TWI456214B - 半導體基板的電氣特性之測定方法 - Google Patents

半導體基板的電氣特性之測定方法 Download PDF

Info

Publication number
TWI456214B
TWI456214B TW099111757A TW99111757A TWI456214B TW I456214 B TWI456214 B TW I456214B TW 099111757 A TW099111757 A TW 099111757A TW 99111757 A TW99111757 A TW 99111757A TW I456214 B TWI456214 B TW I456214B
Authority
TW
Taiwan
Prior art keywords
electrodes
pair
voltage
buffer layer
measuring
Prior art date
Application number
TW099111757A
Other languages
English (en)
Other versions
TW201043979A (en
Inventor
Noboru Fukuhara
Masahiko Hata
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201043979A publication Critical patent/TW201043979A/zh
Application granted granted Critical
Publication of TWI456214B publication Critical patent/TWI456214B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/129Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of components or parts made of semiconducting materials; of LV components or parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Claims (13)

  1. 一種測定方法,係用以測定具有基底(base)基板、及設於前述基底基板上之緩衝層之半導體基板中之洩漏電流或絕緣破壞電壓之方法者,其具備:在前述緩衝層設置包含電洞注入電極之複數個電極之步驟,該電洞注入電極係由當接受電場施加時注入電洞於前述緩衝層之材料所構成;測定在對於從前述複數個電極選擇之包含至少一個前述電洞注入電極之第1之一對電極施加電壓或電流時,流通於前述第1之一對電極之電流或前述第1之一對電極間之電壓之步驟;及根據流通於前述第1之一對電極之電流或前述第1之一對電極間之電壓,測定前述半導體基板中電洞移動所致之洩漏電流或絕緣破壞電壓之步驟。
  2. 如申請專利範圍第1項之測定方法,其中,復具備:在前述緩衝層設置包含電子注入電極之複數個電極之步驟,該電子注入電極係由當接受電場施加時注入電子於前述緩衝層之材料所構成;測定在對於從前述複數個電極選擇之包含至少一個前述電子注入電極之第2之一對電極施加電壓或電流時,流通於前述第2之一對電極之電流或前述第2之一對電極間之電壓之步驟;及根據流通於前述第2之一對電極之電流或前述第2之一對電極間之電壓,測定前述半導體基板中電子移動所致之洩漏電流或絕緣破壞電壓之步驟。
  3. 如申請專利範圍第1項之測定方法,其中,在測定電洞移動所致之洩漏電流或絕緣破壞電壓之步驟中,將預先規定大小的電流流通於前述第1之一對電極時之前述第1之一對電極中各電極間之電壓,設為電洞移動所致之前述絕緣破壞電壓。
  4. 如申請專利範圍第1項之測定方法,其中,在測定電洞移動所致之洩漏電流或絕緣破壞電壓之步驟中,於前述第1之一對電極間之電壓為預先規定大小時,將流通於前述第1之一對電極之電流的大小設為前述洩漏電流。
  5. 如申請專利範圍第2項之測定方法,其中,前述電洞注入電極係將電洞注入於P型3-5族化合物半導體,而前述電子注入電極係將電子注入於N型3-5族化合物半導體。
  6. 如申請專利範圍第1項之測定方法,其中,前述半導體基板係在前述緩衝層上具備形成場效電晶體之多層半導體層。
  7. 如申請專利範圍第6項之測定方法,其中,復具備將前述多層半導體層之至少一部分去除,而使前述緩衝層之至少一部分表面露出之步驟;在設置包含前述電洞注入電極之複數個電極之步驟中,係於前述露出之前述緩衝層設置包含前述電洞注入電極之複數個電極。
  8. 如申請專利範圍第7項之測定方法,其中,復具備:在前述露出之前述緩衝層設置包含電子注入電極之複數個電極之步驟,該電子注入電極係由當接受電場施加時注入電子於前述緩衝層之材料所構成;測定在對於從前述複數個電極選擇之包含至少一個前述電子注入電極之第2之一對電極間施加電壓或電流時,流通於前述第2之一對電極之電流或前述第2之一對電極間之電壓之步驟;及根據流通於前述第2之一對電極之電流或前述第2之一對電極間之電壓,測定前述半導體基板中電子移動所致之洩漏電流或絕緣破壞電壓之步驟。
  9. 如申請專利範圍第1項之測定方法,其中,在設置包含前述電洞注入電極之複數個電極之步驟中,於前述緩衝層中將包含以形成受子(acceptor)雜質之原子作為構成要素之單體或化合物之材料予以配置於前述緩衝層表面之後,將前述緩衝層加熱。
  10. 如申請專利範圍第2項之測定方法,其中,在設置包含前述電子注入電極之複數個電極之步驟中,於前述緩衝層中將包含以形成施子(donor)雜質之原子作為構成要素之單體或化合物之材料予以配置於前述緩衝層表面之後,將前述緩衝層加熱。
  11. 如申請專利範圍第1項之測定方法,其中,在測定流通於前述第1之一對電極之電流或前述第1之一對電極間之電壓之步驟中,對前述第1之一對電極之間施加直流電壓或直流電流。
  12. 如申請專利範圍第1項之測定方法,其中,前述電洞注入電極係包含AuZn、AuNi、AuCr、Ti/Pt/Au、Ti/WSi中之至少一種。
  13. 一種測定方法,係用以測定半導體基板中之洩漏電流或絕緣破壞電壓之方法,該半導體基板係具有:基底基板;緩衝層,包含設於前述基底基板上之N型3-5族化合物半導體;及多層半導體層,係設於前述緩衝層上,並形成場效電晶體;該測定方法具備:將前述多層半導體層之至少一部分去除,而使前述緩衝層之至少一部分表面露出之步驟;在前述緩衝層設置包含由接受電場施加時注入電子於前述N型3-5族化合物半導體之材料所構成之電子注入電極之複數個電極之步驟;測定在對於從前述複數個電極選擇之包含至少一個前述電子注入電極之一對電極之間施加電壓或電流時,流通於前述一對電極之電流或前述一對電極間之電壓之步驟;及根據流通於前述一對電極之電流或前述一對電極間之電壓,測定前述半導體基板中電子移動所致之洩漏電流或絕緣破壞電壓之步驟。
TW099111757A 2009-04-15 2010-04-15 半導體基板的電氣特性之測定方法 TWI456214B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099406 2009-04-15

Publications (2)

Publication Number Publication Date
TW201043979A TW201043979A (en) 2010-12-16
TWI456214B true TWI456214B (zh) 2014-10-11

Family

ID=42982340

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099111757A TWI456214B (zh) 2009-04-15 2010-04-15 半導體基板的電氣特性之測定方法

Country Status (6)

Country Link
US (1) US8610450B2 (zh)
JP (1) JP5555036B2 (zh)
KR (1) KR20120027124A (zh)
CN (1) CN102396059A (zh)
TW (1) TWI456214B (zh)
WO (1) WO2010119666A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102369597B (zh) * 2009-04-07 2014-04-09 住友化学株式会社 半导体基板、半导体基板的制造方法、和电子器件
KR102043179B1 (ko) * 2013-02-18 2019-11-12 삼성디스플레이 주식회사 배리어 막의 결함 검출 방법 및 배리어 막의 결함 검출 장치
US10768206B2 (en) * 2015-06-24 2020-09-08 Integrated Technology Corporation Loop-back probe test and verification method
JP6507912B2 (ja) 2015-07-30 2019-05-08 三菱電機株式会社 半導体受光素子
JP6625372B2 (ja) * 2015-08-27 2019-12-25 株式会社デンソーテン 入力装置および車載装置
CN105445638B (zh) * 2015-11-18 2018-05-01 武汉理工大学 一种探测雪崩效应的原位装置及其探测方法
US10418474B2 (en) * 2017-10-17 2019-09-17 Mitsubishi Electric Research Laboratories, Inc. High electron mobility transistor with varying semiconductor layer
US10634713B2 (en) 2018-02-22 2020-04-28 Piecemakers Technology, Inc. Method for testing semiconductor die pad untouched by probe and related test circuit
CN112466769B (zh) * 2020-11-20 2024-01-30 西安电子科技大学 圆形电容结构的hemt器件沟道区电场分布测量结构和方法
CN113325220B (zh) * 2021-06-29 2022-09-20 三峡大学 基于电场几何效应的微电流检测器件及微电流测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW364238B (en) * 1995-06-08 1999-07-11 Matsushita Electric Ind Co Ltd Semiconductor device containing an adjustable voltage generator
US6525544B1 (en) * 1999-06-15 2003-02-25 Matsushita Electric Industrial Co., Ltd. Method for predicting lifetime of insulating film and method for reliability testing of semiconductor device
US7037807B1 (en) * 2003-12-24 2006-05-02 The Board Of Trustees Of The Leland Stanford Junior University Electric field induced spin-polarized current

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164547A (en) * 1980-05-21 1981-12-17 Fujitsu Ltd Semiconductor measurement
JP2705703B2 (ja) * 1989-03-15 1998-01-28 住友電気工業株式会社 バッファー層の電気的特性評価方法
JP2803157B2 (ja) * 1989-05-16 1998-09-24 日本電気株式会社 発光ダイオードの製造方法
JPH09115976A (ja) * 1995-10-20 1997-05-02 Ishikawajima Harima Heavy Ind Co Ltd 半導体の広がり抵抗測定法
JPH11135585A (ja) * 1997-10-31 1999-05-21 Sanyo Electric Co Ltd 半導体装置
JP3414262B2 (ja) * 1998-06-03 2003-06-09 日立電線株式会社 化合物半導体エピタキシャルウェハ及び化合物半導体装置
JP2001007320A (ja) * 1999-06-25 2001-01-12 Japan Energy Corp エピタキシャル成長化合物半導体ウェーハ及び半導体装置
JP2001274211A (ja) * 2000-03-27 2001-10-05 Shin Etsu Handotai Co Ltd 抵抗率測定方法
JP2002026101A (ja) * 2000-07-04 2002-01-25 Hitachi Cable Ltd 半導体評価用素子
JP2003318238A (ja) * 2002-02-20 2003-11-07 Sumitomo Electric Ind Ltd 化合物半導体用電極の形成方法と化合物半導体の電気的特性の測定方法
JP2006179861A (ja) * 2004-11-26 2006-07-06 Hitachi Cable Ltd 半導体エピタキシャルウェハ及び電界効果トランジスタ
US7956608B1 (en) * 2005-06-27 2011-06-07 Northwestern University Method of using group III-V ferromagnetic/non-magnetic semiconductor heterojunctions and magnetodiodes
JP2008288474A (ja) * 2007-05-21 2008-11-27 Sharp Corp ヘテロ接合電界効果トランジスタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW364238B (en) * 1995-06-08 1999-07-11 Matsushita Electric Ind Co Ltd Semiconductor device containing an adjustable voltage generator
US6525544B1 (en) * 1999-06-15 2003-02-25 Matsushita Electric Industrial Co., Ltd. Method for predicting lifetime of insulating film and method for reliability testing of semiconductor device
US7037807B1 (en) * 2003-12-24 2006-05-02 The Board Of Trustees Of The Leland Stanford Junior University Electric field induced spin-polarized current

Also Published As

Publication number Publication date
TW201043979A (en) 2010-12-16
KR20120027124A (ko) 2012-03-21
CN102396059A (zh) 2012-03-28
JP5555036B2 (ja) 2014-07-23
US8610450B2 (en) 2013-12-17
US20120032699A1 (en) 2012-02-09
JP2010267956A (ja) 2010-11-25
WO2010119666A1 (ja) 2010-10-21

Similar Documents

Publication Publication Date Title
TWI456214B (zh) 半導體基板的電氣特性之測定方法
Nketia‐Yawson et al. Recent progress on high‐capacitance polymer gate dielectrics for flexible low‐voltage transistors
Peng et al. Crystallized monolayer semiconductor for ohmic contact resistance, high intrinsic gain, and high current density
Minder et al. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization
Fabiano et al. Effect of Gate Electrode Work‐Function on Source Charge Injection in Electrolyte‐Gated Organic Field‐Effect Transistors
Cherenack et al. Impact of mechanical bending on ZnO and IGZO thin-film transistors
Jiang et al. Impact of Thickness on Contact Issues for Pinning Effect in Black Phosphorus Field‐Effect Transistors
Liu et al. Organic nonpolar nonvolatile resistive switching in poly (3, 4-ethylene-dioxythiophene): Polystyrenesulfonate thin film
Kalb et al. Defect healing at room temperature in pentacene thin films and improved transistor performance
EP2696366B1 (en) Device having reduced bias temperature instability (bti)
Choi et al. Decoupling the Bias‐Stress‐Induced Charge Trapping in Semiconductors and Gate‐Dielectrics of Organic Transistors Using a Double Stretched‐Exponential Formula
JP2015532768A5 (zh)
KR20110098441A (ko) 그라핀 전자 소자 및 제조방법
Zaghloul et al. Dielectric charging in silicon nitride films for MEMS capacitive switches: Effect of film thickness and deposition conditions
Pei et al. Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors
Bensaid et al. Reliability of OTFTs on flexible substrate: mechanical stress effect
WO2007120344A3 (en) Magnetic tunnel junction device with improved barrier layer
Wakatsuki et al. Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors
Li et al. On the electrostatic discharge robustness of graphene
CN101427145B (zh) 有机磁阻装置及其应用
Lai et al. Combining inkjet printing and chemical vapor deposition for fabricating low voltage, organic field-effect transistors on flexible substrates
TW201250968A (en) Semiconductor device apply to copper plating process
Martínez-Domingo et al. Novel flexible inkjet-printed Metal-Insulator-Semiconductor organic diode employing silver electrodes
Chianese et al. Evaluating the use of graphene electrodes in sub-micrometric, high-frequency n-type organic transistors
Gaál et al. High Electrical Anisotropic Multilayered Self‐Assembled Organic Films Based on Graphene Oxide and PEDOT: PSS

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees