CN110203971B - 一种CuSbS2纳米颗粒及其制备方法、应用 - Google Patents

一种CuSbS2纳米颗粒及其制备方法、应用 Download PDF

Info

Publication number
CN110203971B
CN110203971B CN201910391629.6A CN201910391629A CN110203971B CN 110203971 B CN110203971 B CN 110203971B CN 201910391629 A CN201910391629 A CN 201910391629A CN 110203971 B CN110203971 B CN 110203971B
Authority
CN
China
Prior art keywords
cusbs
nanoparticles
solution
antimony
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910391629.6A
Other languages
English (en)
Other versions
CN110203971A (zh
Inventor
王威
支国伟
郝凌云
杨璐
周梦娇
丁玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Meinan Biotechnology Co ltd
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN201910391629.6A priority Critical patent/CN110203971B/zh
Publication of CN110203971A publication Critical patent/CN110203971A/zh
Application granted granted Critical
Publication of CN110203971B publication Critical patent/CN110203971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J35/39
    • B01J35/40
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/002Compounds containing, besides antimony, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Abstract

本发明公开了一种CuSbS2纳米颗粒及制备方法、应用,所述颗粒为具有规则四方棒状结构的团聚物;制备方法为将铜盐、锑盐及含硫化合物溶解到溶剂中,完全溶解制得前驱体溶液;采用微波法制备CuSbS2纳米颗粒;得到的CuSbS2纳米颗粒中加入Na2S溶液去除杂相。本发明通过调控制备工艺及参数实现调控晶体形貌的目的,进而制备出了理想的晶体表面形貌,提高CuSbS2纳米颗粒的光催化性能,可以使得CuSbS2纳米颗粒在500W的氙灯下光照7h降解罗丹明B的降解率由19%提高到了96%。

Description

一种CuSbS2纳米颗粒及其制备方法、应用
技术领域
本发明涉及一种太阳能、光催化材料及制备方法、应用,具体涉及一种 CuSbS2纳米颗粒及其制备方法、应用。
背景技术
随着现代科技的进步,传统的化石能源的对环境造成的严重污染和其日益匮乏的问题,这使人类的生存和发展面临巨大的挑战。因而世界各国都在寻求一种可替代的再生能源迫使人们寻找一种可再生无污染的能源。太阳能作为分布广泛、储能多、环境友好的能源,而被认为理想的替代能源。因此,太阳能电池被广泛关注和使用。目前市场上使用的基本上都是硅类太阳能电池,但晶体硅电池的制造过程高污染、高能耗。要经过多道化学和物理工序的处理才能制备出纯度很高的晶体硅,不仅要消耗大量能源,还会造成一定的环境污染。
化合物薄膜太阳能电池的制备工艺能耗低,消耗能量低等优点都备受人们关注目前,太阳电池材料Cu(Ga,In)(S,Se)2(CIGS)薄膜太阳电池受到广泛关注,其最高转化效率已经达到22.3%。但是,由于其中掺杂的In和Ga为稀缺元素,价格高昂,且Se是有毒的,易造成污染等问题,极大限制了其应用。CuSbS2作为 CIGS的同类材料,且其直接带隙在1.51-1.57eV,间接带隙在1.44-1.51eV,这与理想情况下太阳能吸收层的带隙1.5eV,且吸收系数α>1×104cm-1,很适合作为太阳光的吸收材料。太阳电池理论效率可高达32%,其中Cu、Sb、S元素在地壳中含量丰富。CuSbS2纳米颗粒具有稳定的光学性质,是良好的p型半导体。并且具有较高的光转化效率,化学性质稳定,成本低廉,安全无毒等优点,成为了近年来研究光电材料的新贵。同时,近年来,CuSbS2类材料由于其良好的光电性能,又广泛的应用于光催化材料和光催化析氢材料。因此CuSbS2是一种非常理想的光电材料。
但是现有技术的微波法制备CuSbS2纳米颗粒可以大大降低制备成本,大规模工业化生产,解决能源缺失、环境污染等问题。CN108467063A专利文献公开了一种微波合成CuSbS2纳米颗粒的方法,但常用的制备方法制备的CuSbS2纳米颗粒均存在Sb2S3等杂相,且形貌不可调控,导致了CuSbS2纳米颗粒光催化性能较差。
发明内容
发明目的:本发明的目的是提供一种光催化性能好的CuSbS2纳米颗粒;另一个目的是解决现有技术中制备CuSbS2纳米颗粒中存在Sb2S3杂相的技术问题。
技术方案:本发明提供了一种CuSbS2纳米颗粒,所述颗粒为具有规则四方棒状结构的团聚物。
本发明还提供了一种CuSbS2纳米颗粒的制备方法,包括如下步骤,
步骤(1),前驱体溶液制备:将铜盐、锑盐及含硫化合物溶解到溶剂中,完全溶解制得前驱体溶液;
步骤(2),CuSbS2纳米颗粒的制备:采用微波法制备CuSbS2纳米颗粒;
步骤(3),杂相的去除:将步骤(2)制备得到的CuSbS2纳米颗粒洗涤后,加入Na2S溶液去除杂相。
进一步地,步骤(1)制备得到的前驱体溶液,加入表面活性剂,调节pH 值。加入表面活性剂可以在前驱体溶液中形成胶束,以表面活性剂为分子模板生长单一晶向的CuSbS2纳米颗粒,调节pH可以改变反应速率,进而生成不同数量的成核因子,从而改变CuSbS2纳米颗粒的形貌。
优选地,步骤(3)中的Na2S溶液的浓度为为0.04~1mol/L,温度设为0~60℃。
进一步地,步骤(3)中,加入Na2S溶液后,温度设为25~60℃。温度过高, CuSbS2将会与Na2S反应产生其他杂相;温度过低,Na2S溶解Sb2S3速率较慢。
优选地,表面活性剂的浓度为5~30mg/mL,调节pH值范围为l~5。
进一步地,所述表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、十二烷基苯磺酸钠中任一种。
优选地,步骤(2)中的微波法具体为微波功率为50~1000W,微波时间 1~30min。
所述步骤(1)中,铜盐为氯化铜、乙酸铜或硝酸铜;锑盐为三氯化锑、三氟化锑、乙酸锑、硝酸锑、三溴化锑中任一种;含硫化合物为硫脲、硫代乙酰胺、 L-半胱氨酸中的一种或两种组合;摩尔比为Sb/Cu=1.1~4,S/(Cu+Sb)=1~5;溶剂为乙二醇、正丙醇、丙三醇、乙二醇甲醚、聚乙二醇200、聚乙二醇300、聚乙二醇400中的一种或两种组合。
本发明还提供了CuSbS2纳米颗粒在光催化材料中的应用。
发明原理:本发明利用微波促使极性分子运动而生热的方式快速为反应提供所需能量,快速制备出高质量的CuSbS2纳米颗粒;利用调配前驱体溶液中表面活性剂的浓度可以在前驱体溶液中形成胶束,以表面活性剂为分子模板生长单一晶向的CuSbS2纳米颗粒,改变前驱体溶液的pH值可以改变反应所需的条件进而影响反应速率,改变CuSbS2纳米颗粒的表面形貌;微波液相反应合成中,需在富锑环境下才可以得到CuSbS2纳米颗粒,同时会伴随着Sb2S3的产生。根据大量实验所得,利用Na2S溶液可以与Sb2S3发生反应,而与CuSbS2在一定温度范围不会发生反应,可以达到通过Na2S溶液对CuSbS2纳米颗粒除去杂相的目的,具体反应式为:Sb2S3+Na2S=2NaSbS2
有益效果:与现有技术相比,
(1)本发明提供的CuSbS2纳米颗粒,所制备的CuSbS2纳米颗粒的物相单一,且结晶性良好;形貌为四方状棒状结构,有利于提高光生载流子的迁移率,从而减少光生载流子的复合,进而提高CuSbS2纳米颗粒的光催化性能;
(2)本发明提供的CuSbS2纳米颗粒的制备方法,通过加入Na2S溶液,通过 Na2S溶液处理可以达到消除Sb2S3杂相的目的,从而达到提高CuSbS2纳米颗粒性能的目的;
(3)在前驱体溶液中,加入表面活性剂,以表面活性剂为分子模板生长单一晶向的CuSbS2纳米颗粒;
(4)采用微波液相法一步制备CuSbS2纳米颗粒,操作简单且工艺过程可控且稳定,制备周期短,可制得纯度高的CuSbS2纳米颗粒;
(5)通过调控制备工艺及参数实现调控晶体形貌的目的,进而制备出了理想的晶体表面形貌,提高CuSbS2纳米颗粒的光催化性能,可以使得CuSbS2纳米颗粒在500W的氙灯下光照7h降解罗丹明B的降解率由19%提高到了96%。
附图说明
图1为对比例1中所制备的CuSbS2的扫描电子显微镜(SEM)图片;
图2为对比例1中所制备的CuSbS2的X射线衍射(XRD)图谱
图3为对比例2中所制备的CuSbS2的X射线衍射(XRD)图谱
图4为实施例1中所制备的CuSbS2的扫描电子显微镜(SEM)图片;
图5为实施例1中所制备的CuSbS2的透射电子显微镜(TEM)图片
图6为实施例1中所制备的CuSbS2的透射电子显微镜(HRTEM)图片
图7为实施例1所制备的CuSbS2的X射线衍射(XRD)图谱;
图8为实施例1中所制备的CuSbS2的拉曼(Raman)光谱;
图9为实施例1中所制备的CuSbS2与传统工艺制备的CuSbS2相对比的在 500W氙灯下光照7h降解罗丹明B的曲线图。
具体实施方式
下面结合对比例和实施例对本发明作进一步描述。
对比例1:
称取0.001mol三水硝酸铜、0.002mol三氯化锑、0.003mol硫脲、30mg/mL 聚乙烯吡咯烷酮依次溶于50mL的乙二醇中,待其完全溶解之后配制成前驱体溶液。采用微波法将前驱体溶液微波照射,微波功率为400W,微波时间4min,然后调整微波功率为240W,微波时间6min制备得到CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。
对得到的产品进行分析,图1为CuSbS2纳米颗粒的SEM图片,可以看出 CuSbS2纳米颗粒为花球状小球,图2为CuSbS2纳米颗粒的XRD图谱,可以发现出现四强峰于CuSbS2匹配的很好,可以观察到在2θ=28.43°、28.73°、29.68°、 29.94°分别对应CuSbS2(PDF#44-1417)的(111)、(410)、(301)、(020),结晶效果择优取向良好,同时可以看出在2θ=18.34°处有Sb2S3的杂相峰。图8 为在500氙灯下光照7h光催化性能,其C/C0值为0.81。
对比例2:
称取0.001mol三水硝酸铜、0.002mol三氯化锑、0.003mol硫脲、30mg/mL 聚乙烯吡咯烷酮依次溶于50mL的乙二醇中,待其完全溶解之后配制成前驱体溶液调节pH=5。采用微波法将前驱体溶液微波照射,微波功率为400W,微波时间4min,然后调整微波功率为240W,微波时间6min制备得到CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.2mol/L的NaS2溶液中超声振动20min 且70℃下磁力搅拌60min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。
对得到的产品进行分析,图3为CuSbS2纳米颗粒的XRD图谱,可以看出与Cu3SbS4相匹配的很好,在2θ=28.80°、48.16°、56.70°分别对应Cu3SbS4 (PDF#35-0581)的(112)、(204)、(312),同时存在NaCu2S2相,这说明在70℃下,在Na2S溶液中,CuSbS2纳米颗粒会发生反应,生成Cu3SbS4和 NaCu2S2。因此,在Na2S溶液中处理温度不得高于70℃。
实施例1:
一种采用微波液相法制备CuSbS2纳米颗粒的方法,包括以下步骤:
称取0.001mol三水硝酸铜、0.002mol三氯化锑、0.003mol硫脲、30mg/mL 聚乙烯吡咯烷酮依次溶于50mL的乙二醇中,待其完全溶解之后配制成前驱体溶液调节pH=5。采用微波法将前驱体溶液微波照射,微波功率为400W,微波时间4min,然后调整微波功率为240W,微波时间6min制备得到CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.2mol/L的NaS2溶液中超声振动20min 且25℃下磁力搅拌60min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。
对得到的产品进行分析,图4为CuSbS2纳米颗粒的SEM照片,图5、6为 CuSbS2纳米颗粒的TEM照片,可以看出制备的CuSbS2纳米颗粒为四方状的棒状颗粒,与对比例相比四方状的CuSbS2纳米颗粒显露出来。图7为CuSbS2纳米颗粒的XRD图片,可以看出与对比例相比,四强峰结果是一致的,同时不存在 Sb2S3的杂相峰。图8为CuSbS2纳米颗粒材料的拉曼图谱,可以看出在251cm-1和332cm-1处为CuSbS2的振动峰,图9为在500氙灯下光照7h光催化降解罗丹明B与对比例相比的结果,由原来的C/C0值0.81减小到0.04,可以明显发现光催化性能得到了明显提高。
综上所述,说明制备出的CuSbS2纳米颗粒材料结晶性良好,得到纯的CuSbS2纳米颗粒,形貌发生了巨大变化,光催化性能得到了提高。
实施例2:
称取0.001mol氯化铜、0.0011mol乙酸锑、0.0042mol硫代乙酰胺、24mg/mL 十六烷基三甲基溴化铵依次溶于聚乙二醇-200和乙二醇按5∶5的比例混合的 50mL溶液中,待其完全溶解之后配制成前驱体溶液并加入盐酸调节pH=2。采用微波法将前驱体溶液微波加热,微波功率为600W,微波时间6min,然后微波功率为160W,微波时间4min制备得到CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.36mol/L的NaS2溶液中超声振动20min且在60℃下磁力搅拌30min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。
实施例3:
称取0.001mol氯化铜、0.0025mol硝酸锑、0.0175mol L-半胱氨酸、12mg/mL 十二烷基苯磺酸钠依次溶于50mL的丙三醇中,待其完全溶解之后配制成前驱体溶液并加入盐酸调节pH=1。采用微波法将前驱体溶液微波加热,微波功率为 200W,微波时间2min,然后调节微波功率为480W,微波时间12min制备得到 CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.68mol/L的NaS2溶液中超声振动30min且在40℃磁力搅拌20min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。
实施例4:
称取0.001mol乙酸铜、0.0015mol硝酸锑、0.01molL-半胱氨酸和硫代乙酰胺、20mg/mL聚乙烯吡咯烷酮依次溶于50mL的正丙醇中,待其完全溶解之后配制成前驱体溶液并加入盐酸调节pH=4。采用微波法将前驱体溶液微波加热,微波功率为300W,微波时间3min微波功率为720W,微波时间18min制备得到 CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.84mol/L的NaS2溶液中超声振动60min且在30℃磁力搅拌20min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。
实施例5:
称取0.001mol乙酸铜、0.004mol三溴化锑、0.015mol硫脲和硫代乙酰胺、 5mg/mL聚乙烯吡咯烷酮依次溶于50mL的乙二醇甲醚中,待其完全溶解之后配制成前驱体溶液并加入盐酸调节pH=3。采用微波法将前驱体溶液微波加热,微波功率为800W,微波时间8min,然后调节微波功率为120W,微波时间3min 制备得到CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.52mol/L的 NaS2溶液中超声振动80min且在50℃磁力搅拌15min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。CuSbS2纳米颗粒的形貌和光催化性能与实施例 l结果相符。
实施例6:
称取0.001mol硝酸铜、0.003mol三溴化锑、0.014mol硫脲和硫代乙酰胺、 28mg/mL聚乙烯吡咯烷酮依次溶于50mL的聚乙二醇300和乙二醇中按体积3∶7 的比例混合的50mL溶液中,待其完全溶解之后配制成前驱体溶液并加入盐酸调节pH=2.5。采用微波法将前驱体溶液微波加热,微波功率为700W,微波时间 7min,然后调节微波功率为200W,微波时间5min制备得到CuSbS2黑色溶液。用超纯水和乙醇洗涤三次黑色溶液,将CuSbS2黑色溶液离心分离得到CuSbS2纳米颗粒。然后将CuSbS2纳米颗粒置于0.04mol/L的NaS2溶液中超声振动100min且45℃磁力搅拌10min的CuSbS2纳米颗粒。将清洗后的CuSbS2纳米颗粒干燥。CuSbS2纳米颗粒的形貌和光催化性能与实施例l结果相符。
实施例7:
本实施例的实验参数和步骤均与实施例1相同,除加入NaS2溶液后,温度设为0℃。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。
实施例8:
本实施例的实验参数和步骤均与实施例1相同,除加入NaS2溶液后,温度设为5℃。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。
实施例9:
本实施例的实验参数和步骤均与实施例1相同,除加入NaS2溶液后,温度设为15℃。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。
实施例10:
本实施例的实验参数和步骤均与实施例1相同,除加入NaS2溶液后,温度设为20℃。CuSbS2纳米颗粒的形貌和光催化性能与实施例1结果相符。

Claims (6)

1.一种CuSbS2纳米颗粒,其特征在于:所述颗粒为具有规则四方棒状结构的团聚物;
所述的CuSbS2纳米颗粒的制备方法,包括如下步骤:
步骤(1),将铜盐、锑盐及含硫化合物溶解到溶剂中,完全溶解制得前驱体溶液;制备得到的前驱体溶液,加入表面活性剂,调节pH值范围为1~5;其中,摩尔比为Sb/Cu =1.1~4,S/(Cu+Sb)=1~5;所述表面活性剂为聚乙烯吡咯烷酮、十六烷基三甲基溴化铵、十二烷基苯磺酸钠中任一种;
步骤(2),采用微波法制备CuSbS2纳米颗粒;
步骤(3),将步骤(2)制备得到的CuSbS2纳米颗粒洗涤后,加入Na2S溶液去除杂相;
其中,步骤(3)中的Na2S溶液的浓度为0.04~1mol/L,温度设为0~60℃。
2.根据权利要求1所述的CuSbS2纳米颗粒,其特征在于:所述步骤(3)中,所述Na2S溶液的温度设为25~60℃。
3.根据权利要求1所述的CuSbS2纳米颗粒,其特征在于:所述步骤(1)中,表面活性剂的浓度为5~30mg/mL。
4.根据权利要求1所述的CuSbS2纳米颗粒,其特征在于:所述步骤(2)中的微波法具体为微波功率为50~1000W,微波时间1~30min。
5.根据权利要求1所述的CuSbS2纳米颗粒,其特征在于:所述步骤(1)中,铜盐为氯化铜、乙酸铜或硝酸铜;锑盐为三氯化锑、三氟化锑、乙酸锑、硝酸锑、三溴化锑中任一种;含硫化合物为硫脲、硫代乙酰胺、L-半胱氨酸中的一种或两种组合;溶剂为乙二醇、正丙醇、丙三醇、乙二醇甲醚、聚乙二醇200、聚乙二醇300、聚乙二醇400中的一种或两种组合。
6.一种根据权利要求1所述的CuSbS2纳米颗粒在光催化材料中的应用。
CN201910391629.6A 2019-05-10 2019-05-10 一种CuSbS2纳米颗粒及其制备方法、应用 Active CN110203971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910391629.6A CN110203971B (zh) 2019-05-10 2019-05-10 一种CuSbS2纳米颗粒及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910391629.6A CN110203971B (zh) 2019-05-10 2019-05-10 一种CuSbS2纳米颗粒及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN110203971A CN110203971A (zh) 2019-09-06
CN110203971B true CN110203971B (zh) 2021-10-29

Family

ID=67785998

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910391629.6A Active CN110203971B (zh) 2019-05-10 2019-05-10 一种CuSbS2纳米颗粒及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN110203971B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354546B (zh) * 2020-11-09 2022-05-17 绍兴文理学院 一种CuSbS2/SnS2纳米片复合材料的制备方法及应用
CN114452985B (zh) * 2022-02-14 2024-04-19 温州大学 一种用于光催化二氧化碳的CuSbS2纳米管材料制备方法
CN114573026B (zh) * 2022-03-28 2024-03-22 金陵科技学院 一种铜铋硫纳米颗粒的制备方法
CN115367797A (zh) * 2022-07-12 2022-11-22 电子科技大学 一种三元铜硫族化合物CuSbS2半导体纳米材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052147A (zh) * 1989-12-01 1991-06-12 矿物工艺过程科技有限公司 氧化物生产
CN1827736A (zh) * 2006-04-07 2006-09-06 浙江大学 一种多元复合型无机阻燃剂及其制备方法
AU2009224841A1 (en) * 2008-03-14 2009-09-17 Lam Research Ag Method for depositing a film onto a substrate
CN107093650A (zh) * 2017-04-07 2017-08-25 金陵科技学院 一种制备铜锑硫太阳能电池吸收层的方法
CN108467063A (zh) * 2018-05-22 2018-08-31 金陵科技学院 一种微波合成铜锑硫纳米颗粒的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052147A (zh) * 1989-12-01 1991-06-12 矿物工艺过程科技有限公司 氧化物生产
CN1827736A (zh) * 2006-04-07 2006-09-06 浙江大学 一种多元复合型无机阻燃剂及其制备方法
AU2009224841A1 (en) * 2008-03-14 2009-09-17 Lam Research Ag Method for depositing a film onto a substrate
CN107093650A (zh) * 2017-04-07 2017-08-25 金陵科技学院 一种制备铜锑硫太阳能电池吸收层的方法
CN108467063A (zh) * 2018-05-22 2018-08-31 金陵科技学院 一种微波合成铜锑硫纳米颗粒的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Investigation on preparation and formation mechanism of copper antimony sulphide particles by microwave irradiation;Wei Wang et al.;《MICRO & NANO LETTERS》;20180701;第13卷;第1036页正文第5段;第1037页第1段第7-14行 *
The influences of surfactant concentration on the quality of chalcostibite nanorods;Changhua An et al.;《JOURNAL OF CRYSTAL GROWTH》;20030831;第256卷;第132页第1栏倒数第1段倒数第6行;第130页第2栏第1段第2行 *
Wei Wang et al..Investigation on preparation and formation mechanism of copper antimony sulphide particles by microwave irradiation.《MICRO & NANO LETTERS》.2018,第13卷 *

Also Published As

Publication number Publication date
CN110203971A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN110203971B (zh) 一种CuSbS2纳米颗粒及其制备方法、应用
Shi et al. Synthesis and photoelectric properties of Cu2ZnGeS4 and Cu2ZnGeSe4 single-crystalline nanowire arrays
Zhong et al. Biomolecule-assisted solvothermal synthesis of 3D hierarchical Cu2FeSnS4 microspheres with enhanced photocatalytic activity
CN105669045B (zh) 一种Cu2ZnSnS4/石墨烯复合半导体薄膜的制备方法及其应用
Yu et al. Hydrothermal preparation and characterization of nanocrystalline powder of β-Indium sulfide
CN102259190A (zh) 一种快速大批量制备高长径比纳米银线的方法
Lu et al. Microemulsion-mediated solvothermal synthesis of copper indium diselenide powders
Chen et al. Preparation of nanostructured Cu 2 SnS 3 photocatalysts by solvothermal method
CN107890861B (zh) 一种具有{001}晶面的二氧化钛片层/石墨烯复合薄膜的制备方法
CN114392734B (zh) 一种氧化钨复合材料及其制备方法和应用
Zhang et al. Facile synthesis of core–shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production
CN106925306B (zh) 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
Yin et al. Convenient synthesis and enhanced photocatalytic activity of BiOI/BiOBr nanostructures with different morphologies
Tipcompor et al. Transformation of cubic AgBiS2 from nanoparticles to nanostructured flowers by a microwave-refluxing method
CN109761264B (zh) 一种快速制备水溶性cis量子点/还原氧化石墨烯复合材料的方法
CN112429762A (zh) 宽度和长度可调的无机铯铅卤钙钛矿纳米棒的制备方法
CN108910939B (zh) 一种超薄CuInS2纳米片及其制备方法和应用
Akram et al. Arrays of ZnO/CuInxGa1− xSe2 nanocables with tunable shell composition for efficient photovoltaics
CN108031481B (zh) 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法
Azam et al. Low temperature synthesis of ZnO nanoparticles using mechanochemical route: A green chemistry approach
CN110357166B (zh) 水热条件下制备纳米黄铜矿四面体晶体的方法
Xie et al. Morphology-controlled synthesis of CdSe microspheres on graphene oxide sheets and their photocatalytic properties
Zhang et al. Synthesis and characterization of Cu2ZnSnSe4 nanotube arrays on fluorine-doped tin oxide glass substrates
Li et al. Synthesis of chalcopyrite-type CuInSe2 nanoparticles from aqueous solution at room temperature
Gao et al. Effects of reaction conditions on the structural, morphological and optical properties of solvothermal synthesized ZnS nanostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240115

Address after: 712000 Factory Building No. 5, South Zone 1, Hongshengxing Aviation Technology Industrial Park, Dunhua Road, Airport New City, Xixian New Area, Xi'an City, Shaanxi Province

Patentee after: Xi'an Meinan Biotechnology Co.,Ltd.

Address before: No. 99 Jiangning Road, Nanjing District hirokage 211169 cities in Jiangsu Province

Patentee before: JINLING INSTITUTE OF TECHNOLOGY

TR01 Transfer of patent right