CN106449812B - 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法 - Google Patents

溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法 Download PDF

Info

Publication number
CN106449812B
CN106449812B CN201611002477.9A CN201611002477A CN106449812B CN 106449812 B CN106449812 B CN 106449812B CN 201611002477 A CN201611002477 A CN 201611002477A CN 106449812 B CN106449812 B CN 106449812B
Authority
CN
China
Prior art keywords
tin
copper
sulfur
target
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611002477.9A
Other languages
English (en)
Other versions
CN106449812A (zh
Inventor
王书荣
杨敏
蒋志
李志山
刘思佳
陆熠磊
郝瑞亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN201611002477.9A priority Critical patent/CN106449812B/zh
Publication of CN106449812A publication Critical patent/CN106449812A/zh
Application granted granted Critical
Publication of CN106449812B publication Critical patent/CN106449812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种采用射频磁控溅射锡(Sn)靶和硫化铜(CuS)靶制备铜锡硫(Cu2SnS3,CTS)薄膜的方法,其特征在于采用了金属单质锡靶和化合物硫化铜靶混合溅射制备铜锡硫薄膜预制层,然后对预制层进行软退火及高温硫化,得到铜锡硫薄膜;该方法与传统的溅射金属单质铜靶和锡靶相比,能够更好地控制薄膜体内的载流子浓度;与溅射硫化铜靶和硫化锡靶相比,能够解决高温硫化,薄膜易从衬底脱落和产生孔洞的问题;溅射制备的预制层经过软退火及高温硫化后,得到均匀致密、光电特性较优的铜锡硫薄膜,尝试将其用于制备铜锡硫薄膜电池,最终获得了1.32%的光电转换效率;为制作铜锡硫薄膜太阳电池提供了一种较佳的吸收层制备方案。

Description

溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
技术领域
本发明涉及一种溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法,属于光电材料新能源技术领域。
背景技术
铜锌锡硫(Cu2ZnSnS4,CZTS)被认为是一种最具发展潜能的新型薄膜太阳电池材料,其光吸收系数大,并且禁带宽度约为1.45eV与太阳光谱形成较佳匹配。在过去的几年间,CZTS薄膜太阳电池被广泛地研究且取得了较大的进展。然而,作为四元化合物半导体,CZTS在制备过程中很容易产生二次相,如Cu2S、SnS2和Cu2SnS3等,对薄膜的光学、电学性能产生不利影响。相比而言,三元铜锡硫(Cu2SnS3,CTS)化合物元素种类少,CTS相平衡区域较宽,组分比例更容易控制,并且CTS也是带隙值约为1.0eV的直接带隙半导体,其光吸收系数大(>104cm-1),导电类型为P型,适宜用作薄膜太阳电池的吸收层材料。据第一性原理计算,CTS薄膜太阳电池的理论转换效率约为30%,目前纯相的CTS薄膜太阳电池最高效率为4.29%,由Ayaka Kanai研究小组用共蒸发法制得;
溅射法制备Cu2SnS3薄膜,很多报道中都是先采用溅射金属单质靶制备预制层,后硫化得到CTS薄膜,但这种方法制备的薄膜很容易出现元素分布不均匀、载流子浓度高的现象(在1018~1020cm-3数量级),而对于CTS薄膜太阳电池而言,吸收层过高的载流子浓度会使得少数载流子扩散长度减小,降低了光生载流子的收集从而降低短路电流。采用溅射化合物靶制备铜锡硫薄膜的报道很少,而Chierchia研究小组用溅射硫化铜(CuS)和硫化亚锡(SnS)的方法制备出的CTS薄膜,运用于薄膜太阳电池上获得了3.05%的光电转换效率,这也是目前溅射法制备CTS薄膜太阳电池获得的最高效率。虽然效率较高但是CTS薄膜的晶粒细小造成大量晶界,增加了载流子的复合几率。为了提高薄膜的晶体质量,Chierchia研究小组升高了硫化温度,虽然晶体质量提高、晶粒尺寸变大,但薄膜变得疏松多孔,用其制备的薄膜太阳电池开路电压大幅降低。采用金属单质靶和化合物靶混合溅射制备铜锡硫薄膜的方法还未见有相关报道,而本发明采用射频磁控溅射锡靶和硫化铜靶制备铜锡硫薄膜预制层,然后对预制层进行软退火及高温硫化得到的铜锡硫薄膜,表面致密、结晶质量较好,晶粒尺寸大并且通过控制薄膜组分能够使其载流子浓度在1017cm-3数量级,较适合用做薄膜太阳电池的吸收层。
发明内容
本发明的目的在于针对现有溅射法制备铜锡硫薄膜存在的问题,提供一种更有效的获得较佳质量铜锡硫薄膜的制备方法;
本发明所涉及的铜锡硫薄膜电池的制备方法按以下步骤实施:
(1)铜锡硫薄膜预制层的制备:在钠钙玻璃上或是镀钼的钠钙玻璃上用射频磁控溅射法溅射锡金属层,然后在锡金属层上溅射硫化铜制备出铜锡硫薄膜的预制层;
(2)预制层的软退火:将铜锡硫薄膜的预制层放置在退火炉中,氮气作为保护气,在260℃下对预制层进行低温退火,保持30分钟后让其自然冷却至室温;
(3)高温硫化:将软退火后的预制层取出,放置在封闭的石墨舟中,以硫粉作为硫源,硫化炉的工作压强为5000Pa,硫化温度为570℃保持15分钟,硫化结束后自然冷却到室温,得到铜锡硫薄膜;
(4)铜锡硫薄膜电池的制备:在铜锡硫薄膜(以镀钼钠钙玻璃为衬底)上沉积CdS缓冲层,然后用磁控溅射法制备ZnO/AZO窗口层,最后采用热蒸发法蒸镀上Ni-Al电极制备出结构为SLG/Mo/CTS/CdS/ZnO/AZO/Ni-Al的铜锡硫薄膜电池;
本发明与现有技术相比,具有的有益效果是:
该方法能够更好、更容易地控制薄膜体内的载流子浓度,提高少数载流子的收集率,也能够解决高温硫化过程中薄膜易从衬底脱落和产生孔洞的问题。所制备的铜锡硫薄膜表面致密、结晶质量较好,晶粒尺寸大并且载流子浓度在1017cm-3数量级,较适合用做薄膜太阳电池的吸收层。
附图说明
图1为本发明制备的铜锡硫薄膜的XRD图;
图2为本发明制备的铜锡硫薄膜的Raman图;
图3中,(a)为本发明制备的铜锡硫薄膜的表面形貌图;(b)为本发明制备的铜锡硫薄膜的截面图;
图4为本发明制备的铜锡硫薄膜(αhν)2与hν的关系图;
图5为本发明制备的铜锡硫薄膜的元素比例及部分电学性质;
图6为本发明制备的铜锡硫薄膜电池的J-V特性曲线图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围;此外应理解,在阅读了本发明讲述的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围;
实施例1
操作步骤如下:
1.在磁控溅射薄膜的真空腔室内放入钠钙玻璃或是镀钼的钠钙玻璃衬底,将腔室抽至背底真空5×10-4Pa;
2.将衬底台的转速调至7转/分钟,用50W的射频溅射功率在衬底上溅射锡金属层,再用100W的射频溅射功率溅射硫化铜,以Sn/CuS的顺序溅射三个周期制备厚度大概为800nm的铜锡硫薄膜预制层,并且衬底不加温;
3.将铜锡硫薄膜的预制层放置在退火炉中,将退火炉抽至低真空后冲入氮气作为保护气,直到退火炉中气压达到3000Pa对预制层进行软退火。以35℃/min的升温速率,从室温加热到260℃,保持30分钟后让其自然冷却至室温;
4.高温硫化:取出软退火后的预制层,放置在封闭的石墨舟中,石墨舟中装有0.5g的硫粉作为硫源,将硫化炉抽至低真空后冲入氮气使得硫化炉的工作压强为5000Pa,然后以30℃/min的升温速率,从室温加热到570℃,保持15分钟,最后让其自然冷却至室温,得到铜锡硫薄膜;
5.用化学水浴法在铜锡硫薄膜上制备50nm厚的CdS缓冲层,然后用磁控溅射法制备200nm左右的ZnO/AZO窗口层,最后采用热蒸发法蒸镀上Ni-Al电极制备出结构为SLG/Mo/CTS/CdS/ZnO/AZO/Ni-Al的铜锡硫薄膜电池;
实施例2
操作步骤如下:
1.在磁控溅射薄膜的真空腔室内放入钠钙玻璃或是镀钼的钠钙玻璃衬底,将腔室抽至背底真空5×10-4Pa;
2.将衬底台的转速调至7转/分钟,用50W的射频溅射功率在衬底上溅射锡金属层,再用100W的射频溅射功率溅射硫化铜,以Sn/CuS的顺序溅射三个周期制备厚度大概为800nm的铜锡硫薄膜预制层,并且衬底不加温;
3.将铜锡硫薄膜的预制层放置在退火炉中,将退火炉抽至低真空后冲入氮气作为保护气,直到退火炉中气压达到3000Pa对预制层进行软退火。以30℃/min的升温速率,从室温加热到300℃,保持30分钟后让其自然冷却至室温;
4.高温硫化:取出软退火后的预制层,放置在封闭的石墨舟中,石墨舟中装有0.5g的硫粉作为硫源,将硫化炉抽至低真空后冲入氮气使得硫化炉的工作压强为5000Pa,然后以25℃/min的升温速率,从室温加热到560℃,保持15分钟,最后让其自然冷却至室温,得到铜锡硫薄膜;
用磁控溅射法在铜锡硫薄膜上制备50nm厚的CdS缓冲层,然后用磁控溅射法制备200nm左右的ZnO/AZO窗口层,最后采用热蒸发法蒸镀上Ni-Al电极制备出结构为SLG/Mo/CTS/CdS/ZnO/AZO/Ni-Al的铜锡硫薄膜电池。

Claims (5)

1.一种采用溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法,其特征在于,包括如下步骤:
(1)铜锡硫薄膜预制层的制备:在钠钙玻璃上或是镀钼的钠钙玻璃上用射频磁控溅射法溅射锡金属层,然后在锡金属层上溅射硫化铜制备出铜锡硫薄膜的预制层;
(2)预制层的软退火:将铜锡硫薄膜的预制层放置在退火炉中,氮气作为保护气,在260℃下对预制层进行低温退火,保持30分钟后让其自然冷却至室温;
(3)高温硫化:将软退火后的预制层取出,放置在封闭的石墨舟中,以硫粉作为硫源,硫化炉的工作压强为5000Pa,硫化温度为570℃保持15分钟,硫化结束后自然冷却到室温,得到铜锡硫薄膜;
(4)采用化学水浴法在铜锡硫薄膜上沉积一层50nm厚的CdS缓冲层,然后用溅射法制备200nm的ZnO/AZO窗口层,最后采用热蒸发法蒸镀上Ni-Al电极制备出铜锡硫薄膜电池;
其中,所述步骤(1)中,磁控溅射薄膜的真空腔室背底真空为5×10-4Pa,工作压强为0.3Pa;磁控溅射薄膜的腔室中靶表面与衬底的间距为10cm,衬底台的转速为7转/分钟,并且不对衬底进行加温;在钠钙玻璃上或是镀钼的钠钙玻璃上用射频磁控溅射锡和硫化铜靶制备铜锡硫薄膜的预制层,其溅射功率分别为Sn:50W,CuS:100W。
2.如权利要求1所述的一种采用溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法,其特征在于,所述步骤(1)中,在钠钙玻璃上或镀钼的钠钙玻璃上用射频磁控溅射锡和硫化铜靶制备铜锡硫薄膜的预制层,其溅射顺序为Sn/CuS/Sn/CuS/Sn/CuS三个周期;所制备的铜锡硫薄膜的预制层,其总厚度为800nm。
3.如权利要求1所述的一种采用溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法,其特征在于,所述步骤(2)中,将铜锡硫薄膜的预制层放置在退火炉中,将退火炉抽至低真空后冲入氮气作为保护气,直到退火炉中气压达到3000Pa;对放入退火炉中的预制层进行软退火,以35℃/min的升温速率,从室温加热到260℃,保持30分钟后让其自然冷却至室温。
4.如权利要求1所述的一种采用溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法,其特征在于,所述步骤(3)中,将软退火后的预制层取出,放置在封闭的石墨舟中,石墨舟中装有0.5g的硫粉作为硫源;先将硫化炉抽至低真空,然后冲入氮气使得硫化炉的工作压强为5000Pa;以30℃/min的升温速率,从室温加热到570℃,保持15分钟后让其自然冷却至室温,得到铜锡硫薄膜。
5.如权利要求1所述的一种采用溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法,其特征在于,所述步骤(4)中,用化学水浴法在铜锡硫薄膜上制备50nm厚的CdS缓冲层,然后用磁控溅射法制备200nm的ZnO/AZO窗口层,最后采用热蒸发法蒸镀上Ni-Al电极制备出结构为SLG/Mo/CTS/CdS/ZnO/AZO/Ni-Al的铜锡硫薄膜电池。
CN201611002477.9A 2016-11-15 2016-11-15 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法 Active CN106449812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611002477.9A CN106449812B (zh) 2016-11-15 2016-11-15 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611002477.9A CN106449812B (zh) 2016-11-15 2016-11-15 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法

Publications (2)

Publication Number Publication Date
CN106449812A CN106449812A (zh) 2017-02-22
CN106449812B true CN106449812B (zh) 2020-06-30

Family

ID=58207056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611002477.9A Active CN106449812B (zh) 2016-11-15 2016-11-15 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法

Country Status (1)

Country Link
CN (1) CN106449812B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109763099B (zh) * 2019-01-18 2020-08-28 华南理工大学 一种二硫化钼薄膜的制备方法
CN111524712B (zh) * 2020-04-13 2022-07-05 昆明理工大学 一种三维多孔结构染料敏化太阳能电池对电极的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439096A (zh) * 2009-05-21 2012-05-02 纳幕尔杜邦公司 制备硫化铜锡和硫化铜锌锡薄膜的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269451A (zh) * 2014-10-09 2015-01-07 云南师范大学 一种硅基钙钛矿叠层太阳电池及其制造方法
CN105118875B (zh) * 2015-07-27 2023-07-07 云南师范大学 一种铜铟镓硒薄膜太阳电池无镉缓冲层的原子层沉积制备方法
CN105304763A (zh) * 2015-11-10 2016-02-03 云南师范大学 全真空法制备铜锌锡硫薄膜太阳电池的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439096A (zh) * 2009-05-21 2012-05-02 纳幕尔杜邦公司 制备硫化铜锡和硫化铜锌锡薄膜的方法

Also Published As

Publication number Publication date
CN106449812A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
KR101869337B1 (ko) 황화주석 박막 및 그 형성 방법, 박막 태양전지 및 그 제조방법
CN107871795B (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN110828602B (zh) 一种硒化锑薄膜太阳电池及其制备方法
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
CN110176517B (zh) 结构优化的银掺杂铜锌锡硫薄膜太阳电池及其制备方法
CN104835869B (zh) 铜铟镓硒薄膜太阳能电池及其制备方法
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
CN103165748A (zh) 一种制备铜锌锡硫太阳能电池吸收层薄膜的方法
KR101583026B1 (ko) Czts계 태양전지용 박막의 제조방법
CN103400895A (zh) 一种铜锌锡硫太阳能电池吸收层薄膜的制备方法
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
KR101542343B1 (ko) 박막 태양전지 및 이의 제조방법
CN106549082A (zh) 合金靶与硫化物靶共溅射制备铜锌锡硫薄膜吸收层的方法
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
KR101582200B1 (ko) Czts계 태양전지용 박막의 제조방법 및 이를 통해 제조된 박막을 포함하는 czts계 태양전지
CN113745359A (zh) 一种碲化镉梯度吸收层的制备方法及太阳电池
CN112201699A (zh) 一种具有背接触结构的硒化锑太阳电池及其制备方法与应用
JP2010192690A (ja) 太陽電池の製造方法
CN110819958A (zh) 一种改变硒化锑薄膜电学性质的方法及硒化锑太阳电池
CN104716229B (zh) 铜锌锡硒薄膜太阳电池的制备方法
CN113410340B (zh) CZTSSe薄膜太阳能电池吸收层改性方法
CN104051577A (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
CN110867383B (zh) 一种三步硫化工艺制备铜锌锡硫薄膜吸收层的方法
CN109920862B (zh) 能抑制铜锌锡硫薄膜中MoS2层的预制层结构及制备方法
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant