TWI299009B - Injection-molded article - Google Patents

Injection-molded article Download PDF

Info

Publication number
TWI299009B
TWI299009B TW096108114A TW96108114A TWI299009B TW I299009 B TWI299009 B TW I299009B TW 096108114 A TW096108114 A TW 096108114A TW 96108114 A TW96108114 A TW 96108114A TW I299009 B TWI299009 B TW I299009B
Authority
TW
Taiwan
Prior art keywords
slurry
alloy
solid
mold
injection
Prior art date
Application number
TW096108114A
Other languages
English (en)
Other versions
TW200726547A (en
Inventor
Czerwinski Frank
Kadak Damir
Original Assignee
Husky Injection Molding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Husky Injection Molding filed Critical Husky Injection Molding
Publication of TW200726547A publication Critical patent/TW200726547A/zh
Application granted granted Critical
Publication of TWI299009B publication Critical patent/TWI299009B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2272Sprue channels
    • B22D17/2281Sprue channels closure devices therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S164/00Metal founding
    • Y10S164/90Rheo-casting

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

.1299009 _ 九、發明說明: 、【發明所屬之技術領域】 本發明大體上關於一種射出成形金屬合金之方法,更特 定言之係關於一種射出成形具有高固體材料含量之半固體 . 合金的方法。 【先前技術】 半固體金屬加工處理一開始時是在1970年代早期於麻省 • 理工學院(Massachusetts Institute of Technology)以一缚造 程序進行開發。從那時起,半固體加工處理的範舞已擴展 至包含半固體鍛造和半固體模造。半固體加工處理提供超 越必須使用熔化金屬之習知金屬加工處理技術的許多優 點。其一優點為卽省能源’不必將金屬加熱至其溶點並且 在處理過程中將金屬維持在其熔化狀態。另一優點為減少 因處理完全熔化金屬所造成的液態金屬腐餘量。 半固體射出成形術(以下簡稱SSIM)是一種運用單一機器 φ 將半固體態的合金注入一模具内以形成一近似最終形狀之 物件的金屬加工處理技術。除了以上提及之半固體加工處 理的優點,SSIM的好處尚包含提高最終物件的設計彈 性、模造成形即有一低孔隙度物件(亦即不用後續熱處 理)、一均勻的物件微結構、以及機械特性和表面光潔特 性優於以習知鑄造方式製成之物件的物件。又,因為整個 程序在一個機器内進行,得以幾乎消弭合金氧化作用。藉 由提供一鈍氣(例如氬)環境,免於在處理過程中形成不想 要的氧化物,且因而有助於廢料的再利用。 O:\119\119308.DOC •6· 1299009 • SSIM的主要好處主要是來自於欲射出成形之合金材料 漿料内的固體顆粒存在。一般咸信固體顆粒在射出成形期 間會促進一層流前,這使模塑物件内的孔隙度降低。材料 藉由加熱至欲受處理合金之液相線與固相線之間的溫度而 部份溶化(液相線為在此溫度以上之合金完全是液體的溫 • 度’且固相線為在此溫度以下之合金完全是固體的溫 度)° SSIM避免在模塑合金之微結構内有樹狀特徵生成, I 一般咸信此等特徵對模塑物件之機械特性有害。 依據習知的SSIM程序,固體的百分率限制在0·05至〇6〇 之間。6〇❶/。的上限係以對於任何較高固體含量會導致處理 產率降低且得到一較次級產品的信念為基礎做出的決定。 一般亦咸信對於防止在注射期間發生早期固化的需求對固 體含量強加一 60%的上限。 雖然一般理解到5-60%的固體含量是ssiM工作範圍,一 般亦知曉實務上的指導方針建議射出成形薄壁型物件(亦 鲁即具備細小特徵之物件)使用的固體含量範圍是5_1〇%,且 建議厚壁型物件使用的固體含量範圍是25_3〇%。此外,一 般亦咸信在固體含量超過30%的情況下,會需要一出模後 溶液熱處理作業以將模塑物件的機械強度提高至可接受水 . 準因此,雖然一般已接受將習知SSIM程序之固體含量 限制在6〇%或更低,實務上通常將固體含量保持在3〇%或 更低。 【發明内容】 有鑑於上述習知SSIM程序之限制,本發明提出一種用
O:\119\119308.DOC 1299009 ^射出成形超高m體含量(超過6G%)之合金的方法。特定 二之’本發明關於一種用來射出成形固體含量在,抓範 内之鎂合金以製得具有均勻微結構和低孔隙度的高品質 物件1超高㈣含量射出成形高品質物件的能力使本發 =方法能比習知SSI_序❹更少能量,且能製得因液 -口化所^致之收縮率減小的近似最終形狀物件。 依據本發明-實施例,—射出成形程序包含以下步驟: …、σ金以產生一固體含量在約60%至75%範圍内之半 固體漿料,且將該漿料以一足以完全填滿一模具之速度注 入该模具内。該合金為一鎮合金且該程序製得一具有一低 内部孔隙度的模塑物件。依據一較佳實施例,該模具在一 25 ms至1〇〇咖的灌模時間内被該漿料填滿。 依據本發明-實施例,一射出成形程序包含以下步驟: 加熱一合金以產生一固體含量在約75%至85%範圍内之半 固體漿料;且將該漿料以一足以完全填滿一模具之速度注 入忒模具内。该合金為一鎂合金且該程序製得一具有一低 内部孔隙度的模塑物件。依據一較佳實施例,該模具在一 25 ms至100 ms的灌模時間内被該漿料填滿。 依據本發明之另-實施例,—射出成形程序包含以下步 驟·加熱一合金以產生一固體含量在約6〇%至85%範圍内 之半固體漿料;且將該漿料注入一模具内。較佳來說,注 射漿料步驟疋在無奈流狀態下注射,❻紊流狀態亦為可接 受的。該合金為一鎂合金且該程序製得一具有一低内部札 隙度的模塑物件。依據一較佳實施例,該模具在一25 ms
O:\119\119308.DOC 1299009 • 至100 ms的灌模時間内被該漿料填滿。依據本發明之另一 • f施例,提出一種射出成形物件,其中該物件係由加熱一 0金以產生一固體含量在約60%至75%範圍内之半固體漿 料,且將該漿料以一足以完全填滿一模具之速度注入該模 具内的方式製得。依據一較佳實施例,該模具在一 25 ms 至1〇〇 ms的灌模時間内被該漿料填滿。 依據本發明之另一實施例,提出一種射出成形物件,其 • 中該物件係由加熱一合金以產生一固體含量在約⑽至 85 A範圍内之半固體漿料;且將該漿料以一足以完全填滿 一模具之速度注入該模具内的方式製得。依據一較佳實施 例,忒模具在一 25 ms至1〇〇 ms的灌模時間内被該漿料填 滿。 依據本發明之另一實施例,提出一種射出成形物件,其 中^物件係由加熱一合金以產生一固體含量在約60% ^ 85❶’:耗圍内之半固體漿料;且在紊流狀態下將該漿料注入 • 杈具内的方式製得。依據一較佳實施例,該模具在一 25 ms至1〇〇咖的灌模時間内被該聚料填滿。 依據本發明之另一實施例,提出一種射出成形物件,其 中。該:件係由加熱-合金以產生-固體含量在約60%至 ★範圍内之半固體襞料;且在層流狀態下將該漿料注入 模具内的方式製得。依據—較佳實施例,該模具在-25 ms至1〇〇咖的灌模時間内被該敷料填滿。 依據本發明之另-實施例,-射出成形程序包含以下步 驟·提供u呂辞合金之碎屑;將該等碎屑加熱至一介
O:\119\119308.DOC 1299009 於該合金之一固相線溫度與一液相線溫度間的溫度以產生 ~固體含量在約75%至85%範圍内的半固體漿料;且將該 漿料以一適於在一段大約25 ms的時間内完全填滿一模具 之澆口速度注入該模具内。 以上及其他特徵在優點會在下文的本發明較佳實施例說 明中顯露。 【實施方式】 • 圖1簡略繪出一用來進行依據本發明之SSIM的射出成形 裝置10。裝置10有一直徑d為70 mm且長度/約為2 m的料筒 部分12。料筒部分12之溫度曲線由沿著料筒部分12(包含 沿著一料筒頭部分12a和一喷嘴部分16)群集成獨立受控區 域之電阻式加熱器14維持。依據一較佳實施例,裝置丨〇為 一 HuskyTM TXM500-M70 系統。 合金材料之固體碎屑經由一給料器部分18供應給射出成 形裝置10。此等合金碎屑可由任何習知技術製得,其中包 • 含機械切碎方式。碎屑的大小大約是1-3 mm且一般不超過 10 mm。一旋轉傳動部分2〇轉動一可縮回螺桿部分22以沿 著料筒部分12運輸合金材料。 在一較佳實施例中,用一鎂合金進行射出成形。該合金 為一 AZ91D合金,標稱組成為8·5%的A1、0.75%的Zn、 〇·3 /〇 的 Μη、0.01% 的 si、〇·〇ι% 的 cu、o.ooi。/❶的 Ni、G.001 的Fe、剩下的都是Mg(以下亦稱之為Mg-9%AM%Zn)。然 應了解到本發明並不侷限於鎂合金之SSI]VI,其亦可應用 於其他合金(包含鋁合金)之SSIM。
O:\119\l 19308.DOC •10- 1299009 加熱器14加熱該合金材料使其轉變成一半固體漿料,然 後透過噴嘴部分16將其注入一模具24内。加熱器14受到經 程式化為在料筒部分12内建立一會產生一大於6〇%之未熔 (固體)比例的溫度分佈之微處理器(圖中未示)控制。依據 一較佳實施例,此溫度分佈產生一 75_85%的未熔比例。圖 2為一用來在料筒部分12内達成一 AZ9m合金有75_85%未 熔比例之溫度分佈的實例。 螺桿部分22之運動係用來輸送並混合該漿料。一止回闕 2防止漿料在注射過程中往回擠入料筒部分12内。 裝置10之内部部分保持在一鈍氣環境以防合金材料氧 化。一適合的純氣實例為氬。純氣係經由給料器丨8導入裝 置1〇内且排除内部的任何空氣。這在裝置1〇内造成一鈍氣 正壓,此防止空氣回流。此外,在每份注出的合金成形後 形成於喷嘴部分16内之一固體合金栓塞防止空氣在注射後 經由噴嘴部分16進入裝置1〇内。此栓塞在注出下一份合金 時被逐出且被模具24之一豎澆注口支柱部分(詳見下文)捕 捉到,隨後將其回收再利用。 實務上來說’螺桿部分22經旋轉傳動部分20縮回以將合 金碎屑累積在裝置10之一注射物容納部分28至已累積到足 供一次注射之合金碎屑量之時。然後旋轉傳動部分2〇推進 螺桿部分22以將該等合金碎屑送入受熱料筒部分12内,此 處之溫度分佈經維持為產生一固體含量高於6〇0/。之半固體 聚料注射物。螺桿部分22在運輸期間之轉動機械性地混合 漿料注射物,這會造成剪力,詳見下文。然後將該漿料注
O:\119\119308.DOC •11- 1299009 ㈣運輸通過料筒頭部分12a到噴嘴部分16,且自該喷嘴 部分將該漿料注射物注入模具24内。 旦已注射漿料注射物,旋轉傳動部分2〇將螺桿部分22 縮回且讓供下次注射使用之合金碎屑開始累積。如前所 述在母人欲模塑合金注射之後形成於喷嘴部分16之固體 栓塞在模具2 4打開以取出模塑物件時防止空氣進入裝置 10 ° . 旋轉傳動部分2 0受到一經程式化為可再現地將每一份注 射物以"又疋速度運輸通過料筒部分12的微處理器(圖中 未示)控制,使得每一份注射物在料筒部分12之不同溫度 區内的留置時間文到精確控制,從而可再現地控制每一份 注射物的固體含量。 模具24為一模夾型模具,但亦可使用其他類型的模具。 如圖1所示,一模夾部分3〇將模具24之二個區段2“,2朴 夾在一起。所施加夾力取決於欲模塑之物件的大小,且從 .小於100公噸重到超過1600公噸重不等。就一通常由模鑄 方式製成之標準離合器殼體為例,會施加一 500公噸重的 夾力。 圖4a為一依據本發明模塑而成之離合器殼體42的平面 圖,且圖4b為一模塑物件之透視圖。離合器殼體42是一個 適合用來測試評估SSIM程序的結構,因為其具有厚壁型 肋件區段44和一薄壁型平板區段46。 圖3為一由模具24形成之模塑單元之戶 ^ 局部的剖面圖。該 模塑單元呈現出模具24的許多部分。一 &、在 足屹注口部分34定 O:\119\119308.DOC -12- .1299009 位為背向裝置10之噴喈 口支W 包含前文提及之登繞注 部道部分36。澡道部分36延伸至-繞口 :_ 口部分與—對應於目標模塑物件之零件部分 、|纟模^_過程巾,來自於前次注射之栓塞被逐出且 不登纽π支柱部分32捕捉到。然後將合金漿料注入暨洗 注口部分34且讓合金漿料通耗道部分糾過洗口部分
以。合金漿料在過了堯口部分38之後流入欲模塑物件的零 件部分40内。 模具24經預熱且以一在約〇·5-5〇 m/s範圍内之螺桿速度 將a金漿料注入模具24内。一般而言,注射壓力大約是25 kPsi。依據本發明之一實施例,模造作業在一大約〇 7瓜“ 至2.8 m/s之螺桿速度發生。依據本發明之另一實施例,模 造作業在一大約1.0 m/s至1.5 m/s之螺桿速度發生。依據本 發明之另一實施例,模造作業在一大約丨.5 m/s至2·〇 m/s之 螺桿速度發生。依據本發明之另一實施例,模造作業在一 大約2.0 m/s至2.5 m/s之螺桿速度發生。依據本發明之另一 實施例,模造作業在一大約2·5 m/s至3 ·0 m/s之螺桿速度發 生。 每次注射之典型循環時間是25 s,但可延長至高達100 s。經計算以一在大約10 m/s至60 m/s範圍内之洗口速度 (灌模速度)合於上述螺桿速度範圍。依據一實施例,以一 大約10 m/s的澆口速度進行SSIM。依據另一實施例,以一 大約20 m/s的澆口速度進行SSIM。依據另一實施例,以一 大約30 m/s的澆口速度進行SSIM。依據另一實施例,以一 O:\119\119308.DOC -13 - 1299009 大約40 m/s的澆口速度進行SSIM。依據一較佳實施例,以 一大約50 m/s的澆口速度進行SSIM。依據另一實施例,以 一大約60 m/s的洗口速度進行SSIM。 灌模時間(或說將一份合金漿料裝入模具的時間)小於 100 ms(0.1 S)。依據本發明之一實施例,灌模時間大約是 50 ms。依據本發明之另一實施例,灌模時間大約是μ ms。較佳來說,灌模時間大約是25脱至3〇 ms。 _ 在模具已裝入漿料後將模塑物件從模具24取出之前,製 料經歷一最終密實化作業,在此作業中以短時間(通常小 於1〇 ms)對漿料施加壓力。咸信此最終密實化作業會降低 模塑物件的内部孔隙度。一較短的灌模時間確保漿料尚未 固化,不然會阻止一成功的最終密實化作業。 利用一配備一定量影像分析儀之光學顯微鏡測驗本發明 所涵蓋在不同條件下射出成形的物件。受測零件亦包含暨 洗注口和澆道。先用3 μιη金鋼石糊研磨樣本然後用一膠態 •氧化鋁進行拋光研磨。為了顯現出樣本之微結構特徵的對 比’用一溶在乙醇内的丨❹/。硝酸溶液蝕刻已研磨表面。運 用見於ASTM D792-9之阿基米德法(Archimedes method)判 定内部孔隙度。對於選定樣本利用CUka輻射藉由χ光繞射 測驗相組成(phase colnpositi〇n)。 表1列出以不同的螺桿部分22注射速度計算的灌模作業 特性。表列特性係依據下列關係式判定:
Vg=Vs(Ss/Sg) (方程式 1) 其中Vg是澆口速度,Vs是螺桿速度,心是螺桿之橫截面
O:\119\119308.DOC • 14· •1299009 積,且Sg是澆口之橫截面積。其計算假設澆口面積為221·5 mm2且止回閥26有loo%效率。 表1計算灌模特性 ------- _螺桿速度(m/s) 澆口速度(m/s) 模穴填滿時間(s) 一 2.8 48.65 0.025 一 1.4 24.32 0.050 一 0.7 12.16 0.100 經確定半固體漿料呈現如同固體和如同液體的表現。做 為一類固體材料,此等漿料具有結構整體性;做為一類液 體材料,其相當容易流動。通常希望以一層流方式用此等 漿料填滿一模穴,藉此避免在由全液體材料模塑而成之物 件内觀察到的於紊流期間困在漿料内之氣體所導致的孔隙 度。(層流一般所知為一黏稠不可壓縮流體之流線流,其 中流體粒子沿著明確定義的獨立線條行進;且紊流一般所 知為流體粒子呈現隨機運動之流體流。) 相反於習知智識,下文提及之實例指示出在層流狀態下 注射對於達成具有一低内部孔隙度之高品質模塑物件並非 關鍵。一影響一超高固體含量SSIM程序之成功與否的關 鍵性因子是注射期間的澆口速度,其影響灌模時間。也就 是說,重點在於模穴是在漿料處於一半固體狀態的同時裝 填漿料以避免因早期固化導致物件不完全塑形。一適當的 快速灌模時間可由修改澆口幾何形狀來增加澆口橫截面積 的方式獲得。 O:\119\119308.DOC -15- 1299009 為評估超高固體含量(超過60%且最好在75%至85%範圍 内)之漿料的SSIM可行性,以一AZ91D合金射出成形製造 如圖物和4b所示之離合器殼體。利用表1所列參數進行 SSIM。 實例1
要填滿一用來模造離合器殼體之模穴需要大約58〇 §的 AZ91D合金。物件本身含有大約487 g的材料,且豐洗注口 和澆道含有大約93 g。以一2_8 m/s之螺桿速度(48 65 m/s 之澆口速度和25 ms之灌模時間)進行的注射為例,會產出 具有-高表面品質和精確尺寸的密實零件。藉由部份地填 充模穴(部份注射),顯露出在此螺桿速度下的合金衆料流 前是奈亂的。令人意外的是’雖然有奮流,模塑完成零件 (完全注射)之内部孔隙度具有—可接受的低值23%,詳見 下文。此實例的結果顯示’只要灌模時間夠快以在漿料仍 為半固體的同時達成完全注射,得利用超高固體含量之裝 料的SSIM製造高品質模塑物件,即使是在|流狀態下也 無妨。 實例2 仁螺彳干速度減半(1 ·4 m/s), m/s且灌模時間變成50 ms, 在與實例1相同的條件下, 而對應地澆口速度變成24.32 早期固化現象使得合金漿料無法完全填滿模穴。模塑物件 的重量是㈣1之模塑完成物件的㈣。經發現大部分未 填滿區域疋位在物件的外矮& 的卜緣模穴之部份填充現象顯示其 流前比起實例1是改善的,但. 一仍疋不均勻的且不完全是層
O:\119\119308DOC • 16 - 1299009 流。這在薄壁型區域内特別明顯,在此等區域内從較厚區 域移來之區域性流前在接觸到模具表面之後立即固化。令 人意外的是,儘管紊流減少,模塑完成零件的内部孔隙度 比起實例1測量所得為高,且具有一不可接受的5·3%高 值。此實例的結果顯不就超而固體含量之衆料的SSim來 說’洗口速度的降低會減少注射期間之聚料流内奮流量, 但不足以產出一精確尺寸的模塑完成物件。此外,降低的 澆口速度導致孔隙度提高。 實例3 將螺桿速度更進一步降成0.7 m/s(洗口速度變成I] 16 m/s且灌模時間變成100 ms)導致模穴的填充程度比實例2 更低。模塑物件重334.3 g,相當於實例1之完全密實物件 的72%。模穴之部份填充顯示所有區域(包含薄壁區)内的 流前相當均勻且分層。此實例的結果顯示就超高固體含量 之漿料的SSIM來說,以降低澆口速度的方式造成層流狀 態並不足以產生一精確尺寸的模塑完成物件。然而,部份 填充物件的内部孔隙度具有一非常低的值1·7%,與在層流 狀態下注射者一致。 實例1至3之模塑零件的重量一覽列於表2。表中列出物 件本身的重量以及帶有豎澆注口和澆道之物件的總重量。
O:\119\119308.DOC -17- !299〇〇9 表2不同螺桿速度下的模塑重量 r—--- ----〜^ 螺桿速度(m/s) 總重量(g) 物件重量(g) 注射 ~~二--- —--2 8_ 582 462.6 注射 1.4 428 414 3 兔主皇射 ---- —0.7 381 334.3 主射 2.8 308 177.8 注射 1.4 263 172.9 注射 0.7 268 183.6 實例1至3之樣本的孔隙度一覽列於表3。内部孔隙度係 $阿基米德法測得,其顯露出樣本間之明顯孔隙度差異。 表中亦列出物件本身的孔隙度以及豎澆注口和澆道的孔隙 度。
表3不同螺桿速度下的孔隙度 — 螺桿速度(m/s) 物件孔隙度(%) 豎澆注口 /洗道 孔隙度(%) t全注射 2.8 2.3 4.6 t全注射 1.4 5.3 6.1 完全注射 0.7 1.7 0.2 注射 2.8 7.4 2.6 部份注射 ------- ” 1.4 17.4 7.7 部份注射 0.7 3.1 4.0 由表中觀察到2.3%之物件孔隙度係來自於在完全注射條 O:\119\119308.DOC •18- 1299009 r 件下以2.8 m/s之螺桿速度(48.65 m/s之澆口速度)模塑成形 的物件。此值低到足以進入業界標準之合格範圍内且是一 個出乎意料之外的結果,因為合金漿料之流前經判定是紊 亂的,如前所述。紊流通常伴隨著孔隙度的提高,但對於 以此澆口速度模塑成形之物件來說並未發現有顯著影響。 因此,在灌模程序之中間階段產生的孔隙度於最終密實化 過程中去除。 鲁 令人驚奇的是’將螺桿速度降低成1.4 m/s(洗口速度變 成24·32 m/s且灌模時間變成50 ms)導致物件孔隙度提高至 超過5%,這通常超過合格範圍。此項發現指示出在灌模 程序之中間階段產生的孔隙度無法降低,因為漿料在得以 進行最終密實化之前就固化。將螺桿速度更進一步降低成 0·7 m/s(澆口速度變成12.16 m/s且灌模時間變成100 ms)得 到一非常低的1.7%物件孔隙度,此如前所述與層流前一 致。 φ 在70全注射條件下之豎澆注口和洗道孔隙度與物件孔隙 度呈現相同的整體傾向。 頃發現在部份注射條件下模塑成形之物件的孔隙度遠高 於在完全注射條件下模塑成形之物件的孔隙度,在螺桿速 度為1·4 m/s的情況甚至達到兩位數的差異。頃發現有一例 外是在螺桿速度為0.7 m/s的情況,其類似於完全注射狀態 在物件以及豎澆注口和澆道内得到一低孔隙度。 上述結果指示出並不一定要在注射過程中維持一層流前 即能達成一具備一均勻微結構的低孔隙度產品。只要灌模
O:\119\119308.DOC -19· 1299009 時間短(一般是低於〇·〇5 s且最好約為25 ms至30 ms),即可 容許有紊流。 以金相學方式就實例1至3之樣本的橫截面上選定位置查 證模塑物件之結構整體性。頃發現以一 2·8 m/s之螺桿速度 填充(模塑)的物件就宏觀尺度來看是密實的,沒有區域性 孔隙度。在以一 〇·7 m/s之螺桿速度填充的物件發現相同情 況。(以一 1·4 m/s螺桿速度填充之物件在微觀尺度下的孔 隙度在下文討論。)這些結果與藉由阿基米德法得到的一 致(表3)。 利用實例1至3之樣本的X光繞射(以下簡稱xrD)分析判 定相組成。圖5顯示一從一以一 2.8 m/s螺桿速度模塑成形 之物件之一大約250 μιη厚切片的外表面測得之XRD圖案。 在該XRD圖案中,除了對應於Mg之強力波峰(此為一 Mg内 A1和Zn固溶體所特有),尚有對應於·相(Mgl7Al12)的數個較 弱波峰。經確定在該·相中的一些A1原子被換成Zn,且在 低於437 °C之溫度能形成Mg17(Al,Zn)12且很可能是 MgnAlujZn。·5的金屬互化物。xrd波峰之角位置的分析 無法顯露出一因為金屬互化物内A1和Zn之含量導致之晶格 參數改變所造成的明顯相移。 因為Mg2Si(JCPDS 3 5-773標準)之主要XRD波峰與Mg和 MgnAh2之波峰重疊,無法明確地確認其存在。特定言 之,位在22=40·121Ε之最強力Mg2Si波峰與Mg17Al12之一波 峰重合。在47.121E和58.028E之另外兩個波峰分別與 (102)Mg及(110)Mg之波峰重疊。因此,在測驗範圍内,僅 O:\119\119308.DOC •20- 1299009 有的Mg2Si波峰是在22=72.117E,標示於圖5中。 模塑物件之Mg基固溶體與jcpds 4-770標準之波峰強度 比較指示出晶粒取向之一隨機分佈。相似地,Mgi7Aii2i 峰及JCPDS.ICDD i i 128標準之強度並未指示出金屬互化 物相之任何較佳晶體取向。因此,XRD分析指示出模塑物 件的合金是等向性的,以相同特性延伸於所有方向。此項 特徵不同於從習知鑄造合金回報所知,在習知鑄造合金内 已知一固體樹狀相之一骨架具有一晶體紋理(較佳取向), 造成不均勻的機械特性。 圖6a和6b顯示一以一 2.8 m/s螺桿速度模塑成形之物件之 微結構成分之相分佈的光學顯微圖。具有一明亮對比之近 似球狀顆粒代表一 α-Mg固溶體。圖6a中具有一暗對比之相 疋金屬互化物γ-MgpAh2。球狀顆粒間之明顯邊界是由共 晶體組成且類似於位在晶粒邊界三重接頭的島狀物。經高 倍率放大,如圖6b所示,能夠看出在薄晶粒邊界區内以及 難二重接頭處之較大島狀物内的共晶體成分間的型態差異。 差異主要在於次級α-Mg晶粒的形狀和大小。 在圖6b中明顯可見之固體球狀顆粒内的暗沈澱物咸信為 純γ相金屬互化物。此等沈澱物之容積比例相當於在合金 滯留於射出成形裝置10料筒部分12内之期間的液相容積比 例0 從圖6a和6b顯微圖片明顯可見該模塑物件之微結構本質 上是無孔隙度。在圖6a中可能被誤認是孔隙的暗特徵處事 實上是MgaSi,在較高放大率(圖6b)下即能清楚看出。此
O:\119\119308.DOC •21 - 1299009 相為一從合金之一冶金精餾剩下的不純物,且有一雷夫 (Laves)型結構。因為Mg2Si的熔點是1〇85π,其在AZ91D a金之半固體加工處理期間不會經歷任何型態轉變。 在模塑物件内觀察到之孔隙度的主要類型一般是來自於 困入的氣體,推測為做為射出處理過程中之環境氣體的 風。儘管有超高固體含量(且因而有低含量的液相),模塑 物件顯現出孔隙度縮減的證明,其孔隙度是固化期間之收 . 縮作用的結果。減小的孔隙度一般是在共晶體島狀物附近 觀察到,且因困入氣泡所導致的孔隙度通常觀察所得是隨 機地分佈。 用以一2.8 m/s螺桿速度模塑成形之一物件和一澆道之一 表面區域(大約150 μιη厚)進行分析以判定其微結構的一致 性。此分析顯露出澆道與物件間之初級固體的顆粒分佈的 差異,橫越該表面區之厚度有一顆粒離析現象。也就是 說’在一以一層從物件表面延伸到物件内部之區域内觀察 . 到顆粒離析現象。頃發現物件内的此種顆粒分佈不一致性 比濟道内嚴重。 在以較低螺桿速度模塑成形之物件内觀察到一更均質的 初級固體顆粒分佈。 對模塑物件之橫截面進行立體測量分析以定量評估顆粒 離析(分佈)。利用一線性方法以從物件表面起算之距離的 一個函數來測量固體顆粒之分佈。其結果整列於圖7中, 該圖顯示模塑物件之芯部的初級固體顆粒容積維持在乃 85%的水準。洗道内的固體含量高出1〇0/〇。澆道和物件本 O:\119\119308.DOC -22- 1299009 身一者在近表面區(表面區)内含有較少初級固體。貧化表 面區經判定大約是400 μηι厚,但大部分貧化現象發生在一 100 (ini厚的表面層内。 為了研究半固體漿料流動通過模具澆口期間之顆粒大小 和形狀的變化,將漿料注入一局部開放的模具内。頃觀察 到這導致澆口尺寸和物件之壁厚明顯加大,且因而導致模 八僅有局。卩填充。頃發現一大約5 厚切片之一典型微結 構是由具備沿一晶粒邊界網絡分佈之共晶體的等軸晶粒組 成。 模塑物件之固體顆粒的粒徑分佈係由測量已研磨橫截面 上之平均直徑的方式判定。圖8顯示出在一模塑物件内 不同位置以及一豎澆注口内測得之樣本的粒徑分佈。圖8 亦顯示出兩種不同循環時間的粒徑分佈資料,顯現出其對 於控制模塑物件内之粒徑的重要性。 頃發現初級a_Mg粒徑受到合金漿料在處理溫度之滯留時 間影響^實例⑴來說,要填滿離合器殼體之模具所需 要的/主射$ |會在射出成形裝置之料筒部分12内滞留 4 75-90 s的b夺間。滞留時間增加會導致初級固體之顆粒直 徑粗化’而400 S的滞留時間導致平均粒徑加大50%。圖8 顯示循環時間(滞留時間)從25 s()增加至!00 s(n導致顆 粒直徑顯著增加’有—些顆粒具有超過⑽叫的直徑。粒 U循私時間增加而增加指示出在半固體漿料滯留在料筒 部分12内時發生粗化。 亦就丑/疋;主口測驗微結構之冷卻率效{,因為其有較大
O:\119\119308.DOC 23- 1299009 ’ 尺寸。頃觀察到就厚壁來說(例如豎澆注口所擁有者),其 微結構遠比由一局部開放模具製得之樣本發達。較之於由 一局部開放模具製得之樣本,晶粒邊界顯示出遷移的證 據’且沿著晶粒邊界分佈的共晶體改變型態。 觀察結果討論 如以上實例所呈現,半固體鎂合金之射出成形即使是在 超高固體含量的情況亦為可行。約在75-85%之固體含量是 可冑b的’其咼過習知射出成形程序一般接受的5 _6〇%範 •圍。 雖然上述程序是就Mg合金之半固體射出成形作說明, 此程序亦適用於A1合金、Zn合金、以及溶點約低於7〇〇 之其他合金。Mg合金與A1合金間之一重要差異在於其密 度和熱含量。Mg比A1低的密度意味著Mg的慣量較小,且 就相同的外加壓力來說會得到一較高的流速。因此,用一 Mg合金裝滿一模具的時間比八丨合金短。 ❿ 此外,在具有相近的比熱容(Mg在20°C為1.025 kJ/kg K,A1在20°C為0.9 kJ/kg K)條件下,Mg與A1的密度差意味 著一 Mg基零件的熱含量實質上會低於相同容積之八丨基零 件且比後者快固化。這在處理具有一超高固體含量之Mg 合金時特別重要。在此情況中,固化時間非常的短,因為 合金毁料僅有少量是液體。依據一些評估,以一 25-50%固 體比例的情況來說,固化作業是在高壓模鑄作業中一般觀 察所得時間的十分之一。因此,就一 15-25%的超高固體含 量來說,固化時間應當更短。 O:\119\119308.DOC -24- .ΐ299〇〇9
果此用在灌模期間生熱的假設來解釋。此一可能性得到下 文說明之觀察所得微結構變化支持。 金漿料之流動模式是取決於漿料内 度,而後者受到螺桿速度以及澆 制0 • 一模穴之部份填充(部份注射)的結果顯現出一半固體合 之固體百分比和洗口速 口部分3 8之幾何形狀控 雖然球狀固體顆粒的存在促成層流,但除非澆口速度得 到適切調整(降低),否則即使是超高固體含量也無法防止 紊流。一以接近50 m/s洗口速度射出之3〇%固體含量漿料 呈現高度擾流特性。在固體含量為75%的情況,流前仍是 不均勻的(紊亂的)。這是因為洗口速度直接影響到灌模時 間’且其為決定SSIM程序成功與否之一關鍵性因素。因 此,若澆口速度過度降低,合金漿料無法夠快速地灌入模 八’且因而在完全填滿模穴之前就固化,如前文之實例1 至3所呈現。 如前所述,習知智識堅持合金漿料之一層流行為是必要 的。一紊流行為不僅因困入氣體而在模塑物件内產生内部 孔隙度(表3),且因減少自射出成形裝置1〇料筒部分12通過 合金漿料連續奔流之熱流量而提高固化速率。又,眾所周 O:\119\119308.DOC -25- 1299009 知若漿料的固體合晷#古 日,丨—、去μ 現紊流行為 則可運用的/主射(澆口)速度就越高 而别文討論之實例證明即使有極高的固體含量(超過 60%且最好在約75铺範圍内)存在,聚料仍能在注射期 間呈現Μ行為’但此紊流不會對模塑物件造成負面影 響。預期中可藉由修改洗注系統來解決流量問題。
以超過48 m/s的澆口速度(實例”來說,犧牲層流來達成 -夠高的注射速度以完全填滿模穴。但是即使是在襞料觀 察^到純行為的情況下,仍會產出—具有夠低孔隙度的 间0口質物件。這指不出使用超高固體含量的在產出 同no質產所要求的漿料流動模式方面是有彈性的,其 限制條件為㈣時間容許在漿料是半固體狀態下即完全裝 滿模具。就-恆定的澆口大小來說,灌模時間係由澆口大 小決^ ° It冑述實例來$ ’即^吏是在奈流狀態下超過此點 即導致孔隙度降低的最小澆口速度大約是25 m/s。這跟 SSIM相關之習知信念相反。 以48.65 m/s洗口速度模塑成形之部份填充物件和完全填 充物件之間的孔隙度明顯差異(如表3所示)暗示著在灌模期 間產生之孔隙度於最終密實化過程中減小。一成功的最終 密實化作業要求模穴内之漿料在施加最終壓力時是半固體 的。為此之故,需要一夠短的灌模時間。以一24·32 m/s的 中間洗口速度來說,流動模式並非層流且澆口速度沒有高 到足以完全填滿模穴。以一 12· 16 m/s的澆口速度來說,達 到一層流模式,但合金在僅將模穴填充72%之後就固化。 O:\119\119308.DOC -26 - 1299009 剪力對於本發明方法來說扮演著特別重要的角色。相較 於"及低固體比例之情況,含有超高固體比例之聚料的注 射牵涉到固體顆粒間之-連續交互作用,其中包含固體顆 粒相互相對的滑動以及固體顆粒的彈性變形。此等固體顆 粒間的父互作用造成一因到力和碰撞所導致的結構性解離 作用,且造成由因為撞擊和粒間反應而在顆粒間形成鍵結 所導致的結構性聚結作用。很可能剪力和由這些力產生之 熱要對超高固體含量之漿料的SSIM成功與否負責。 _ 超高固體含量之合金漿料的SSIM存在著許多程序問 題,其中包含:i)要產生一半固體漿料所需要的最好液體 量,及Π)要達到此一半固體狀態的必要預熱溫度。整體而 言,一合金之熔化始於超過固相線溫度之時。然而,已知 Mg-Al合金是在一不平衡狀態下固化且依據冷卻速度形成 不同比例的共晶體。因此,無法直接從一平衡相圖找出固 相線溫度。又,Mg-Al合金之一初始熔化(通常發生在42〇 藝 °C )造成更複雜的情況。若該Mg_A1合金的Zn含量高到足以 產生三相區,則會形成三元化合物且可能在一低達363 〇◦ 的溫度就發生初始熔化。 就一Mg-9%Al-l%Zn組合物(AZ91D合金)來說,其固相 線溫度和液相線溫度分別是468。(:和598 °C。在平衡條件 下’共晶體發生於一大約12.7重量百分比A1的組合物。因 此,含有MgnAlu之模塑結構物被視為是處於一不平衡狀 態’且這對於伴隨著固化作用之一大範圍冷卻速率本質上 來說為真。 O:\119\119308.DOC -27- 1299009 要達到一特定液體含量所需要之溫度得以謝氏公式 (Scheil s formula)為基礎進行估算。假設不平衡固化作用 (其轉化成可忽略的固態擴散)、且假設液體完美混合,得 出固體比例fs為: fS=l_{(Tm-T)/miCG}-i/〇-k) (方程式2) 其中Tm是純組份之熔點,叫是液相線之斜率,k是分配係 數,且C〇是合金組成含量。圖9為一顯示出一 AZ91D合金 内之溫度與固體比例的關係圖。 理論計算預測出以64%之最大固體比例為球形顆粒的隨 機堆疊極限,且即使是稍微偏離球形也會使此極限降低。 然而,從前文所述結果指示出對AZ91D合金來說,模塑物 件内之原為液體的量明顯低於理論堆疊極限。事實上,其 僅略兩於一般從Mg-9%A1合金觀察到之12.4%共晶體容積 比例。咸信此現象係肇因於由在三重接頭處以及.Mg/a_ Mg晶粒邊界之7相熔化所導致之再結晶化合金碎屑的等 軸晶粒前驅物逐漸生成近似球狀形式。在緩慢固化過程 中,球狀形式回到一等軸晶粒結構。 由超高固體含量漿料射出成形之物件的微結構與由低固 體含量和中等固體含量之漿料獲得的有實質差異。以前述 Mg合金來說,超高的固體含量造成一種微結構,其主要 是由原為液體之一轉變產物互連的初級a-Mg之球狀顆粒, 其中初級a-Mg實際上佔用了模塑物件的整個容積,且由次 級a-Mg及γ相之一混合物形成的共晶體僅沿著顆粒邊界以 及三重接頭處分佈。此微結構是細粒的,一 a-Mg顆粒之平 O:\119\119308.DOC -28- 1299009 齡 / 肖直徑^約是4G _ ’這比__般從含有观固體之聚料觀 察所得运小。 如圖8所示,合金漿料在射出成形裝置10料筒部分21内 短暫0夺間對於控制粒徑具有決定性。漿料在高溫且 同時處於固態時的短暫滯留防止跟在再結晶作用後的晶粒 成長。因為沒有有效的阻斷劑能阻礙Mg_9%Ai_i%Zn合金 内之曰曰粒邊界遷移,若將其長時間留在高溫則會讓晶粒輕 I 易成長。 固體顆粒亦⑨在懸浮於—液體合金内的同時成長。滞留 在射出成形裝置10料筒部分12内之半固體合金漿料經過藉 由聚、、、口機轉和奥斯I熟成(〇stwald H^ning)使固體顆粒加 粗。聚結作用定義為在兩個小顆粒接觸之後幾乎瞬時形成 大顆粒。奥斯瓦熟成受吉布斯_湯瑪斯效應(Gibbs_ Th〇mpson effeet)掌控,後者為藉以因顆粒_母質(液體)界 面處之濃度梯度而發生晶粒成長的機轉。界面之曲率造成 # /辰度梯度,後者驅使材料擴散性運輸。然而,咸信本發明 方法之短暫滯留時間(其減輕擴散效應)會削弱奥斯瓦熟成 的角色重要性。因此,在顆粒加粗作用背後的主導機轉咸 信是聚結作用。 在上述微結構分析當中有一有趣的發現是模塑物件内的 固體含量低於澆道。特定言之,就模塑物件之一近表面區 域來說,會觀察到固體含量以離模具澆口之距離之一函數 單調遞減。雖然能用因為固體Mg密度(1.81 g/crn3)與液體 Mg密度(1.59 g/cm3)之差異所造成的流動行為變化解釋橫 O:\119\119308.DOC -29. 1299009 . 截面離析,比起澆道而在物件内觀察到的較低平均固體含 量暗示著可能以另一機轉較為適宜。 液相之一離析作用經常能在固體晶粒實質偏離一球狀形 式之時或是固體比例為大之時觀察到。在此等情況下,固 體晶粒不會隨液體一起移動,而是液體大致相對於固體晶 粒移動。然而,無法完全採取此說法來解釋由超高固體含 量之漿料模塑成形之物件的微結構,因為觀察所得物件特 性對用來模造該物件之螺桿速度有相依性。代之為咸信是 籲 在超咼固體含1之漿料移動通過澆口以及在模穴内之運動 所導致的剪力產生有助於合金熔化的熱。若無剪力存在, 咸信是不可能完全填滿模穴的。 以上所述實例係利用一幾何形狀和尺寸是針對其他程序 最佳化之現有澆注系統加工處理製得。一短灌模時間和一 高螺桿速度的要求指*出可冑現有的洗注系統修改為進行 以超高固體含量合金漿料射出成形高品質物件之作業,其 • +包含刪除豎淹注口部分34,此部分是-個阻礙漿料快速 輸送至澆口部分38的障礙物。另一個可能作法是加大澆口 尺寸。 儘管以上已就當今吾人認為是較佳的實施例說明本發 明,應了解到本發明並不侷限於已揭示的實施例。相反 地’本發时望涵蓋在本案申請專利範圍之精神和範圍内 的各樣修改和等效排列。以下申請專利範圍項之範圍是以 最廣義的解釋方式界定以便涵蓋所有此等修改及等效結構 物和功能。
O:\119\119308.DOC -30- 1299009 【圖式簡單說明】 更輕易瞭解 圖1簡略繪出一用於 成形裝 置; 於一本發明實施例中之射出 圖2為一緣出在處理 料 枉甲,口者圖1射出成形裝置之 湾#分的溫度分佈標繪圖; 圖3為一緣出一射出成形物件之細部的剖面圖; #圖a為依據本發明_實施例模塑之離合器殼體的平面 簡圖’且圖4b為一模塑離合器殼體的透視圖; 圖5為-依據本發明一實施例模塑之物件的X光繞射圖; 圖6a和6b為依據本發明一實施例模塑之物件的微結構光 學顯微照片; 圖7為一以一依據本發明一實施例模塑之物件之表面的 距離之函數表現的初級固體顆粒分佈曲線圖; 圖8為以一粒徑函數表現的初級固體顆粒尺寸分佈曲線 圖;且 圖9為有關以一溫度函數表現之一鎂合金内固體比例的 曲線圖。 【圖式代表符號說明】 10 射出成形裝置 12 料筒部分 12a 料筒頭部分 14 電阻式加熱器
O:\119\119308.DOC -31 - 1299009
16 喷嘴部分 18 給料器部分 20 旋轉傳動部分 22 可縮回螺桿部分 24 模具 24a, 24b 模具之區段 26 止回閥 28 注射物容納部分 30 模爽部分 32 豎澆注口支柱部分 34 豎澆注口 36 澆道部分 38 澆口部分 40 零件部分 42 離合器殼體 44 厚壁型肋件區段 46 薄壁型平板區段 O:\119\119308.DOC -32-

Claims (1)

  1. Ι29%)(ΘΘ〇8114號專利申請案 中文申請專利範圍替換本年3月 十、申請專利範圍: 1 · 一種射出成形物件,以下列步驟製得: 加熱一合金以產生一固體含量在60%至85%範圍内之 半固體漿料; 經由一澆口部分,注射該漿料,該澆口部分具有一繞 口速度及一可產生紊流之澆口幾何形狀,藉此該漿料在 奮流狀恶下注入一模具内,該澆口速度以少於0 05秒之 丨 下足以實質上填滿該模具;且 在遠浆料已被注入該模具内後,將該漿料密實化,其 中忒漿料密實化過程中係在一半固體狀態下; 該紊流狀態有助於將該漿料加熱之剪力,並藉此延遲 固化之開始,使該模具被完全注滿; /、中忒射出成形物件包含一含有較少初級固體之貧化 表面區’该貧化表面區的厚度大約是400 μηι。 2.如申明專利乾圍第丄項之射出成形物件,其中該合金為 一種鎂基合金之碎屬。 如:明專利範圍第1項之射出成形物件,其中該物件之 微、“冓主要以藉由固化共晶體材料互連之初級固體的 求幵/顆粒、、且成,且其巾該微結構沒有—樹狀相。 119308-970307.doc
TW096108114A 2002-06-13 2003-05-20 Injection-molded article TWI299009B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/167,478 US6892790B2 (en) 2002-06-13 2002-06-13 Process for injection molding semi-solid alloys

Publications (2)

Publication Number Publication Date
TW200726547A TW200726547A (en) 2007-07-16
TWI299009B true TWI299009B (en) 2008-07-21

Family

ID=29732201

Family Applications (2)

Application Number Title Priority Date Filing Date
TW092113593A TWI309199B (en) 2002-06-13 2003-05-20 Process for injection molding semi-solid alloys
TW096108114A TWI299009B (en) 2002-06-13 2003-05-20 Injection-molded article

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW092113593A TWI309199B (en) 2002-06-13 2003-05-20 Process for injection molding semi-solid alloys

Country Status (16)

Country Link
US (2) US6892790B2 (zh)
EP (1) EP1515814B1 (zh)
JP (1) JP2005536351A (zh)
KR (1) KR100661447B1 (zh)
CN (1) CN1305609C (zh)
AT (1) ATE387977T1 (zh)
AU (1) AU2003223800B2 (zh)
BR (1) BR0311742A (zh)
CA (1) CA2485828C (zh)
DE (1) DE60319533T2 (zh)
HK (1) HK1080028B (zh)
IL (1) IL165205A0 (zh)
MX (1) MXPA04012275A (zh)
RU (1) RU2288071C2 (zh)
TW (2) TWI309199B (zh)
WO (1) WO2003106075A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892790B2 (en) * 2002-06-13 2005-05-17 Husky Injection Molding Systems Ltd. Process for injection molding semi-solid alloys
US7255151B2 (en) * 2004-11-10 2007-08-14 Husky Injection Molding Systems Ltd. Near liquidus injection molding process
US7509993B1 (en) * 2005-08-13 2009-03-31 Wisconsin Alumni Research Foundation Semi-solid forming of metal-matrix nanocomposites
PL1957221T3 (pl) 2005-11-10 2012-07-31 Magontec Gmbh Kombinacja sposobu odlewania i kompozycji stopów dająca części odlewnicze o udoskonalonej kombinacji cech pełzania w podwyższonych temperaturach, ciągliwości i osiągach korozyjnych
US20070131375A1 (en) 2005-12-09 2007-06-14 Husky Injection Molding Systems Ltd. Thixo-molding shot located downstream of blockage
US7449663B2 (en) 2006-08-16 2008-11-11 Itherm Technologies, L.P. Inductive heating apparatus and method
NO20063703L (no) * 2006-08-18 2008-02-19 Magontec Gmbh Magnesium stopeprosess og legeringssammensetning
US20080295989A1 (en) * 2007-05-30 2008-12-04 Husky Injection Molding Systems Ltd. Near-Liquidus Rheomolding of Injectable Alloy
CN102159346A (zh) * 2008-09-17 2011-08-17 库欧聚合物公司 多组分金属注射模制
KR101854356B1 (ko) 2010-02-05 2018-05-03 틱소매트 인코포레이티드 정제된 입자 구조를 가진 가공 원료 형성 방법 및 장치
WO2014041569A1 (en) * 2012-09-12 2014-03-20 Aluminio Tecno Industriales Orinoco C.A. Process and plant for producing components made of an aluminium alloy for vehicles and white goods, and components obtained thereby
US8813816B2 (en) 2012-09-27 2014-08-26 Apple Inc. Methods of melting and introducing amorphous alloy feedstock for casting or processing
KR102090073B1 (ko) 2015-07-13 2020-03-17 엔테그리스, 아이엔씨. 격납이 향상된 기재 용기
CN107604193B (zh) * 2017-08-28 2019-01-18 华中科技大学 一种纳米颗粒增强铝基复合材料的成形方法
CN207431212U (zh) * 2017-10-09 2018-06-01 广东伊之密精密机械股份有限公司 多工位注射的半固态注射成型机
CN113649541B (zh) * 2021-07-19 2023-12-22 浙江华朔科技股份有限公司 一种新能源汽车电机壳体的多级变速压铸成型方法
CN117259711B (zh) * 2023-10-13 2024-06-11 伯乐智能装备股份有限公司 一种制备异构半固态组织镁合金的成型工艺

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229210A (en) * 1977-12-12 1980-10-21 Olin Corporation Method for the preparation of thixotropic slurries
US4771818A (en) * 1979-12-14 1988-09-20 Alumax Inc. Process of shaping a metal alloy product
US4694882A (en) * 1981-12-01 1987-09-22 The Dow Chemical Company Method for making thixotropic materials
US5040589A (en) * 1989-02-10 1991-08-20 The Dow Chemical Company Method and apparatus for the injection molding of metal alloys
JP3612092B2 (ja) * 1994-09-07 2005-01-19 株式会社日立製作所 Dnaの分離・分取法及びその解析法
US5900080A (en) * 1994-11-07 1999-05-04 Reynolds Wheels International. Ltd Thixotropic forming process for wheels fashioned in rheocast metal alloy and fitted with pneumatic tires
EP0733421B1 (en) * 1995-03-22 2000-09-06 Hitachi Metals, Ltd. Die casting method
JP3475707B2 (ja) * 1997-03-27 2003-12-08 マツダ株式会社 金属の半溶融射出成形方法及びその装置
US6564856B1 (en) 1997-10-20 2003-05-20 Chipless Metals Llc Method of making precision castings using thixotropic materials
JP3494020B2 (ja) * 1998-07-03 2004-02-03 マツダ株式会社 金属の半溶融射出成形方法及びその装置
US6321824B1 (en) * 1998-12-01 2001-11-27 Moen Incorporated Fabrication of zinc objects by dual phase casting
US6428636B2 (en) * 1999-07-26 2002-08-06 Alcan International, Ltd. Semi-solid concentration processing of metallic alloys
JP3603706B2 (ja) * 1999-12-03 2004-12-22 株式会社日立製作所 高強度Mg基合金とMg基鋳造合金及び物品
JP2001357835A (ja) * 2000-06-14 2001-12-26 Yazaki Corp バッテリ用ターミナルの接続構造
US6892790B2 (en) * 2002-06-13 2005-05-17 Husky Injection Molding Systems Ltd. Process for injection molding semi-solid alloys

Also Published As

Publication number Publication date
RU2288071C2 (ru) 2006-11-27
US7469738B2 (en) 2008-12-30
ATE387977T1 (de) 2008-03-15
TWI309199B (en) 2009-05-01
JP2005536351A (ja) 2005-12-02
DE60319533D1 (zh) 2008-04-17
AU2003223800A1 (en) 2003-12-31
EP1515814B1 (en) 2008-03-05
KR20050005558A (ko) 2005-01-13
US20030230392A1 (en) 2003-12-18
AU2003223800B2 (en) 2008-04-17
HK1080028A1 (en) 2006-04-21
TW200404663A (en) 2004-04-01
HK1080028B (zh) 2007-10-12
CA2485828A1 (en) 2003-12-24
WO2003106075A1 (en) 2003-12-24
CA2485828C (en) 2008-09-16
BR0311742A (pt) 2005-03-08
KR100661447B1 (ko) 2006-12-27
US20050155736A1 (en) 2005-07-21
TW200726547A (en) 2007-07-16
CN1305609C (zh) 2007-03-21
CN1658988A (zh) 2005-08-24
MXPA04012275A (es) 2005-04-08
DE60319533T2 (de) 2009-04-02
EP1515814A1 (en) 2005-03-23
US6892790B2 (en) 2005-05-17
IL165205A0 (en) 2005-12-18
RU2005100504A (ru) 2005-07-20

Similar Documents

Publication Publication Date Title
TWI299009B (en) Injection-molded article
TWI307368B (en) Near liquidus injection molding process
JP4382152B1 (ja) 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物
Murali et al. Liquid forging of thin Al–Si structures
Czerwinski The processing phenomena of semisolid Mg–9% Al–1% Zn alloy at ultra high contents of the unmelted phase
JP2004223608A (ja) 球状黒鉛鋳鉄の金型鋳造方法
Wessén et al. The RSF technology–a possible breakthrough for semi-solid casting processes
JP3246358B2 (ja) 半溶融金属の成形方法
JP3551121B2 (ja) 軽金属成形材の製造方法
Czerwinski Assessing capabilities of Thixomolding system in semisolid processing of magnesium alloys
JP2003126950A (ja) 半溶融金属の成形方法
JP4667711B2 (ja) 金属組成物の形成方法
Czerwinski et al. Semisolid extrusion molding
Czerwinski Injection molding magnesium alloys
TW593689B (en) Method for fabricating thixotropic feedstock materials
JPH10156508A (ja) 溶融金属の成形方法
TW201325768A (zh) 製造鎂基複合材料及其擠製管材的方法
JP2004174569A (ja) 高圧鋳造用溶湯保留部材および金型、ならびに高圧鋳造方法
JPH11104802A (ja) 中空軽金属合金部材の射出成形用中子およびそれを用いる半溶融射出成形法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees