CN1163640C - 单晶SiC及其制造方法 - Google Patents

单晶SiC及其制造方法 Download PDF

Info

Publication number
CN1163640C
CN1163640C CNB988008777A CN98800877A CN1163640C CN 1163640 C CN1163640 C CN 1163640C CN B988008777 A CNB988008777 A CN B988008777A CN 98800877 A CN98800877 A CN 98800877A CN 1163640 C CN1163640 C CN 1163640C
Authority
CN
China
Prior art keywords
sic
monocrystalline
monocrystal
complex body
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988008777A
Other languages
English (en)
Other versions
CN1229445A (zh
Inventor
��Ұ���
谷野吉弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16533201&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1163640(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Publication of CN1229445A publication Critical patent/CN1229445A/zh
Application granted granted Critical
Publication of CN1163640C publication Critical patent/CN1163640C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Abstract

本发明是在α-SiC单晶基体材料(1)的表面上通过PVD法或热CVD法层叠厚度为10μm以上的β-SiC多晶片(2)构成复合体(M),然后对所形成的复合体(M)在1650~2400℃的温度范围内热处理,使β-SiC多晶片(2)的多晶体相变成为单晶体,生成与α-SiC单晶基体材料(1)的晶轴同方位取向的单晶体。该方法能容易且高效地制造没有微泡缺陷及因受其影响而产生的缺陷的高质量单晶SiC。

Description

单晶SiC及其制造方法
技术领域
本发明涉及单晶SiC及其制造方法,更详细地说,涉及作为发光二极管、ULSL(超大规模集成电路)、整流元件、开关元件、放大元件、光传感器等高温半导体电子元件的衬底晶片等用的单晶SiC及其制造方法。
背景技术
SiC(碳化硅)与Si(硅)或GaAs(砷化镓)等现有的半导体材料相比,不仅耐热性能及机械强度好,而且高温特性、高频特性、耐压特性、耐环境特性等也好,而且通过添加杂质,容易控制电子或空穴的价电子,具有较宽的禁带宽度(顺便提一下,在6H型的SiC单晶的情况下约为3.0eV,在4H型的SiC单晶的情况下为3.26eV),所以作为用于下一代功率器件的半导体材料SiC引人注目,深受期盼。
作为这种SiC单晶的制造(生长)方法,现在已知有:用籽晶通过升华再结晶法生长SiC单晶的方法、以及在高温情况下用化学气相淀积生长法(CVD法)在硅衬底上外延生长得到立方晶系的SiC单晶(β-SiC)的方法。
可是,上述这些现有的制造方法不仅结晶生长速度都非常低,仅为1微米/小时,而且在升华再结晶的情况下,存在这样的问题,即在生长的晶体中存在100-1000/cm2左右的称为微泡(micropipe)的缺陷、沿晶体生长方向贯通的直径达数微米的针孔,这都成为制造半导体器件时产生漏电流的原因。如上所述,与Si或GaAs等现有的半导体材料相比,SiC虽然具有许多优点,但上述问题却成为阻碍其实用化的主要原因。
另外,在高温CVD法的情况下,衬底温度高这1700~1900℃,且需要在高纯度的还原性气氛下操作,设备方面存在很大困难。而且,由于进行外延生长,所以在生长速度方面自然也存在受限制的问题。
发明内容
本发明就是鉴于上述现有技术背景而完成的,其目的在于提供一种晶格缺陷和微泡缺陷等非常少的高质量大型单晶SiC,以及能够制造这样的高质量大型单晶SiC、设备和操作简易、生产率高、能促进半导体材料实用化的单晶SiC的制造方法。
根据本发明的单晶SiC的特征在于:通过在SiC单晶基体材料表面上层叠厚度在10μm以上的由Si原子及C原子构成的多晶片构成复合体,对该复合体进行热处理,使上述多晶片的多晶体相变而成为单晶。
如果采用这样的结构,则不仅能用简易的设备和操作方法对在SiC单晶基体材料表面上层叠多晶片而成的复合体进行热处理,而且能使多晶片的多晶体发生相变而高效地生长成与SiC单晶基体材料的晶轴同方位取向的单晶体。而且由于复合体中多晶片的厚度为10μm以上,在距SiC单晶基体材料很近的地方,即使存在可能会妨碍多晶片一侧多晶体单晶化的微泡缺陷,其影响也很小,能够长成大的单晶体。因此,能够获得微泡缺陷和因受其影响而产生的缺陷非常少的高质量单晶体。因此,与Si(硅)或GaAs(砷化镓)等现有的半导体材料相比,具有以下效果:不仅高温特性、高频特性、耐压特性、耐环境特性等优良,而且能使作为功率器件用半导体材料而受期盼的单晶SiC实用化。
另外,根据本发明的单晶SiC的制造方法,在SiC单基体材料表面上层叠厚度在10μm以上的由Si原子及C原子构成的多晶片后,对该复合体进行热处理,使上述多晶片的多晶体发生相变而生长成单晶。
这样的制造方法具有以下效果:能有效且容易地生长晶格缺陷和因受其影响而产生的缺陷等非常少的高质量的单晶SiC,能以工业规模稳定地制造并供给性能非常好的用作半导体材料的单晶SiC。
另外,在根据本发明的单晶SiC及其制造方法中,在形成复合体的多晶片采用在SiC单晶基体材料的表面上利用物理蒸镀法或热化学蒸镀法成膜的β-SiC多晶片、且将该β-SiC多晶片的热化学蒸镀温度设在1300~1600℃的情况下,能抑制杂质进入SiC单晶基体材料及其表面的多晶片之间,并能抑制该杂质扩散,能获得杂质和晶格缺陷等比SiC单晶基体材料更少的高纯度、高质量的单晶SiC。
附图的简单说明
图1是根据本发明的单晶SiC尚未热处理时的复合体的状态图。
图2是根据本发明的单晶SiC热处理前的主要部分的放大图。
图3是根据本发明的单晶SiC热处理后的主要部分的放大图。
最佳实施方案
以下说明第一实施例。图1示意地示出单晶SiC在热处理之前的复合体M的状态图。该复合体M是通过在六方晶系(6H型、4H型)的α-SiC单晶基体材料1表面上形成厚度(t)为10μm以上的立方晶系的β-SiC多晶片2得到的,且该多晶片2是通过高频磁控溅射法(下称PVD法)或1300~1600℃的热化学蒸镀法(下称热CVD法)形成。在该β~SiC多晶片2的成膜阶段,图2所示的显微镜断面腐蚀观察表明,在α-SiC单晶基体材料1的表面上残余着晶格缺陷和微泡缺陷,并且多晶片2的多晶体4在该表面上生长,α-SiC单晶基体材料1和β-SiC多晶片2的结合状态不同的表面相接触,形成呈直线状的明显界面3。
此后,在1600-2400℃(最好是2000~2200℃)的温度范围内,且在SiC饱和蒸汽压下热处理,使得在上述界面3上引起晶格振动,发生以改变原子之间排列的固相生长为主的晶体生长,图7中的显微镜断面照片表明,上述β-SiC多晶片2的多晶体4发生相变成为与上述α-SiC单晶基体材料1的晶轴同方位取向的单晶体5,这样就在单晶基体材料1一侧长成一体的单晶。
另外,在上述复合体中,形成界面3的α-SiC单晶基体材料1表面附近存在分散的针孔状微泡缺陷,在存在这些缩孔缺陷的位置上,多晶片2一侧的多晶体4随着热处理与单晶基体材料1一侧的单晶体一体地长成与单晶基体材料1的晶轴同方位取向的单晶体5。长成后,在上述界面3附近,具体地说在距界面3未满10μm厚的范围L内,残存有微泡缺陷和因受其影响而产生的缺陷,具有这种缺陷的单晶SiC的质量很低劣。
考虑到这一点,在本发明的复合体M中,在α-SiC单晶基体材料1表面上成膜的β-SiC多晶片2的厚度为10μm以上。这样,在上述缺陷残存范围L以外的范围L1内可以生长在β-SiC多晶片2一侧完全没有缩孔缺陷和因受其影响而产生的缺陷的单晶体5。如果使用该范围L1的单晶体5就可获得高质量的单晶体SiC。
因此,对由下述方法制作的单晶SiC材料进行如下实验。
即,使用高频磁控溅射装置在α-SiC单晶基体材料表面成膜,以β-SiC材料为靶材,氩气气氛、0.1乇、基体温度60℃,进行20个小时。然后,放入CVD-SiC覆盖的坩埚内在SiC饱和蒸汽压下进行2200℃保温5小时的热处理。轻轻研磨溅射后的β-SiC多晶体一侧的表面,同氢氧化钾(KOH)和铁氰化盐的混合溶液煮沸,进行表面腐蚀。然后,用标准扫描-干涉显微镜放大400倍观察其表面,发现晶体中的晶界全部消失了。
然后,对用上述方法制造的单晶SiC试样,用X射线衍射装置进行X射线衍射,测得衍射图谱,横轴为2θ,纵轴为衍射强度从结果看出,在2θ为40~70°时CuKa线有等间隔的衍射强度峰。由此可以确认,用上述方法制造的单晶SiC试样是原子排列规则的单晶体。
另外,在上述各实施例中,虽然使用α-SiC单晶基体材料1作为SiC单晶基体材料,但除此之外,还可以使用例如α-SiC烧结体或β-SiC单晶体等,另外,在上述实施例中,虽然使用通过PVD法或热CVD法在SiC单晶基体材料1表面上成膜的β-SiC晶片2作为由Si原子和C原子构成的多晶片,但除此以外,还可以使用例如α-SiC多晶片、高纯度的SiC烧结体、或低于高纯度(1014atm/cm3)的非晶片,都能获得与上述各实施例同样的高质量的单晶SiC。
另外,作为上述各实施例中的α-SiC单晶基体材料1,也可以使用6H型、4H型的任意一种,在使用6H型的单晶基体材料1时,β-SiC晶片2的多晶体伴随着热处理容易转化成与6H型的单晶相同形态的α-SiC的单晶,而在使用4H型的单晶基体材料1时,伴随着热处理容易转化成与4H型的单晶基体材料1相同形态的单晶。
另外,上述复合体M的热处理温度最好为1650-2400℃,时间最好为1~3小时。如果热处理温度低于1650℃,就不能将原子的动能供给形成界面的多个SiC。另外,如果超过2400℃,供给的热能就会远远超过SiC的分解能,致使SiC晶体本身被分解。
另外,本申请的内容在1997年6月25日递交的特愿平9-207039的说明书、权利要求、附图及摘要中也有描述。
工业上的可利用性
如上所述,本发明是这样一种技术,即在SiC单晶基体材料的表面上层叠由Si原子和C原子构成的厚度为10μm以上的多晶片得到复合体,对该复合体进行热处理,使多晶片的多晶体发生相变长成单晶,生成与SiC单晶基体材料的晶轴同方位取向的呈一体的大单晶,不仅得到的SiC单晶体耐热性能及机械强度优异,而且能用该技术容易且高效率地制造微泡缺陷和因受其影响而产生的缺陷非常少的高质量单晶体SiC。

Claims (6)

1.一种单晶SiC的制造方法,其特征在于:
在SiC单晶基体材料表面上层叠厚度为10μm以上的由Si原子及C原子构成的多晶片构成复合体,然后对该复合体进行热处理,使上述多晶片的多晶体发生相变而长成单晶,上述复合体的热处理温度是1650~2400℃且在SiC饱和蒸汽压下对该复合体进行处理。
2.根据权利要求1所述的单晶SiC的制造方法,其特征在于:形成上述复合体的SiC单晶基体材料是α-SiC单晶。
3.根据权利要求1所述的单晶SiC的制造方法,其特征在于:形成上述复合体的多晶片采用在SiC单晶基体材料的表面上利用物理蒸镀法或热化学蒸镀法成膜得到的β-SiC多晶片。
4.根据权利要求3所述的单晶SiC的制造方法,其特征在于:通过1300~1600℃温度范围内的热化学蒸镀法在SiC单晶基体材料的表面上成膜得到上述β-SiC多晶片。
5.根据权利要求3所述的单晶SiC的制造方法,其特征在于:上述复合体的热处理温度比形成β-SiC多晶片时的热化学蒸镀温度高。
6.根据权利要求5所述的单晶SiC的制造方法,其特征在于:上述复合体的热处理温度是2000~2200℃。
CNB988008777A 1997-06-25 1998-06-23 单晶SiC及其制造方法 Expired - Fee Related CN1163640C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP207039/1997 1997-06-25
JP207039/97 1997-06-25
JP9207039A JP3003027B2 (ja) 1997-06-25 1997-06-25 単結晶SiCおよびその製造方法

Publications (2)

Publication Number Publication Date
CN1229445A CN1229445A (zh) 1999-09-22
CN1163640C true CN1163640C (zh) 2004-08-25

Family

ID=16533201

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988008777A Expired - Fee Related CN1163640C (zh) 1997-06-25 1998-06-23 单晶SiC及其制造方法

Country Status (9)

Country Link
US (1) US6217842B1 (zh)
EP (1) EP0926271A4 (zh)
JP (1) JP3003027B2 (zh)
KR (1) KR100287793B1 (zh)
CN (1) CN1163640C (zh)
CA (1) CA2263352C (zh)
RU (1) RU2160328C1 (zh)
TW (1) TW482833B (zh)
WO (1) WO1998059099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697578B (zh) * 2018-03-05 2020-07-01 日商日本特殊陶業股份有限公司 SiC構件及包含其之基板保持構件以及該等之製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296998B2 (ja) * 1997-05-23 2002-07-02 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
RU2160329C1 (ru) * 1997-06-27 2000-12-10 Ниппон Пиллар Пэкинг Ко., Лтд МОНОКРИСТАЛЛ SiC И СПОСОБ ЕГО ПОЛУЧЕНИЯ
EP1130137B1 (en) * 1999-07-30 2006-03-08 Nissin Electric Co., Ltd. Material for raising single crystal sic and method of preparing single crystal sic
JP4848495B2 (ja) * 2001-06-04 2011-12-28 学校法人関西学院 単結晶炭化ケイ素及びその製造方法
US8202621B2 (en) * 2001-09-22 2012-06-19 Rohm And Haas Company Opaque low resistivity silicon carbide
US6814801B2 (en) * 2002-06-24 2004-11-09 Cree, Inc. Method for producing semi-insulating resistivity in high purity silicon carbide crystals
US7175704B2 (en) * 2002-06-27 2007-02-13 Diamond Innovations, Inc. Method for reducing defect concentrations in crystals
DE10328842B4 (de) * 2003-06-26 2007-03-01 Siltronic Ag Suszeptor für eine chemische Gasphasenabscheidung, Verfahren zur Bearbeitung einer Halbleiterscheibe durch chemische Gasphasenabscheidung und nach dem Verfahren bearbeitete Halbleiterscheibe
US7202181B2 (en) * 2004-03-26 2007-04-10 Cres, Inc. Etching of substrates of light emitting devices
US7314520B2 (en) 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
US7563321B2 (en) * 2004-12-08 2009-07-21 Cree, Inc. Process for producing high quality large size silicon carbide crystals
JP4293165B2 (ja) * 2005-06-23 2009-07-08 住友電気工業株式会社 炭化ケイ素基板の表面再構成方法
US8088222B2 (en) * 2007-07-27 2012-01-03 Widetronix Inc. Method, system, and apparatus for the growth of on-axis SiC and similar semiconductor materials
CN102534805B (zh) * 2010-12-14 2014-08-06 北京天科合达蓝光半导体有限公司 一种碳化硅晶体退火工艺
JP6544166B2 (ja) * 2015-09-14 2019-07-17 信越化学工業株式会社 SiC複合基板の製造方法
JP6515757B2 (ja) * 2015-09-15 2019-05-22 信越化学工業株式会社 SiC複合基板の製造方法
JP7255473B2 (ja) * 2019-12-13 2023-04-11 住友金属鉱山株式会社 炭化ケイ素多結晶基板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590130A (en) * 1984-03-26 1986-05-20 General Electric Company Solid state zone recrystallization of semiconductor material on an insulator
JP3296998B2 (ja) * 1997-05-23 2002-07-02 日本ピラー工業株式会社 単結晶SiCおよびその製造方法
RU2160329C1 (ru) * 1997-06-27 2000-12-10 Ниппон Пиллар Пэкинг Ко., Лтд МОНОКРИСТАЛЛ SiC И СПОСОБ ЕГО ПОЛУЧЕНИЯ
JP2884085B1 (ja) * 1998-04-13 1999-04-19 日本ピラー工業株式会社 単結晶SiCおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697578B (zh) * 2018-03-05 2020-07-01 日商日本特殊陶業股份有限公司 SiC構件及包含其之基板保持構件以及該等之製造方法

Also Published As

Publication number Publication date
CA2263352C (en) 2003-05-06
WO1998059099A1 (fr) 1998-12-30
US6217842B1 (en) 2001-04-17
CA2263352A1 (en) 1998-12-30
RU2160328C1 (ru) 2000-12-10
JP3003027B2 (ja) 2000-01-24
KR100287793B1 (ko) 2001-04-16
KR20000068097A (ko) 2000-11-25
TW482833B (en) 2002-04-11
EP0926271A4 (en) 2000-08-30
EP0926271A1 (en) 1999-06-30
CN1229445A (zh) 1999-09-22
JPH1112097A (ja) 1999-01-19

Similar Documents

Publication Publication Date Title
CN1163640C (zh) 单晶SiC及其制造方法
US6153166A (en) Single crystal SIC and a method of producing the same
CN100380588C (zh) 氮化镓层的制备方法
EP0269439B1 (en) A heteroepitaxial growth method
US6153165A (en) Single crystal and method of producing the same
US6187279B1 (en) Single crystal SIC and method of producing the same
CN1688015A (zh) 以Ge-B共掺直拉硅片作为衬底的P/P+硅外延片
CN1239519A (zh) 单晶SiC及其制造方法
Takigawa et al. Hetero-epitaxial growth of lower boron phosphide on silicon substrate using PH3-B2H6-H2 system
JPH0624900A (ja) 単結晶炭化ケイ素層の製造方法
CN1594648A (zh) 磁控溅射方法制备碳化硅薄膜工艺
Campisi et al. The growth of polycrystalline silicon on molybdenum, tantalum, tungsten, and their disilicides
JP4070305B2 (ja) シリコンカーバイド結晶膜の形成方法
Campisi et al. Heteroepitaxial silicon growth on polycrystalline MoSi2
Weeks et al. Laser processing: Fundamentals, applications, and systems engineering
JP2024500584A (ja) 高品質なヘテロエピタキシャル単斜晶ガリウム酸化物結晶の成長方法
JP2000072597A (ja) 単結晶SiCおよびその製造方法
Sheppard Spotlight on SiC
CN116525568A (zh) β-氧化镓/c-砷化硼异质结构及制备方法
Shibahara et al. Heteroepitaxial Growth of Antiphase-Boundary Free Cubic Sic (100) Single Crystals on Si (100)
CN116288681A (zh) 一种GaN功率电子器件用单晶金刚石AlN模板及其制备方法
Tsuji et al. Epitaxial technology of Si/CoSi/sub 2//Si layers for solar cell application
Matare Heteroepitaxy of silicon on insulator crystal substrates
McHugo et al. Metallic impurities in gallium nitride grown by molecular beam epitaxy
Schmidt et al. Efficient solar cells by space processing. Final report, October 1, 1978-December 14, 1979

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NISHIN DENKI CO., LTD.

Free format text: FORMER OWNER: NIPPON PILLAR INDUSTRY CO., LTD.

Effective date: 20020522

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20020522

Address after: Kyoto Japan

Applicant after: Nissin Electric Co., Ltd.

Address before: Osaka Japan

Applicant before: Nippon Pillar Kogyo Kabushiki Kaisha

C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee