TWI397601B - 用於將膜沉積至基材上的方法 - Google Patents

用於將膜沉積至基材上的方法 Download PDF

Info

Publication number
TWI397601B
TWI397601B TW098104068A TW98104068A TWI397601B TW I397601 B TWI397601 B TW I397601B TW 098104068 A TW098104068 A TW 098104068A TW 98104068 A TW98104068 A TW 98104068A TW I397601 B TWI397601 B TW I397601B
Authority
TW
Taiwan
Prior art keywords
inorganic material
deposited
film
sns
substrate
Prior art date
Application number
TW098104068A
Other languages
English (en)
Other versions
TW200940732A (en
Inventor
Angelika Basch
Uwe Brendel
Herbert Dittrich
Hermann-Josef Schimper
Andreas Stadler
Dan Topa
Original Assignee
Lam Res Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Res Corp filed Critical Lam Res Corp
Publication of TW200940732A publication Critical patent/TW200940732A/zh
Application granted granted Critical
Publication of TWI397601B publication Critical patent/TWI397601B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

用於將膜沉積至基材上的方法 發明領域
本發明係相關於使用濺鍍沈積法將膜沈積於一基材上之方法,以及使用此製程製造之電子裝置。
發明背景
目前已知SnS適用於使用作為光電裝置與光電壓應用之太陽能吸收劑。
在“Optical properties of thermally evaporated SnS thin films”(M.M. El-Nahass,et.al. Optical Materials 20(2002)159-170)一文中,揭示SnS薄膜可以各種方法製造(噴霧熱分解法、化學沈積法,或熱蒸汽法),目的在於製造適用於使用作為光電裝置與光電壓應用之太陽能吸收劑之薄膜。
塊材結晶SnS材料之熱蒸汽法可產生非晶形薄膜。結晶型薄膜一般係將非晶形SnS薄膜於200℃下退火(annealing)而產生。
W. Guang-Pu,et.al. First WCPEC;Dec.5-9,1994,Hawaii,揭示有關於SnS薄膜之RF(無線電頻)濺鍍法,用於光電壓應用領域。RF濺鍍(由室溫至350℃樣本溫度)會產生非晶形SnS。沈積後,結晶型SnS係於400℃下退火而形成。
M. Y. Versavel,et.al. Thin Solid Films 515(2007),7171-7176,係揭示Sb2 S3 之RF(無線電頻)電鍍。沈積之薄膜為非晶形,因此需要於400℃退火,在硫蒸汽存在下。
本發明之一目的係提供另一製備無機材料結晶形薄膜之方法,藉由直接沈積,而不需後續之處理步驟。
發明概要
本發明藉由提供一種使用濺鍍沈積法將膜沈積至基材上之方法,而符合該目的,其中該濺鍍沈積法包含直流電濺鍍沈積,其中該膜係由至少90wt-%之具有半導體性質之無機材料M2組成,藉此該無機材料M2之膜係以結晶結構直接沈積,使得至少50wt-%沈積膜具有結晶結構,其中該用於濺鍍沈積之來源材料(標靶)係由至少80wt-%之無機材料M2組成,其中該無機材料M2係選自於包含含有硫、硒,及/或碲之二、三或四鹽類之族群。
在直流電濺鍍沈積無機材料方面,先前技藝並無法以結晶結構直接沈積,但現在可以,並可達到結晶結構。此優點為後續步驟如於高溫下退火可被省略。
直接濺鍍沈積法可以RF濺鍍法及/或脈衝濺鍍法(脈衝DC濺鍍)沈積。
在一較佳實施例中,該無機材料M2係選自於由SnS、Sb2 S3 、Bi2 S3 ,以及其他半導體硫化物、硒化物或碲化物,如CdSe、In2 S3 、In2 Se3 、SnS、SnSe、PbS、PbSe、MoSe2 、GeTe、Bi2 Te3 ,或Sb2 Te3 ;Cu、Sb與S(或Se、Te)之化合物(如CuSbS2 、Cu2 SnS3 、CuSbSe2 、Cu2 SnSe3 );Pb、Sb與S(或Se或Te)之化合物(PbSnS3 、PbSnSe3 )組成之族群。就此方法而言,使用於薄膜光電壓裝置中之吸收劑層,可直接沈積於基材上。
較佳該無機材料M2為SnS、Sb2 S3 、Bi2 S3 、SnSe、Sb2 Se3 、Bi2 Se3 、Sb2 Te3 或其組合(如Snx (Sb,Bi)y (S,Se,Te)z )。此類材料尚未被報導可以濺鍍法產生主要結晶結構而直接沈積。
在另一實施例中,該無機材料M2係選自於由SnS、Bi2 S3 或SnS與Bi2 S3 (如(SnS)x (Bi2 S3 )y )之組合。
尤其是就SnS而言,若結晶結構為斜方系(如硫錫礦(Herzenbergite)),該方法則較具優勢。在先前技術中,無法直接沈積高結晶形式之SnS,而需後續之退火處理。
在另一實施例中,沈積時間之至少90%期間,該基材溫度T1維持低於200℃。此優點為在高溫下會熔融、分解或變形之均勻基材,可塗覆此類無機材料。
若溫度T1維持低於100℃,均勻聚合物材料如聚丙烯、聚苯乙烯或聚乙烯,便可經塗覆。
使用此方法,溫度T1係維持低於60℃,塗覆之薄膜仍維持結晶型。
較佳該加工參數(t(時間)、T(溫度)、p(壓力)、P(功率)、U(電壓)...)係經設定,使得該無機材料M2之膜係以至少60nm/分鐘(1nm/s)之沈積速率沈積。若該無機材料可以DC濺鍍法沈積,則各參數可設定為使得高沈積速率可達成,且仍可產生結晶層。
在較佳實施例中,在含有無機材料M2之薄膜沈積前,另一無機材料M1層已經沈積。
無機材料M1較佳選自於由金屬或導電性氧化物組成之族群,其中可產生與吸收層接觸之背層。
較佳該無機材料M1已由濺鍍沈積法沈積。使用這些沈積法,M1層與M2層可沈積於一基材上,而不需中間真空中斷。
在另一實施例中,該基材係選自於由陶瓷、玻璃、聚合物、塑膠組成之族群。此材料可提供為薄片狀(如箔、織布、不織布、紙、薄織物)、纖維、管狀或其他修飾物。
本發明之另一觀點為一種由上述任一方法製造之產品。
本發明之另一觀點為一種能量轉換電池,如Peltier元件或太陽能電池,其內含由上述任一方法製造之產品。
較佳該能量轉換電池(光電壓電池或Peltier元件)包含一吸收劑層,其中該吸收層係以上述任一方法沈積。
在Peltier元件之一實施例中,係使用二或三碲化物(如Bi2 Te3 )。
圖式簡單說明
第1圖顯示以本發明較佳實施例沈積於玻璃基材上之SnS結晶薄膜之XRD資料。
第2圖顯示以本發明較佳實施例沈積於聚丙烯(PP)基材上之SnS結晶薄膜之XRD資料。
第3圖顯示以本發明較佳實施例沈積之SnS薄膜。
第4圖顯示以本發明較佳實施例沈積之SnS薄膜之電流電壓特性(I/V特性)。
較佳實施例之詳細說明
下面係揭示實施本發明之較佳實施例。
上述三材料(M1、M2、M3)已經濺鍍沈積。M1為金屬,M2為無機光電壓吸收材料,以及M3為透明導電材料。
相關參數之較佳加工視窗摘錄於表1。基材簡稱列於下:BSG(硼矽酸鹽玻璃)、玻璃(一般載玻片)、PP(聚丙烯)、PE(聚乙烯)、Fe(不鏽鋼片)、Cu(銅片)、Al(鋁箔)。選用之濺鍍技術為DC濺鍍法,使用或不使用脈衝。使用之標靶係以各粉末(如SnS、Bi2 S3 、Sb2 S3 或其混合物)之熱等靜壓法(HIP)形成。硫可使用作為壓製輔助物,濃度為約3莫耳-%。
七種具有經選擇參數值之不同樣本(樣本1-7)係摘錄於表2。在樣本1、2、3、4、6與7中,單層係沈積於基材上,其中樣本5係沈積有Mo/SnS/ZnO:Al三層堆疊。各層係依序沈積,以形成具有鄰近接觸層之吸收層,用於光電壓電池中。第一層Mo係沈積於玻璃上作為背面接觸,之後沈積SnS,最後沈積ZnO:Al。ZnO:Al係使用作為透明接觸氧化物(TCO),其中ZnO添補有1-2wt-% Al,其使用DC濺鍍技術,由ZnO:Al標靶噴濺出。
此三層皆以DC濺鍍沈積法沈積,在基本上相同之條件下,但使用不同之濺鍍裝置。該樣本由一裝置移至另一裝置不需中間中斷真空。因此可預防剛沈積好之層暴露於大氣下,對於後續濺鍍製程較好。
上述表1與表2之參數(t、T、p、P、U、...)係用於無機材料M2之濺鍍。用於材料M1與M3之濺鍍參數並未列出,由於此技術為此領域者所熟知。此外,吸收層(含有無機材料M2)與接觸層(含有無機材料M1或M3)間可具有中間層。
除了樣本6之所有樣本皆會產生高度結晶層。
第1圖顯示以本發明較佳實施例(範例1)沈積於一玻璃基材上之SnS結晶薄膜之XRD資料。明顯的尖峰(040)說明沈積之SnS層為高度結晶,並具有平行於基材表面之較佳相位,由僅有一(040)-尖峰存在而得知。
第2圖顯示以本發明較佳實施例(範例2)沈積於一聚丙烯(PP)基材上之SnS結晶薄膜之XRD資料。與第1圖比較,第2圖中之數據顯示出更高度之結晶層。
第3圖顯示以本發明較佳實施例(範例1)沈積之SnS薄膜。厚度僅有1μm之SnS層顯示出吸收率超過60%。高於SnS能量帶隙(band gap)(1.2eV)之能量之吸收係數高於105 /cm。
係製備具有SnS與ZnO:Al作為n-層之二極體。第4圖顯示依此製造之二極體之電流電壓特性(I/V特性),其為太陽能電池之典型特性。
第1圖顯示以本發明較佳實施例沈積於玻璃基材上之SnS結晶薄膜之XRD資料。
第2圖顯示以本發明較佳實施例沈積於聚丙烯(PP)基材上之SnS結晶薄膜之XRD資料。
第3圖顯示以本發明較佳實施例沈積之SnS薄膜。
第4圖顯示以本發明較佳實施例沈積之SnS薄膜之電流電壓特性(I/V特性)。

Claims (11)

  1. 一種使用濺鍍沈積法將膜沈積至基材上之方法,- 其中該濺鍍沈積法包含直流電濺鍍沈積- 其中該膜係由至少90wt-%之具有半導體性質之無機材料M2組成- 藉此該無機材料M2之膜係以結晶結構直接沈積,使得至少50 wt-%之沈積膜具有結晶結構- 其中該用於該濺鍍沈積之來源材料(標靶)係由至少80wt-%之無機材料M2組成- 其中該無機材料M2為SnS、Sb2 S3 、Bi2 S3 、SnSe、Sb2 Se3 、Bi2 Se3 、Sb2 Te3 ,或其組合物- 其中在該沈積時間之至少90%期間,該基材之溫度T1係維持在低於60℃。
  2. 如申請專利範圍第1項之方法,其中該無機材料M2係選自於由SnS、Bi2 S3 或其組合物組成之族群。
  3. 如申請專利範圍第2項之方法,其中該無機材料M2為SnS,且該結晶結構為斜方晶系(orthorhombic)。
  4. 如申請專利範圍第1項之方法,其中該加工參數係經設定,使得該無機材料M2之膜係以至少60 nm/分鐘(1nm/s)之沈積速率沈積。
  5. 如申請專利範圍第1項之方法,其中在該膜沈積前,已經沈積另一層無機材料M1。
  6. 如申請專利範圍第5項之方法,其中該無機材料M1係選自於由金屬或導電性氧化物組成之族群。
  7. 如申請專利範圍第5項之方法,其中該無機材料M1已經以濺鍍沈積法沈積。
  8. 如申請專利範圍第1項之方法,其中該基材係選自於由陶瓷、玻璃、聚合物、塑膠組成之族群。
  9. 一種包含一基材及一沈積於基材上之膜的產品,其係由如申請專利範圍第1至8項中任一項之方法製造。
  10. 一種太陽能電池,包含一由如申請專利範圍第1至8項中任一項之方法製造之產品。
  11. 一種太陽能電池,包含一吸收層,其中該吸收層係以如申請專利範圍第1至8項中任一項之方法沈積。
TW098104068A 2008-03-14 2009-02-09 用於將膜沉積至基材上的方法 TWI397601B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT4162008 2008-03-14

Publications (2)

Publication Number Publication Date
TW200940732A TW200940732A (en) 2009-10-01
TWI397601B true TWI397601B (zh) 2013-06-01

Family

ID=40612970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098104068A TWI397601B (zh) 2008-03-14 2009-02-09 用於將膜沉積至基材上的方法

Country Status (10)

Country Link
US (1) US20110000541A1 (zh)
EP (1) EP2255022A2 (zh)
JP (1) JP2011513595A (zh)
KR (1) KR20100126504A (zh)
CN (1) CN101983254A (zh)
AU (1) AU2009224841B2 (zh)
BR (1) BRPI0909342A2 (zh)
TW (1) TWI397601B (zh)
WO (1) WO2009112388A2 (zh)
ZA (1) ZA201006895B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031302A1 (de) 2009-06-30 2011-01-05 O-Flexx Technologies Gmbh Verfahren zur Herstellung von thermoelektrischen Schichten
JP6354205B2 (ja) * 2013-10-22 2018-07-11 住友金属鉱山株式会社 硫化スズ焼結体およびその製造方法
CN103882383B (zh) * 2014-01-03 2016-01-20 华东师范大学 一种脉冲激光沉积制备Sb2Te3薄膜的方法
KR101765987B1 (ko) * 2014-01-22 2017-08-08 한양대학교 산학협력단 태양 전지 및 그 제조 방법
KR101503043B1 (ko) 2014-04-14 2015-03-25 한국에너지기술연구원 박막 태양전지의 광흡수층의 제조방법 및 이를 이용한 박막 태양전지
CN104638036B (zh) * 2014-05-28 2017-11-10 武汉光电工业技术研究院有限公司 高光响应近红外光电探测器
CN104152856B (zh) * 2014-07-11 2017-05-31 西南交通大学 一种磁控溅射法制备Bi2Se3薄膜的方法
CN105390373B (zh) * 2015-10-27 2018-02-06 合肥工业大学 一种铜锑硫太阳能电池光吸收层薄膜的制备方法
CN106040263B (zh) * 2016-05-23 2018-08-24 中南大学 一种贵金属纳米晶负载CuSbS2纳米晶的制备方法
CN110172735B (zh) * 2019-05-10 2021-02-23 浙江师范大学 一种单晶硒化锡热电薄膜及其制备方法
CN110203971B (zh) * 2019-05-10 2021-10-29 金陵科技学院 一种CuSbS2纳米颗粒及其制备方法、应用
CN111705297B (zh) * 2020-06-12 2021-07-06 大连理工大学 高性能晶圆级硫化铅近红外光敏薄膜及其制备方法
JP2022003675A (ja) * 2020-06-23 2022-01-11 国立大学法人東北大学 n型SnS薄膜、光電変換素子、太陽光電池、n型SnS薄膜の製造方法、およびn型SnS薄膜の製造装置
CN112481593B (zh) * 2020-11-24 2024-01-26 福建师范大学 一种气固反应制备太阳能电池吸收层四硫化锑三铜薄膜的方法
CN114933330A (zh) * 2022-04-14 2022-08-23 宁波大学 一种富Sb的二元相变神经元基质材料及其制备方法
CN114937560B (zh) * 2022-06-08 2023-01-24 河南农业大学 一种基于二维材料的全固态柔性超级电容器及其制备方法
CN115161610B (zh) * 2022-09-07 2023-04-07 合肥工业大学 一种铜锑硒太阳能电池光吸收层薄膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506524A (en) * 1974-06-25 1978-04-05 Matsushita Electric Ind Co Ltd Method of depositing a layer of material in crystalline form
US20070264488A1 (en) * 2006-05-15 2007-11-15 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033843A (en) * 1976-05-27 1977-07-05 General Dynamics Corporation Simple method of preparing structurally high quality PbSnTe films
JPH08144044A (ja) * 1994-11-18 1996-06-04 Nisshin Steel Co Ltd 硫化スズ膜の製造方法
US6730928B2 (en) * 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US7364644B2 (en) * 2002-08-29 2008-04-29 Micron Technology, Inc. Silver selenide film stoichiometry and morphology control in sputter deposition
KR100632948B1 (ko) * 2004-08-06 2006-10-11 삼성전자주식회사 칼코겐화합물 스퍼터링 형성 방법 및 이를 이용한 상변화 기억 소자 형성 방법
US20070099332A1 (en) * 2005-07-07 2007-05-03 Honeywell International Inc. Chalcogenide PVD components and methods of formation
US8500963B2 (en) * 2006-10-26 2013-08-06 Applied Materials, Inc. Sputtering of thermally resistive materials including metal chalcogenides
JP4965524B2 (ja) * 2008-07-18 2012-07-04 Jx日鉱日石金属株式会社 スパッタリングターゲット及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506524A (en) * 1974-06-25 1978-04-05 Matsushita Electric Ind Co Ltd Method of depositing a layer of material in crystalline form
US20070264488A1 (en) * 2006-05-15 2007-11-15 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wei Guang-Pu et al.,"Investigation on SnS Film by RF Sputtering for photovoltaic application",IEEE First WCPEC,1,1994,365-368 *

Also Published As

Publication number Publication date
JP2011513595A (ja) 2011-04-28
AU2009224841B2 (en) 2013-10-24
TW200940732A (en) 2009-10-01
EP2255022A2 (en) 2010-12-01
ZA201006895B (en) 2012-01-25
KR20100126504A (ko) 2010-12-01
WO2009112388A2 (en) 2009-09-17
BRPI0909342A2 (pt) 2019-02-26
CN101983254A (zh) 2011-03-02
WO2009112388A3 (en) 2009-12-30
AU2009224841A1 (en) 2009-09-17
US20110000541A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
TWI397601B (zh) 用於將膜沉積至基材上的方法
Yazici et al. Growth of Cu2ZnSnS4 absorber layer on flexible metallic substrates for thin film solar cell applications
Deokate et al. Spray-deposited kesterite Cu2ZnSnS4 (CZTS): Optical, structural, and electrical investigations for solar cell applications
Nam et al. ALD NiO thin films as a hole transport-electron blocking layer material for photo-detector and solar cell devices
Hossain et al. Ecofriendly and nonvacuum electrostatic spray-assisted vapor deposition of Cu (In, Ga)(S, Se) 2 thin film solar cells
Subramanyam et al. Optimization of sputtered AZO thin films for device application
Ismail et al. Effect of substrate temperature on the characteristic of p-PbI2/n-Si heterojunction grown by pulsed laser deposition technique
Xu et al. Effect of vacuum annealing on the properties of sputtered SnS thin films
Kong et al. Characterization of Cu (In, Ga) Se2 thin films prepared by RF magnetron sputtering using a single target without selenization
KR101542342B1 (ko) Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지
Gevorgyan et al. Substrate temperature and annealing effects on the structural and optical properties of nano-CdS films deposited by vacuum flash evaporation technique.
Chaik et al. Analysis of the electrical impedance spectroscopy measurements of ZnTe: Ni thin film deposited by R–F sputtering
KR101656842B1 (ko) 태양전지용 CZTS/CZTSe계 박막 및 제조방법 및 그 방법에 의해 제조된 CZTS/CZTSe계 박막
Hanket et al. Pilot-scale manufacture of Cu (InGa) Se/sub 2/films on a flexible polymer substrate
Ajar et al. Study the Effect of Irradiation on Structural and Optical Properties of (CdO) Thin Films that Prepared by Spray Pyrolysis
Rahman et al. Influence of thermal annealing on CdTe thin film deposited by thermal evaporation technique
Oluyamo et al. Tunability and Graded Energy Band Gap of Chemical Bath Deposited Cadmium Sulfide (CdS) Thin Film for Optoelectronic Applications
KR101710936B1 (ko) 태양전지 및 그 제조방법
Xu et al. Synthesis of SnS thin films from nano-multilayer technique
US20120196131A1 (en) Assembly for fabricating a structure having a crystalline film, method of making the assembly, crystalline film structure produced by the assembly and crystalline films
SHABAN et al. Characteristics Cd_ {0.3} Sn_ {0.7} Se thin films as absorber materials for Solar cell devices
Sung et al. Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors
Dobrozhan et al. Study solid solutions in CdS/CdTe thin films heterosystems obtaine by DC magnetron sputtering
Garza et al. Chemically deposited silver antimony selenide thin films for photovoltaic applications
Atallah The effect of thermal annealing on the structural and optical properties of CdS thin films deposited by vacuum evaporation method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees