TWI435070B - 基於光逸散之瑕疵檢驗系統及方法 - Google Patents

基於光逸散之瑕疵檢驗系統及方法 Download PDF

Info

Publication number
TWI435070B
TWI435070B TW098141051A TW98141051A TWI435070B TW I435070 B TWI435070 B TW I435070B TW 098141051 A TW098141051 A TW 098141051A TW 98141051 A TW98141051 A TW 98141051A TW I435070 B TWI435070 B TW I435070B
Authority
TW
Taiwan
Prior art keywords
value
intensity
logic state
light
state
Prior art date
Application number
TW098141051A
Other languages
English (en)
Other versions
TW201022662A (en
Inventor
Neeraj Khurana
Original Assignee
Dcg Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dcg Systems Inc filed Critical Dcg Systems Inc
Publication of TW201022662A publication Critical patent/TW201022662A/zh
Application granted granted Critical
Publication of TWI435070B publication Critical patent/TWI435070B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits

Description

基於光逸散之瑕疵檢驗系統及方法
本發明是關於利用裝置的光逸散,對半導體晶片做測試與除錯之技術。
在業界早已習知之現象乃是半導體裝置在狀態改變時,例如在電晶體ON/OFF轉換時會逸散出光線。這種現象已經成功的用在半導體電路的測試與除錯,其方式是使用例如紅外光逸散顯微鏡(infrared emission microscope,IREM)以及時間解析光逸散顯微鏡(time-resolved emission microscope)。同時,在業界也已公知使用雷射測試及除錯半導體線路,其方式是檢視其在反射的雷射光中之調變。上述技術通常稱為LP,即雷射探測(laser probing)。如需更多資訊,讀者可以參照美國專利第5,208,648號、第5,222,403號及第5,940,545號,其專利說明書全文並列為本案之參考。更詳細之資訊可以參照:Yee,WM等人之Laser Voltage Probe(LVP):A Novel Optical Probing Technology for Flip-Chip Packaged Microprocessors,刊在International Symposium for Testing and Failure Analysis (ISTFA),2000年,第3-8頁;Bruce,M等人之Waveform Acquisition form the Backside of Silicon Using Electro-Optic Probing,刊在International Symposium for Testing and Failure Analysis(ISTFA),1999年,第19-25頁;Kolachina,S等人之Optical Waveform Probing-Strategies for Non-Flip-chip Devices and Other Applications刊在International Symposium for Testing and Failure Analysis(ISTFA),2000年,第51-57頁;Soref,RA與BR Bennett之Electrooptical Effects in Silicon刊在IEEE Journal of Quantum Electronics,1987年. QE-23(1):第123-9頁;Kasapi,S等人之Laser Beam Backside Probing of CMOS Integrated Circuits,刊在Microelectronics Reliability,1999年,39第957頁;Wilsher,K等人之Integrated Circuit Waveform Probing Using Optical Phase Shift Detection,刊在International Symposium for Testing and Failure Analysis(ISTFA),2000年第479-85頁;Heinrich,HK之Picosecond Noninvasive Optical Detection of Internal Electrical Signals in Flip-Chip-Mounted Silicon Integrated Circuits,刊在IBM Journal of Research and Development,1990年,34(2/3)第162-72頁;Heinrich HK、DM Bloom及BR Hemenway之Noninvasive sheet charge density probe for integrated silicon devices刊在Applied Physics Letters,1986年,48(26)第1811頁;Heinrich HK等人之Measurement of real-time digital signals in a silicon bipolar junction transistor using a noninvasive optical probe刊在IEEE Electron Device Letters,1986年,22(12)第650-652頁;Hemenway,BR等人之Optical detection of charge modulation in silicon integrated circuits using a multimode laser-diode probe,刊在IEEE Electron Device Letters,1987年8(8)第344-346頁;A Black,C. Courville,G Schultheis,H Heinrigh之Optical Sampling of GHz Charge Density Modulation in Silicon Bipolar Junction Transistors刊在Electronics Letters,1987年,Vol. 23,No. 15第783-784頁。上開文獻之內容,均列為本案之參考。
最近發現一種新的現象,可以用來對半導體進行測試及除錯。這是隨著新型電子裝置尺寸縮小,電子裝置都具有「易漏」(leaky)的特性,其電子--電洞再結合(electron-hole recombination)會在該裝置的靜態關閉狀態(off state)下發生,導致光子(紅外光)逸散。該逸散量會隨設計規則的壓縮而增加。換言之,該現象會隨著裝置一代一代發展,而更形明顯。該靜態逸散也可以用來對半導體線路進行除錯及測試。例如,有人建議使用數位影像軟體將該靜態逸散之IREM影像,與該晶片之電路布局重疊,以檢查發出光子的元件為何?另一種建議則是將各裝置的狀態,與其IREM影像重疊,以斷定所發現的逸散是否代表一「1」或「0」的邏輯狀態。這種手動的方法論,已經用來檢查裝置的瑕疵,其方式是在兩種不同的邏輯狀態下,取得裝置的影像,以觀察該逸散狀態是否產生變化。關於上述現象與其影像重疊之方法論,如須更詳細資料,可以參閱:Daniel R. Bockelman,Steve Chen與Borna Obradovic合著Infrared Emission-based Static Logic Imaging on Advanced Silicon Technologies,刊在Proceedings from the 28th International Symposium for Testing and Failure Analysis,2002年11月3-7日,美國亞利桑那州鳳凰城。其內容全部納為本文之參考。
由以上說明與引用文獻可知,雖然影像重疊技術可以用來偵測錯誤(failure),但該方式耗時,冗長,且隨著裝置一代一代發展,裝置尺寸一再縮小與集積化,而變得更難使用。換言之,上述影像重疊技術在應用時需要能夠取得具有足夠解析度的影像,才能從影像中判斷出不同的裝置與不同的逸散狀態,以及裝置周圍的雜訊。此外,從電子裝置所逸散的光子,乃是一種統計的現象。因此,使用影像編輯軟體來比對影像,尚不能提供正確的判斷,除非該影像是經過一統計上足夠長的曝光時間而取得,或者是使用足夠大量的IREM影像進行比對之結果。
由於新一代的電子裝置越趨縮小,並且以互相更接近之方式包裝,目前逸散探測技術只能使用在該逸散所發生之位置能夠與其他部份區隔,並能正確與實際逸散光線之裝置相匹配的場合。這些問題也同樣發生在雷射型的系統。換言之,在使用此種探測器時,操作者必須能夠找到導致該反射雷射光中之調變之裝置為何?然而由於設計規則(design rule)的壓縮化,裝置的密集度提高,使得要分辨出來發出光線或者調變該雷射光束之裝置為何,更形困難,甚至有時候是不可能。此外,由鄰近之裝置所逸散之光線會進入該探測系統之光路中。使得要區隔該逸散光線或調變雷射光束之裝置,工作更形複雜。雖然設計規則的壓縮化可以提高靜態逸散量,但是卻反而使得要將逸散光線的裝置區隔出來,更形困難。
為能使半導體產業的發展能夠符合摩爾法則(Moore’s Law),設計人員會持續壓縮設計規則,並提高裝置的密集度。其結果使得裝置的除錯與測試更顯不可或缺,並亟需有能夠解析出逸散光線/調製雷射光的裝置的技術。
以下之發明簡述係供作為對本發明數種面向及技術特徵之基本理解。發明之簡述並非對本發明之嚴密介紹,也因此並非用來特別指出本發明之關鍵性或重要元件,也非用以介定本發明之範圍。其唯一之目的僅在以簡單之方式展示本發明之數種概念,並作為以下發明詳細說明之前言。
本發明提出數種實施例,以說明從一積體電路中分離出損壞或故障的裝置的技術。通常而言,損壞(faulty)的裝置是指無法達到所需的邏輯狀態的裝置,而故障(malfunctioning)的裝置則是指雖然可以達到正確的邏輯狀態,但是其性能(例如速度、臨界電壓等等)則與所需的性能乖離。本發明的實施例可以應用在各種逸散型顯微鏡系統,例如靜態逸散型及動態逸散型系統,也可以作為獨立型系統使用。
根據本發明的數種面向,係先取得一IC之IREM影像。量測/計算各個光逸散處所之逸散強度。將所算得的強度根據參考強度值,亦即正常工作的裝置各個相對應光逸散處所的逸散計算值,繪製落點。該參考強度值可以由模擬得到、由已知正常工作的裝置的強度值計算得到、以一函數從數種裝置的強度值算出,或以其他方法獲得。通常比對結果絕大多數的強度值都會落在距離一直線的給定範圍內,無論各該裝置的強度值絕對值為何,都是如此。但是如果有裝置表現出不正常的光逸散,則其落點會處在與該直線形成容易觀察到的偏差位置。這種現象的原因可能是一種軟性瑕疵,例如該裝置的提早或遲延的開關動作,也可能是該裝置製程參數上的統計學偏差,但也可能是一種殺手級(killer)瑕疵,例如是電路短路或斷路。
根據本發明另一面向,對一IC上特定族群的裝置或全部裝置計算所得的強度值,加以製表。其後根據一參考強度值的列表,計算其相關性。設定一臨界值,用來判斷所算得的相關性,是否代表一種不正常現象。
根據本發明之另一面向,該算得的強度值乃是用來對各裝置決定一邏輯「1」或「0」之值。將該算得的邏輯狀態加以列表,並與參考邏輯狀態列表相比較。此外,該邏輯狀態列表還可用來以晶粒對晶粒比較的方式,檢查出故障的裝置為何。在應用上可以在一IC內進行比較,得出結果,但較適用的情形乃是具有重複樣型的IC,例如記憶IC。也可在不同IC之間做比較。該「1」或「0」之邏輯狀態可為每一測試向量自動儲存。
根據本發明之再一面向,該強度值的計算可以使用一點擴散函數(point spread function)為之,並可以可能涉及該光逸散的裝置的CAD資料做迴旋運算。該電晶體晶以擴散函數迴旋運算結果,與該實際上所量得的信號比較。檢查該迴旋運算後的信號與該量得信號的差值。改變該裝置所算得的信號強度,直到該迴旋運算後的信號與該量得信號的差值成為最小為止。以該最小差值所代表的計算所得強度值作為該裝置的計算所得強度值。
根據本發明之再一面向,如果該逸散光的裝置互相太接近,而無法做光學的解析,則使用該點擴散函數方法來解析該逸散光的裝置。對在觀察所得,但無法解析的逸散區域裡面的裝置中,全部架構內各個ON/OFF狀態,做最佳配適(best fit)處理。根據能夠配適該全部架構的最佳曲線的偏差量,對各狀態指定一可能性值。通常而言,該最佳配適,亦即最小差異可以馬上達到正確的解析。換言之,該最佳配適乃是顯示所涉及的裝置各個的正確狀態,因此可以說明逸散光的裝置為何,並能在程序中對各個逸散光的裝置提供強度值。在多數電晶體互相極為靠近時,計算一加權結果。該權值是以各次計算所得結果的可能性值為基礎。上述整個計算過程可以重複數次,每次改變其CAD對準(CAD alignment)。將具有最小差異的結果,作為正確的CAD對準。
本發明揭示一種方法,使用光子逸散(photon emission)在一積體電路(integrated circuit,IC)中偵測有瑕疵的裝置。該方法包括:從該IC之一區域取得一光逸散影像;判斷強度值,用以得到在該IC之該區域內存在之各個裝置所逸散的強度判斷值;取得各裝置的相對應參考強度值;及比較各個強度判斷值與其相對應之參考強度值。
本發明也揭示一種系統,該系統使用從一測試中裝置(device under test,DUT)收集所得的光子逸散,以辨認出故障與損壞之裝置。該系統包括:一第一輸入,用以接受影像信號,該影像信號對應於該DUT之選定區域所收集的到的光子逸散;一處理器,用以接受該影像信號並判斷在該選定區域內各個裝置的光逸散強度;一儲存器,其中存有參考強度值;一比較器,用以將各該經判斷之光逸散強度與一相對應之參考強度比較;及一輸出電路,用以輸出該比較結果。
本發明也揭示一種光學測試器,用以測試一測試中半導體裝置(DUT)。該測試器包括:一收集光學元件,用以收集由該DUT逸散之光子;一偵測器,用以偵測該收集光學元件所收集的光子逸散,並產生一逸散信號;一處理器,用以接受該逸散信號並判斷在該選定區域內各該裝置之光逸散強度;一邏輯狀態模組,用以判斷各該裝置之一邏輯狀態;及一儲存器,用以儲存該各裝置之邏輯狀態,及與其相對應之測試向量。
本發明也揭示一種光學測試器,用以測試一測試中半導體裝置(DUT)。該測試器包括:一收集光學元件,用以收集由該DUT發出之光;一偵測器,用以偵測該收集光學元件所收集的光,並產生一收集信號;一輸入,用以接受該DUT之CAD布局;一計算器,用以計算各個目標裝置之逸散強度;及一比較器,用以將該計算所得之強度值與參考強度值比較。
所附之圖式納入並構成本專利說明書之一部份,係用以例示說明本發明之實施例,而與專利說明書共同說明及展示本發明之主要原理。圖式之目的僅在以圖形展示例示用實施例之主要特徵。圖式絕非用以顯示實際實施例之所有特徵,也非用以標示各元件之尺寸,以及其比例。
發明之詳細說明
本發明之數種實施例提供在一IC中找出潛在的瑕疵裝置的方法與系統。其做法為量測/計算該裝置所逸散之光強度。值得一提的是,已知技術乃是使用手動方式觀測光子逸散,以判斷有無光逸散現象,並比較該判斷結果與預期結果。如果預期特定之裝置在某邏輯狀態下應該逸散光子,但卻未觀測到,則判斷該裝置有瑕疵。雖然這種分析方法能夠找出具有「殺手級」瑕疵的裝置,亦即完全無法作用的裝置,但是並無法找到僅僅具有「軟性」瑕疵的故障裝置,亦即雖然可以作用,但無法正常作用的裝置,例如能夠達到所需的邏輯狀態,但並無法有規律的作用的裝置。適例包括:穿透的臨界值遠低於可接受程度的情形。但本發明則可偵測出「軟性」瑕疵與「殺手級」瑕疵兩者。
在以下的說明中,第一部份將首先說明本發明的方法與系統應用在光逸散能以光學方式解析的情形,亦即在各個觀測到的光逸散都能找到其相對應的裝置的情形。但是,在更先進的裝置,因為具有極小的特徵尺寸,並有極為密集的布局,僅以光學方式並無法提供足夠的解析度,以辨別各個逸散光的裝置。本發明的數種實施例則提供可以對距離非常接近的電晶體解析光逸散的方法與系統。所述的實施例可以達到光學系統所無法達到的解析能力。易言之,光學系統的解析能力乃是受用來取得該電晶體影像的光波長所限制,而該光波在半導體裝置之場合,則因為矽的光學傳輸特性,僅限於紅外光。本發明的數種實施例則利用該光學系統的點擴散函數,解析該逸散現象。該點擴散函數根據光的線性特性將該光逸散作為逸散點之組合,進行模擬。一旦解析出光逸散,其結果即可用來標示有瑕疵的裝置。
第1圖顯示根據本發明一替代性實施例之系統架構示意圖。在第1圖中顯示DUT(device under test,測試中裝置,例如一IC)160正在進行測試,例如正在從測試機140接受測試向量142,該測試機140可例如為一ATE(automated testing equipment自動測試儀或automated testing and evaluation自動化測試及評量裝置)。另一種做法是對該DUT提供簡單的power-on信號或簡單的時鐘週期信號。該DUT可以放置在一光學測試機100上,例如為一IREM或時間解析IREM。適用之儀器可為EmiScope,為美國加州Fremont之Credence Systems公司所產製。通常而言,該光學測試機100會包括一X-Y-Z軸平台120,用以在該DUT上進行搜尋,一光束調整光學元件(beam manipulation optics,BMO)135,是由數個光學組件例如透鏡及/或反射鏡組成,以及掃描機制,例如為一雷射掃描顯微鏡130。上述元件均為已知之元件,並非本發明各實施例之核心。
透過上述的測試元件,可以從該DUT的不同區域,以例如光纖134收集到逸散的光子,並由一光子偵測器136,例如為一雪崩二極體(avalanche photodiode,APD)、一低亮度攝影機等,加以偵得。當然,其他元件或裝置也可以用來收集該光逸散。將一信號取得機板150耦合於該偵測器,以接受並調整該偵測器136之信號。其後將該信號提供給處理器170,例如為一特定程式化之個人電腦。如圖所示,該處理器170也可用來控制該光學測試機100之各個元件。此外,也可從測試機140將觸發信號及時鐘信號提供給該信號取得機板150及/或該處理器170。
第2圖表示第1圖所示的光學系統所取得之一光逸散影像。第2圖所顯示之特定影像代表一DUT中之選定區域。該影像可以使用例如揭示在上述Bockelman等人之論文所述之影像編輯軟體,顯示於該處理器170之顯示器上。不過,如圖中所顯示,在該影像中事實上很難辨認哪個裝置應該對應到哪個光逸散。不但如此,如果要將該DUT之布局與該影像對位,並以人工判斷該等裝置何者為正常狀態,也是相當費時且十分困難,因為所見的光逸散往往互相重疊。同時,以這種方式進行檢測只能判斷出無法工作的裝置,卻不能偵測出雖然可以工作,但無法達到所需的性能參數的裝置。
為能提升偵測能力,在本發明的實施例中乃是判斷各個裝置的光逸散強度。該光逸散強度的判斷可以使用任何已知的量測及/或計算方式,只要能夠維持其一致性即可。在此情形下,所謂「量測強度」與「計算強度」之用詞,在本文中可以互換,代表相同意義。在以下的說明中,會提供數種計算光逸散強度的特定範例。雖然以下所示的強度計算方法,在該系統無法以光學方法解析光逸散時,相當有用,但該等方法也可適用在以光學方法可以解析光逸散之場合。
同時也對一參考IC上相對應的裝置,判斷其光逸散強度。其方式可以使用一已知為正常工作之IC,由數個IC所得到的功能上強度平均值,以模擬方式取得等等。該DUT經判斷所得之強度值根據一參考裝置的計算強度值,做出落點圖。第3圖即顯示一種實例。在第3圖中該X軸特別對應到該DUT之裝置之強度值,而其Y軸則對應到一參考目標之相對應裝置的強度值。在該落點圖中各個點代表該DUT之一裝置之一強度值,與其相對應之參考值之關係。由圖中可見,所有的數值基本上落入一直線310。值得一提的是,雖然該DUT的整體性能並不符合該參考值,但其差異主要是影響其斜率,不過其關係仍具線性,至少會依循一第一角度。
在第3圖中,以虛線330畫出來的區域顯示強度較低的部份,該強度值與雜訊程度相當接近。因此,這些數值在判斷以直線310所代表的線性關係時,可以加以忽略。從第3圖之落點圖,可以容易得知,點320明確的偏離該線性關係310。從其強度值也可清楚的判斷,該裝置可以工作,亦即該參考值說明從該裝置應有光子逸散出來,且事實上該落點也顯示從該裝置確實可以偵測到光逸散。不過,該光逸散經過計算所得的強度,並不符合由該線性關係310所能預測的強度值。因此,雖然該裝置看來可以達到正確的邏輯狀態,但其潛在一「軟性」瑕疵,因為其性能並不符合所預期的性能。故而對該裝置的性能進一步加以檢驗,乃有其必要。
第3圖所示的落點圖可以顯示在顯示器上,以使使用者可以簡單的找到潛在有瑕疵的裝置。另一種做法,或者進一步增加的做法則是,使用該控制器170在內部執行計算,而只將懷疑有瑕疵,需要進一步檢驗的裝置列表出來。例如,一旦算出該DUT的各個強度值之後,該控制器170可以執行曲線配適(curve fit),以找出該線性關係310。其後該控制器170可以計算從該線性關係310可以容許的偏移量。也可由使用者手動輸入該可容許的偏移量。如上所述,該強度值的較低範圍可以加以忽略,以避免將雜訊摻入。一旦該線性關係與該最大可容許偏移量已經決定,控制器170即檢驗各個數值,以判斷是否從該線性關係偏離,並超出該最大容許偏移量。如是,則控制器170即將該裝置加入到可疑的裝置名單中。
第4圖顯示根據本發明一實施例之流程圖。在步驟400取得該目標區域的影像。在步驟410判斷各個處所的光逸散強度。其後在步驟420將該強度值根據該參考強度值製作落點圖。此步驟可以省略,故在圖中以繞道線415表示。在步驟430執行一曲線配適計算,以得到該計算強度值與該參考強度值間的線性關係。在步驟440取得最大容許偏離值,其方式可為計算,例如標準偏離值計算,或者由使用者手動輸入。在步驟450將各個資料點與該線性關係的距離,與該最大容許偏離值比較。在步驟460將任何超過該容許值得資料點,都加入到該可疑名單中,而提供給使用者。
雖然上述說明是關於一種「整合型」做法,對該影像的分析與對可疑裝置的判定都是使用該成像系統100的控制器170來執行,但很明顯,上述操作也可以使用一獨立型系統加以達成。例如可使用一泛用型電腦,例如一個人電腦110,經過特定的程式化之後,用來在從該控制器170經過連線102接收到影像後,執行該檢驗作業。連線102代表從該系統100將影像傳輸到該獨立型系統110的任何方法,例如(但不限於)LAN、WAN、網際網路、使用記錄用記憶媒介,例如CD ROM或快閃記憶體等等。
無論該系統是整合型或者是獨立型,都可使用該CAD布局來判斷該光逸散之位置。該系統,無論為110或控制器170,從該CAD資料庫146,透過CAD輸入104取得該DUT的CAD布局。例如,該CAD布局資訊可以包括一LEF檔(Library Exchange format元件資料交換格式),而包括該裝置在各單元(cell)內的座標值、為一N通道或一P通道、及/或偵得的光逸散對應道一邏輯「0」或邏輯「1」值?
根據本發明另一實施例,一旦該強度值已經判斷出來,就將所判斷出來的強度值與參考強度值做比較,並檢查其偏差量。附表一即顯示一種案例,並標示為類比模態。附表一包括一單元名稱欄,其中記載各個檢查中的單元,在該資料庫(例如LEF檔案)中的名稱。第二欄為電晶體名稱,也可以從該LEF檔案中取得。接下來為測試中裝置強度,表列各個電晶體經計算所得的強度值。再下一欄則為參考裝置強度值,其中表列各相對應之參考強度值。該資料可由一已知為功能正常的IC中獲得,從一組IC中獲得,或經由模擬獲得,等等。最後一欄列出該計算所得的強度值與參考值的相關性。在附表一所示的特定案例中,電晶體N1的File Input B產生相當大幅度的偏移。以這種偏移量的規模,極可能表示一種「硬性」錯誤,亦即無法達到正確的邏輯狀態。另一方面,電晶體N2的File Control C顯示75%的相關性。這種偏移可能顯示一軟性瑕疵。在這件特定案例中,該參考強度值與該計算強度值都位在雜訊程度內,因此在本案例中該數值應該可以加以忽略。此外,該案例也可以應用在該強度值位在該雜訊程度以上,但其偏差量卻低於一給定的判斷功能正常的臨界值,不過尚未低到足以顯示硬性錯誤的情形。因此,只要設定2個臨界值,使用者即可容易判別軟性以及硬性瑕疵。
第5圖顯示本發明一實施例之流程圖。在步驟500取得一目標區域的影像。在步驟510計算多數目標裝置的光逸散強度。在步驟520得到該強度值與該參考值的相關性。在步驟530將各個相關性與一第一臨界值比較。如果該相關性值高於該第一臨界值,例如高於80%,則在步驟535標示該裝置可能為功能正常。反之,如該相關性質低於該第一臨界值,則在步驟540將該相關性值與一第二臨界值比較。如果該相關性值高於該第二臨界值,例如高於20%,則在步驟545將該裝置列入可疑的軟性瑕疵名單。反之,如該相關性質低於該第二臨界值,則在步驟555將該裝置列入可疑的硬性瑕疵名單。
根據本發明其他實施例,是將該計算所得的強度值轉換成為各個裝置的邏輯狀態。其方式顯示於附表二,並標示為數位模態。附表二包括一單元名稱欄,其中記載各個目標單元的名稱。第二欄為測試中裝置,表列計算所得的邏輯狀態。該邏輯狀態可以參考該強度計算值與該LEF檔案內容獲得,代表其光子逸散情形是否達到邏輯狀態「1」或「0」。該狀態其後將與一參考裝置之數值或一理論值做比較。如表中所示,在這件特定案例中,該系統顯示電晶體B3潛在有錯誤。
第6圖顯示本發明一實施例之流程圖。在步驟600檢查一測試器,例如一ATE,以取得錯誤向量。在步驟610及620檢查一錯誤診斷軟體,例如Yield Assist TM,是由美國奧瑞岡州Wilsonville的Metor Graphics TM公司所產製,或為Encounter TM,是由美國加州San Jose的Cadence TM公司所產製,以確認該掃描鏈(scan chain)位置並標示該錯誤狀態。在步驟630將該光學系統移動到該錯誤位置,以取得一影像。該光學系統可以取得在該錯誤狀態下,該光逸散之背景影像及光逸散影像。在步驟640計算各個光逸散的強度值。在步驟650執行數位分析,亦即將該逸散的計算值轉換成一邏輯「1」或「0」,並將所得之值與所期待的邏輯值做比較。在步驟660執行一類比分析。也就是將該強度計算值畫出落點,或與參考值做比較,均如上述。在步驟670將可疑的裝置表列,提供給使用者。
其次說明本發明即使在該光學解析度不足以解析出逸散光的裝置時,仍可計算出其強度值的實施例。第7圖為一3-d落點圖,顯示一單一逸散點之理想點光逸散擴散函數。第8圖為第7圖之一截面圖。也就是說,如果一個光學系統沒有額外的電性偏差及系統雜訊,該系統從一光逸散點所獲得的信號應該如第7圖與第8圖所示。
第9圖顯示一半導體晶片之一部份,該晶片具有3個電晶體,A、B與C,互相極為靠近。在作業時,該電晶體應該表現附表三所示的狀態。例如,在狀態1所有的電晶體都不應該逸散光,但在狀態2,只有電晶體A逸散光。第10圖為如第9圖所示之3個電晶體,A、B與C之點擴散函數之落點圖。在以下的說明中,視說明內容而定,所稱的電晶體為ON或OFF可能在指其逸散光或未逸散光,不一定在表示其為電性導通或不導通狀態。事實上也如以上所述,靜態逸散可能在該電晶體電性不導通時發生。此外,在此所使用的「ON」或「逸散」,必須包含光在電晶體的反射及/或調制。
第11圖為一3-d落點圖,顯示在如第9圖所示組成的3個電晶體的位置所量測得到的信號。在這案例中所顯示的信號實際上是模擬所得的信號,是使用一亂數產生器將雜訊加入到信號中。如圖中所示,該信號從一逸散點的理想信號偏離,主要是因為系統中的雜訊。因此,當該等電晶體距離太近時,要解析出逸散光的電晶體,相當困難。第12圖為一落點圖,顯示該量測得到的信號與一理想點擴散函數落點重疊之結果。該落點圖也顯示解析光逸散的困難度。
第13圖顯示在一半導體晶片之一區域之多數電晶體所量測到的光逸散信號。第14圖為第13圖所量測到之信號3-d落點圖。在本件特定案例中,該信號經過模擬,但忠實描述一真實量測信號之外觀。以下說明這種信號如何加以解析的實例。
第15圖顯示根據本發明一實施例解析光逸散之步驟流程圖。該程序從步驟1500開始,在此步驟取得檢驗中區域的CAD設計資料。該第13圖之晶片區域的CAD設計資料顯示於第16圖,其中數個裝置的布局顯示在一任意(x,y)笛卡爾座標系(Cartesian coordinates)中。在本實例中,因為該晶片的區域包含數叢集(clusters)位置相當接近的電晶體,在步驟1505將該區域以叢集為基礎,劃分成較小,更容易處理的小區,如虛線方塊1600、1610及1620所示。在步驟1510選取測試用的小區,在所選取的小區中標示其電晶體後,與一可能的狀態表結合。請注意,將該區域劃分成小區之後,可以將系統在計算時必須列入考慮的狀態數量減少。而該叢集的最大尺寸,也就是在一叢集可包含的最大數量電晶體,可以根據系統的處理能力來決定。
在步驟1515對在步驟1510所選定的區域內的裝置,計算該點擴散函數(point spread function,PSF),得到幾何分布。另一種方式則是事先對數種裝置的幾何分布,進行PSF計算,建立一PSF元件庫。在這種做法下,步驟1515是從該元件庫中選取適用的PSF,以對應到步驟1510所選定區域的幾何分布。在步驟1520選定一狀態並在步驟1525將該PSF與該選定狀態相乘。如第9圖的案例所示,該附表三所示的第一狀態為(0,0,0),以之為乘數,第二狀態乘以(1,0,0),餘此類推。
在步驟1530將該PSF經過計算所得的結果與該量測所得信號比較。在步驟1535將一「雜訊」加入到PSF,以獲得對該信號量測結果的最佳配適(best fit)。本步驟可以使用一公式或使用互動式搜尋(interactive search)乘數,以使其結果令該選定狀態的PSF與該實際測得信號間,達成最佳配適。就實質而言,其目的乃是在使該選定狀態的PSF曲線與該測得信號間的誤差變成最小。一種互動式的方法,可以達到這個目的,便是改變選定狀態的各個經判斷為ON(即有逸散光)的電晶體的強度值,直到計算所得的PSF與該量測所的信號形成最佳配對。
在取得該最佳配適後,在步驟1540計算最小偏移量。此步驟可使用任何已知,用來計算兩曲線間誤差的方法。例如廣為周知的最小平方法或普通最小平方法,即可用來獲得該最佳曲線配適,且其最小殘留值的集合即為該最小偏差量。該最小平方法假設誤差為隨意分布。但是根據本發明一實施例,並不假設該雜訊程度為任意分布,而是與該強度值本身具有相關性。例如,各個量測資料點的誤差可以假設為等於該量測資料點的平方根,亦即各點的強度值I可相等於I +/- I 。因此,根據本發明一實施例,乃是使用卡方分析(Chi Square analysis)方法。一般而言,適用在本實施例的卡方檢驗可以為(IM -IE )2 /N之形式,其中IM 為該測得強度值,而IE 為該期待強度值(即該PSF),且N為該雜訊之平方(N=IE +n2 ,其中n表偵測得到的雜訊)。為取得該偏差量,在附表四中標示為tChiSq,對該取樣點的數量做累加,如下:
tChiSq=Σ(IM -IE )2 /N
由以上可知,可以將取樣點的數量加以改變,以獲得精確的趨近度或粗略的趨近度,全賴特定用途而定。
在步驟1545判斷是否還有更多狀態需要計算。如是,則回到步驟1520。如果所有狀態都已經過計算,根據本發明一實施例,將進入程序A,其中,在步驟1547將含有最小誤差的狀態選出,作為正確狀態。將該選定狀態下各個電晶體的強度計算值提供作為判斷何者電晶體逸散出光線的標準。根據本發明另一實施例,則是進入程序B,其中在步驟1550計算各個狀態的相對可能性。當然,程序A與B兩者都可以加以執行,用來交叉檢驗最後的選定。
該各個狀態的相對可能性可以從步驟1540所得到的偏差量算出。可以用來計算該相對可能性的方法包括各種已知的統計學方法。根據本發明一實施例,是使用該卡方分布法,而在另一實施例則使用一F分布法(F-Distribution)。當然,兩種方法都可以使用,一如附表四所示,表中將該卡方分布標示為tChiDist,而將該F分布法標示為tFdist。第16圖為第13圖之影像所示之晶片區域之CAD布局設計。所得結果在步驟1555加以表列,並可顯示給使用者,據以判斷何種狀態最有可能產生該測得信號。附表四即顯示一種列表顯示的範例。
必須說明的是,在這步驟中,非物理值可從該計算中忽略。例如,如果在步驟1540的計算中,已經獲得該最佳曲線配適,而任一電晶體的一強度值卻設定為負值,則該特定狀態即可加以排除,因其不合物理原理;因為電晶體只能逸散光,不能吸收光。
附表四所示的案例是代表第9圖所示的3電晶體布局,其可能的狀態則顯示於附表三。對各個狀態而言,該強度值都已經經過改變,以獲得對該測得信號最佳的配適。其後,將各該電晶體「最佳配適」的強度值tA、tB與tC,對各個選定的狀態加以記錄。在本實例中的最小偏差量則表示為tChiSq。由本案例中可知,該最差的偏差是發生在第一狀態,在將一不逸散光之PSF與一顯示為逸散光的測得信號比較時。另一方面,最好的偏差則發生在狀態(101)與(111)。此外,該卡方分布在兩種狀態下都很近似,分別為0.26及0.25。因此,從第一眼觀察結果顯示兩種狀態似乎可能都表現同樣可能為有效的解答。不過,對狀態(111)而言,其tB的最佳配適強度卻設定為負值(-755.47)。顯然是非物理性的結果,故而可以在計算該可能性時加以排除,一如前述。此外,該F分布法則強烈支持狀態(101)。因此,結果代表正確的解答乃是狀態(101)。
再往回看前一步驟。附表四所示的統計結果從物理學觀點而言,有其意義。這是說,由於該線性特性,兩個距離非常接近的光逸散裝置會產生一信號,使得逸散出來的光就像從位在該2光逸散裝置之間的單一裝置所逸散的光,形成較寬的PSF曲線。因此,在特定解析度下,狀態(101)與狀態(111)兩者看來都形成配適,因為兩者皆會產生一較寬的PSF曲線,代表單一的裝置。不過,在更高的解析度下,兩個光逸散裝置所形成的信號會在其中點(位在兩個個別光逸散裝置的兩個峰值之間)形成一下凹(dip)。這也是為何在配適狀態(111)時,該中央電晶體的強度會形成負值,也就是在中間存在該下凹的結果。這個事實提高了判斷該正確狀態實際上應該是(101)的信賴度。因此,在本發明另一實施例中,並不將負值的強度值加以排除,反而是在最後選定結果時,用來確認或提高對判斷結果的信賴度。
根據本發明另一實施例,乃是另外進行一處理,以獲得對所選定的狀態更高的信賴度。根據本實施例,一旦第15圖的處理完成,而選定區域之後,即為該解答取得一加權總和,而將各狀態所得的可能性值列入計算。附表五即顯示一種範例。其中該加入權值的計算結果標示為「pooled」。舉例而言,電晶體tA的強度值是乘以各個狀態的可能性值後,加總。如附表五所示,經過這個處理之後,對電晶體A與C做過加權所得的強度值,即遠高於電晶體B的強度值。該結果支持正確狀態應為(101)的結論。
根據本發明再一實施例,當該最佳配適的PSF曲線得到之後,即計算一代表該解答的強度的值。在本文中,該值稱為西格瑪(sigma)值,在附表四中標示為tSigA、tSigB與tSigC。第17圖提供3個功能錯誤函數11、12與13與強度之關係圖。其中的最小值都表示該最小誤差,亦即該最佳配適。不過,如圖所示,圖形11的曲線比曲線13更平。因此,從該曲線13所選擇的最小誤差解答,比起由曲線11所獲得的解答,具有更高的確定性。這種量測結果反應在附表四與附表五中的西格瑪值。在該2表中,西格瑪值越大,其信賴度越小。同時,當該西格瑪值趨近於該強度值時,就顯示該強度值的不確定性更高。此外,當該西格瑪值超過該強度值時,在該狀態下的強度值即完全不適用。例如,在附表四的狀態(111)中,該電晶體B的西格瑪值高於該狀態下,同電晶體的強度值。由這個結果即可確認狀態(111)是不可能的解答。另一個類似的意義可從該加權後的值看出來。換言之,該電晶體B的西格瑪值高於該電晶體B的加權後強度,即表示該電晶體B的強度值無法用作參考。
又跟據本發明另一實施例,乃是建立一決策表,並提供予使用者。這種決策表的一種範例顯示於附表六。在附表六中顯示該加權強度值以及各電晶體的西格瑪值。此外,對每一電晶體也計算該電晶體為ON的累積可能性值,並提供到表中。達成這種結果的做法可例如為將該ON可能性值加入到從附表四所得到的F分布而得到。從附表六中可以見到,該電晶體A為ON的可能性值很高,且其預測強度也高,並遠高於其西格瑪值。從電晶體C也可以看到類似的結果。因此,該系統可以做成一決定,稱為綜合判斷(blended verdict),判斷電晶體A與C都是ON。反之,由於電晶體B的累積ON可能性為不可見,其西格瑪值比其強度值高出許多。因此電晶體B極不可能是ON,因此該系統可以判斷電晶體B是OFF。如果要以較保守的方式執行,則可以在此時產生「無法判斷」的判斷,如附表六所示。不過,即使結果是「無法判斷」,但如果將電晶體B當做ON,其強度與A、C比起卻顯得非常微弱。又如前所述,在上述案例中所量得的強度值事實上都是經由模擬取得,其中的雜訊是使用一亂數產生器所產生。該模擬過程的「無雜訊」強度值顯示於附表六的「實際值」項下。如表中所示,該加權後的強度值與該用來模擬的實際強度值緊密配對。
該綜合判斷可以加以調整,以適合特定的情況,並用來提供不同的「信賴度」。如果採取比較保守的做法,可只在可能性值極高、西格瑪值極低,且判斷條件很明確時才形成判斷。與此相反,也可採取較寬鬆的標準,來形成該綜合判斷。根據本發明另一實施例,則是計算針對可能性值至少為所有狀態之最高可能性值一半以上的狀態數量;如果計算所得的狀態數量高於經測試區域的電晶體總數,則不做出任何決定。
第15圖所示的流程代表對第13圖所示全部區域,使用該亂數產生器加入雜訊,反覆計算的過程。各次計算所得的結果,顯示於附表七。該表明確顯示本發明的系統已經全部自動化,能夠執行以上所述的計算,以各個電晶體叢集進行光逸散的解析。在附表七所示的執行步驟中,該系統自動對22個電晶體當中的17個,提供一ON或OFF的判斷。如附表七中所示,該系統所估計的光逸散強度,與所有經過系統判斷為ON或OFF的電晶體,經模擬所得的強度緊密相合。事實上,即使對於系統未作出判斷的電晶體而言,5個當中的4個電晶體的強度值也與模擬所得的強度值非常接近。
從以上的說明可知,本發明提供一種方法論,可用來計算各個電晶體的光逸散強度,無論該電晶體能否以光學方式解析出來,都可得到所需的結果。計算所得的強度值可以在之後用來檢驗在該IC中的軟性與硬性錯誤,都已如前述。不但如此,將上述分析方法適用在多數IC後,可以產生各個裝置的強度函數平均值,因而可以得到參考值,用來測試其他的IC。該函數平均值可以為一加權平均值,一系列的中間值(medians),或任何其他選定的函數型平均值。
根據本發明另一實施例,該系統也可將該CAD布局與該測試中裝置(device under test,DUT)可能的對位錯誤(misregistration)列入考慮。第18圖即顯示根據本發明一實施例去除對位錯誤之流程圖。根據本實施例,一旦在步驟1800(與第15圖的步驟1510相對應)選定一幾何分布,即執行以下的反覆分析。在步驟1810選定一CAD布局與該DUT之對準方式,其後於步驟1820執行第15圖所示的分析。於步驟1830判斷是否應該選擇另一種對準方式?為達此目的,乃是將該系統設計成可以就該CAD選擇一預定數量的對準方式。其做法可為儲存數種在X、Y方向的預設移動量,使得在每次的反覆執行中,該CAD設計可在該X方向、Y方向或兩者移動一預定量。如果在步驟1830判斷結果認為應該測試另一種對準方法,則步驟回復到步驟1810。否則,程序進入步驟1840,在此對所有計算所得的加權後卡方值,都做比較。並在步驟1850在所得的加權後卡方值中,選出數值最小的CAD對準方法,作為最適當的對準方法。並將從該對準方法所得的結果,使用在解析該光逸散上。
第19圖為一系統架構圖,顯示根據本發明系統之一實施例。在第19圖中,DUT 1960正在進行測試,例如正在從測試機1940接收測試向量1942。該DUT可以放置在一光學測試機1910,例如為EmiScope或Ruby,是由美國加州Fremont的CDG Systems公司所產製。一般而言,該光學測試機1910會包括一X-Y平台1920,用以在該DUT上進行搜尋;一光束調整光學元件(beam manipulation optics,BMO)1935,是由數個光學元件所組成,例如透鏡及/或反射鏡;以及掃描機構,例如為一雷射掃描顯微鏡1930。上述元件都是已知技術,並與本發明的重點較無關係。
使用以上所述的測試系統時,光線是從該DUT的數個區域收集,例如經由光纖1934,而由光偵測器1936,例如一雪崩光二極體(avalanche photodiode,APD)或低光量攝影機等等偵測到。可以一信號取得機板1950與該偵測器耦接,以接收並規制該偵測器1930的信號。該信號其後提供於一處理器1970,例如為一特定程式化個人電腦。如圖中所示,該處理器1970也可用來控制該光學測試機1910裡面的各種元件。此外,也可從該測試機1910提供觸發信號及時鐘信號到該信號取得機板1950及/或該處理器1970。
根據本發明之一實施例,是使用一獨立型(stand-alone)系統1900來解析由該光學測試機1910所偵測得到的光逸散。該獨立型系統1900可以使用特別程式化的泛用型電腦來加以實施,也可以使用特定架構的硬體及/或軟體及/或韌體加以達成。該獨立型系統1900也用來執行該光逸散強度評估,以判斷損壞及故障的裝置,也已如上述。所得到並經過規制的信號由該處理器1970送到該解析系統1900的光學信號輸入1902。該系統嗣後經由CAD輸入1904,從該CAD資料庫1946取得該DUT的CAD布局。該系統1900其後又執行本文所述的處理方式之一者,以解析該偵測所得的光逸散現象。根據本發明另外一實施例,該系統1900乃是設計成與該處理器1970整合為一體。在這種方式下,該CAD布局乃是從該CAD資料庫1946提供到該處理器1970。
第19圖的顯示該解析系統1900的一實例,無論該解析系統1900為一獨立型系統或者整合型系統,均為適用。其中的元件有些或全部可以用來作該強度分析,以檢驗損壞或故障的裝置。該檢驗系統具有一匯流排1905,耦接該匯流排1905的是數種元件,用以與其他元件通信或提供信號。該光學信號輸入1902及該CAD布局輸入1904均連接到該匯流排1905,並提供信號到該匯流排1905。同時,有一輸出1922將該數種計算結果及判斷結果的輸出,提供給例如一顯示器、一列表機等等。要使上述的處理能夠進行,該系統1900可以包括一點擴散函數產生器1906,用以產生各電晶體的點擴散函數以及其數種選定的狀態。以一比較器1908比較從該PSF產生器1906所產生的PSF與從該輸入1902所得到的光學信號。以一判斷引擎1912接受由該系統1900的各個元件所執行的各種計算的結果,並提供一輸出以供該解析判斷之用。以一統計引擎1916執行該數種統計計算,例如該卡方運算,該卡分布運算(Chi-distribution),該F分布運算等等,並將所得結果輸出,提供給該判斷引擎1912。以一變形引擎1914對該PSF進行運算,以探求對該光學信號的最佳配適。另外,使用一CAD對準器1924來提供各種CAD座標,以將該CAD布局做對準,並針對數種CAD對準方式,反覆進行誤差計算,直到得到最小誤差為止,藉此選出最佳的CAD對準座標。
不同的元件可以使用記憶體1918來儲存資料。記憶體1918可以包括用來儲存PSF元件庫的記憶區,以儲存其各種電晶體的幾何分布。值得一提的是,根據本發明的數種面向,各該電晶體的邏輯狀態經過判斷(例如使用以上所述的方法判斷)後,將該狀態自動儲存在該記憶體1918內。一起儲存的還有在取得影像時運用的測試參數。該狀態其後可以與已儲存的參考值相比較,該參考值可由已知為正常的元件獲得,或者為其他預定值,例如從理論計算所得或者從模擬所得的數值。另一種做法則是將為數種裝置所取得的狀態,使用在設定該適當狀態上面。由以上說明也可知,上述系統1900裡面的任何元件都可以硬體、軟體、韌體或者其等任何組合的形態存在。此外,由以上說明也可以得知,該系統1900的所有元件都可以單一的處理器,執行特定設計的軟體碼,加以達成。
本發明既已利用相當程度特定之實施例說明如上,上述之說明目的僅在例示本發明,而非用以限制其範圍。於此行業具有普通知識、技術之人士,不難由以上之說明,衍伸出其他多種硬體、軟體及韌體的不同組合,而實現本發明之內容。此外,其他實現本發明的方法對於習於斯藝之人士,也可從本案的專利說明書進行考慮,並實施所述的本發明內容,而加以達成。本發明所述的實施例所使用的數種面向及/或元件,都可以單獨使用,也可以與該電漿處理腔技術以任何方式結合。在本說明書及其圖式所記載及顯示之所有內容,都只能作為例示之用,本發明真正的範圍與精神,只能由以下的申請專利範圍所規範。
100...光學測試機
102...連線
104...CAD輸入
110...個人電腦
120...X-Y-Z軸平台
130...雷射掃描顯微鏡
134...光纖
135...光束調整光學元件
136...光子偵測器
140...測試機
142...測試向量
146...CAD資料庫
150...信號取得機板
160...測試中裝置
170...處理器
310...直線
320...點
330...虛線
415...繞道線
1600、1610及1620...虛線方塊
1900...獨立型系統
1902...光學信號輸入
1905...匯流排
1904...CAD布局輸入
1906...點擴散函數產生器
1908...比較器
1910...光學測試機
1912...判斷引擎
1914...變形引擎
1916...統計引擎
1918...記憶體
1920...X-Y平台
1922...輸出
1930...雷射掃描顯微鏡
1934...光纖
1935...光束調整光學元件
1936...光偵測器
1940...測試機
1942...測試向量
1946...CAD資料庫
1950...信號取得機板
1960...DUT
1970...處理器
第1圖顯示根據本發明一替代性實施例之系統架構示意圖。
第2圖表示一DUT內之目標區域之光逸散影像。
第3圖表示根據本發明一實施例之落點圖。
第4圖顯示本發明一實施例之流程圖。
第5圖顯示本發明另一實施例之流程圖。
第6圖顯示本發明再一實施例之流程圖。
第7圖為一3-d立體圖,顯示在開發本發明而進行模擬時,一單一逸散點之理想點擴散函數光逸散。
第8圖為第7圖之一截面圖。
第9圖顯示一半導體晶片之一部份,該晶片具有3個電晶體,A、B與C,互相極為靠近,用以說明本發明之一實施例。
第10圖為根據本發明一實施例所模擬,如第9圖所示之3個電晶體,A、B與C之點擴散函數之落點圖。
第11圖為一3-d立體圖,顯示根據本發明一實施例,在開發本發明而進行模擬時,在如第9圖所示組成的3個電晶體的位置所量測得到的信號。
第12圖為一落點圖,顯示該量測得到的信號與一理想點擴散函數落點重疊之結果。
第13圖顯示在開發本發明而進行模擬時,在一半導體晶片之一區域之多數電晶體所量測到的光逸散信號。
第14圖為第13圖所量測到之信號3-d落點圖。
第15圖顯示根據本發明一實施例解析光逸散之步驟流程圖。
第16圖為第13圖之影像所示之晶片區域之CAD布局設計。
第17圖提供3個功能錯誤函數與強度之關係圖,用以說明本發明所使用之西格碼特徵。
第18圖顯示根據本發明一實施例去除對位錯誤之流程圖。
第19圖為一系統架構圖,顯示根據本發明系統之替代性實施例。

Claims (25)

  1. 一種根據半導體裝置所發生之光子逸散(photon emission)檢測積體電路(integrated circuit,IC)內有瑕疵之半導體裝置的方法,包括:取得該IC一區域因半導體裝置光子逸散產生之一光逸散影像;判斷該光子逸散之強度值,以提供從該IC之該區域所存在之各該半導體裝置所逸散之光之強度判斷值;取得與各該半導體裝置相對應之參考強度值;及比較各強度判斷值與其相對應之參考強度值。
  2. 如申請專利範圍第1項之方法,其中該比較步驟包括將各強度判斷值與其相對應之參考強度值繪製落點。
  3. 如申請專利範圍第2項之方法,另包括計算全部強度判斷值與全部參考強度值間的一線性關係的步驟。
  4. 如申請專利範圍第3項之方法,另包括判斷一與該線性關係之最大容許偏差值的步驟。
  5. 如申請專利範圍第4項之方法,另包括如下步驟:對各強度判斷值,計算其與該線性關係之偏差量,及比較該偏差量與該最大容許偏差量。
  6. 如申請專利範圍第1項之方法,另包括如下步驟:對各強度判斷值,指定一邏輯狀態「1」或「0」。
  7. 如申請專利範圍第6項之方法,另包括取得參考邏輯狀態並比較該指定邏輯狀態與該參考邏輯狀態之步驟。
  8. 如申請專利範圍第1項之方法,另包括如下步驟: 指定一第一臨界值;對各個裝置,判斷其強度判斷值與該參考強度值之差異值;判斷該差異值是否小於該第一臨界值;如是,則標示該裝置為可疑的無作用裝置。
  9. 如申請專利範圍第8項之方法,另包括如下步驟:指定一第二臨界值;對各個差異值大於該第一臨界值之裝置,比較該差異值與該第二臨界值;如該差異值小於該第二臨界值,則標示該裝置為可作用但故障的裝置。
  10. 如申請專利範圍第1項之方法,其中該計算強度值之步驟包括下列步驟:取得該IC中位於該區域內的電晶體的CAD布局;從該光學系統之一點擴散函數(point spread function,PSF)產生該電晶體的一擴散函數;以比較該擴散函數與該光逸散影像之光信號之方式,計算各該裝置之離散光逸散強度。
  11. 如申請專利範圍第10項之方法,另包括下列步驟:判斷多數之狀態組合,各組合包括各該裝置之狀態之獨一組合;對該多數狀態組合之任一者:產生一結合的擴散函數;比較該結合的擴散函數與該光信號,藉此從各裝置取得一誤差值及離散光逸散強度值;選取該狀態組合中具有最小誤差值之組合,作為正確之狀態組合;選取所得到的與該正確之狀態組合相對應的強度值。
  12. 如申請專利範圍第11項之方法,其中該比較該結合擴散函數與該光信號之步驟,另包括對該結合擴散函數執行一最小平方極小化(least square minimization)運算。
  13. 如申請專利範圍第11項之方法,其中該比較該結合擴散函數與該光信號之步驟,另包括對該結合擴散函數執行一卡方極小化(Chi-Square minimization)運算。
  14. 如申請專利範圍第1項之方法,另包括下列步驟:判斷各強度計算值的邏輯狀態;儲存該狀態計算值及與其對應測試參數之標示。
  15. 如申請專利範圍第14項之方法,另包括將各邏輯狀態與一參考邏輯狀態比較之步驟。
  16. 一種使用從一測試中裝置(device under test,DUT)收集得來的光子逸散,檢測故障及損壞裝置的系統,包括:一第一輸入,用以從該DUT之一選定區域接收與該光子逸散具相關性之影像信號;一處理器,用以接收該影像信號,並對各個位在該選定區域內之裝置,判斷光逸散強度;一儲存器,具有參考強度值儲存在其中;一比較器,用以將各該光逸散強度判斷值與一相對應之參考強度值做比較;一輸出電路,用以輸出該比較結果。
  17. 如申請專利範圍第16項之系統,其中該輸出電路包括一監視器,用以顯示各光逸散強度判斷值與一相對應參考強度值之關係圖形。
  18. 如申請專利範圍第17項之系統,另包括一第二輸入,用以接收該DUT之CAD布局,且其中該儲存器另儲存有各裝置的預期邏輯狀態在其中。
  19. 如申請專利範圍第18項之系統,其中該處理器另指定一邏輯狀態給各強度判斷值,並比較該指定邏輯狀態與該預期邏輯狀態。
  20. 如申請專利範圍第16項之系統,另包括一狀態對位模組,用以接收各裝置之該光逸散強度值,並為各裝置判斷一邏輯狀態,且另將該邏輯狀態與一相對應之測試參數儲存到該儲存器中。
  21. 如申請專利範圍第20項之系統,其中該比較器比較各該裝置之邏輯狀態與一預期邏輯狀態。
  22. 一種用以測試一半導體測試中裝置(device under test,DUT)之光學測試機,包括:一收集光學元件,用以從該DUT收集光子逸散;一偵測器,用以從該收集光學元件偵測該光子逸散,並產生一逸散信號;一處理器,用以接收該逸散信號並判斷在該選定區域內各裝置的光逸散強度;一邏輯狀態模組,用以決定各裝置之一邏輯狀態;一儲存器,用以儲存各裝置之邏輯狀態,以及一相對應的測試參數。
  23. 如申請專利範圍第22項之測試機,另包括一狀態比較器,用以將各該裝置之邏輯狀態與一預期之邏輯狀態比較。
  24. 如申請專利範圍第23項之測試機,另包括:參考強度值;一強度值比較器,用以將各該光逸散強度判斷值與一相對應之參考強度值做比較; 一輸出電路,用以輸出該比較結果。
  25. 如申請專利範圍第24項之測試機,另包括一監視器,用以顯示各光逸散強度判斷值與一相對應參考強度值之關係圖形。
TW098141051A 2008-12-02 2009-12-01 基於光逸散之瑕疵檢驗系統及方法 TWI435070B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/326,859 US8072589B2 (en) 2007-01-18 2008-12-02 System and method for photoemission-based defect detection

Publications (2)

Publication Number Publication Date
TW201022662A TW201022662A (en) 2010-06-16
TWI435070B true TWI435070B (zh) 2014-04-21

Family

ID=42145797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141051A TWI435070B (zh) 2008-12-02 2009-12-01 基於光逸散之瑕疵檢驗系統及方法

Country Status (4)

Country Link
US (1) US8072589B2 (zh)
JP (2) JP2010133958A (zh)
DE (1) DE102009044737A1 (zh)
TW (1) TWI435070B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390486B2 (en) 2010-09-29 2016-07-12 Neeraj Khurana System and method for automatic orientation of a chip to the CAD layout with sub-optical resolution

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860850B1 (en) * 2007-05-22 2014-10-14 Rockwell Collins, Inc. Photon-starved imaging system
US8331726B2 (en) * 2009-06-29 2012-12-11 International Business Machines Corporation Creating emission images of integrated circuits
US9075106B2 (en) * 2009-07-30 2015-07-07 International Business Machines Corporation Detecting chip alterations with light emission
US9201096B2 (en) 2010-09-08 2015-12-01 Dcg Systems, Inc. Laser-assisted device alteration using synchronized laser pulses
EP2428807A3 (en) * 2010-09-08 2014-10-29 DCG Systems, Inc. Laser assisted fault localization using two-photon absorption
US8750595B2 (en) * 2010-10-06 2014-06-10 International Business Machines Corporation Registering measured images to layout data
US9052356B2 (en) 2012-02-15 2015-06-09 International Business Machines Corporation Embedded photon emission calibration (EPEC)
US9714978B2 (en) * 2012-04-12 2017-07-25 Larry Ross At-speed integrated circuit testing using through silicon in-circuit logic analysis
JP6535837B2 (ja) 2013-03-24 2019-07-03 ディーシージー システムズ、 インコーポレイテッドDcg Systems Inc. タイミングダイアグラム及びレーザ誘導性アップセットの同時取得のための同期パルスlada
US20150097951A1 (en) * 2013-07-17 2015-04-09 Geoffrey Louis Barrows Apparatus for Vision in Low Light Environments
EP2983193B1 (en) * 2014-08-05 2021-10-20 Aselta Nanographics Method for determining the parameters of an ic manufacturing process model
US10962592B2 (en) * 2018-09-07 2021-03-30 Globalfoundries Singapore Pte. Ltd. Defect localization in embedded memory
EP3998476A4 (en) 2019-07-10 2023-08-09 Hamamatsu Photonics K.K. SEMICONDUCTOR DEVICE INSPECTION METHOD AND SEMICONDUCTOR DEVICE INSPECTION DEVICE

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308575A (ja) * 1989-05-24 1990-12-21 Nissan Motor Co Ltd 光検出セル
US5208648A (en) 1991-03-11 1993-05-04 International Business Machines Corporation Apparatus and a method for high numerical aperture microscopic examination of materials
US5220403A (en) 1991-03-11 1993-06-15 International Business Machines Corporation Apparatus and a method for high numerical aperture microscopic examination of materials
JP3004830B2 (ja) * 1991-12-09 2000-01-31 松下電器産業株式会社 半導体集積回路の評価装置及び評価方法
JP2920908B2 (ja) * 1994-07-18 1999-07-19 株式会社アドバンテスト 荷電粒子ビームを用いるic欠陥検出方法及びその装置
US5940545A (en) 1996-07-18 1999-08-17 International Business Machines Corporation Noninvasive optical method for measuring internal switching and other dynamic parameters of CMOS circuits
JP4009409B2 (ja) * 1999-10-29 2007-11-14 株式会社日立製作所 パターン欠陥検査方法及びその装置
JP3485052B2 (ja) * 1999-12-16 2004-01-13 日本電気株式会社 参照画像作成方法、パターン検査装置及び参照画像作成プログラムを記録した記録媒体
JP2001319955A (ja) * 2000-05-10 2001-11-16 Hitachi Ltd 発光解析方法およびその装置
JP4230674B2 (ja) * 2001-03-01 2009-02-25 株式会社日立製作所 欠陥検査装置およびその方法
JP3556183B2 (ja) * 2001-05-22 2004-08-18 株式会社堀場製作所 基板上の化合物半導体層の組成決定方法
JP3837495B2 (ja) * 2002-02-28 2006-10-25 独立行政法人産業技術総合研究所 光イメージングシステム
JP4131918B2 (ja) * 2002-07-10 2008-08-13 東芝マイクロエレクトロニクス株式会社 半導体集積回路の故障解析装置及び故障解析方法
KR100503530B1 (ko) * 2003-01-02 2005-07-22 삼성전자주식회사 웨이퍼의 불량검출 장치 및 방법
US7355419B2 (en) * 2004-08-05 2008-04-08 International Business Machines Corporation Enhanced signal observability for circuit analysis
US7860675B2 (en) * 2004-11-05 2010-12-28 Nec Corporation Pattern inspection apparatus, pattern inspection method, and pattern inspection program
US7636155B2 (en) * 2007-01-18 2009-12-22 Dcg Systems, Inc. System and method for resolving photoemission from semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390486B2 (en) 2010-09-29 2016-07-12 Neeraj Khurana System and method for automatic orientation of a chip to the CAD layout with sub-optical resolution

Also Published As

Publication number Publication date
TW201022662A (en) 2010-06-16
US20090150098A1 (en) 2009-06-11
DE102009044737A1 (de) 2010-06-10
JP2015025816A (ja) 2015-02-05
JP2010133958A (ja) 2010-06-17
US8072589B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
TWI435070B (zh) 基於光逸散之瑕疵檢驗系統及方法
CN108062558B (zh) 使用位故障和虚拟检查产生一种晶片检查过程
JP5105720B2 (ja) 集積回路の信号観測装置、及びその方法
TW201710697A (zh) 在邏輯晶片中基於電壓對比之錯誤及缺陷推導
JP2004150840A (ja) 半導体集積回路の不良解析装置、システムおよび検出方法
US7636155B2 (en) System and method for resolving photoemission from semiconductor devices
US20120066657A1 (en) Method of designing an integrated circuit based on a combination of manufacturability, test coverage and, optionally, diagnostic coverage
JP4283487B2 (ja) 半導体の不良解析方法及びそのシステム
WO2009035868A2 (en) Intelligent inspection based on test chip probe failure maps
KR102579578B1 (ko) 반도체 적용을 위한 참조 이미지 생성
CN111512169B (zh) 光测量方法、光测量装置、及存储光测量程序的存储介质
Song et al. Diagnostic techniques for the IBM S/390 600 MHz G5 microprocessor
KR102578485B1 (ko) 해석 방법, 해석 장치, 해석 프로그램, 및 해석 프로그램을 기록하는 기록 매체
Apolinaria Utilization of ELITE System for Precise Fault Localization of Metal Defect Functional Failure
JP4945403B2 (ja) 半導体集積回路の故障箇所推定装置
US8515695B2 (en) Method and an apparatus for evaluating small delay defect coverage of a test pattern set on an IC
JP2008300599A (ja) 半導体ウェハ検査装置
KR100683386B1 (ko) 레이저 스캔을 이용한 반도체 소자 불량 검색 방법 및 장치
Erb et al. Yield enhancement through fast statistical scan test analysis for digital logic
Ouimet et al. Analysis of 0.13 μm CMOS technology using time resolved light emission
Goh et al. An effective broken scan chain diagnosis flow combining software and hardware solutions for systematic failures
Goh et al. Evolution of Wafer Level Tester-Based Diagnostic System—More Than Just a Dynamic Electrical Fault Isolation Tool
US20200284837A1 (en) Probe placement for laser probing system
Jakati et al. Combining Volume Scan Diagnosis and Dynamic Failure Analysis for Precise Isolation of Manufacturing Defects
JP2000311929A (ja) 半導体集積回路の断線故障検出装置及びその断線故障検出方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees