TWI392219B - 用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路 - Google Patents

用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路 Download PDF

Info

Publication number
TWI392219B
TWI392219B TW098134688A TW98134688A TWI392219B TW I392219 B TWI392219 B TW I392219B TW 098134688 A TW098134688 A TW 098134688A TW 98134688 A TW98134688 A TW 98134688A TW I392219 B TWI392219 B TW I392219B
Authority
TW
Taiwan
Prior art keywords
ptat
terminal
reference voltage
low noise
generating circuit
Prior art date
Application number
TW098134688A
Other languages
English (en)
Other versions
TW201023505A (en
Inventor
In-Chul Hwang
Myung-Woon Hwang
Jecheol Moon
Hyun-Ha Jo
Original Assignee
Silicon Motion Inc
Fci Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Motion Inc, Fci Inc filed Critical Silicon Motion Inc
Publication of TW201023505A publication Critical patent/TW201023505A/zh
Application granted granted Critical
Publication of TWI392219B publication Critical patent/TWI392219B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Description

用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路
本發明涉及一種低雜訊基準電壓產生電路,特別是一種除去在電路內部會對雜訊進行放大的放大器,並將與絕對溫度成正比的電流(IPTAT )直接轉換為與絕對溫度成正比的電壓(VPTAT )後,將其從線性調節器傳送到環形振盪器,由此防止一般的帶隙基準電壓產生電路引起的雜訊性能的劣化,還可達到低雜訊和較高的供應電源拒斥比(Power Supply Rejection Ratio,PSRR)的低雜訊基準電壓產生電路。
一般情況下,CMOS環形振盪器(Ring Oscillator)具有較寬的調整範圍且不需要較大的手動元件,從而使用於無線通訊等應用之中。近年來,隨著CMOS技術的發展,開始利用於如廣播用頻道選擇器(broadcasting tuner)、GPS接收器、及無線局域網收發器(Wireless LAN transceiver,WLAN)的RF應用。
但是CMOS環形振盪器的雜訊性能(noise performance)較弱,因此作為RF收發器時會受到制約,還存在對溫度和供給電源的變動敏感度過高的問題。
最近,為了解決CMOS環形振盪器對雜訊和溫度及供給電源變動率敏感的問題,提出了將隨著溫度和電源的變動而被調整的基準電壓提供到環形振盪器的帶隙基準電壓產生電路(Band-gap reference circuit)。即,溫度上升時環形振盪器的頻率會下降,通過利用相對於溫度具有正變動性的帶隙基準電壓產生電路,從而隨著電源電壓溫度的上升而提高了頻率以實現溫度補償。
第1圖為,利用了現有的帶隙基準電壓產生電路的環形振盪器生成振盪信號的方塊圖。
請參照第1圖,其繪示依據外部施加的電源來生成並提供基準電壓的帶隙基準電壓產生電路10、依據定電壓對該基準電壓進行調整並輸出的線性調節器20、依據調整的基準電壓發生振盪後生成脈衝串的環形振盪器30、以及將環形振盪器30所生成的脈衝串以定電位進行轉換(shifting)並進行輸出的電位轉換器40。
帶隙基準電壓產生電路(Band-gap reference voltage circuit)10具備通過輸入外部的電源電壓而進行放大的放大端,並依據放大端的輸出值而提供基準電壓(VREF )。這時,帶隙基準電壓產生電路10所生成的基準電壓(VREF )為了補償溫度,生成具有以依據溫度係數(temperature coefficient)的斜率而變動的值。
即,具有正溫度係數(positive-TC)的帶隙基準電壓產生電路為了補償隨著溫度的增加而減少的環形振盪器的頻率,增加基準電壓(VREF ),從而增加施加於環形振盪器的電壓(VDDO )。
線性調節器(Linear Regulator)20接收在帶隙基準電壓產生電路10中為了補償溫度變動而生成的基準電壓(VREF ),並將該基準電壓(VREF )以一定比率的定電壓(VDDO )來輸出。
環形振盪器(Ring Oscillator)30由奇數個反相器以環狀連接而成,且由線性調節器20的定電壓(VDDO )所驅動,由此輸出具有一定頻率的脈衝串(Pulse train)。這時,環形振盪器30通過具有溫度被補償後大小的基準電壓(VREF )而生成振盪時脈,因此可補償溫度後的頻率。
電位轉換器(Level Shifter)40將環形振盪器所生成的信號的直流電位適當進行轉換後輸出到使用環形振盪器30的RF收發器。
但是,由於這樣的環形振盪器對驅動電壓(VDDO )的變動敏感,具有正溫度係數的帶隙基準電壓產生電路雖然具有低電位的輸出雜訊和高電位的供應電源拒斥比(PSRR:Power supply rejection ratio)。然而該帶隙基準電壓產生電路10對1/f雜訊和熱雜訊敏感而存在雜訊性能劣化的問題,而且雜訊性能會直接傳達到環形振盪器30,使得環形振盪器30的頻率會因為溫度及電源改變而變動,從而導致不能生成正確振盪訊號的問題。
尤其,由於帶隙基準電壓產生電路10具備有放大端,導致內部所生成的電流及電壓也一起被放大的雜訊放大現象,從而存在雜訊性能變差的問題。
本發明的目的在於提供一種帶隙基準電壓產生電路,該帶隙基準電壓產生電路可將隨溫度變化的電流和不隨溫度變化的電流進行比較並進行放大,從而除去用於補償基於溫度變化的頻率變動性的帶隙基準電壓產生電路,在不使用放大器的情況下將與溫度變化成正比的電流直接變換為與其相應的PTAT電壓並提供至環形振盪器的驅動電壓,由此防止雜訊性能的劣化並能達到低雜訊和較高的供應電源拒斥比(PSRR)的低雜訊基準電壓產生電路。
為了達到所述目的,用於改善環形振盪器的頻率變動的低雜訊基準電壓產生電路包括:生成與絕對溫度成正比的PTAT電流的電流鏡所構成的PTAT電流發生部;將該PTAT電流轉換為PTAT電壓並輸出到線性調節器的輸出,且由該電流鏡構成的電晶體與二極體連接而成的PTAT電壓變換部;及連接於該與二極體連接的電晶體的一端子,用於改善電源電壓的變動性的供應電源拒斥比改善電阻。
本發明的優點在於:本發明提供一種,將與溫度變化成正比的電流直接轉換成與之相應的PTAT電壓,並將其作為環形振盪器的驅動電壓而提供的低雜訊基準電壓產生電路,由此可以達到低雜訊及較高的供應電源拒斥比(PSRR),而且由於基準電壓產生電路內部沒有具備放大器而面積達到了最小化,使用最少數量的電晶體的同時還能生成對溫度及電源變動不敏感的基準電壓。
為讓本發明之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:
第2圖為,利用了根據本發明的低雜訊基準電壓產生電路的環形振盪器生成振盪信號的方塊圖。
請參照第2圖,為了通過利用本發明的低雜訊基準電壓產生電路而使環形振盪器生成振盪信號,包括:將外部電源直接轉換為PTAT電壓(VPTAT ),並提供至基準電壓的低雜訊基準電壓產生電路100;接收該PTAT電壓(VPTAT )後輸出一定比率的定電壓(VDDR )的線性調節器300;通過該線性調節器的輸出電壓(VDDR )而發生振盪,並生成具有一定頻率的脈衝串(VOSC )的環形振盪器400;對該環形振盪器所生成的脈衝串(VOSC )的直流電位進行變換後進行輸出(Vbuf )的電位轉換器500。
本發明涉及的是,為了發生振盪而向CMOS(互補金屬氧化物半導體)環形振盪器提供穩定的驅動電源的新的基準電壓產生電路,因此用於生成振盪信號的線性調節器300、CMOS環形振盪器400、及電位轉換器500可以與現有的結構相同,因此省略對其的說明,以下對不具備放大端也能達到低雜訊和較高的供應電源拒斥比(PSRR),並且能生成對溫度和電源電壓的變動不敏感的PTAT電壓(VPTAT )的低雜訊基準電壓產生電路100的詳細結構進行說明。
第3圖為本發明的低雜訊基準電壓產生電路的方塊圖,第4圖為本發明的低雜訊基準電壓產生電路的電路圖。
請參照第3圖及第4圖,低雜訊基準電壓產生電路100包括PTAT電流發生部110、PTAT電壓變換部120、供應電源拒斥比(PSRR)改善電阻130、啟動電路200和線性調節器300。PTAT電流發生部110用來生成與絕對溫度成正比的PTAT(Proportional to absolute temperature)電流(IPTAT )。PTAT電壓變換部120將該PTAT電流轉換為PTAT電壓(VPTAT )。改善電阻130用於改善電源電壓(VDD )的變動性。啟動電路200用來依據定電壓驅動低雜訊基準電壓產生電路100。線性調節器300用來調整低雜訊基準電壓產生電路100所生成的PATT電壓(VPTAT )。
PTAT電流發生部110為了能生成隨溫度變化而被補償的低雜訊PTAT電流(IPTAT ),其係由具有正溫度係數(positive temperature coefficient)的CMOS的PTAT電流發生器組成。
如第4圖所示,PTAT電流發生部110包括:一端子連接於電源電壓(VDD)的第一及第二負反饋電阻(degeneration resistor)R1、R2;一端子連接於該第一負反饋電阻R1的第一PMOS半導體(P型金屬氧化物半導體)M1;一端子連接於該第二負反饋電阻R2的第二PMOS半導體M2所構成的電流鏡(current mirror)。
該PTAT電流發生部110另包括,構成電流鏡的第一及第二PMOS半導體(M1,M2)、一端子連接於該第一PMOS半導體的另一端子的第一NMOS半導體(N型金屬氧化物半導體)M3、一端子通過供應電源拒斥比改善電阻(R4)130而連接於該第二PMOS半導體(M2)的另一端子的第二NMOS半導體M4。較佳地,第一PMOS半導體M1和第二PMOS半導體M2以1:1的放大參數比構成,而該第一NMOS半導體M3和第二NMOS半導體M4以k2 :1的放大參數比構成。
另外,該第一及第二PMOS半導體(M1,M2)的閘極相互連接,該閘極連接於第一PMOS半導體(M1)的另一端子,且該第一及第二NMOS半導體(M3,M4)的閘極也相互連接,這樣被連接的閘極連接於該第二PMOS半導體(M2)的另一端子和供應電源拒斥比改善電阻(R4)130的連接節點(a節點)。
即,為了降低該第一及第二PMOS半導體(M1,M2)引起的1/f雜訊並增加輸出節點的電阻,第一負反饋電阻(R1)連接於電壓電源(VDD )和該第一PMOS半導體(M1)的另一端子之間,第二負反饋電阻(R2)連接於電壓電源(VDD )和第二PMOS半導體(M2)的另一端子之間。另外,該第一NMOS半導體(M3)的另一端子和接地電源之間連接有電阻(R3),該第二NMOS半導體(M4)的另一端子連接於接地電源。
這時,當忽略溝道長度調製效應(channel-length modulation)時,該第一及第二NMOS半導體(M3,M4)和電阻(R3)構成的電流鏡在下面被計算出來的各種電流(branch current)可以通過如下的公式1得出。
從該公式1中可以看出,以變動率為-1.5次方的指數形式與溫度成正比,因此生成相對於該電流鏡所提供的電源電壓而獨立且基於正溫度係數的PTAT電流(IPTAT )。
該PTAT電壓變換部120,由該第二NMOS半導體(M4)構成。隨之,該第二NMOS半導體(M4)的閘極連接於該第二PMOS半導體(M2)的一端子和供應電源拒斥比改善電阻(R4)130的連接節點(a節點)。
這樣與二極體連接的第二NMOS半導體(M4),如下面的公式2無需放大器(OP AMP)就將該PTAT電流發生部110所生成的PTAT電流(IPTAT )轉換為PTAT電壓(VPTAT ),並生成補償了溫度的基準電壓即PTAT電壓(VPTAT )。
為使該第二NMOS半導體(M4)輸出這樣被變換的PTAT電壓(VPTAT ),該第二NMOS半導體(M4)的汲極端子和該供應電源拒斥比改善電阻(R4)130的另一端子之間的連接節點連接於線性調節器300所具備的放大器(OP AMP)的反相端子。
另外,由於該電壓電源(VDD )的變動引起的該第二PMOS半導體(M2)中的電流變化會轉換成PTAT電壓(VPTAT ),因此如果沒有該供應電源拒斥比(PSRR)改善電阻(R4),會對該PTAT電壓(VPTAT )的電壓電源(VDD )的敏感度將增大。
從而,用於降低這樣的敏感度的供應電源拒斥比改善電阻(R4)130連接於該第二PMOS半導體(M2)的一端子和第二NMOS半導體(M4)的一端子之間。這時,為了不讓電流變化傳達到該PTAT電壓(VPTAT )的變動而改善電源變動性,優選地,該供應電源拒斥比改善電阻(R4)130被設計成1/gm。這時,該gm指定第二NMOS半導體(M4)的電導。由此可以達到較高的供應電源拒斥比(high PSRR)。
另外,該線性調節器300中,在該PTAT電壓變換部120中發生變換的PTAT電壓(VPTAT )被施加到反相端子,而連接於電晶體(MR)的一端子的可變電阻(R5)和電阻(R6)中所分配出來的電壓被施加到非反相端子,且該輸出端子還包括連接於該電晶體(MR)閘極的放大器(OP AMP)。
這時,該電晶體(MR)的一端子和閘極端子(b節點)之間連接有電容(C1),通過該電晶體(MR)的一端子和電容(C1)的一端子之間的連接節點將驅動電壓(VDDR )提供至環形振盪器400,從而可以振盪用於改善基於溫度和電壓電源而頻率變動的頻率。
另外,請參照第4圖,可以還包括用於給該低雜訊基準電壓發生器施加驅動信號的啟動電路200,這樣的啟動電路(Startup circuitry)200由通過外部的活化信號(EN)而開始驅動的通常的啟動電路構成。
接下來參照第5圖及第6圖,對利用本發明的低雜訊基準電壓產生電路來振盪的情況進行了類比實驗的結果進行說明。
第5圖示意了,對根據本發明的基於溫度進行的頻率變動性補償程度進行了比較的圖形,第6圖繪示對根據本發明的基於電源進行的頻率變動性補償程度進行了比較的圖形。
上述類比實驗是利用台灣積體電路(TSMC)的90□ CMOS工程來進行類比的,如第5圖及第6圖所示的圖形中,對根據本發明的具備有能生成PTAT電壓的低雜訊基準電壓產生電路的情況(圖示為w/regulator,朝下的箭頭表示應以圖形左側和下側作為基準)和,具備有現有的帶隙基準電壓產生電路的情況(圖示為w/o regulator,朝上的箭頭表示應以圖形右側和上側作為基準)進行比較並一同進行了圖示。根據模擬實驗的結果,被檢測的頻率變動性是,對在環形振盪器進行振盪並通過電位轉換器而輸出的最終脈衝串下的頻率變動性進行的檢測。
另外,該模擬實驗中所使用的環形振盪器是為了適用於1.5GHz頻帶的GPS應用,在低於2GHz時達到較佳的溫度補償和電源補償,根據被適用的RF應用可在適當的頻帶達到溫度補償和電源補償。
請參照第5圖可以確認,具備現有的帶隙基準電壓產生電路的情況下,在頻率低於2.0×109 Hz的頻域與室溫狀態的30℃下的頻率相比,當溫度上升至100℃時電位轉換器所輸出的頻率下降,當溫度下降至-40℃時電位轉換器所輸出的頻率會升高。
與此相反,具備根據本發明的低雜訊基準電壓產生電路的情況下,在頻率為低於2.0×109 Hz的頻域與室溫狀態的30℃時的情況相比,不管溫度上升至100℃的情況、及溫度下降至-40℃的情況等,都能從電位轉換器輸出幾乎相同的頻率。
從而,本發明的低雜訊基準電壓產生電路在不使用放大器而生成可溫度補償的PTAT電壓(VPTAT )並提供到環形振盪器的情況下,對CMOS環形振盪器中的溫度變化進行更加完整且穩定的補償。
另外,請參照示意了基於電源電壓變動的頻率變動情況的第6圖,具有現有的基準電壓產生電路的情況下,在頻率低於2.0×109 Hz的頻域,與基於電源電壓的變動而提供到環形振盪器的電壓(VDDR )為1V的情況進行比較時,當提供至該環形振盪器的電壓(VDDR )減少至0.9V時頻率會降低,當增加至1.1V時頻率會升高。
與此相反,在具有本發明的低雜訊基準電壓產生電路的情況下,在頻率低於2.0×109 Hz的頻域,即使從外部輸入到低雜訊基準電壓產生電路的電源電壓(VDD )在1.08~1.32V的範圍內變動,也不會因為這樣的外部電源電壓而在生成PTAT電壓的該低雜訊基準電壓產生電路中具備放大端,因此隨著電源電壓的變動所引起的影響的加大,使得不會傳達到環形振盪器而可以穩定地對頻率進行震盪,從而可以對電源電壓變動引起的頻率的變動性進行更加完整且穩定的補償。
雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與修改,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100...低雜訊基準電壓產生電路
110...PTAT電流發生部
120...PTAT電壓變換部
130...供應電源拒斥比改善電阻
200...啟動電路
300...線性調節器
400...環形振盪器
500...電位轉換器
第1圖為利用了現有的帶隙基準電壓產生電路的環形振盪器生成振盪信號的方塊圖;
第2圖為利用本發明的低雜訊基準電壓產生電路的環形振盪器生成振盪信號的方塊圖;
第3圖為本發明的低雜訊基準電壓產生電路的方塊圖;
第4圖為本發明的低雜訊基準電壓產生電路的電路圖;
第5圖繪示本發明基於溫度進行的頻率變動性補償程度進行的比較圖;
第6圖繪示意本發明基於電源進行的頻率變動性補償程度進行的比較圖。
100‧‧‧低雜訊基準電壓產生電路
110‧‧‧PTAT電流發生部
120‧‧‧PTAT電壓變換部
130‧‧‧供應電源拒斥比改善電阻
200‧‧‧啟動電路
300‧‧‧線性調節器

Claims (6)

  1. 一種用於改善環形振盪器的頻率變動的低雜訊基準電壓產生電路,其特徵在於,包括:一PTAT電流發生部,用來產生與絕對溫度成正比的PTAT電流;一PTAT電壓變換部,用來將該PTAT電流轉換為PTAT電壓並輸出到線性調節器,該PTAT電壓變換部包含一電流鏡的電晶體;以及一供應電源拒斥比改善電阻,連接於該電晶體的一端子,用於改善電源電壓的變動性。
  2. 如申請專利範圍第1項所述的低雜訊基準電壓產生電路,其中,該PTAT電流發生部包括:一端子連接於電源電壓的第一及第二負反饋電阻(R1,R2);一端子連接於該第一負反饋電阻的第一PMOS半導體(M1);一端子連接於該第二負反饋電阻,且與該第一PMOS半導體構成電流鏡的第二PMOS半導體(M2);一端子連接於該第一PMOS半導體的另一端子,另一端子通過電阻(R3)連接於接地電源的第一NMOS半導體(M3);以及與該第一NMOS半導體構成電流鏡,且輸出該PTAT電壓的第二NMOS半導體(M4)。
  3. 如申請專利範圍第2項所述的低雜訊基準電壓產生電路,其中,該PTAT電壓變換部在該第二NMOS半導體(M4)的閘極和汲極端子側通過供應電源拒斥比改善電阻(R4)連接,使得變換的PTAT電壓從該汲極端子輸出。
  4. 如申請專利範圍第3項所述的低雜訊基準電壓產生電路,其中,該第二NMOS半導體(M4)連接於該線性調節器所具備的放大器的反相端子。
  5. 如申請專利範圍第2、3或4項所述的低雜訊基準電壓產生電路,其中,該供應電源拒斥比改善電阻(R4)連接於該第二PMOS半導體(M2)的 另一端子和該第二NMOS半導體(M4)的汲極端子之間。
  6. 如申請專利範圍第5項所述的低雜訊基準電壓產生電路,其中,該供應電源拒斥比改善電阻(R4)的電阻值符合該第二NMOS半導體(M4)電導的倒數值。
TW098134688A 2008-12-01 2009-10-13 用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路 TWI392219B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080120264A KR101053259B1 (ko) 2008-12-01 2008-12-01 링 오실레이터의 주파수 변동 개선을 위한 저잡음 기준전압발생회로

Publications (2)

Publication Number Publication Date
TW201023505A TW201023505A (en) 2010-06-16
TWI392219B true TWI392219B (zh) 2013-04-01

Family

ID=42222211

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098134688A TWI392219B (zh) 2008-12-01 2009-10-13 用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路

Country Status (4)

Country Link
US (1) US8405376B2 (zh)
KR (1) KR101053259B1 (zh)
CN (1) CN101751062B (zh)
TW (1) TWI392219B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053259B1 (ko) * 2008-12-01 2011-08-02 (주)에프씨아이 링 오실레이터의 주파수 변동 개선을 위한 저잡음 기준전압발생회로
CN102064801B (zh) * 2010-11-08 2013-09-18 中国兵器工业集团第二一四研究所苏州研发中心 一种基于cmos工艺实现的全硅时钟发生器
CN102467150A (zh) * 2010-11-19 2012-05-23 无锡芯朋微电子有限公司 一种高电源抑制比的电压基准电路
TWI427456B (zh) * 2010-11-19 2014-02-21 Novatek Microelectronics Corp 參考電壓產生電路及方法
US8248171B1 (en) * 2011-01-27 2012-08-21 Nxp B.V. Temperature correcting current-controlled ring oscillators
JP5535154B2 (ja) * 2011-09-02 2014-07-02 株式会社東芝 基準信号発生回路
US8665029B2 (en) * 2012-04-12 2014-03-04 Himax Technologies Limited Oscillator module and reference circuit thereof
CN102681584B (zh) * 2012-05-30 2014-04-23 昆山锐芯微电子有限公司 低噪声带隙基准电路和基准源产生系统
KR101951844B1 (ko) 2012-06-21 2019-02-26 삼성디스플레이 주식회사 온도감지장치 및 그 구동 방법
US9294039B2 (en) 2013-08-23 2016-03-22 Samsung Display Co., Ltd. Constant GM bias circuit insensitive to supply variations
KR102033790B1 (ko) 2013-09-30 2019-11-08 에스케이하이닉스 주식회사 온도센서
KR102074946B1 (ko) 2013-10-30 2020-02-07 삼성전자 주식회사 온도 보상 저전류 발진기 회로, 및 이를 포함하는 장치
CN103955250B (zh) * 2014-03-18 2016-04-06 尚睿微电子(上海)有限公司 一种具有高电源抑制比的带隙基准电路
CN105099445B (zh) * 2014-05-12 2018-02-23 国家电网公司 一种环形振荡器的频率控制方法及电路
EP2977849A1 (en) * 2014-07-24 2016-01-27 Dialog Semiconductor GmbH High-voltage to low-voltage low dropout regulator with self contained voltage reference
CN104764923B (zh) * 2015-03-18 2018-07-06 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种测量交流干扰幅度的方法
US9977453B2 (en) 2015-04-29 2018-05-22 SK Hynix Inc. Temperature sensing apparatus
CN105227180A (zh) * 2015-05-06 2016-01-06 上海晟矽微电子股份有限公司 一种环形振荡器电路
CN104835474B (zh) * 2015-06-02 2017-04-05 京东方科技集团股份有限公司 电压输出装置、栅极驱动电路和显示装置
KR102400544B1 (ko) * 2017-12-04 2022-05-23 한국전자통신연구원 링 전압 제어 발진기를 이용한 광대역 주파수 발진회로 및 주파수 발진방법
CN108445951B (zh) * 2018-05-15 2019-10-29 上海睿泗特传动科技有限公司 一种高稳定性的基准电压产生电路
KR20240077994A (ko) * 2022-11-25 2024-06-03 주식회사 엘엑스세미콘 오실레이터 장치, 오실레이터를 위한 전압 발생 회로 및 집적 회로

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144223A (en) * 1991-03-12 1992-09-01 Mosaid, Inc. Bandgap voltage generator
JPH07200086A (ja) * 1993-12-28 1995-08-04 Nec Corp 基準電流回路および基準電圧回路
US5512817A (en) * 1993-12-29 1996-04-30 At&T Corp. Bandgap voltage reference generator
TW434992B (en) * 1999-07-16 2001-05-16 Ind Tech Res Inst Current source apparatus with temperature compensation function
US6737908B2 (en) * 2002-09-03 2004-05-18 Micrel, Inc. Bootstrap reference circuit including a shunt bandgap regulator with external start-up current source
TW200737698A (en) * 2005-12-08 2007-10-01 Elpida Memory Inc Reference voltage generation circuit

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900772A (en) * 1997-03-18 1999-05-04 Motorola, Inc. Bandgap reference circuit and method
KR100284303B1 (ko) * 1998-06-27 2001-03-02 김영환 온도보상 기준전압 발생 장치
US6150872A (en) * 1998-08-28 2000-11-21 Lucent Technologies Inc. CMOS bandgap voltage reference
US6529066B1 (en) * 2000-02-28 2003-03-04 National Semiconductor Corporation Low voltage band gap circuit and method
US6323628B1 (en) * 2000-06-30 2001-11-27 International Business Machines Corporation Voltage regulator
KR100724145B1 (ko) * 2001-07-12 2007-06-04 매그나칩 반도체 유한회사 씨모스 레퍼런스 회로
US6919753B2 (en) * 2003-08-25 2005-07-19 Texas Instruments Incorporated Temperature independent CMOS reference voltage circuit for low-voltage applications
US7230473B2 (en) 2005-03-21 2007-06-12 Texas Instruments Incorporated Precise and process-invariant bandgap reference circuit and method
CN1908845A (zh) * 2005-08-01 2007-02-07 义隆电子股份有限公司 参考电流产生电路
CN100476682C (zh) * 2006-11-24 2009-04-08 华中科技大学 一种超低电压参考源
CN101271346B (zh) * 2007-03-22 2011-08-10 应建华 一种低功耗、高电源抑制比的带隙电压参考电路
US7656145B2 (en) * 2007-06-19 2010-02-02 O2Micro International Limited Low power bandgap voltage reference circuit having multiple reference voltages with high power supply rejection ratio
CN100535821C (zh) * 2007-08-30 2009-09-02 智原科技股份有限公司 带差参考电路
KR101053259B1 (ko) * 2008-12-01 2011-08-02 (주)에프씨아이 링 오실레이터의 주파수 변동 개선을 위한 저잡음 기준전압발생회로
US8344720B2 (en) * 2009-09-24 2013-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Reference voltage generators, integrated circuits, and methods for operating the reference voltage generators
US8922178B2 (en) * 2010-10-15 2014-12-30 Intel IP Corporation Temperature dependent voltage regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144223A (en) * 1991-03-12 1992-09-01 Mosaid, Inc. Bandgap voltage generator
JPH07200086A (ja) * 1993-12-28 1995-08-04 Nec Corp 基準電流回路および基準電圧回路
US5512817A (en) * 1993-12-29 1996-04-30 At&T Corp. Bandgap voltage reference generator
TW434992B (en) * 1999-07-16 2001-05-16 Ind Tech Res Inst Current source apparatus with temperature compensation function
US6737908B2 (en) * 2002-09-03 2004-05-18 Micrel, Inc. Bootstrap reference circuit including a shunt bandgap regulator with external start-up current source
TW200737698A (en) * 2005-12-08 2007-10-01 Elpida Memory Inc Reference voltage generation circuit

Also Published As

Publication number Publication date
TW201023505A (en) 2010-06-16
CN101751062B (zh) 2013-11-06
CN101751062A (zh) 2010-06-23
US20100134087A1 (en) 2010-06-03
KR20100061900A (ko) 2010-06-10
KR101053259B1 (ko) 2011-08-02
US8405376B2 (en) 2013-03-26

Similar Documents

Publication Publication Date Title
TWI392219B (zh) 用於改善環形振盪器頻率變動的低雜訊基準電壓產生電路
US7233214B2 (en) Voltage-controlled oscillators with controlled operating range and related bias circuits and methods
TWI447552B (zh) 具可調適米勒補償的電壓調節器
US8115559B2 (en) Oscillator for providing a constant oscillation signal, and a signal processing device including the oscillator
TWI405402B (zh) 晶體振盪電路的電壓源電路
US20090001958A1 (en) Bandgap circuit
JP2013504263A (ja) Mosfetのソースバルク電圧を用いた信号処理asic用の温度補償rc発振器
US8736387B2 (en) Chopper based relaxation oscillator
JP4684616B2 (ja) 発振回路
CN110858082B (zh) 单一晶体管控制的稳压器及应用此稳压器的集成电路
US9473148B2 (en) Method for compensating local oscillator frequency
CN111969965A (zh) 一种功率放大器的温度补偿电路及温度补偿方法
TWI530089B (zh) 誤差放大器
US7928810B2 (en) Oscillator arrangement and method for operating an oscillating crystal
JP3847021B2 (ja) 電圧制御発振器
CN110365293B (zh) 振荡装置
CN110601658B (zh) 低电压vco的控制电压范围的自动补偿
US20140104012A1 (en) Oscillator compensation circuits
JP2010166438A (ja) 圧電発振器
TW202021264A (zh) 運算放大器及其電壓驅動電路
JP4311313B2 (ja) 圧電発振器
TWI803969B (zh) 具溫度補償的電源啟動電路
JP2007325217A (ja) Cmosアクティブインダクタ
CN114553191A (zh) 一种自适应温度和电源电压的环形振荡器
JP4584677B2 (ja) 電力供給回路、半導体装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees