CN115161610B - 一种铜锑硒太阳能电池光吸收层薄膜的制备方法 - Google Patents

一种铜锑硒太阳能电池光吸收层薄膜的制备方法 Download PDF

Info

Publication number
CN115161610B
CN115161610B CN202211089623.1A CN202211089623A CN115161610B CN 115161610 B CN115161610 B CN 115161610B CN 202211089623 A CN202211089623 A CN 202211089623A CN 115161610 B CN115161610 B CN 115161610B
Authority
CN
China
Prior art keywords
antimony
temperature
copper
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211089623.1A
Other languages
English (en)
Other versions
CN115161610A (zh
Inventor
万磊
王金明
陈盈杰
周儒
毛小丽
牛海红
王欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202211089623.1A priority Critical patent/CN115161610B/zh
Publication of CN115161610A publication Critical patent/CN115161610A/zh
Application granted granted Critical
Publication of CN115161610B publication Critical patent/CN115161610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种铜锑硒太阳能电池光吸收层薄膜的制备方法,采用先溅射金属预制层后硒化的方法。磁控溅射提高了成膜均匀性,同时控制溅射功率和沉积时间易于调节金属预制层的厚度和成分,使其成分富锑;之后进行了金属预制层的合金化和硒化,先将金属预制层在真空管式炉内退火,使其形成合金,之后再在双温区管式炉内进行硒蒸气热处理,对金属预制层进行硒化,最终生成结晶性良好的铜锑硒薄膜。本发明的制备方法不仅解决了化学计量比的铜锑硒薄膜难以制备的问题,也提高了薄膜均匀性和结晶性,为制备铜锑硒薄膜太阳能电池打下了基础。

Description

一种铜锑硒太阳能电池光吸收层薄膜的制备方法
技术领域
本发明涉及一种太阳能电池光吸收层薄膜的制备方法,具体地说是一种铜锑硒太阳能电池光吸收层薄膜的磁控溅射制备方法。
背景技术
薄膜太阳能电池近年来受到了广泛的关注。在薄膜太阳能电池中,铜基半导体始终作为一个重要分支,受到广泛研究,并逐步商业化。其中较著名的就是铜铟镓硒和铜锌锡硫太阳能电池。但这两种电池由于技术复杂,生产成本较高,近年来商业化进程较慢,迫使人们寻找其替代品。铜锑硒(CuSbSe2)就是其中最具发展潜力的替代材料。它除了继承铜基半导体光吸收系数高、电学性质可控、带隙可调的优点外,与铜铟镓硒和铜锌锡硫这两种四元化合物相比,其物相更简单、沉积温度更低,这有利于得到物相更纯的薄膜,并有利于制备基于聚合物衬底的柔性太阳能电池。因此,铜锑硒被认为具有很大的发展潜力。
铜锑硒光吸收层是铜锑硒薄膜太阳能电池核心。目前文献报道的薄膜制备方法大多只适合实验室小面积电池,如溶液旋涂法、浆料涂覆法、电化学沉积法、脉冲激光沉积法,这些技术不适合用于制备大面积商业化电池组件。在各种薄膜制备方法中,磁控溅射技术具有设备简单、镀膜快速均匀、易于控制且重复性好等优点,被广泛应用于制备大面积金属、陶瓷和半导体薄膜。在文献报道中,有用硒化锑和硒化亚铜双靶共溅射的方法制备铜锑硒薄膜,但由于该方法在双靶共溅射同时,需要对衬底施加高温,还要兼顾大面积镀膜时的均匀性,因此大大提高了设备和工艺的复杂度,镀膜过程工艺参数多、控制难度大,不适合流水线生产。而采用先磁控溅射金属预制层后硒化的两步法可以避免以上缺点,第一步金属预制层采用流水线式的单靶顺序沉积,成膜均匀,且镀膜过程中衬底不用加热,而把热处理放在第二步硒化过程中完成,所以磁控溅射和热处理能分别独立控制,控制难度小,生产过程稳定性好,是产业化比较合理的工艺路线。
铜基半导体制备过程中很关键的一点是避免薄膜富铜,生成硒化铜和Cu3SbSe4相。硒化铜是一种半金属,具有很高的电导率,一旦存在于铜锑硒薄膜中,会引起电池短路。而Cu3SbSe4是一种窄带隙半导体,如果存在于铜锑硒薄膜中也会严重降低电池效率。这两种物相都易在薄膜富铜时产生,而铜锑硒当中,由于铜和锑的熔点相差悬殊,铜的熔点高,锑的熔点低,所以在硒化过程中,锑很容易流失,从而造成薄膜富铜。因此,使金属预制层富锑,可以弥补锑的流失,在很大程度上避免产生硒化铜和Cu3SbSe4相。
发明内容
本发明旨在提供一种铜锑硒太阳能电池光吸收层薄膜的制备方法,所要解决的技术问题是控制光吸收层的物相为铜锑硒(CuSbSe2),抑制硒化铜和Cu3SbSe4相生成,从而提高铜锑硒薄膜做为高效太阳能电池光吸收层的可能性。
本发明铜锑硒太阳能电池光吸收层薄膜的制备方法,采用先溅射金属预制层后硒化的方法,包括以下步骤:
步骤1:磁控溅射铜-锑金属预制层
将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,抽到目标真空后,按次序依次溅射沉积铜锑合金层和锑层,通过两层的溅射时间来控制其厚度比,得到富锑的金属预制层;
步骤2:金属预制层的合金化
将步骤1获得的金属预制层置于双温区真空管式炉中的石墨衬底托盘上,抽至目标真空后,通适量氩气,对金属预制层加温进行合金化,使铜锑原子充分混合,形成合金;
步骤3:金属预制层的硒化
本步骤仍在双温区真空管式炉中进行,将衬底和硒源同时升至目标温度,在硒蒸气中进行硒化,最终得到铜锑硒(CuSbSe2)薄膜。
具体地:
步骤1中,将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa。采用双极脉冲磁控溅射法,按次序依次溅射铜锑合金靶和锑靶,其中铜锑合金靶中铜和锑的原子比为1:1。溅射功率分别为铜锑合金靶50-100w和锑靶 40-90w,靶材离衬底的距离为5-10cm。溅射时间为铜锑合金靶1-3分钟,锑靶7-11分钟,得到富锑的金属预制层。其中铜锑合金与锑层厚度比为1:9至1:10。
步骤2中,将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa。将衬底温度从室温升至250-350℃,随后保温5-20分钟进行合金化。
步骤3中,仍在双温区真空管式炉中进行,金属预制层在硒化时,硒源和衬底分别独立控温。将衬底温度从250-350℃升到硒化目标温度370-390℃并保温5-20分钟,同时将硒源的温度从室温升至300℃并保温5-20分钟,随后自然降至室温,得到铜锑硒(CuSbSe2)薄膜。
本发明通过磁控溅射方法制备铜锑硒薄膜,采用的设备是三靶磁控溅射系统,由机械泵、分子泵、真空腔体、真空计、衬底加热器等部件构成。该系统可实现三靶顺序溅射或共溅射镀膜,并精确控制功率和时间。本发明使用的是双极脉冲磁控溅射电源,使用的靶材是铜锑合金靶(铜锑原子比为1:1)和锑靶。对金属预制膜合金化和硒化均在双温区真空管式炉中完成,该设备由加热炉丝、衬底托盘、热电偶、保温层、真空腔体、机械泵、气路系统等部件构成。该设备可实现对两个目标即硒源和衬底进行独立精确控温,其中硒源采用高纯硒颗粒。由于金属预制膜要求富锑,实现这一目标的方法是在磁控溅射金属预制层阶段,控制铜锑合金层和锑层的溅射时间即厚度,使锑和铜的原子比远高于1。硒化时,薄膜物相和结晶性主要是通过控制衬底和硒源温度以及保温时间来控制的。
本发明方法制备的铜锑硒(CuSbSe2)薄膜结晶性好,其X射线衍射谱(XRD)表明为硫铜锑矿结构,具有优良的结晶性,拉曼光谱也证实了得到的薄膜确为铜锑硒(CuSbSe2),扫描电子显微图像(SEM)显示薄膜颗粒均匀,结晶性好。
附图说明
图1为实施例1的铜锑硒(CuSbSe2)薄膜的XRD图谱。
图2为实施例1的铜锑硒(CuSbSe2)薄膜的Raman图谱。
图3为实施例1的铜锑硒(CuSbSe2)薄膜的SEM图像。
图4为对比例1的硒化后薄膜的XRD图谱。
图5为对比例1的硒化后薄膜的Raman图谱。
图6为对比例2的硒化后薄膜的XRD图谱。
图7为对比例2的硒化后薄膜的Raman图谱。
图8为对比例3的硒化后薄膜的XRD图谱。
图9为对比例3的硒化后薄膜的Raman图谱。
图10为对比例4的硒化后薄膜的XRD图谱。
图11为对比例4的硒化后薄膜的Raman图谱。
具体实施方式
实施例1:铜锑硒(CuSbSe2)薄膜的制备
1、将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa。采用双极脉冲磁控溅射法,按次序依次溅射铜锑合金靶和锑靶,其中铜锑合金靶中铜和锑的原子比为1:1。溅射功率分别为铜锑合金靶50w和锑靶 40w,靶材离衬底的距离为5cm。溅射时间为铜锑合金靶2分钟,锑靶10分钟,得到富锑的金属预制层。其中铜锑合金与锑层厚度比为1:10。
2、将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa。将衬底温度从室温升至300℃,随后保温10分钟进行合金化。
3、仍在双温区真空管式炉中进行,将衬底温度从300℃升到硒化目标温度380℃并保温10分钟,同时将硒源的温度从室温升至300℃并保温10分钟。随后自然降至室温,得到铜锑硒(CuSbSe2)薄膜。
图1、图2和图3分别对应于实施例1硒化后样品的XRD、Raman和SEM。XRD中,CuSbSe2主峰(013)峰很尖锐,说明其结晶性良好。Raman最强峰210cm-1也对应于CuSbSe2相。从其样品表面SEM可见,CuSbSe2晶粒致密均匀,薄膜无孔洞。
对比例1:在实施例1基础上改变预制层中铜锑合金与锑层厚度比例至1:7
1、将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa。采用双极脉冲磁控溅射法,按次序依次溅射铜锑合金靶和锑靶,其中铜锑合金靶中铜和锑的原子比为1:1。溅射功率分别为铜锑合金靶50w和锑靶 40w,靶材离衬底的距离为5cm。溅射时间为铜锑合金靶2分钟,锑靶7分钟,得到富锑的金属预制层。其中铜锑合金与锑层厚度比为1:7。
2、将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa。将衬底温度从室温升至300℃,随后保温10分钟进行合金化。
3、仍在双温区真空管式炉中进行,将衬底温度从300℃升到硒化目标温度380℃并保温10分钟,同时将硒源的温度从室温升至300℃并保温10分钟。随后自然降至室温得到硒化后薄膜。
图4和图5分别对应于对比例1样品的XRD和Raman图谱。与实施例1的XRD和Raman图谱相比,XRD主峰由CuSbSe2(013)变为Cu3SbSe4(112),说明薄膜中主要是Cu3SbSe4相。Raman图谱的184cm-1和166cm-1两个峰也都对应于Cu3SbSe4相。
对比例2:在实施例1基础上改变预制层中铜锑合金与锑层厚度比例至1:11
1、将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa。采用双极脉冲磁控溅射法,按次序依次溅射铜锑合金靶和锑靶,其中铜锑合金靶中铜和锑的原子比为1:1。溅射功率分别为铜锑合金靶50w和锑靶 40w,靶材离衬底的距离为5cm。溅射时间为铜锑合金靶2分钟,锑靶11分钟,得到富锑的金属预制层。其中铜锑合金与锑层厚度比为1:11。
2、将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa。将衬底温度从室温升至300℃,随后保温10分钟进行合金化。
3、仍在双温区真空管式炉中进行,将衬底温度从300℃升到硒化目标温度380℃并保温10分钟,同时将硒源的温度从室温升至300℃并保温10分钟。随后自然降至室温得到硒化后薄膜。
图6和图7分别对应于对比例2样品的XRD和Raman图谱。与实施例1的XRD和Raman图谱相比,XRD主峰由CuSbSe2(013)变为Sb2Se3(302),说明薄膜中主要为Sb2Se3相。Raman图谱的192cm-1峰也对应于Sb2Se3相。
对比例3:在实施例1基础上改变硒化温度至340℃
1、将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa。采用双极脉冲磁控溅射法,按次序依次溅射锑靶和铜锑合金靶,其中铜锑合金靶中铜和锑的原子比为1:1。溅射功率分别为铜锑合金靶50w和锑靶 40w,靶材离衬底的距离为5cm。溅射时间为铜锑合金靶2分钟,锑靶10分钟,得到富锑的金属预制层。其中铜锑合金与锑层厚度比为1:10。
2、将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa。将衬底温度从室温升至300℃,随后保温10分钟进行合金化。
3、仍在双温区真空管式炉中进行,将衬底温度从300℃升到硒化目标温度340℃并保温10分钟,同时将硒源的温度从室温升至300℃并保温10分钟。随后自然降至室温得到硒化后薄膜。
图8和图9分别对应于对比例3样品的XRD和Raman图谱。与实施例1的XRD和Raman图谱相比,XRD主峰由CuSbSe2(013)变为Cu3SbSe4(112)和Sb2Se3(201),说明薄膜中主要为Cu3SbSe4和Sb2Se3相。Raman图谱的184cm-1和166cm-1两个峰对应Cu3SbSe4相。
对比例4:在实施例1基础上改变硒化温度至420℃
1、将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa。采用双极脉冲磁控溅射法,按次序依次溅射锑靶和铜锑合金靶,其中铜锑合金靶中铜和锑的原子比为1:1。溅射功率分别为铜锑合金靶50w和锑靶 40w,靶材离衬底的距离为5cm。溅射时间为铜锑合金靶2分钟,锑靶10分钟,得到富锑的金属预制层。其中铜锑合金与锑层厚度比为1:10。
2、将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa。将衬底温度从室温升至300℃,随后保温10分钟进行合金化。
3、仍在双温区真空管式炉中进行,将衬底温度从300℃升到硒化目标温度420℃并保温10分钟,同时将硒源的温度从室温升至300℃并保温10分钟。随后自然降至室温得到硒化后薄膜。
图10和图11分别对应于对比例4样品的XRD和Raman图谱。与实施例1的XRD和Raman图谱相比,XRD主峰由CuSbSe2(013)变为了Cu3SbSe4(112)和Sb2Se3(201)、(402),说明薄膜中主要为Cu3SbSe4和Sb2Se3相。Raman图谱的184cm-1拉曼峰对应Cu3SbSe4相,192cm-1峰对应Sb2Se3相。
总结:以上实施例表明,CuSbSe2吸收层的物相对金属预制层中铜锑合金与锑层的厚度比例以及硒化的衬底温度相当敏感,其微小变化都会造成薄膜物相的明显改变。对比例1:铜锑合金与锑层的厚度比例较实施例1变大,则产生Cu3SbSe4相,薄膜富铜;对比例2:铜锑合金与锑层的厚度比例较实施例1变小,则产生Sb2Se3相,薄膜富锑。对比例3:衬底温度较实施例1变低,则薄膜中Cu3SbSe4和Sb2Se3没有得到足够能量化合生成CuSbSe2;对比例4:衬底温度较实施例1变高,则会导致CuSbSe2分解成Cu3SbSe4和Sb2Se3相。所以,要得到CuSbSe2,必须精确控制金属预制层的铜锑合金与锑层的厚度比例和硒化时的衬底温度。

Claims (3)

1.一种铜锑硒太阳能电池光吸收层薄膜的制备方法,其特征在于采用先溅射金属预制层后硒化的方法,包括以下步骤:
步骤1:磁控溅射铜-锑金属预制层
将镀钼的玻璃衬底置于磁控溅射系统真空室的衬底托盘上,并将真空室抽真空至5×10-4Pa,随后向内部通氩气至0.7Pa;采用双极脉冲磁控溅射法,按次序依次溅射铜锑合金靶和锑靶;铜锑合金靶中铜和锑的原子比为1:1,溅射功率分别为铜锑合金靶50-100w、锑靶40-90w,靶材离衬底的距离为5-10cm,溅射时间为铜锑合金靶1-3分钟,锑靶7-11分钟,得到富锑的金属预制层;其中铜锑合金与锑层厚度比为1:9至1:10;
步骤2:金属预制层的合金化
将步骤1获得的金属预制层置于双温区真空管式炉中的石墨衬底托盘上,抽至目标真空后,通适量氩气,对金属预制层加温进行合金化;
步骤3:金属预制层的硒化
本步骤仍在双温区真空管式炉中进行,将衬底和硒源同时升至目标温度,在硒蒸气中进行硒化,最终得到铜锑硒CuSbSe2薄膜。
2.根据权利要求1所述的制备方法,其特征在于:
步骤2中,将金属预制层置于双温区真空管式炉中的石墨衬底托盘上,先抽真空至1Pa,然后通氩气至0.02MPa,将衬底温度从室温升至250-350℃,随后保温5-20分钟进行合金化。
3.根据权利要求1所述的制备方法,其特征在于:
步骤3中,仍在双温区真空管式炉中进行,将衬底温度从250-350℃升到硒化目标温度370-390℃并保温5-20分钟,同时将硒源的温度从室温升至300℃并保温5-20分钟,随后自然降至室温,得到铜锑硒CuSbSe2薄膜。
CN202211089623.1A 2022-09-07 2022-09-07 一种铜锑硒太阳能电池光吸收层薄膜的制备方法 Active CN115161610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211089623.1A CN115161610B (zh) 2022-09-07 2022-09-07 一种铜锑硒太阳能电池光吸收层薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211089623.1A CN115161610B (zh) 2022-09-07 2022-09-07 一种铜锑硒太阳能电池光吸收层薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN115161610A CN115161610A (zh) 2022-10-11
CN115161610B true CN115161610B (zh) 2023-04-07

Family

ID=83481063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211089623.1A Active CN115161610B (zh) 2022-09-07 2022-09-07 一种铜锑硒太阳能电池光吸收层薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN115161610B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116377396B (zh) * 2023-06-06 2023-08-01 合肥工业大学 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397601B (zh) * 2008-03-14 2013-06-01 Lam Res Corp 用於將膜沉積至基材上的方法
CN102605334B (zh) * 2012-03-13 2014-01-01 宁波大学 一种用于全光器件的Ge-Sb-Se非晶薄膜的制备方法
CN104143579A (zh) * 2013-05-07 2014-11-12 华中科技大学 一种锑基化合物薄膜太阳能电池及其制备方法
CN103700725B (zh) * 2013-12-27 2016-04-20 渤海大学 一种用于太阳能电池的基于纳米粒子铜铟硫硒薄膜的制备方法
CN103787283B (zh) * 2014-01-03 2015-12-30 安徽大学 一种Cu3SbSe4三元纳米球的制备方法
CN105244416B (zh) * 2015-10-27 2017-06-30 合肥工业大学 一种铜锑硒太阳能电池光吸收层薄膜的低温沉积工艺
CN105390373B (zh) * 2015-10-27 2018-02-06 合肥工业大学 一种铜锑硫太阳能电池光吸收层薄膜的制备方法
CN106917068B (zh) * 2017-03-29 2019-05-07 福建师范大学 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法

Also Published As

Publication number Publication date
CN115161610A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US20190311889A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
WO2011107035A1 (zh) 磁控溅射法制备铜铟镓硒薄膜太阳电池光吸收层的方法
CN106917068A (zh) 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN115295684B (zh) 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法
US20190245103A1 (en) Copper indium gallium selenide absorption layer and preparation method thereof, solar cell and preparation method thereof
CN104835869B (zh) 铜铟镓硒薄膜太阳能电池及其制备方法
CN115161610B (zh) 一种铜锑硒太阳能电池光吸收层薄膜的制备方法
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
CN110176517A (zh) 结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法
CN103400895A (zh) 一种铜锌锡硫太阳能电池吸收层薄膜的制备方法
CN101805890A (zh) 一种原位生长Cu2ZnSnS4光伏薄膜方法
CN106549082A (zh) 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
CN102751387B (zh) 一种薄膜太阳能电池吸收层Cu(In,Ga)Se2薄膜的制备方法
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
CN111128747A (zh) 一种双梯度带隙cigs太阳能电池的叠层吸收层的制备方法
CN106816490A (zh) 一种碱金属元素掺杂的铜铟镓硒吸收层薄膜的制备方法
CN110819958A (zh) 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
CN105633212B (zh) 一种基于一步共蒸发工艺制备梯度带隙光吸收层的方法和装置
CN101967624A (zh) Cu2ZnSnS4光伏薄膜的制备方法
CN211595770U (zh) 一种真空镀膜机及其加热装置
KR101388458B1 (ko) 급속 열처리 공정을 사용한 cigs 박막의 제조방법
CN109920862B (zh) 能抑制铜锌锡硫薄膜中MoS2层的预制层结构及制备方法
CN116377396B (zh) 一种铜锑硒太阳能电池光吸收层的双源共蒸发制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant