis of the process module, and is used for a process module and The process module is coupled with a set of fast transient sensors to perform analysis; the analysis module analyzes the received electronic signature, wherein the analysis comprises signing the received electronic signature with a set of stored arc signatures Comparing; when the received electronic signature meets one of the stored arc signatures of the group, by the analysis module, the received electronic signature is classified into a first in-situ fast transient event; when received The electronic signature does not comply with one of the arc signatures stored in the group, and the received electronic signature is added to a database as a non-fast transient event by the analysis module; and the analysis module is Determining a severity of the first in-situ fast transient event based on a predetermined set of threshold ranges. 如申請專利範圍第1項所述之原位快速暫態事件之偵測方法,更包含基於該第一原位快速暫態事件之該嚴重性程度而判定一動作程序。 The method for detecting an in-situ fast transient event as described in claim 1 further includes determining an action procedure based on the severity of the first in-situ fast transient event. 如申請專利範圍第1項所述之原位快速暫態事件之偵測方法,其中該第一原位快速暫態事件為一微發弧事件。 The method for detecting an in-situ fast transient event according to claim 1, wherein the first in-situ fast transient event is a micro-arc event. 一種原位快速暫態事件之偵測裝置,所述事件發生於電漿處理系統之處理室內,其中所述處理室包含複數個感應器,用以在基板處理期間收集資料,所述裝置包含:一快速暫態感應器,操作於一高取樣速率,用以接收指示在該處理室內的電子條件的資料,其中該快速暫態感應器包含一感應器控制器,該感應器控制器係與接收該資料同時地實施一快速取樣暫態演算法,其中該快速取樣暫態演算法基於應用預定標準值而在所接收的資料中識別出潛在原位快速暫態事件,其中該預定標準值包含在所接收資料中的一同時的電壓和電流的尖波;其中該感應器控制器係建構成當在所接收資料中的一潛在原位快速暫態事件藉由該感應器控制器加以識別時,該快速取樣暫態演算法自所接收資料擷取對應該潛在原位快速暫態事件的一電子簽章,其中該擷取係執行在於期間發生該潛在原位快速暫態事件的一時間段中;及一分析模組,獨立於該快速暫態感應器,建構成直接自該快速暫態感應器接收該電子簽章,其中該分析模組係一製程模組層次分析之伺服器,用以對一製程模組以及與該製程模組聯結之一組快速暫態感應器來執行分析;其中該分析模組更建構成:藉由將所接收的電子簽章與一組儲存之弧光簽章相比較,分析所接收的電子簽章;當所接收的電子簽章符合該組儲存之弧光簽章其中 之一,將所接收的電子簽章分類為一第一原位快速暫態事件;當所接收的電子簽章不符合該組儲存之弧光簽章其中之一,將所接收的電子簽章加入一資料庫中作為一非快速暫態事件;及基於一組預定之閾值範圍來判定該第一原位快速暫態事件之一嚴重性程度。 An apparatus for detecting an in-situ rapid transient event, the event occurring in a processing chamber of a plasma processing system, wherein the processing chamber includes a plurality of sensors for collecting data during substrate processing, the apparatus comprising: A fast transient sensor operating at a high sampling rate for receiving data indicative of an electronic condition within the processing chamber, wherein the fast transient sensor includes an inductor controller that receives and receives The data simultaneously implements a fast sampling transient algorithm, wherein the fast sampling transient algorithm identifies a potential in-situ fast transient event in the received data based on applying a predetermined standard value, wherein the predetermined standard value is included in the data. a simultaneous voltage and current spike in the received data; wherein the sensor controller is configured to identify a potential in-situ fast transient event in the received data by the sensor controller The fast sampling transient algorithm extracts an electronic signature corresponding to the potential in-situ fast transient event from the received data, wherein the retrieval system is executed In a period of time during which the potential in-situ fast transient event occurs; and an analysis module, independent of the fast transient sensor, is configured to receive the electronic signature directly from the fast transient sensor, wherein the analysis The module is a server for hierarchical analysis of the process module, and is used for performing analysis on a process module and a set of fast transient sensors connected to the process module; wherein the analysis module is further constructed by: Comparing the received electronic signature with a set of stored arc signatures, analyzing the received electronic signature; when the received electronic signature meets the set of stored arc signatures One, classifying the received electronic signature as a first in-situ fast transient event; adding the received electronic signature when the received electronic signature does not conform to one of the stored arc signatures of the group A non-fast transient event in a database; and determining a severity of the first in-situ fast transient event based on a predetermined set of threshold ranges. 如申請專利範圍第4項所述之原位快速暫態事件之偵測裝置,更包含一資料庫,其中該資料庫用以儲存該組儲存之弧光簽章。 The apparatus for detecting an in-situ rapid transient event as described in claim 4, further comprising a database, wherein the database is used to store the stored arc signatures. 如申請專利範圍第5項所述之原位快速暫態事件之偵測裝置,其中該資料庫用以儲存非快速暫態簽章。 The apparatus for detecting an in-situ fast transient event according to claim 5, wherein the database is used for storing a non-fast transient signature. 如申請專利範圍第4項所述之原位快速暫態事件之偵測裝置,其中,當在所述基板處理期間識別出該快速暫態事件時,該分析模組用以將一動作程序直接傳送到一製程模組控制器。 The apparatus for detecting an in-situ fast transient event according to claim 4, wherein the analysis module is configured to directly perform an action program when the fast transient event is recognized during the substrate processing Transfer to a process module controller. 如申請專利範圍第4項所述之原位快速暫態事件之偵測裝置,其中該分析模組更用以基於該快速暫態事件之該嚴重性程度來判定一動作程序。 The apparatus for detecting an in-situ fast transient event according to claim 4, wherein the analysis module is further configured to determine an action program based on the severity of the fast transient event. 如申請專利範圍第4項所述之原位快速暫態事件之偵測裝置,其中該快速暫態事件為一微發弧事件。 The apparatus for detecting an in-situ fast transient event according to claim 4, wherein the fast transient event is a micro-arc event. 如申請專利範圍第4項所述之原位快速暫態事件之偵測裝置,其中該快速取樣暫態演算法係由該分析模組所控制,該分析模組用以與所述複數個感應器直接互相作用。The apparatus for detecting an in-situ fast transient event according to claim 4, wherein the fast sampling transient algorithm is controlled by the analysis module, and the analysis module is configured to be used with the plurality of sensing The devices interact directly.
TW099121513A 2009-06-30 2010-06-30 Method and arrangement for detecting in-situ fast transient event TWI495970B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22210209P 2009-06-30 2009-06-30
US22202409P 2009-06-30 2009-06-30

Publications (2)

Publication Number Publication Date
TW201115288A TW201115288A (en) 2011-05-01
TWI495970B true TWI495970B (en) 2015-08-11

Family

ID=43411705

Family Applications (5)

Application Number Title Priority Date Filing Date
TW099121513A TWI495970B (en) 2009-06-30 2010-06-30 Method and arrangement for detecting in-situ fast transient event
TW099121516A TWI509375B (en) 2009-06-30 2010-06-30 Methods and arrangements for implementing automatic in-situ process control scheme during execution of recipe
TW099121515A TWI484435B (en) 2009-06-30 2010-06-30 Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber
TW099121511A TWI480917B (en) 2009-06-30 2010-06-30 Methods for constructing an optimal endpoint algorithm
TW099121519A TWI536193B (en) 2009-06-30 2010-06-30 Methods and apparatus for predictive preventive maintenance of processing chambers

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW099121516A TWI509375B (en) 2009-06-30 2010-06-30 Methods and arrangements for implementing automatic in-situ process control scheme during execution of recipe
TW099121515A TWI484435B (en) 2009-06-30 2010-06-30 Methods and apparatus to predict etch rate uniformity for qualification of a plasma chamber
TW099121511A TWI480917B (en) 2009-06-30 2010-06-30 Methods for constructing an optimal endpoint algorithm
TW099121519A TWI536193B (en) 2009-06-30 2010-06-30 Methods and apparatus for predictive preventive maintenance of processing chambers

Country Status (6)

Country Link
JP (5) JP5693573B2 (en)
KR (5) KR101741272B1 (en)
CN (5) CN102474968B (en)
SG (5) SG176565A1 (en)
TW (5) TWI495970B (en)
WO (5) WO2011002804A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332383B (en) * 2011-09-23 2014-12-10 中微半导体设备(上海)有限公司 End point monitoring method for plasma etching process
US10128090B2 (en) 2012-02-22 2018-11-13 Lam Research Corporation RF impedance model based fault detection
US9502221B2 (en) 2013-07-26 2016-11-22 Lam Research Corporation Etch rate modeling and use thereof with multiple parameters for in-chamber and chamber-to-chamber matching
TWI677264B (en) * 2013-12-13 2019-11-11 美商蘭姆研究公司 Rf impedance model based fault detection
US10192763B2 (en) * 2015-10-05 2019-01-29 Applied Materials, Inc. Methodology for chamber performance matching for semiconductor equipment
US10269545B2 (en) * 2016-08-03 2019-04-23 Lam Research Corporation Methods for monitoring plasma processing systems for advanced process and tool control
US9972478B2 (en) * 2016-09-16 2018-05-15 Lam Research Corporation Method and process of implementing machine learning in complex multivariate wafer processing equipment
US11067515B2 (en) * 2017-11-28 2021-07-20 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for inspecting a wafer process chamber
CN108847381A (en) * 2018-05-25 2018-11-20 深圳市华星光电半导体显示技术有限公司 The method for testing substrate and extended testing system substrate service life
US10651097B2 (en) 2018-08-30 2020-05-12 Lam Research Corporation Using identifiers to map edge ring part numbers onto slot numbers
DE102019209110A1 (en) * 2019-06-24 2020-12-24 Sms Group Gmbh Industrial plant, in particular plant in the metal-producing industry or the aluminum or steel industry, and method for operating an industrial plant, in particular a plant in the metal-producing industry or the aluminum or steel industry
JP7289992B1 (en) * 2021-07-13 2023-06-12 株式会社日立ハイテク Diagnostic apparatus and diagnostic method, plasma processing apparatus and semiconductor device manufacturing system
US20230195074A1 (en) * 2021-12-21 2023-06-22 Applied Materials, Inc. Diagnostic methods for substrate manufacturing chambers using physics-based models
US20230260767A1 (en) * 2022-02-15 2023-08-17 Applied Materials, Inc. Process control knob estimation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270640A (en) * 1997-09-17 2000-10-18 东京电子株式会社 Device and method for detecting and preventing arcing in RF plasma systems
TW200415453A (en) * 2002-09-30 2004-08-16 Tokyo Electron Ltd Method and apparatus for the monitoring and control of a semiconductor manufacturing process
TW200506560A (en) * 2003-06-11 2005-02-16 Scient Systems Res Ltd A method for process control of semiconductor manufacturing equipment
CN1726626A (en) * 2002-10-25 2006-01-25 S&C电力公司 Method and apparatus for control of an electric power distribution system in response to circuit abnormalities
CN1743859A (en) * 2004-09-04 2006-03-08 应用材料股份有限公司 Detection and suppression circuit and method of electrical arcing
TW200807203A (en) * 2006-03-31 2008-02-01 Tokyo Electron Ltd Monitoring a system during low-pressure processes

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272872A (en) * 1992-11-25 1993-12-28 Ford Motor Company Method and apparatus of on-board catalytic converter efficiency monitoring
JP3301238B2 (en) * 1994-10-25 2002-07-15 三菱電機株式会社 Etching method
JPH08148474A (en) * 1994-11-16 1996-06-07 Sony Corp Dry etching end point detecting method and device
JPH09306894A (en) * 1996-05-17 1997-11-28 Sony Corp Optimum emission spectrum automatic detecting system
US6197116B1 (en) * 1996-08-29 2001-03-06 Fujitsu Limited Plasma processing system
JP3630931B2 (en) * 1996-08-29 2005-03-23 富士通株式会社 Plasma processing apparatus, process monitoring method, and semiconductor device manufacturing method
US5993615A (en) * 1997-06-19 1999-11-30 International Business Machines Corporation Method and apparatus for detecting arcs
US5986747A (en) 1998-09-24 1999-11-16 Applied Materials, Inc. Apparatus and method for endpoint detection in non-ionizing gaseous reactor environments
US8617351B2 (en) * 2002-07-09 2013-12-31 Applied Materials, Inc. Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction
JP2001338856A (en) * 2000-05-30 2001-12-07 Tokyo Seimitsu Co Ltd Process controller for semiconductor manufacturing system
JP4554037B2 (en) * 2000-07-04 2010-09-29 東京エレクトロン株式会社 Consumable consumption level prediction method and deposited film thickness prediction method
US6567718B1 (en) * 2000-07-28 2003-05-20 Advanced Micro Devices, Inc. Method and apparatus for monitoring consumable performance
US6391787B1 (en) * 2000-10-13 2002-05-21 Lam Research Corporation Stepped upper electrode for plasma processing uniformity
US6821794B2 (en) 2001-10-04 2004-11-23 Novellus Systems, Inc. Flexible snapshot in endpoint detection
JP2003151955A (en) * 2001-11-19 2003-05-23 Nec Kansai Ltd Plasma etching method
WO2003102724A2 (en) * 2002-05-29 2003-12-11 Tokyo Electron Limited Method and system for data handling, storage and manipulation
US6825050B2 (en) * 2002-06-07 2004-11-30 Lam Research Corporation Integrated stepwise statistical process control in a plasma processing system
US20040031052A1 (en) 2002-08-12 2004-02-12 Liberate Technologies Information platform
US6781383B2 (en) * 2002-09-24 2004-08-24 Scientific System Research Limited Method for fault detection in a plasma process
JP4365109B2 (en) * 2003-01-29 2009-11-18 株式会社日立ハイテクノロジーズ Plasma processing equipment
US6969619B1 (en) * 2003-02-18 2005-11-29 Novellus Systems, Inc. Full spectrum endpoint detection
JP2004295348A (en) * 2003-03-26 2004-10-21 Mori Seiki Co Ltd Maintenance management system of machine tool
JP2004335841A (en) * 2003-05-09 2004-11-25 Tokyo Electron Ltd Prediction system and prediction method for plasma treatment apparatus
ATE415702T1 (en) * 2003-05-09 2008-12-15 Unaxis Usa Inc ENDPOINT DETECTION IN A TIME MULTIPLEXED METHOD USING AN ENVELOPE ALGORITHM
US20060006139A1 (en) * 2003-05-09 2006-01-12 David Johnson Selection of wavelengths for end point in a time division multiplexed process
JP4043408B2 (en) * 2003-06-16 2008-02-06 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
KR100567745B1 (en) * 2003-09-25 2006-04-05 동부아남반도체 주식회사 Life predictive apparatus for a target of sputtering equipment and its operating method
US8036869B2 (en) * 2003-09-30 2011-10-11 Tokyo Electron Limited System and method for using first-principles simulation to control a semiconductor manufacturing process via a simulation result or a derived empirical model
US7930053B2 (en) * 2003-12-23 2011-04-19 Beacons Pharmaceuticals Pte Ltd Virtual platform to facilitate automated production
US7233878B2 (en) * 2004-01-30 2007-06-19 Tokyo Electron Limited Method and system for monitoring component consumption
US7146237B2 (en) * 2004-04-07 2006-12-05 Mks Instruments, Inc. Controller and method to mediate data collection from smart sensors for fab applications
JP2006004992A (en) * 2004-06-15 2006-01-05 Seiko Epson Corp Polishing device managing system, managing device, control program thereof and control method thereof
TWI336823B (en) * 2004-07-10 2011-02-01 Onwafer Technologies Inc Methods of and apparatuses for maintenance, diagnosis, and optimization of processes
JP4972277B2 (en) * 2004-11-10 2012-07-11 東京エレクトロン株式会社 Substrate processing apparatus recovery method, apparatus recovery program, and substrate processing apparatus
US7828929B2 (en) * 2004-12-30 2010-11-09 Research Electro-Optics, Inc. Methods and devices for monitoring and controlling thin film processing
JP4707421B2 (en) * 2005-03-14 2011-06-22 東京エレクトロン株式会社 Processing apparatus, consumable part management method for processing apparatus, processing system, and consumable part management method for processing system
JP2006328510A (en) * 2005-05-30 2006-12-07 Ulvac Japan Ltd Plasma treatment method and device
TWI338321B (en) * 2005-06-16 2011-03-01 Unaxis Usa Inc Process change detection through the use of evolutionary algorithms
US7409260B2 (en) * 2005-08-22 2008-08-05 Applied Materials, Inc. Substrate thickness measuring during polishing
US7413672B1 (en) * 2006-04-04 2008-08-19 Lam Research Corporation Controlling plasma processing using parameters derived through the use of a planar ion flux probing arrangement
US7829468B2 (en) * 2006-06-07 2010-11-09 Lam Research Corporation Method and apparatus to detect fault conditions of plasma processing reactor
KR20080006750A (en) * 2006-07-13 2008-01-17 삼성전자주식회사 Plasma doping system for fabrication of semiconductor device
US20080063810A1 (en) * 2006-08-23 2008-03-13 Applied Materials, Inc. In-situ process state monitoring of chamber
CN100587902C (en) * 2006-09-15 2010-02-03 北京北方微电子基地设备工艺研究中心有限责任公司 On-line predication method for maintaining etching apparatus
JP2008158769A (en) * 2006-12-22 2008-07-10 Tokyo Electron Ltd Substrate processing system, controller, setting information monitoring method, and storage medium with setting information monitoring program stored
US7548830B2 (en) * 2007-02-23 2009-06-16 General Electric Company System and method for equipment remaining life estimation
US7674636B2 (en) * 2007-03-12 2010-03-09 Tokyo Electron Limited Dynamic temperature backside gas control for improved within-substrate process uniformity
US8055203B2 (en) * 2007-03-14 2011-11-08 Mks Instruments, Inc. Multipoint voltage and current probe system
JP2008311338A (en) * 2007-06-13 2008-12-25 Harada Sangyo Kk Vacuum treatment apparatus and abnormal discharge precognition device used therefor, and control method of vacuum treatment apparatus
KR100892248B1 (en) * 2007-07-24 2009-04-09 주식회사 디엠에스 Endpoint detection device for realizing real-time control of a plasma reactor and the plasma reactor comprising the endpoint detection device and the endpoint detection method
US20090106290A1 (en) * 2007-10-17 2009-04-23 Rivard James P Method of analyzing manufacturing process data
JP4983575B2 (en) * 2007-11-30 2012-07-25 パナソニック株式会社 Plasma processing apparatus and plasma processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270640A (en) * 1997-09-17 2000-10-18 东京电子株式会社 Device and method for detecting and preventing arcing in RF plasma systems
TW200415453A (en) * 2002-09-30 2004-08-16 Tokyo Electron Ltd Method and apparatus for the monitoring and control of a semiconductor manufacturing process
CN1726626A (en) * 2002-10-25 2006-01-25 S&C电力公司 Method and apparatus for control of an electric power distribution system in response to circuit abnormalities
TW200506560A (en) * 2003-06-11 2005-02-16 Scient Systems Res Ltd A method for process control of semiconductor manufacturing equipment
CN1743859A (en) * 2004-09-04 2006-03-08 应用材料股份有限公司 Detection and suppression circuit and method of electrical arcing
TW200807203A (en) * 2006-03-31 2008-02-01 Tokyo Electron Ltd Monitoring a system during low-pressure processes

Also Published As

Publication number Publication date
JP2012532464A (en) 2012-12-13
CN102473590A (en) 2012-05-23
SG176147A1 (en) 2011-12-29
WO2011002810A3 (en) 2011-04-14
CN102804353B (en) 2015-04-15
JP5693573B2 (en) 2015-04-01
KR20120037420A (en) 2012-04-19
WO2011002811A3 (en) 2011-02-24
CN102804929B (en) 2015-11-25
KR101741272B1 (en) 2017-05-29
CN102473590B (en) 2014-11-26
WO2011002800A3 (en) 2011-04-07
JP2012532461A (en) 2012-12-13
KR20120047871A (en) 2012-05-14
TW201115288A (en) 2011-05-01
KR101708078B1 (en) 2017-02-17
JP2012532462A (en) 2012-12-13
SG176564A1 (en) 2012-01-30
JP2012532460A (en) 2012-12-13
TWI480917B (en) 2015-04-11
KR20120101293A (en) 2012-09-13
CN102473631A (en) 2012-05-23
JP5599882B2 (en) 2014-10-01
WO2011002810A4 (en) 2011-06-03
TWI509375B (en) 2015-11-21
CN102473631B (en) 2014-11-26
SG176567A1 (en) 2012-01-30
TWI484435B (en) 2015-05-11
TW201129884A (en) 2011-09-01
KR20120037421A (en) 2012-04-19
WO2011002803A3 (en) 2011-03-03
WO2011002803A2 (en) 2011-01-06
JP5629770B2 (en) 2014-11-26
KR101741274B1 (en) 2017-05-29
WO2011002804A3 (en) 2011-03-03
KR20120037419A (en) 2012-04-19
JP2012532463A (en) 2012-12-13
CN102474968B (en) 2015-09-02
CN102804353A (en) 2012-11-28
WO2011002800A2 (en) 2011-01-06
WO2011002804A2 (en) 2011-01-06
TW201129936A (en) 2011-09-01
WO2011002810A2 (en) 2011-01-06
TW201108022A (en) 2011-03-01
KR101708077B1 (en) 2017-02-17
CN102804929A (en) 2012-11-28
WO2011002811A2 (en) 2011-01-06
JP5624618B2 (en) 2014-11-12
TW201112302A (en) 2011-04-01
SG176566A1 (en) 2012-01-30
SG176565A1 (en) 2012-01-30
CN102474968A (en) 2012-05-23
TWI536193B (en) 2016-06-01
KR101741271B1 (en) 2017-05-29

Similar Documents

Publication Publication Date Title
TWI495970B (en) Method and arrangement for detecting in-situ fast transient event
US8618807B2 (en) Arrangement for identifying uncontrolled events at the process module level and methods thereof
Tammana et al. Distributed network monitoring and debugging with {SwitchPointer}
US7565220B2 (en) Targeted data collection architecture
US6980873B2 (en) System and method for real-time fault detection, classification, and correction in a semiconductor manufacturing environment
JP4615222B2 (en) Correlation between line end data mining and process tool data mining
US20110270957A1 (en) Method and system for logging trace events of a network device
US20050204397A1 (en) CATV transmission line monitoring system, method, and program
TW200308186A (en) Integrated stepwise statistical process control in a plasma processing system
KR102233812B1 (en) Method and system for processing a data from equipment
US20200064818A1 (en) Extracting real-time data from ethercat sensor bus in a substrate processing system
JP5629315B2 (en) Apparatus and method for identifying uncontrolled events at processing module level
CN112333163B (en) Inter-container flow monitoring method and flow monitoring management system
US20120101758A1 (en) Method of analyzing cause of abnormality and program analyzing abnormality
CN109218050B (en) Domain name system fault processing method and system
EP3460769A1 (en) System and method for managing alerts using a state machine
US11316770B2 (en) Abnormality detection apparatus, abnormality detection method, and abnormality detection program
TWI545415B (en) Process-level troubleshooting architecture (plta) and system for performing evaluation
KR20160105222A (en) Sdn-based network monitoring apparatus and method thereof
Zhang et al. PCA-based network-wide correlated anomaly event detection and diagnosis
JP7456502B2 (en) Traffic monitoring device, traffic monitoring method and traffic monitoring program
CN104754328B (en) Distributed video quality diagnosis method
JP7323782B2 (en) Packet analysis program, packet analysis method and packet analysis device
US7098048B1 (en) Method and apparatus for capturing fault state data
WO2023162043A1 (en) Traffic data collecting system, traffic data collecting method and traffic data collecting program