TW482833B - Single crystal SiC and a method of producing the same - Google Patents
Single crystal SiC and a method of producing the same Download PDFInfo
- Publication number
- TW482833B TW482833B TW087110981A TW87110981A TW482833B TW 482833 B TW482833 B TW 482833B TW 087110981 A TW087110981 A TW 087110981A TW 87110981 A TW87110981 A TW 87110981A TW 482833 B TW482833 B TW 482833B
- Authority
- TW
- Taiwan
- Prior art keywords
- single crystal
- polycrystalline plate
- patent application
- polycrystalline
- vapor deposition
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000000758 substrate Substances 0.000 claims description 33
- 229910018540 Si C Inorganic materials 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 9
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 5
- 125000004429 atom Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 230000002079 cooperative effect Effects 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 230000007547 defect Effects 0.000 abstract description 23
- 239000000463 material Substances 0.000 abstract description 13
- 239000012535 impurity Substances 0.000 abstract description 5
- 238000002230 thermal chemical vapour deposition Methods 0.000 abstract 1
- 102000029749 Microtubule Human genes 0.000 description 10
- 108091022875 Microtubule Proteins 0.000 description 10
- 210000004688 microtubule Anatomy 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 9
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- -1 0 · 1 Torr Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/02—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Description
482833 A7 B7 五、發明説明(彳) 本發明係有單結晶碳化矽及其製造方法者,更詳細者 係有關做爲發光二極管,ULSI (超大型集成電路), 整流元素,開關元素,放大元素,光傳感器等之高溫半導 體電子元素之基板晶圓等所使用之單結晶S i C及其製造 方法者。 先行技術中,S i C (碳化矽)比S i (矽),
GaAs (鎵砷)等之既存半導體材料不僅耐熱性及機械 性強度較佳之外,高溫特性,高周波特性,耐壓特性,耐 環境特性亦佳,更藉由不純物之添加後,容易控制電子, 正孔之價電子,且具有廣範圍禁止帶幅(即6 Η型之 S i C單結晶約3 · 0 e V,4Η型之S i C單結晶 3· 26 eV)因此做爲新一代之Power Device用半導體 材料被重視,且被期待之。 而做爲此種S i C單結晶之製造方法者,先行技術中 ,藉由使用種結晶之昇華再結晶法製造S i C單結晶之方 法與高溫度時於矽基板上使用化學氣相成長法(CVD法 )後使外延成長後製造立方晶之S i C單結晶(冷一 SiC)之方法爲公知者。 惟,上述之先行技術之製造方法不僅共同結晶成長速 度爲l#m/hr ,之極低速者,而昇華再結晶法時,製 造被稱爲微管缺陷之半導體device時存在於造成漏電流等 原因之結晶貫穿成長方向之直徑數微米之針孔爲1 〇 0〜 1 0 0 0 / c m 2之成長結晶之問題點’此乃如上所述,相 較Si ,GaAs等之既存半導體材料後,具有極多優點 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (讀先閲讀背面之注意事項再填寫本頁) 訂 争· 482833 A7 __ B7 五、發明説明(2 ) 特徵,卻阻礙其實用化之重要因素。 又,高溫C V D法時,除基板溫度高至1 7 0 0〜 1 9 0 0°C之外,尙需具備高純度之還原性氣分,設備極 爲困難,更且,爲了外延成長其成長速度亦受限等問題出 現。 本發明鑑於上述之先行技術之問題,因此以提供一可簡 單有效製造晶格缺陷及微管缺陷幾乎未受影響之極高品質 之單結晶S i C與由作業面,設備面視其高品質單結晶 S i C均容易者,可促進做爲半導體材料之實用化之單結 晶S i C之製造方法者爲其目的者。 本發明之單結晶S i C係於S i C單結晶基材之表面 藉由s i原子與C原子組成1 〇//m以上之厚度之多結晶 板合成後形成複合體經熱處理後,使該多結晶板之多結晶 體變換成單結晶者爲其特徵。 如此組成之本發明不僅S i C單結晶基材及其表面所 合成之多結晶板組成之複合體經熱處理之設備面,作業面 方法均極爲簡單,使多結晶板之多結晶體轉變後其結晶可 有效與S i C單結晶基材之結晶軸同方位配向之單結晶充 份成長之。且,複合體中多結晶板之厚度做成1 〇 /zm以 上後,於S i C單結晶基材表面附近即使殘留造成妨礙多 結晶板側之多結晶體之單結晶化原因之微管缺陷,仍不致 影響其缺陷可使單結晶變大成長之。因此,微管缺陷,幾 無影響其缺陷者可取得高品質之單結晶S i C者。因此, 比起Si (矽),GaAs (鎵砷)等既存半導體材料其 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) — ll· —----·——— ——1TL-----Φ. (請先閲讀背面之注意事項再填寫本頁) 482833 A 7 B7 五、發明説明(3 ) 較佳之高溫特性,高周波特性,耐壓特性,耐環境特性等 可做爲Power Device用半導體材料可有效促進單結晶 S i C之實用化者。 又,本發明之單結晶S i C之製造方法係於S i C單 結晶基材之表面上由S i原子與C原子組成1 〇#m以上 厚度之多結晶板經合成後,使其複合體熱處理後將該多結 晶板之多結晶體變換成單結晶育成者爲其特徵者。 此製造方法亦幾無微管缺陷不造成任何缺陷影響簡單 取得高品質單結晶S i C,且有效成長後,可做爲性能極 優異之半導體材料之可利用之單結晶S i C於工業規模安 定性佳被製造後可有效供給之。 麫浐部中呔^.準h消费合作扣印繁 (請先閱讀背面之注意事項再填寫本頁) 又,本發明之單結晶S i C及單結晶S i C之製造方 法中,將形成複合體之多結晶板於S i C單結晶基材表面 藉由物理性蒸鍍法或熱化學性蒸鍍法後做成被成膜之点-S i C多結晶板之同時,將此々一 S i C多結晶板之熱化 學性蒸鍍溫度設定爲13 0 0〜1 6 0 0°C之範圍時,可 控制S i C單結晶基材及其表面之多結晶板間不純物之涉 入,或其不純物之擴散,比S i C單結晶基材更少不純物 或晶格缺陷之高純度,高品質之單結晶S i C可有效取得 〇 〔圖面之簡單說明〕 圖1係代表本發明之單結晶S i C之熱處理前複合體 之模式圖,圖2係代表擴大單結晶S i C之熱處理前重要 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 482833 五、發明說明(4)銳儿29 部位之圖,圖3係代表擴大單結晶S i C之熱處理後重要 部位之圖者。 (請先閱讀背面之注意事項再填寫本頁) 符號說明 1 α - S 1 C單結晶基材 . 2 /3 — SiC多結晶板 3 界面 4 多結晶體 5 單結晶 以下說明有關實施例。圖1係代表單結晶S i C熱處 理前複合體Μ之模式圖者,因此,此複合體μ係於六方晶 系(6Η型,4Η型)之a — SiC單結晶基材1之表面 卜-藉由高周波磁控管,濺射法(以下稱P V D法)或 1 3 0 0〜1 6 0 0 t之溫度範圍下熱化學性蒸鍍法(以 下稱C V D法)後,以1 〇 // m以上厚度(t )之立方晶 經濟部智慧財產局員工消費合作社印製 系/3 — S 1 C多結晶板2成膜後被形成之,此/3 — S i C 多結晶板2之成膜階段中,藉由圖2之顯微鏡淸楚顯示截 面腐蝕照片,於殘存晶格缺陷及微管缺陷之α - S i C單 結晶基材1之表面上Θ - S i C多結晶板2之多結晶體4 被成長後,α — S 1 C單結晶基材1與/3 — S i C多結晶 板2相互不同結晶面接合之結晶形態呈現直線狀淸楚界面 3。 · 此外,、將該複合體Μ全體於1 6 0 〇〜2 4 0 0°C, 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 482833 五、發明說明(5 / …、s、S.] 較佳者爲2 0 0 0〜2 2 0 〇°C之溫度範圍下,且於 S i C飽和蒸氣壓中藉由熱處理後,於該界面3引起晶格 振動後改變原子間配列之固相成長做爲主體產生結晶成長 ’因此’藉由圖3之顯微鏡淸楚顯不截面腐餓照片,該yg 一 S i C多結晶板2之多結晶體4變相爲α — S i C後於 該万—S i C多結晶板2與該α — S i C單結晶基材1之 結晶軸同方位配向之單結晶5與α — θ i C單結晶基材1 側之單結晶成整體化育成之。 .而,該複合體Μ中於形成該界面3之α - S i C單結 晶基材1之表面附近分散著針孔狀之微管缺陷,存在此微 管缺陷個處上伴隨上述之熱處理之/3 — S i C多結晶板2 側之多結晶體4與α — S i C單結晶基材1之結晶軸同方 位配向之該基材1側之單結晶成整體成長之單結晶5無法 充份成長,或即使成長於該界面3附近,具體而言,由界 面3至未滿.1 0 /zm之厚度範圍L中殘存影響其微管缺陷 及其被影響之缺陷,含此缺陷之單結晶S i C者其品質爲 極不良者。 針對此點考量,本發明該複合體Μ中α — S i C單結 晶基材1之表面使Θ - S i C多結晶板2爲1 〇 # m以上 厚度(t )之成膜。因此,除上述殘存缺陷之範圍L以外 之範圍L 1之/3 - S 1 C多結晶板2側之微管缺陷或其被 影響者完全不存在使單結晶5可充份成長,藉由使用此範 圍L 1之單結晶5後可取得高品質之單結晶S i C。· 亦即,.本申請人如以下所述方法所製造之單結晶 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) -------------1 (請先閱讀背面之注意事項再填寫本頁) 訂j------鍊▲ 經濟部智慧財產局員工消費合作社印制农 -8 - 482833 A7 B7 年月 ^——_zizrj 五、發明說明(6 ) S i C之試料進行如下之實驗。 (請先閱讀背面之注意事項再填寫本頁) 即,使用高周波磁控管,濺射裝置後,以/3 - S i C 材做爲α — S i C單結晶基材1表面之目標,於氬(A r )氣,Ο · lT〇r r,基材溫度600 t下進行累計 2 0小時之成膜。再置入CVD — S i C附蓋坩堝中維持 S i C飽和蒸氣壓同時於2 2 0 0°C下進行5小時熱處理 ,使濺射之/3 - S i C多結晶板側之表面輕輕硏磨之同時 以氫氧化鉀(K〇Η )與紅血鹽之混合溶液煮沸後使表面 腐融。之後,其表面以normal squee干擾顯微鏡放大4 0 0 倍觀察後,完全未出現結晶粒界。 又,如上所製造之單結晶S i C試料係利用X線反射 裝置藉由結晶後進行X線之折射,測定橫軸爲2 0,縱軸 做爲折射強度之折射模型。其結果,C u Κ α線2 Θ爲 4 0〜7 0 °間以等間隔出現折射強度之波尖。由此可確 定如上所製造之單結晶S i C試料之組成原子爲有規則並 排之單結晶者。 經濟部智慧財產局員工消費合作社印制衣 另外,做爲S 1 C單結晶基材者,該實施例中係使用 α — S i C單結晶基材1 ,除此之外,亦可使用如:^ 一 s i C煅燒體,0 — s i C單結晶體等等,又,做爲多結 晶板者,該實施例中藉由P V D法或熱c V D法後使用於 α — S i C單結晶基材1之表面上成膜之石一 s i C結晶 板2 ,除此之外,亦可使用如:α - S i C多結晶板,高 純度之S 1 C煅燒體,高純度(1 〇 1 4 atm / c m 3 )以下 之非晶質板、,可取得與該實施例相同之高品質單結晶 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -9- 482833 89. 3. 修正 月a 補充 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(7) S 1 C 者。 又,該實施例中,做爲α — S i C單結晶基材1者’ 亦可使用型,4H型任一均可,使用6H型時,由伴 隨熱處理後之/5 - S i C多結晶板2之多結晶體轉換成α - S i C之單結晶易與6 Η型之單結晶同形態者育成之’ 又,使用4 Η型之單結晶基材1時,易與伴隨熱處理後之 其4 Η型之單結晶同形態之單結晶轉化育成之。 更且,做爲該複合體Μ之熱處理溫度條件者’以 1 6 50〜2400 °C,處理時間爲1〜3小時者宜。若 ,熱處理溫度小於1 6 5 0 °C時,則形成原子運動能之界 面無法供與多量之S 1 C。反之,大於2 4 0 0 °C則 S i C之分解能遠大於熱能之供給,S i C之結晶被分解 之。 又,本申請內容之開示係均被載於1 9 9 7年6月 2 5日申請之特願平9 一 2〇7 0 3 9號明細書,主題, 圖面及摘要文中。 如以上所述,本發明係於S i C單結晶基材之表面上 藉由S i原子與C原子組成之1 〇 m以上多結晶板經合 成後形成之複合體熱處理後,與將多結晶板多結晶體變換 爲單結晶之S i C單結晶基材之結晶軸同方位配向之單結 晶成整體大型成長後,不僅具優異之耐熱性,及機械性強 度,更不影響微管缺陷及其他缺陷可有效製造高品質之單 結晶S i C之高超技術者。 · 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 11 —-------AKW-------tr—^------線 (請先閱讀背面之注意事項再填寫本頁) -10-
Claims (1)
- 482833 A8 B8 d- Λ.a. D8 六、申請專利範圍Ll' 4 第87 1 1 098 1號專利申請案 中文申請專利範圍修正本 (請先閱讀背面之注意事項再填寫本頁) 民國89年3月修正 1 •一種單結晶S 1 C,其特徵係於α 一 s i C單結 晶所成的S i C單結晶基材的表面上,由s i原子以及C 原子所構成,且於S i C單結晶基材的表面以物理蒸鍍法 、或1 3 0 0至1 6 0 0 °C範圍的熱化學蒸鍍法成 1 〇#m以上厚度的膜之非晶質或yS — S i C多結晶板, 將此疊層成的複合體進行熱處理後,使上述多結晶板之多 結晶體變換而結單結晶S i C。 2 · —種單結晶S i C的製造方法,其特徵係於使用 α 一 S 1 C單結晶所成的S i C單結晶基材表面上,疊層 1〇m以上厚度的A - S i C多結晶板後,此疊層的複 合體於比形成/5 - S 1 C多結晶板時較高溫度之1 6 5 0 至2 4 0 0°C下,且於S i C飽和蒸氣壓中進行熱處理, 使上述多結晶板的多結晶轉換結晶成單結晶者。 經濟部智慧財產局員工消費合作社印製 3 ·如申請專利範圍第2項的單結晶s i C的製造方 法,其中/3 — S i C多結晶板係,由上述s i C單結晶基 材表面上,以物理蒸鍍法或熱化學蒸鍍法進行成膜者。 4 ·如申請專利範圍第3項的單結晶s i C的製造方 法,其中/3 — S i C多結晶板係,由1300至〜 1 6 0 0 °C範圍的熱化學蒸鍍法進行上述s i C單結晶基 材之表面上成膜者。 - 5 ·如<申請專利範圍第2項的單結晶s i C的製造方 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公爱) 482833 A8 B8 C8 D8 t、申請專利範圍法,其中上述複合體的熱處理溫度爲2 Ο Ο 0至 2 2〇〇°C者。 • I -τ — I. I I — I ί I I I I I I I I I-tTL « — — — — — — I— . (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -2 -
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9207039A JP3003027B2 (ja) | 1997-06-25 | 1997-06-25 | 単結晶SiCおよびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW482833B true TW482833B (en) | 2002-04-11 |
Family
ID=16533201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW087110981A TW482833B (en) | 1997-06-25 | 1998-07-07 | Single crystal SiC and a method of producing the same |
Country Status (9)
Country | Link |
---|---|
US (1) | US6217842B1 (zh) |
EP (1) | EP0926271A4 (zh) |
JP (1) | JP3003027B2 (zh) |
KR (1) | KR100287793B1 (zh) |
CN (1) | CN1163640C (zh) |
CA (1) | CA2263352C (zh) |
RU (1) | RU2160328C1 (zh) |
TW (1) | TW482833B (zh) |
WO (1) | WO1998059099A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8384090B2 (en) | 2004-10-04 | 2013-02-26 | Cree, Inc. | Low 1C screw dislocation 3 inch silicon carbide wafer |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3296998B2 (ja) * | 1997-05-23 | 2002-07-02 | 日本ピラー工業株式会社 | 単結晶SiCおよびその製造方法 |
CA2263339C (en) * | 1997-06-27 | 2002-07-23 | Kichiya Tanino | Single crystal sic and process for preparing the same |
DE69930266T2 (de) * | 1999-07-30 | 2006-11-30 | Nissin Electric Co., Ltd. | Material zum ziehen von sic-einkristallen und verfahren zur herstellung von sic-einkristallen |
US7527869B2 (en) | 2001-06-04 | 2009-05-05 | Kwansei Gakuin Educational Foundation | Single crystal silicon carbide and method for producing the same |
US8202621B2 (en) * | 2001-09-22 | 2012-06-19 | Rohm And Haas Company | Opaque low resistivity silicon carbide |
US6814801B2 (en) * | 2002-06-24 | 2004-11-09 | Cree, Inc. | Method for producing semi-insulating resistivity in high purity silicon carbide crystals |
US7175704B2 (en) * | 2002-06-27 | 2007-02-13 | Diamond Innovations, Inc. | Method for reducing defect concentrations in crystals |
DE10328842B4 (de) * | 2003-06-26 | 2007-03-01 | Siltronic Ag | Suszeptor für eine chemische Gasphasenabscheidung, Verfahren zur Bearbeitung einer Halbleiterscheibe durch chemische Gasphasenabscheidung und nach dem Verfahren bearbeitete Halbleiterscheibe |
US7202181B2 (en) * | 2004-03-26 | 2007-04-10 | Cres, Inc. | Etching of substrates of light emitting devices |
US7563321B2 (en) * | 2004-12-08 | 2009-07-21 | Cree, Inc. | Process for producing high quality large size silicon carbide crystals |
JP4293165B2 (ja) * | 2005-06-23 | 2009-07-08 | 住友電気工業株式会社 | 炭化ケイ素基板の表面再構成方法 |
US8088222B2 (en) * | 2007-07-27 | 2012-01-03 | Widetronix Inc. | Method, system, and apparatus for the growth of on-axis SiC and similar semiconductor materials |
CN102534805B (zh) * | 2010-12-14 | 2014-08-06 | 北京天科合达蓝光半导体有限公司 | 一种碳化硅晶体退火工艺 |
JP6544166B2 (ja) * | 2015-09-14 | 2019-07-17 | 信越化学工業株式会社 | SiC複合基板の製造方法 |
JP6515757B2 (ja) * | 2015-09-15 | 2019-05-22 | 信越化学工業株式会社 | SiC複合基板の製造方法 |
JP2019151896A (ja) * | 2018-03-05 | 2019-09-12 | 日本特殊陶業株式会社 | SiC部材及びこれからなる基板保持部材並びにこれらの製造方法 |
JP7255473B2 (ja) * | 2019-12-13 | 2023-04-11 | 住友金属鉱山株式会社 | 炭化ケイ素多結晶基板の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4590130A (en) * | 1984-03-26 | 1986-05-20 | General Electric Company | Solid state zone recrystallization of semiconductor material on an insulator |
JP3296998B2 (ja) * | 1997-05-23 | 2002-07-02 | 日本ピラー工業株式会社 | 単結晶SiCおよびその製造方法 |
CA2263339C (en) * | 1997-06-27 | 2002-07-23 | Kichiya Tanino | Single crystal sic and process for preparing the same |
JP2884085B1 (ja) * | 1998-04-13 | 1999-04-19 | 日本ピラー工業株式会社 | 単結晶SiCおよびその製造方法 |
-
1997
- 1997-06-25 JP JP9207039A patent/JP3003027B2/ja not_active Expired - Fee Related
-
1998
- 1998-06-23 CA CA002263352A patent/CA2263352C/en not_active Expired - Fee Related
- 1998-06-23 EP EP98928637A patent/EP0926271A4/en not_active Withdrawn
- 1998-06-23 CN CNB988008777A patent/CN1163640C/zh not_active Expired - Fee Related
- 1998-06-23 WO PCT/JP1998/002797 patent/WO1998059099A1/ja not_active Application Discontinuation
- 1998-06-23 US US09/147,620 patent/US6217842B1/en not_active Expired - Fee Related
- 1998-06-23 RU RU99105847/12A patent/RU2160328C1/ru not_active IP Right Cessation
- 1998-07-07 TW TW087110981A patent/TW482833B/zh active
-
1999
- 1999-02-10 KR KR1019997001109A patent/KR100287793B1/ko not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8384090B2 (en) | 2004-10-04 | 2013-02-26 | Cree, Inc. | Low 1C screw dislocation 3 inch silicon carbide wafer |
US8785946B2 (en) | 2004-10-04 | 2014-07-22 | Cree, Inc. | Low 1C screw dislocation 3 inch silicon carbide wafer |
Also Published As
Publication number | Publication date |
---|---|
RU2160328C1 (ru) | 2000-12-10 |
EP0926271A4 (en) | 2000-08-30 |
JPH1112097A (ja) | 1999-01-19 |
KR100287793B1 (ko) | 2001-04-16 |
CN1229445A (zh) | 1999-09-22 |
JP3003027B2 (ja) | 2000-01-24 |
CA2263352A1 (en) | 1998-12-30 |
KR20000068097A (ko) | 2000-11-25 |
WO1998059099A1 (fr) | 1998-12-30 |
EP0926271A1 (en) | 1999-06-30 |
CN1163640C (zh) | 2004-08-25 |
CA2263352C (en) | 2003-05-06 |
US6217842B1 (en) | 2001-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW482833B (en) | Single crystal SiC and a method of producing the same | |
RU2160327C2 (ru) | МОНОКРИСТАЛЛИЧЕСКИЙ SiC И СПОСОБ ЕГО ПОЛУЧЕНИЯ | |
US4174422A (en) | Growing epitaxial films when the misfit between film and substrate is large | |
TWI330207B (en) | Process for obtaining monocrystalline gallium-containing nitride | |
Narayan et al. | Formation of epitaxial and textured platinum films on ceramics‐(100) MgO single crystals by pulsed laser deposition | |
JPH0791153B2 (ja) | α―SiC単結晶の製造方法 | |
WO1998053125A1 (fr) | Carbure de silicium monocrystallin et son procede de preparation | |
Chaussende et al. | Prospects for 3C-SiC bulk crystal growth | |
Sun et al. | The fabrication of AlN by hydride vapor phase epitaxy | |
JPH09227298A (ja) | 窒化炭素単結晶膜 | |
Jiang et al. | Nucleation and initial growth of diamond film on Si substrate | |
JP3043675B2 (ja) | 単結晶SiC及びその製造方法 | |
EP0672298A1 (en) | Substrates for the growth of 3c-silicon carbide | |
JPH0412096A (ja) | 6h型および4h型炭化珪素単結晶の成長方法 | |
Gao et al. | Microstructure of TiO2 rutile thin films deposited on (110) α− Al2O3 | |
RU2154698C2 (ru) | МОНОКРИСТАЛЛИЧЕСКИЙ SiC И СПОСОБ ЕГО ПОЛУЧЕНИЯ | |
WO1994016125A1 (en) | Process for vapor-phase diamond synthesis | |
JP2917143B1 (ja) | 単結晶SiCおよびその製造方法 | |
JP2896667B1 (ja) | 単結晶SiC及びその製造方法 | |
Zhao et al. | Single crystal titanium carbide, epitaxially grown on zincblend and wurtzite structures of silicon carbide | |
Watanabe et al. | High-speed solution growth of single crystal AlN from Cr-Co-Al solvent | |
JPH1112100A (ja) | 単結晶SiCおよびその製造方法 | |
JP2936481B1 (ja) | 単結晶SiCおよびその製造方法 | |
JPH11315000A (ja) | 単結晶SiCおよびその製造方法 | |
Beresford et al. | Group IVB refractory metal crystals as lattice-matched substrates for growth of the group III nitrides by plasma-source molecular beam epitaxy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |