TW211624B - - Google Patents

Download PDF

Info

Publication number
TW211624B
TW211624B TW081103425A TW81103425A TW211624B TW 211624 B TW211624 B TW 211624B TW 081103425 A TW081103425 A TW 081103425A TW 81103425 A TW81103425 A TW 81103425A TW 211624 B TW211624 B TW 211624B
Authority
TW
Taiwan
Prior art keywords
patent application
catalyst
platinum
precursor
catalyst material
Prior art date
Application number
TW081103425A
Other languages
English (en)
Original Assignee
Johnson Matthey Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey Plc filed Critical Johnson Matthey Plc
Application granted granted Critical
Publication of TW211624B publication Critical patent/TW211624B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8694Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

2116^4 Λ 6η 6 經濟部中央橾準局員工消費合作社印製 五、發明説明(1) 本發明是關於改良之觸媒材料,尤指特別適用於燃料 電池和電池組之觸媒材料。 在一燃料電池中,可能是利用氫、烴或含氧燃料(例 如甲醇)等燃料在燃料電極(陽極)中氧化,而氧則在陰 極還原。而與電極接觸之電解質(可能為鹼性或酸性,也 可能為液態或固態)則塗佈著電觸媒(electrocatalysu 。目前已有很多關於此類燃料電池電觸媒之研究。 磷酸燃料電池(PAFC)通常是以澳磷酸電解液型態在介 於180-220 ·(:之間的溫度下操作。適用於於陽極或陰極之 任何材料對於溫度都必須相當安定,如此則燃料電池可以 在有袭酸存在的情況下操作並維持適度的活性° 質子交換膜燃料電池(PEMFC)是另一類酸性電解質燃 料電池,其中的電解質為固態質子導電型聚合物。PEMFC 通常是在介於80-10CTC之間的溫度下操作。 PAFC是已經相當接近商業化的燃料電池,並且已有很 多的示範單位(demonstration units),尤其在日本,有 相當大的經濟及瑷保壓力使其必須減少烴燃料之進口,以 斷絶夾自發電之污染排放。我們可以預見PAFC將會出現在 具有數百萬瓦公用電力的發電市場之應用中’以及出現在 結合熱與動力(亦即共生系統)介於50-數百仟瓦的範圍 之系统中。PEMFC所提供的功率密度(power density)遠 高於PAFC,因此可以在低很多的溫度下有效操作。由於這 個原因,此類型燃料電池之示範單位已被建立以便在不同 (請先閲讀背面之注意事項再填寫木页) 裝· 線- 本紙張尺度逍用中國Η家櫺準(CNS)甲4規格(210x297公釐) 3 經濟部中央標準局貝工消费合作社印製 2116L4 Λ 6 __Π_6_ 五、發明説明(2 ) 的應用中進行評估。美國方面對此特別感興趣,因為當地 對於汽車污染排放的持績關切使得將來内燃機之應用受到 限制。 然而,有很多人考《到此類燃料電池無法達到示範階 段,因為其功率輸出相對於投資成本而言稍嫌太低。不管 是PAFC或?EMFC ,功率输出會部份受到陰極觸媒的活性和 耐久性之浯制。提高陰極觸媒之活性和安定性可以在相同 的效率下獲致更高以及持久的功率密度。每單位功率之投 資成本因比可以隨其性能比例性地降低。在整套燃料電池 組之成太^,陰極觸媒之成本只佔極小部份,因此提髙燃 料電池姐之功率密度所降低的毎單位功率之投資成本與觸 媒本身之1值毫不相干。因此一般承認具有改罠性能之陰 極觸媒對於洚低:每單位功率之投資成本相當具有價值。 除了汐良觸媒活性的需要之外,對於含此類觸媒之電 極在燃料電池的整個壽命期中都必須維持髙活性(最理想 的是性能完全没有衰滅)也是相當重要的。 在燃料電池之技術領域上大家承認的具備酸性電解質 之燃料鼋池(例如PAFC和PEMFC )的電極之”標準"觸媒配 方是由鉑姐成,其可能只有鉑自身或為合金,例如具備高 表面積之谨黒(亦即金屬粉),或支撑在髙表面積導電性 破基S材料上面。最具活性之阑媒是支撑在高表面積導電 性破之上3者,其製造技術包括復合粕溶液化學,其中很 多仍屬於專利方法。例如H Petrow and R Allen ( USP 3, 99 2,512)所公開之方法,其中是將非常細小的膠質鉑粒 (請先閲讀背面之注意事項洱填寫木页) 裝- 訂< -線- 本紙張尺度逍用中國B家櫺準(CNS) f 4規格(210x297公釐) 4 經濟部中央梂準局貞工消#合作社印製 Λ 6 Η 6 五、發明説明(3) 子從溶液中吸附到碳撑體上面3其在碳中形成非常小的鉑 微晶體(15-30A),這使得§淇具備非常高的活性。關於鉑 之合金觸媒(通常是m-π族過渡金屬系列)最常波卑金 1吸附到在破觸媒上預成彤之鉑上面,接著在高於700 °c 之溫度下加熱形成合金。比頚材料比純鉑阑媒具備更髙的 活性,並且是在例如PAFCZ類的酸性電解質燃料電池中已 發展出的最具活性之®媒:此頚合金材料參見USP 4,447, 506中公開之内容。 以下將適當地定義活*1這曳名詞。活性的定義是當用 觸媒製成一電極時,在一给定的電壓(亦即效率)下,所 能獲致的最大電流除以電垂中活性庙媒重量之值°因此又 稱為”質量活性(mass activity厂。當對不同的觸媒做比 較時,活性的增加即表示主相同的活性闱媒金屬含量下電 流密度的增加。在現有技苟中大家一致同意,若以純氧做 為反應劑,並在18CTC之三〇〇:'·袭酸中做為氧還原陰極使用 時,最具活性的支撑在碳蜀溟上的鉑之活性在900mV下相 對於SHE (標準氫電極)是介於SOdOmAmgdPt之間。 (參見 P Ross, Precious Metal 1986, International Precious Metal Institute, Allentown, PA, 1986,P355 -363; L Keck et a 1, 1st International Fuel Cell Workshop, Tokyo, Sept 16th 19 8 9, P29-39 ; F Luczak, D L a n d s m a π , U S P 4,4 4 7,5 0 S)。對於合金化而言,最具活 性的鉑合金觸媒之活性有記錄的(在前述參考文獻中也有 提到)是介於SO-SOmAias^Pt之間。 本紙張尺度通用中國國家樣準(CNS)甲4規格(210x297公龙) 5 (請先閲讀背面之注意事項再填离木頁) 裝· 線· Λ 6 Η 6 經濟部中央梂準局貝工消费合作社印製 五、發明説明(4) 在燃料電池實際的操作過程中,電迪是在固定的電流 密度输出下操作,並且盡可能維持高而穩定的電池電壓以 維持髙效率和髙功率輸出。對於PAFC而言,含此種鉑阑媒 之陰極的電壓性能之降低速率通常是每操作小時降低 l-10mV。造成此種降低現象的部份原因是由於燒結作用, 活性觸媒粒子在燒結時很容易聚結,可能是由於表面遷移 或溶解/再沉澱之故,因而造成有效表面積的滅少,最後 造成活性的降低。而若陰極溶入電解液拜即可能造成鉑的 永久損失。有報告指出(J A a g a π e,J Ξ1 e c t r 〇 c h e m i c a 1 Society, 135, 844, 1988),當 PAFC 操作 4500 小時之後陰 極中即有60¾之鉑由於溶解而損失掉。比種鉑電斶媒性能 之損失是燃料電池中所遛遇到的最玻重之技術問題。 提高PAFC之溫度、壓力和電位都會加速觸媒之去活化 程序。 因此關於具備良好安定性的活性S溟之發展是相當迫 切需要的。並且己有很多計劃正在進行雪中。 以含金屬的巨環化合物做為燃料電池S媒之研究己行 之多年。但是這些研究幾乎都不注重卑金屬巨環化合物之 鼯用。巨瑱化合物的定義是其中具有九(1或九掴以上的環 狀化合物(包括所有雜原子)和三個或三個以上的配位原 子。(Coordination Chemisty of Macrocyclic Compound > Q A Helson, Plenum Press, New York & London, 1979 )。適用的金屬巨瑷化合物為N4-鉗合(chelate)化合物 ,例如故采素(phthalocyanine)淋.(porphyrin)和四 (請先閲讀背面之注意事項再填寫本頁) 裝. 本紙張尺度逍用中Η國家樣準(CNS)甲4規格(210X297公龙) 6 經濟部屮央櫺準局员工消t合作社印製 2116^4 Λ 6 _ Η 6___ 五、發明説明(5 ) 氛雜環嫌(tetraazaannulene) ° 雖然在這鉴材料中有一些彼發現可以做為驗性霄解質 (例如氫氧化鉀)中燃料電池陰極使用,但是其關於活性 (尤其是安定性)等之性能卻不適用於較披廣泛使用的酸 性電解質燃料電池。事賣上在一般常使用的電解液滠度和 溫度等澡作條件下,此類材料完全不適於酸性電解質燃料 電池。 GB 2,164,785 A中掲示以過渡金臑敵氦素化合物做為® 媒材料之應用。其中是使用鉑“氦素做為陰極,並以SM鹾 性氫氧化鉀驗性溶液做為電解質° Van Veen et al. (Electrochimica Acta, 24 921-928,1979)中討論到數 種Pt,Pd,Ru,Fe,Co,Μη和Zn之巨瑗化合物,用H2S04 或K0H做為電解液時之活性。Van Veen et al,(Ber Bun -senges Phys Chem, 85, 693-700, 1981! and J chem Soc, Faraday Trans 1,77,2827-2843,1981)另外還公 開其他數種巨環化合物之活性的測定。例子之一是銥(!Π > 中-四-(對異丙基笨基)+、咏氣 [iridium(!D ) meso-tetra (para-isopropylphenyl) porphyrin chloride],其經熱 處理之後,在850niV及23°C的4M ^504電解液中,顯示之 氧還原活性為ZJjnAmg·1觸媒。NL 8003387也掲示一種碳 支撑銥(m )中-四-(對異丙基苯基 >十咻氮電觸媒材料,其 中所載在850mV下之氧還原活性為2.0mAmg^觸媒。而g 在1.0· 中操作16小時之後之損耗為10_V 〇 Yeager et al, (DOE Report October 1984 LBL-185 本紙張尺度边用中國《家標準(CNS) T4規格(210x297公龙) (請先閲讀背面之注意事項再填ftT本頁) 裝· 線< 2116^4 Λ 6 Η6 經濟部屮央標準局貝工>fif合作杜印製 五、發明説明(6 ) 42)掲示一種支撑在高表面積活性破上之u-氧-二(鐵(10 > 中-(對曱氧基笨基淋) [11-〇xc|-d;L(iron(I )meso_tetra (para-raethoxyphenyl) porphyrin)]觸媒材料做為陰極使 用,兰以85¾磷酸則做為電解液之應用。在l〇〇°C的855ί 磷酸中以氧做為還原劑評估時,在300mV下之活性最髙達 5.0 aAW1鐵。據其中所載,用此種觸媒姐成之陰極,只 在100 X:之溫度下,及在1〇〇 mAcm·2之電流密度下操作 7.5小诗之後,性能衰滅了 60mV °犹做為酸性電解質中之 巨瑗化合物材料而言,雖然其為記錄所載的具最髙性能者 ,但其衰滅率仍然雄可應用之程度甚遠。此外,報告中也 指出比種材料在髙於100C之溫度下不夠安定,因此就高 於130*0下操作之實際磷酸燃料電池而言,其仍然無法應 用。 在所有現有技術中,真正的觸媒是巨環化合物本身, 其特激是中心金屬原子物種具氧化型態;亦即其價態大於 零。訧現有技術而言,是在惰性氣氛中對材料進行熱處理 以改昊鐲媒之活性和耐久性。此類熱處理對於巨環化合物 之部份洚解有明顯的效果,並且可以在觸媒和撑匾之間發 生緊密的交互作用。其结果會使得觸媒更具耐久性和(有 時候)更具活性.邸使對於在磷酸燃料霣池狀況下不具良好活 性和安定性之阑媒也是一樣。(Yeager,參見上面之敘述 )。比種材料並没有進行活化埕序以改變金屬之化學狀態 0 這一S 參見 K Wiesener et al (Hater Chem Phys,22, 457, 1383)中之討論。 (請先閲讀背面之注意事項再填寫本頁) 裝· 訂- -線· 本紙張尺度通用中Η B家標準(CNS) T4規格(210x297公徒) 8 211624 經濟部中央標準局员工消费合作社印製 Λ 6 Η 6 五、發明説明(7) 我們發明的嶄新甭媒材料經證實比所有的現有技術材 料在催化燃料電池反S方面具有吏高之活性,並且在酸性 電解質方面也比所有的現有技術材料具有更強之安定性。 此種嶄新的斶媒材料是支撑在高表面積破上,其衍生 自含貴金屬之巨環化合物的先質(precursor) °所謂先質 先進行一活化程序,如此搏可以改變躅媒金匾之化學狀態 而産生貴金屬觸媒材钭。 因此,本發明是提供一種衍生自含貴金屬之巨環化合 物的先質並且支撑在高表面搰破上之躅媒材料,此種觸媒 材料含有氧化態為零之貴金屬。 先質材料最好是《行活化埕序以使得描媒材料含有氧 化態為零之貴金匾。 本發明也提供一檯燃料電池,其中至少具備一塗佈本 發明電觸媒材料之電逐。 本發明另外遢提洪一植塗佈本發明觸媒材料之電極。 適用的貴金1為鉑族金屬,Pt,Pd,Ru,Os,Rh,Ir ,金和銀。較佳的貴金屬為鉑或銥。適用的巨環化合物為 Ν4-鉗合化合物,其中較佳的是酞采素,彳,和四氦雜環 烯。最佳的巨環化合锪為酞氰素或四氡雜環烯。 適用的破撑髖可以從市面上購得。其可以依特殊應角 另外製備。較佳的碳為髙導電性油瀘黑(oil furnace black)及乙炔黑(acetylene black)。碳撑體主要是非晶 質或石墨質。其可以從布面上購得,或做持殊熱處理以提 髙其石墨性質。其中持佳的是石墨化破。破撑體材料之 本紙张尺度边用中國國家楳準(CNS)甲4規格(210X297公龙) (請先閲讀背面之注意事項再填寫本頁) 裝· _ 9 Λ 6 Η 6 經濟部中央標準局貝工消t合作社印製 五、發明説明(8) Brunauer, Emmett and Teller (BET)表面積通常是介於 0-2000 m2g-i之間,例如介於30-400 ra2^-1之間。 貴金屬巨環化合物之填充量佔孩撑體之0.1-70重量% ,而以介於〇.卜30重量·/·之間較佳: 貴金匾之填充量佔破撑體之0.05-20重量%,而以介於 0.1-10重量%之間較佳。 本發明更進一步的提供一種製備斶渫材料的破支撑先質之 方法,其步驟如下:苜先將貴金屬巨環化合物溶解在水性 或有機溶劑中形成溶液,然後將破加入溶液中,接著將巨 環化合物材料吸附到破撑體上面,最後分继破支撑巨環材 料。 最好是利用}«拌幫肋巨環材料的吸附。並且最好能維 持卜16小時。在本發明方法中,最好是将貴金屬巨環化合 物溶解在13-16莫耳濃度的硫馥中形成溶液? 碳支撑巨環先質可以根據本發明方法或任何已知方法 具備。 本發明也提供一種將先質材料活化以製備本發明觸媒 材料之方法(其中金屬原子物種之氧化態已有改變),其 步驟包括外加一電位給帶有破支撑巨環辐媒先質之電極, 此電極是沉浸在酸性電解液中,並且在铪定極限範圍内周 期性地重後此電位數個循瓊。 帶有巨環先質材料之電極可以利用溥統方法製廉。其 步驟通常如下:苜先將材料分散在一疏水性材料之懸浮液 中(例如PTFE),接著將分散液塗佈到洌如PTFE之類的防 (請先閲讀背面之注意事項再項ft?本頁) 裝< 本紙5fc尺度遑用中8國家標準(CNS) T4規格(210x297公釐) 經濟部中央櫺準局员工消費合作社印製 λ 6 _ B6_ 五、發明説明(9 ) 水石墨紙或破布上,然後在含氧氣氛(例如空氣)或惰性 氣氛(例如m氣)中燒結已塗佈好之基質== 在本發明方法中,較好是將含有巨環s媒之電極活化 以製成活性材料,其方法是在高溫磷酸中至少掃捸10次外 加0.05-2.0V (較好是介於0.5-1.2V之間)之電位(相對 於動態氫電極(DHE)而言)。然而,其他将巨瓚先質材料 活化之方法則不需要製造電極,例如使用漿液或懸浮液電 化學電池,浸在熱濃酸中以氣體冲吹,以及氣相熱處理, 或在控制氣氛中或大氣壓中處理等方法均遼用。 觸媒材料可以在燃料電池中做為陰極使用以進行氧還 原反ffi,或做為陽極使用以進行氫氧化反$。如果觸媒材 料是在燃料電池中做為陽極使用,則氫燃料中可以含有微 量的一氧化破(例如至多不超過5體憒·/·)。 雖然本發明材料持別適用於PAFC和PEMFC中,並且本 文對於前者之應用已有詳細之敘述,但很明顯的比種材料 也適用於其他燃料電池或其他應用,例如做為電池姐之電 極,或做為其他化學程序之觸媒使用。 本發明將在以下各例子中做更詳盡之鈐迖,這些例子 僅做解說而不具限制性。毎一例子中之觸媒都裉潷各例最 上頭所述之方法製成試驗電極。 關於”活化” ,M電化學金屬表面堉(ECA) ” ,”比 活性”,和”耐久性”等性筲是根據下章所述方法測定。 而所使用的”氣體攫散電極”之製法是利用傳统技術中常 用之方法先將觸媒與PTFE混合,然後塗佈到防水石墨紙上 (請先閲讀背面之注意事項再塡寫木迓) 裝- 訂- 本紙張尺度通用中國B家標準(CNS)甲4規格(210x297公龙) 11 Λ 6 1)6 2116^4 •5·、發明説明(10) 面,而後燒結。此外,在另一類使用之電極中,PTFE之用 量低到足以使得電極結構完全被18(TC之電解液潤濕。此 即大家熟知之”沉浸型電極(flooded electrode) ” 〔參 見 H Kunz and G Gruver (J ElectrochemicalSoc, 122, 12 7 9,19 7 5)和 P S t ο n e h a r t a n d P R o s s (E1 e c t r o c h i m Acta, 21,441,1976)中之敘述〕。 活性是毎單位重量存在的觸媒材料氧還原能力之量度 ,通常稱為質量活性。在各種電流密度之下的過電壓是以 181TC的100·/·磷酸,在一大氣壓下使用氧和空氣做為反 ®劑利用電化學半電池測定。以一串聯的内電阻自由電位 測量相對於動態氫參考電極(DHE)之流過試驗電極之電流 ,同時也測量質量活性,其單位是raAmg· 1總觸媒材料,或 mAmg·1霄極中存在的鉑金屬,其可以依選擇的電位對無内 電阻之霉極電位作圖後計算得到。”氣體擴散”和”沉浸 ”型電極都可用以測量質量活性。使用沉浸型電極的憂點 是所有存在電極上之觸媒材料都可以波電解液潤溉,因此 可用以測量活性。因此對於不同的觸媒材料之活性可以獲 得較佳之比較。 就氣體搌散電極而言,査出電位對於質量活性之對數 值顯出一線性區域,即大家熟知之” Tafel區”,其梯度 值稱為” Tafel斜率”,是依觸媒之本質和操作搽件而定 ,本文定義為” X ” 。躭沉漫型電極而言,在相同的圈上 面通常可以看到兩値分開的線性區域,其中一區電流密度 較低,其斜率也等於” X ” ,另一區電流密度較髙,通常 本紙張尺度边用中國國家標準(CNS)<P4規格(210x297公釐) (請先閲讀背面之注意事項再填寫本頁)
T 泉 經濟部中央櫺準局貝工消費合作社印製 經濟部中央標準局貝工消费合作社印製 Λ6 ___Π_6 五、發明説明(11) 其值等於。這是由於在沉浸型電極中氣體傳遞到活 性觸媒位置的阻力所造成的結果。就沉浸型電極而言,任 何铪定的電位所要測得之霣際質量活性可以利用動力學控 制斜率以梯度” X ”外插到測量電位而得到。 ”電化學金屬表面搰(ECA) ”是代表在電極上面鉑金 1S媒外露的表面積,其單位為m2g〃Pt 。 ECA是根據 S Gilman,J Electroanal Chem, 7, 382, 1964 中所述 之方法測定。此方法之根據是使用周期伏安法(cyclic voltammetry)以接近氫開方的電位在活性觸媒表面上沉積 益剝開一單層的氫塗佈層之原理。氫的吸附是在由電觸媒 材料組成之完全阀濕的電極上測定。測定氫吸附所造成的 電荷,利用關係式1 cm2Pt = 210uC (C =庫侖),並測量 S媒之電化學表面搰。 可以看出為了提髙觸媒材料之質量活性,必須增加觸 淇之有效表面撗(例如降低粒徑)。在此情況下並不意謂 著觸媒表面之本質活性(intrinsic activity)必須改變。 其他提高質量活性之方法是實際提髙表面之本質活性。此 即大家熟知之”比活性”,其定義如同氧還原電流,以上 迖相同方法測得,其可以由每單位活性觸媒金屬之表面m 而得。其單位為nAcnr 2觸媒表面積,是由質量活性除以電 化學金屬表面積而得。此為不同表面積的觸媒活性之基本 量度。 為了評估®媒材料在較為賣際的燃料電池操作條件下 之長期耐久性,我們發展出一種加速”耐久性”試驗。我 (請先閲讀背面之注意事項再项寫木頁) 裝- 訂_ 本紙張尺度边用中國a家楳準(CNS)甲4規格(210x297公;《:) 13 經濟部中央楳準局ΕΪ工消費合作杜印製 Λ 6 Η 6 五、發明説明(l2) 們再度使用沉S型氣體擴散電極,因為其優點是可將由於 電極結構和電解液閔濕程度的不同造成的性能上效果之變 異消除,而使我捫只觀察到由於斶媒的安定性造成的性能 變化。耐久性之測量是外加一電流靜負載(亦即固定電流 密度)給電極,以钝氧做為反應劑,在i8〇°c的io〇y·磷酸 中測置,並記錄電極電壓隨著時間之變化。這些操作條件 比贾際燃料電浊揉作條件更為嚴重,故而此種試驗可以在 比燃料電池系铳之霣際設計壽命期更短的時間內獲得觸媒 耐久性之有關資料。 τ.田於菹頊蒂反晡的雪砾之活忡 例1 衍生自鉑酞氰素之鉑觸媒 本製法為G3 21S4785A 中所述之沉澱法。在室溫下 將鉑 青素(0.068g>溶在18.4M硫酸(25cm3)中即製得含 0.87重量%鉑之S淇材料的鉑酞氰素先質。將溶液攪拌, 然後加人石墨化Shawinigan破(2.0g)和BET表面積為55 m2g_l之乙炔黑破,(未石墨化的Shawinigan碳係得自 Chevron Chemicals, Houston, Texas, USA)而形成黏稠 漿液,接著Ift拌15分鐘。攪拌持續大約30分鐘,同時以滴 狀方式加水(30c;a 3)進去,然後利用冰浴冷卻漿液。在室 溫下再趙績冷卻一小時。接著將漿液過濾並用水冲洗直到 本紙張尺度边用中國Η家榣準(CNS)甲4規格(210x297公龙) (請先閲讀背面之注意事項再填寫本頁) 裝- 經濟部中央樑準局貝工消t合作社印¾ Λ 6 Β6 五、發明説明(I3) 上清液之pH值達PH6為止。最終製得的過濾斶媒材料先質 在105°C下乾燥。 含30重置%PTFE之疏水性氣體搌散電極是使用上述傳 統方法以此種巨環觸媒先質材料製成。在350°C的空氣中 熱處理15分鐘之後即完成電極之裂備。電極在進行活性測 定之前先予以活化,方法是將電極置放在電化學半電池中 ,然後外加0.05-1.20V之電位(相對於DHE而言)掃掠至 少10次,條件是在18CTC的100¾磷酸電解液中,而空氣是 從電極樣品之氣體測下面流過。 例2 衍生自銥酞氰素之銥觸媒 如例1所述方法製備含〇. 062重量%Ir之觸媒材料的 3.5%銥酞氰素先質。如例1所述將電極活化製成活性觸媒 材料。 m 3 衍生自鉑酞氰素之鉑箱媒 根據本發明方法製備觸媒材料之鉑酞氧素先質。將鉑 酞氰素(0.0S4g)溶在14M硫酸(50cm3)中。然後在室溫下 將乾燥的石墨化Shawinigan碳(2.0g)加入溶液中形成漿 液之後保持在室溫下«拌1S小時。接著將漿液過濂並用水 本紙張尺度遑Λ1中國《家標準^Ν5)Τ4規格(210x297公I)· 15 (請先閲讀背面之注意事項*填寫本页) 丁 泉 Λ 6 Β6 五、發明説明啓4 ) 冲洗直到上清洗液之PH值達pH 5 .5-6為止3此種製法為 吸附法,利用發射光譜分析觸媒含〇 . S4重量/.Pt。 氣體搌散電極之裂備和活化程序依511所述方法進行 0 m 4 衍生自銥酞来素之銥阑媒 如例3所述方法裂備m充0.22重量",Ir之破支撑铱 酞氧素材料。如例1所逑將觸媒活化3 用18CTC的100%磷酸做為電解液依二述方法對例1,2 ,3和4測試其氧還原反匦之活性。所得到的電壓對電流 密度(單位mAmg·1(鉑族金屬))極化曲線(polarisation curva)示於圖1中。 用180 t:的1〇〇爿磷酸做為電解液對洌1,2,3和4測 定其氧還原反應之質量活性(相對於〇ΗΞ而言)’所得測 定值示於表1中。 (請先閲讀背面之注意事項再填寫本頁) 裝· 線< 經濟部中央櫺準局貝工消赀合作社印製 16 本紙張尺度边用中國B家標準(CNS)甲4規格(210X297公:¢) 五、發明説明(15) 表 Λ 6 It 6 例號觸媒先質分析值 質量活性 (重量%金匾)(mArng·1先質(mArag-1金赛 在850mV下)在900 mV下) 1 鉑鈇泉素 0.87% Pt 9.5 12.0 2 銥飫氰素 0.62% Ir 丄1.5 16.0 3 鉑酞氰素 0.64% Pt 13 . 0 丄S . 0 4 铱糸素 0.22% Ir 14.6 46 . 0 表1中的數據顯示其中的巨環斶媒先質在在850iaV下 於酸性電解質中之活性(單位mAmg-1 )慶於所有現有技 術中巨瑗基觸媒估計的活性值。此外,根據本發明方法裂 備之觸媒,例3和4 ,也比例1和2 ,以及依所屬技術領 域中一般常用的沉澱法製得之觸媒優異。 (請先閲讀背面之注意事項再填寫木页) 裝. 訂- 經濟部屮央標準局貝工消费合作社印製 例5 衍生自鉑酞氰素之鉑觸媒 根據本發明所公開之方法製備本發明另一種嶄新届淇 材料。將鉑酞氰素(1.234g)溶在14M硫酸(1000cm3>中。 將BET表面積為252111^-1之乾燥的石墨化Ketjenblack 本紙張尺度边用中國國家櫺準(CNS)甲4規格(210X297公釐) 17 Λ 6 Η 6 經濟部屮央標準局貝工消费合作社印51 五、發明説明(16) EC300J 碳(4.0g)(未石墨化 Ketjenblack 係得自 Akzo Chenie Nederland bv, Araersf oort, Netherlands)加入 溶液中形成漿液,然後保持在室溫下It拌16小時。接著將 漿液通濾並依序用硫酸(5〇cm3)和去礦質水冲洗直到上清 液之PH值達pH 5.5-6為止。如此裂得之材料在105°C之 空氣中乾燥。此一製法為吸附法,裂得的觸媒先質經分析 含4.7重量%Pt。 如上所述用鉑酞衣素材料製造沉浸型電極,使用含10 X ?TFE之電極,而不是像一般製造氣體擴散電極中較髙之 含量。此外,在330 °C下焼詰以使得電極製備完全。 使用180 t:的1〇〇'/·磷酸對數個上述類型之電極進行活 化,以330分潼的時間及SOmVs·1之速率用1.05-1.35V之 之電位(相對於DHE )掃掠,同時氡氣從電極之氣體側流 過。接著使用氧氣做為反應氣體測量電流密度和過電壓。 改變較高電位極限對於觸媒材料所顯現的活性之效果 示於圈2中。從數據中可以明顯看出掃掠更髙正電位的增 加可以提高最终裂得的活性觸媒材料之質量活性。圖2也 顯示由先質材料姐成的電極在以周期性地介於〇.05V到高 正電位之間的電位進行活化步驟之前測得之活性。其顯示 甴鉑酞珉素組成之先質材料(其中鉑之氧化態為+2)對於 氧還原反應具有非常低的活性。 (請先閲讀背面之注意事項再填寫本頁) 裝- 線· 本紙張尺度遑用中8國家標準(CNS) T4規格(210x297公;a:) 18 Λ 6 Η 6 經濟部中央標準局貝工消费合作杜印製 五、發明説明(17) ®|__6. 衍生自鉑四m雜環烯之鉑觸媒 使m四m雜環烯巨環先質根據本發明公開之方法製備 本發明另一種嶄新觸媒材料。將[Dibenzotb.iUMUl-tetraazacyclotetradecinato] platinum ( Π ),(PtTADA) ,(〇.〇Sg>溶在14M硫酸(150cm3>中。然後將乾燥的石墨 化Shawinigan乙炔黑碌(1.0g>加入溶液中形成漿液,保 持在室溫下«拌16小時。將漿液過濾後陸續用硫酸(50cm3 )及去碾質水冲洗直到上清液之PH值達pH 5.5-6.0為止 。如此裂得之材料在105 eC之空氣中乾燥。此種製法為吸 附法,裂得的斶媒先質經分析含2.2重量%Pt 。使用30重 量%之PTFE裂造氣體擴散電極,接著在35CTC之空氣中燒 結。依上迖方法將電極活化,以上限電位1. 20V (相對於 DHE )掃掠1000分鐘,同時以氦氣流過試驗電極之氣體側 下面。雖然裂造的是氣體搔散電極,但以電化學測量顯示 在活化過程中詰構完全沉浸*此一結果證實其具備沉浸型 電極行為。 bh S? <91 A 依傳统方法製備之鉑斶媒 目前一般燃料電池中常用到的傳統鉑觸媒材料之製法 如下:在SO’C下以5分鐘的時間將乙炔黒碳(450g)加入水 (請先閲讀背面之注意事項再填寫木頁) 裝- 線· 本紙張尺度遑用中國國家標準(CNS)甲4規格(210x297公釐) 19
經濟部中央標準局員工消t合作社印M ^_ 五、發明説明(18 ) (70升)中形成漿液。然後将碳酸氫鈉(116. 5g)水溶液(700 cm 3)加入漿液中,漫拌5分鐘之後,在10CTC下加熱30分 鐘。接著以12分鐘的時間將鉑(50g)溶液〔氯鉑酸水溶液 (2000cm3)]加入漿液中。漿液在沸腱2小時之後冷卻到 90 Ό。然後加入Η甲ϋ溶液(1400cm 3),再使漿液沸騰1 小時,接著過濾,用不含可溶性氰雜子之水沖洗。如此製 得之鉑觸媒材料在105’C下乾燥,觸媒經分析含9.73重 量 _/iPt <3 kh 例 B 鉑/鎳合金觸媒 根據US 5,068,161中所述方法製備由鉑與錁姐成(鉑 之填充量為10重量·/·)之傳统合金觸媒。將Shawinigan 乙炔黑(44.1g)加入去泽質水(2000cm3)中,然後攪拌15 分鐘形成均匀漿液。接著將碌酸S鈉(15 . 49g)加入漿液中 之後*拌5分鐘。漿液之溫度升高到101TC之後維持在沸 騰狀態下30分鐘。隨後寻以5分鐘的時間將溶在去礦質水 (SOcm3)中之鉑(5.0g>溶液(氮鉑酸水溶液)從漿液液面 下加入。漿液在沸騰5分镱之後以10分鐘的時間加入溶在 去礦質水<50cra3>中之淳(0.9g>溶液〔硝酸鹽(Ni(N03)z .6H20 , 4.46g)水溶液]。漿液進一步再沸騰2小時。接 箸以1〇分鐘的時間加入稀釋到39cm3之甲ϋ溶液(3.9cm3) 。漿液再沸騰SO分鐘之後通濾除掉上清液,然後用去礦質 (請先閲讀背而之注意事項再填寫木ΙΪ) 裝< 線< 本紙張尺度遑用中國國家標準(CNS)甲4規格(2)0X297公龙) 2il私‘丄 Λ 6 It 6 五、發明説明(19) 水冲洗以除掉可溶性氣化物。不含氰的濾餅在80aC下真空 乾燥直到水分含量低於2·/·為止。接著在流動氡氣氣氛中將 材料加熱到93(TC之溫度,維持在比溫度60分鐘而形成合 金。如此裂得之觸媒中含9.69重量:'.Pt,1.65重量;iNi ,並且Pt : Ni之原子比=64 : 36 : 如上所述製備比較例A和例3 ,以及例5之沉浸型電 極。例5用以上所述之方法活化,以相對於DHE 1.32V之 電位掃掠。例5和例6以及比較洌A和比較例B之電極用 18(TC之1〇〇·/·磷酸評估其氧還原反$之活性。質量活性之 計算是使用對電極進行Pt分析之方法,此方法是在試驗之 後計算在試驗過程中損耗的任何金1優。所得到的電壓對 質量活性之極化曲線示於圖3中: 如上所述,若以電壓對電流S度(或質量活性)之對 數值作圖,沉浸型電極顯示其極化曲線具有兩個線性部份 。以較低電流之線性斜率外插到選定的測量電位(900mV> 可以直接比較以質量活性或比活柱表示之不同類型之觸媒 。外插結果示於表2中。 (請先閲讀背面之注意事項再填寫木頁) 裝- 線· 經濟部中央標準局貝工消費合作杜印51 本紙張尺度逍用中國國家櫺準(CNS) T4規格(210x297公龙) 21 110^4
五、發明説明(20) 例號 質量活性 (m A m g - 1P t,在 9 0 0 :a V 下 比較例A (Pt) 33 比較例B (Pt/Ni) 53 例 5 (PtPc) 丄03 例 6 (PtTADA) 7 5 (請先閲讀背面之注意事項孙填.¾本页) 裝· 從表2中之數據可以看出,比較例A和比較例B的外 插質量活性值與傳統破支撑純鉑和鉑/卑金1合金觸媒者 相當吻合。 圖3與表2之結果顳示本發明觸媒在質量活性方面顧 然比傳統鉑族金應觸媒優異的多。 TT 亦氣濱原渦埕中以雷位捐锌耒示^鬵坧耐众忡 訂- 線· 經濟部中央楳準局員工消费合作社印製
比較例A和比較例B以及例5製成的沉浸型電極用氧 做為反應劑,以18CTC之100%磷酸在電流靜負載(固定電 流密度,亦即負載)控制6小時之時間試驗其耐久性。例 5之電極用180°C之100%磷酸予以活化’以330分鐘之時 間及30IHVS·1之速率掃掠0.05-1.05V之電位(相對於DHE 本紙張尺度逍用中國B家樣中(CNS)f4規格(2胸29/公址) Λ 6η 6 經濟部中央標準局貝工消费合作社印製 五、發明説明(2今 ),同時以氰氣流經電極之氣體側。在毎一例子中之電流 靜負載試驗,其負載均設定到使其獲致850-800mV (相對 於DHE)之初始電位。大家都知道觸媒之去活化作用相曹 依賴外加的操作電位,而電流密度之影響效果卻相嘗小。 比較例A在負載50mAcnr2 6小時之後,其電位降低了 130mV ,而在相同條件下,比較例B之電位則降了 105mV 。例5在負載mAcnr 2 S小時之後則只有20n»V之電位降。 结果示於圖4中。其中數據明顯地證實本發明觸媒材 料與現行的觸媒材料比較,對於阑媒之去活化作用之抗性 高出許多。 ΙΠ.雷瞄堪材扭^太霤 例5之活性材料的物理本質利用X-射線光電子分光術 (XPS)與周期伏安法偵測,此兩種方法都是在所屬技術領 域方面的工作者一般常使用到的描述阑媒材料表面特性之 方法。 例5對活性觸媒之巨環先質以及對試驗電極在予以活 化形成之本發明活性觸媒進行分析’顯示出鉑氧化態之改 變(表3和圖5 ) ° (請先閲讀背面之注意事項#填寫本頁) 裝- 線- 本紙張尺度遑用中Η國家標準(CNS)T4規格(210><2讥公|) 2116^4 _ 五、發明説明(22 ) 弃3 樣品 Pt4f*7/2結合 鉑酞氧素巨瓌先質 73·6 活化的”鉑觸媒電極 71 ·5 (請先閲讀背面之注意事項再项ttT木頁) 經濟部中央標準局员工消t合作社印製 在做為氧還原反®觸媒使用之後*拍結合能從73.68\/ 轉變成71.5eV,這代表粕氧化態從(+ 2>轉變到(〇)。同時 這也顯示例5中之活性觸媒材料中鉑之氧化態為<〇> 。 周期伏安法是傳統鉑觸媒用以測定其活性觸理金屬表 面搰之一種技術。如上所述,ECA量度可以顯示氧化態為 (〇)的鉑金屬之外露表面積。鉑(〇>之周期伏安圚在電位 〇-〇.3V (相對於DHE )之範圍内具有獨一無二的持激信號 ,一般認為這是由於吸附氫在鉑(0)表面上形成蜇裔塗佈 層所致。圖S顯示比較例A和例5分別做為氧澴累反®箱 媒使用之後周期伏安值。表4顯示從毎一伏安圖中計算到 之ECA值。 裝· 訂_ -線- 本紙張尺度遑用中國國家榣準(CNS)甲4規格(210><297公龙) 五、發明説明C3 ) Λ 6 Π 6 表4 例號 ECA 比活性 (m2g' l?t) (uAcm" 2Pt) 比較例A 50 58 例5 17 604 (請先閲讀背面之注意事項再填寫本頁) 經濟部+央標準局貝工消t合作社印製 從這些伏安圖中可以明顯看出雖然本發明觸媒材料是 由氧化態為(〇)之鉑组成,但並没有像傳统鉑(〇) «媒一 樣的方式吸附氫。周期伏安法顯示例5之觸媒所吸附的氫 與比較例Α相比其吸附量少了很多。然而,如上所示,例 5之觸媒的質量活性證霣其比較優異。 利用表2之質量活性值與ECA數據計算表面之比活性 ,所得结果示於表4中。 現有技術中常見到的記錄指出傳統破支撑鉑觸媒之比 活性化介於30-60uAcm·2之間(參見 L J Bregoli in E lectrochim Acta, 23, 489 (1978))。比較例 A 顯示其比 活性介於此一範圍。然而,例5證賣其比活性比起前人記 載的任何鉑或鉑基觸媒系統高出許多。事霣上*改變活化 掃掠之正電位範圍1.〇5-1.357(相對於0此),可以測出 其比活性化介於200-600uAcnr2之間。 無論這些非所預期的結果如何解釋,本發明材料都是 裝- 訂_ 線- 本紙張尺度边用中國國家標準(CNS)甲4規格(210X297公龙) 一 25 _ Λ 6 Η 6 五、發明説明(24) 鉑氧化態為<〇)之型態,如上面所證賣的,這與依傳統方 法裂得之鉑(〇)顯然有大不相同之性質,尤其在與傳統材 料相比之下,其特別可以顯示出較大的質量活性以及增強 的安定性,因此其可以獲致較高的輸出性能及較長的操作 壽命。 (請先閲讀背面之注意事項再填寫本頁) 裝. *?τ- 經濟部屮央標準局貝工消费合作社印 本紙張尺度逍用中國Β家標準(CNS) f 4規格(210X297公龙) -2έ -

Claims (1)

  1. 經浙部屮央櫺芈局貝工消费合作社印製 A7 B7 C7 D7 六、申請專利範81 第81103425號「衍生自巨琛化合物先質之貴金屬觸媒材料 ,其製備方法及活化硪支撑貴金屬之方法」專利案 (82年6月修正) (~ΪΓ 一種衍生自含巨環化合物先質之貴金屬觸媒材料,其偽 做為碩撑體支撑於BET表面積為0〜2080 m2 g-1的高表面 積的碩上,此種觸媒材料中含零氣化狀態之貴金屬選自 鉑、把、钌 、/1¾、姥、銥、銀和金。 2. 如申請專利範圍第1項之觸媒材料,其中觸媒材料是在 先質上面進行活化程序所製得之産物。 3. 如申請專利範圍第1項之觸媒材料,其中貴金屬為鉑或 銥。 4如申請專利範圍第1項之觸媒材料,其中巨環化合物中 之巨環分子為N4-鉗合化合物。 5. 如申請專利範圍第4項之觸媒材料,其中巨環分子為 氡素或四氡雜琿烯〇 6. 如申諳專利範圍第1或5項之觸媒材料,其中高表面積 碩為導電性石墨化硝。 7. 如申誚專利範圍第1項之觭媒材料,其中該磺具30〜 400 /g—1之BET表面積。 8. 如申請專利範圍第1項之觸媒材料,其中贵金屬之《充 置佔硪撐體之0.05〜20重量%。 9. 如申請專利範圍第8項之觸媒材料,其中貴金颳之缜充 (請先閱請背面之注意事項再填寫本頁) *訂· •線. 本紙張尺度適用中國國家搮槊(CNS)<f 4規格(210x297公S·) A7 B7 C7 D7 六、申;ίή·專利苑in 置佔硪撑體之0.1〜10重量%。 10. —種觸媒材料,其偽衍生自含貴金颶的巨環化合物先質 且此巨環化合物是一種π4 -鉗合化合物,及經一艏含導電 石墨化之碩的高表面積之碩支撑著,且碩之BET表面積 為0〜20 00 B2 g_1 ,其中觸媒材料所含之貴金屬係選自於 鉑、钯、钌、M、姥、銥、銀和金,在300氧化狀態下 ,其填充量點硕撑體之0.05〜20重量%。 11. —種燃料電池,其係至少具有一個塗佈箸如申請專利範 圍第1或10項之®媒材料的電極。 12. —種電極,其偽塗佈箸如申請專利範圍第1或10項中的 觸媒材料。 經浙部屮央橾準局貝工消贽合作社印製 (锜先閲續背面之注意事項再填窝本頁) 13. —種製備磺支撑含貴金屬的巨環化合物先質之方法,此 先質為如申請專利範圍1或10項中的觸媒材料之先質, 其步驟包括將貴金屬巨環化合物溶在水性或有機溶劑中 形成溶液,然後將導電性碩加入溶液中,接著將巨琛化 合物材料吸附到碳撑體上面,最後將碩支撑巨環化合物 材料分離。 1 4 .如申請專利範圍第13項之方法,其中溶液在磺加入之後 再樓拌1〜16小時。 15. —種活化硪支撑貴金颶之方法,其中該貴金屬含有如申 請專利範圍第1或10項之《媒材料之巨琿化合物先質, 此活化作用可以使得金屬之氣化狀態改變,其步驟包括 -2 - 本紙ft尺度適用中國國家棵準(CNS)甲4規格(210x297公 A 7 B7 C7 D7 ‘二: 六、申熗專利.苑ifi 重複地掃掠一外加霣位給帶有硝支撺巨琿化合物先質並 且沉浸在酸性電解液中之電極。 16如申請專利範圍第15項之方法,其中外加霣位是介於0. 0 5〜2 . 0 V之間。1 (請先閱請背面之注意事項再填"本页) 經浒部屮央榣準局A工消"合作社印製 本紙張尺度適用中a a家櫺準(CNS)甲4規格(2丨0x297公釐)
TW081103425A 1991-05-04 1992-05-01 TW211624B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB919109751A GB9109751D0 (en) 1991-05-04 1991-05-04 Improved catalyst material

Publications (1)

Publication Number Publication Date
TW211624B true TW211624B (zh) 1993-08-21

Family

ID=10694504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW081103425A TW211624B (zh) 1991-05-04 1992-05-01

Country Status (9)

Country Link
US (1) US5316990A (zh)
EP (1) EP0512713A1 (zh)
JP (1) JPH05129023A (zh)
KR (1) KR920021219A (zh)
CA (1) CA2067833C (zh)
GB (1) GB9109751D0 (zh)
MX (1) MX9202081A (zh)
NO (1) NO921732L (zh)
TW (1) TW211624B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927762B2 (en) 2004-06-30 2011-04-19 Tdk Corporation Fuel cell cathode manufacturing method and fuel cell manufacturing method

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203814B1 (en) * 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
DE19816622A1 (de) * 1998-04-15 1999-10-21 Degussa Brennstoffzellenanode für die Oxidation von Methanol
JP2001216991A (ja) 2000-02-02 2001-08-10 Toyota Motor Corp 燃料電池性能評価装置およびその評価方法、燃料電池用電極触媒の比表面積評価装置およびその評価方法、並びに燃料電池用電極触媒およびその製造方法
US7727927B2 (en) * 2000-09-29 2010-06-01 Global Tungsten & Powders Corp. Method of making tungsten-containing fuel cell catalysts
DE10059167A1 (de) * 2000-11-29 2002-06-06 Bsh Bosch Siemens Hausgeraete Backofen
EA009404B1 (ru) * 2002-05-23 2007-12-28 Коламбиан Кемикалз Компани Углеродный материал с привитым проводящим полимером для применения в топливных элементах
US7195834B2 (en) * 2002-05-23 2007-03-27 Columbian Chemicals Company Metallized conducting polymer-grafted carbon material and method for making
US7459103B2 (en) 2002-05-23 2008-12-02 Columbian Chemicals Company Conducting polymer-grafted carbon material for fuel cell applications
US7241334B2 (en) * 2002-05-23 2007-07-10 Columbian Chemicals Company Sulfonated carbonaceous materials
US7390441B2 (en) * 2002-05-23 2008-06-24 Columbian Chemicals Company Sulfonated conducting polymer-grafted carbon material for fuel cell applications
DE60311985T2 (de) 2002-05-23 2007-10-25 Columbian Chemicals Company Sulfoniertes leitungs-graftpolymerkohlenstoffmaterial für brennstoffzellenanwendungen
JP2004127814A (ja) * 2002-10-04 2004-04-22 Toyota Motor Corp 燃料電池用電極触媒及びその製造方法
US6986957B2 (en) * 2002-12-09 2006-01-17 Motorola, Inc. Fuel cell system
JP4133654B2 (ja) * 2003-07-01 2008-08-13 本田技研工業株式会社 固体高分子形燃料電池
US7208437B2 (en) * 2004-01-16 2007-04-24 T/J Technologies, Inc. Catalyst and method for its manufacture
US6958308B2 (en) * 2004-03-16 2005-10-25 Columbian Chemicals Company Deposition of dispersed metal particles onto substrates using supercritical fluids
US9786925B2 (en) * 2004-04-22 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Fuel cell and fuel cell use gas diffusion electrode
WO2005106994A1 (ja) 2004-04-28 2005-11-10 Nissan Motor Co., Ltd. 燃料電池用膜-電極接合体、および、これを用いた燃料電池
US8574789B2 (en) * 2004-07-08 2013-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Dendritic metal nanostructures for fuel cells and other applications
JP4635248B2 (ja) * 2004-08-18 2011-02-23 独立行政法人産業技術総合研究所 固体高分子形燃料電池用カソード電極触媒とその製造方法
US20070111084A1 (en) * 2004-10-05 2007-05-17 Law Clarence G Methanol tolerant catalyst material containing membrane electrode assemblies and fuel cells prepared therewith
RU2004129396A (ru) * 2004-10-05 2006-03-10 Е.И.Дюпон де Немур энд Компани (US) Каталитический материал, стойкий к действию метанола
US7700520B2 (en) * 2005-04-22 2010-04-20 Institute Of Nuclear Energy Research Methods of making platinum and platinum alloy catalysts with nanonetwork structures
US8115373B2 (en) 2005-07-06 2012-02-14 Rochester Institute Of Technology Self-regenerating particulate trap systems for emissions and methods thereof
US20070254206A1 (en) * 2006-01-17 2007-11-01 Gillan Edward G Methods for production of metals on carbon nitride powders and composites and their use as catalysts in fuel cell electrochemistry
JP2008243756A (ja) * 2007-03-29 2008-10-09 Hitachi Ltd 燃料電池用触媒
WO2009075039A1 (en) * 2007-12-12 2009-06-18 Toyota Jidosha Kabushiki Kaisha Method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell
WO2009075036A1 (en) * 2007-12-12 2009-06-18 Toyota Jidosha Kabushiki Kaisha Method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell
JP5213499B2 (ja) * 2008-04-01 2013-06-19 新日鐵住金株式会社 燃料電池
JP5170702B2 (ja) * 2008-09-01 2013-03-27 独立行政法人産業技術総合研究所 水素化物の電気化学的酸化用触媒
EP2180539A1 (en) * 2008-10-21 2010-04-28 Commissariat à l'Energie Atomique Novel materials and their use for the electrocatalytic evolution or uptake of H2
JP5614628B2 (ja) * 2010-06-16 2014-10-29 横河電機株式会社 燃料電池評価装置および燃料電池評価方法
WO2012018818A1 (en) * 2010-08-02 2012-02-09 Indiana University Research And Technology Corporation Macrocycle modified ag nanoparticulate catalysts with variable oxygen reduction activity in alkaline media
JP6414979B2 (ja) * 2015-04-28 2018-10-31 国立研究開発法人産業技術総合研究所 一酸化炭素の電気化学的酸化用触媒
ITUB20153968A1 (it) * 2015-09-28 2017-03-28 Breton Spa Elettrocatalizzatori su matrici carbonitruriche
JP7460152B2 (ja) 2018-03-02 2024-04-02 AZUL Energy株式会社 触媒、液状組成物、電極、電気化学反応用触媒電極、燃料電池及び空気電池
JP2022052390A (ja) 2020-09-23 2022-04-04 凸版印刷株式会社 電極触媒層、及び膜電極接合体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617388A (en) * 1966-07-25 1971-11-02 Monsanto Res Corp Method of activating fuel cell anodes
GB1470034A (en) * 1975-12-12 1977-04-14 British Petroleum Co Platinum
US4035260A (en) * 1976-01-29 1977-07-12 American Cyanamid Company Process for hydrogenation catalysts of improved distribution of active components
US4179350A (en) * 1978-09-05 1979-12-18 The Dow Chemical Company Catalytically innate electrode(s)
US4325793A (en) * 1979-03-06 1982-04-20 Studiengesellschaft Kohle M.B.H. Catalysis of photochemical production of hydrogen from water
NL8003387A (nl) * 1980-06-11 1982-01-04 Shell Int Research Werkwijze voor het activeren van een katalysator voor brandstofcelelektroden.
US4415479A (en) * 1981-10-29 1983-11-15 Standard Oil Company (Indiana) Palladium on carbon catalyst for purification of crude terephthalic acid
WO1986001642A1 (en) * 1984-09-06 1986-03-13 National Research Development Corporation Electrode for reducing oxygen
US4613551A (en) * 1984-09-19 1986-09-23 Honeywell Inc. High rate metal oxyhalide cells
JPH02291602A (ja) * 1988-12-28 1990-12-03 Idaho Res Found Inc 電気触媒のための導体としての金属ポルフィリンのポリマーフィルム
CA2006963A1 (en) * 1989-01-27 1990-07-27 Thomas E. Nappier Precious metal salt solutions and precious metal catalysts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927762B2 (en) 2004-06-30 2011-04-19 Tdk Corporation Fuel cell cathode manufacturing method and fuel cell manufacturing method

Also Published As

Publication number Publication date
KR920021219A (ko) 1992-12-18
CA2067833A1 (en) 1992-11-05
US5316990A (en) 1994-05-31
GB9109751D0 (en) 1991-06-26
CA2067833C (en) 2002-09-24
MX9202081A (es) 1992-11-01
NO921732D0 (no) 1992-04-30
NO921732L (no) 1992-11-05
JPH05129023A (ja) 1993-05-25
EP0512713A1 (en) 1992-11-11

Similar Documents

Publication Publication Date Title
TW211624B (zh)
Askari et al. NiO‐Co3O4‐rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells
Zhu et al. Facilely tuning porous NiCo2O4 nanosheets with metal valence‐state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting
KR100897637B1 (ko) 연료 전지 및 연료 전지용 가스 확산 전극
Huang et al. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries
Klemenz et al. Synthesis of a Highly Efficient Oxygen‐Evolution Electrocatalyst by Incorporation of Iron into Nanoscale Cobalt Borides
Cui et al. Trace oxophilic metal induced surface reconstruction at buried RuRh cluster interfaces possesses extremely fast hydrogen redox kinetics
Cavaliere et al. Highly stable PEMFC electrodes based on electrospun antimony‐doped SnO2
Esfahani et al. Exceptionally durable Pt/TOMS catalysts for fuel cells
Li et al. Core‐Shell Structured NiCo2O4@ FeOOH Nanowire Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting
CN109860643B (zh) 一种芳香重氮盐表面修饰MXene负载铂的氧还原电催化剂及其制备方法
JP2005527687A (ja) 燃料電池適用のためのスルホン化導電性ポリマーグラフト化炭素性材料
Liu et al. Boosting electrocatalytic oxygen evolution over Ce− Co9S8 core–shell nanoneedle arrays by electronic and architectural dual engineering
Du et al. Applications of RDE and RRDE methods in oxygen reduction reaction
Xu et al. Cobalt‐Doped Tungsten Sulfides as Stable and Efficient Air Electrodes for Rechargeable Zinc‐Air Batteries
Rahmani et al. Excellent electro-oxidation of methanol and ethanol in alkaline media: electrodeposition of the NiMoP metallic nano-particles on/in the ERGO layers/CE
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
Cai et al. Heptanuclear Co, Ni and mixed Co-Ni clusters as high-performance water oxidation electrocatalysts
CN111668501A (zh) 燃料电池阳极催化剂及其制备方法和应用
JPH09167620A (ja) 燃料電池用電極触媒とその製造方法、およびその触媒を用いた電極と燃料電池
Askari et al. NiCo2O4‐rGO/Pt as a robust nanocatalyst for sorbitol electrooxidation
Majumdar et al. Recent Developments of Methanol Electrooxidation Using Nickel‐based Nanocatalysts
Qavami et al. Nickel-cobalt manganate supported on reduced graphene oxide/carbon nanotube for improving air cathode performance in single chamber microbial fuel cell
Filimonenkov et al. Conductive additives for oxide-based OER catalysts: A comparative RRDE study of carbon and silver in alkaline medium
Norouzi et al. Methanol electrooxidation on novel modified carbon paste electrodes with supported poly (isonicotinic acid)(sodium dodecyl sulfate)/Ni-Co electrocatalysts