TW202416380A - 用於基座的射頻(rf)接地配置 - Google Patents

用於基座的射頻(rf)接地配置 Download PDF

Info

Publication number
TW202416380A
TW202416380A TW112148261A TW112148261A TW202416380A TW 202416380 A TW202416380 A TW 202416380A TW 112148261 A TW112148261 A TW 112148261A TW 112148261 A TW112148261 A TW 112148261A TW 202416380 A TW202416380 A TW 202416380A
Authority
TW
Taiwan
Prior art keywords
coupled
electrode
capacitor
housing
filter
Prior art date
Application number
TW112148261A
Other languages
English (en)
Inventor
薩亞 托卡其珠
愛德華P 韓蒙得五世
費倫 卡瑟喀爾
正約翰 葉
艾比杜亞西斯 克哈嘉
維納K 普拉博哈卡爾
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202416380A publication Critical patent/TW202416380A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2007Holding mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Filters And Equalizers (AREA)

Abstract

本揭示案的實施例一般係關於用於處理腔室的基板支撐件以及與其一起使用的RF接地配置。亦描述了將RF電流接地的方法。腔室主體至少部分地在其中界定處理空間。第一電極設置在處理空間中。基座與第一電極相對設置。第二電極設置在基座中。RF濾波器通過導電桿耦接到第二電極。RF濾波器包括耦接到導電桿和接地的第一電容器。RF濾波器亦包括耦接到饋通箱的第一電感器。饋通箱包括以串聯耦接的第二電容器和第二電感器。用於第二電極的直流(DC)電源供應器耦接在第二電容器和第二電感器之間。

Description

用於基座的射頻(RF)接地配置
本揭示案的實施例一般係關於用於處理腔室的基板支撐件,以及與其一起使用的RF接地配置。
射頻(RF)功率用於基板(如半導體基板)處理中,以用於產生電漿、靜電吸附等。在一些處理系統中,RF功率經由電容耦接被供應到第一電極以及輸送到第二電極(如基板支撐件)。第二電極經由電連接而耦接到電源供應器,以允許RF功率返回到源,從而完成RF電路。
在傳統配置中,RF帶(RF strap)有助於RF功率通過RF濾波器流到RF電纜。高RF電流和長處理時間使得RF電纜過熱,導致部件劣化或電弧作用。
因此,需要改良RF接地配置。
在一個實施例中,提供了一種設備,其包括腔室主體,腔室主體至少部分地在其中界定處理空間。基座設置在處理空間中。第一電極與基座相對地設置在處理空間中。第二電極設置在基座中。導電桿耦接到第二電極。射頻(RF)濾波器包括第一電容器,第一電容器耦接到導電桿且耦接接地。RF濾波器亦包括LC諧振電路與第二電容器,LC諧振電路耦接到導電桿,第二電容器耦接到LC諧振電路且耦接接地。
在另一個實施例中,提供了一種設備,其包括腔室主體,腔室主體至少部分地在其中界定處理空間。基座設置在處理空間中。第一電極與基座相對地設置在處理空間中。第二電極設置在基座中。導電桿耦接到第二電極。RF濾波器耦接到導電桿。RF濾波器包括第一電容器與第一電感器,第一電容器耦接到導電桿,第一電感器耦接到導電桿。饋通箱包括以串聯耦接的第二電感器和第二電容器。電源供應器通過饋通箱和RF濾波器耦接到第二電極。
在又一個實施例中,提供了一種設備,其包括腔室主體,腔室主體至少部分地在其中界定處理空間。基座設置在處理空間中。基座包括基板支撐件和軸,該軸耦接到腔室主體以支撐基板支撐件。第一電極與基座相對地設置在處理空間中。第二電極設置在基座中。導電桿延伸穿過基座的軸且耦接到第二電極。RF濾波器設置在殼體中且耦接到導電桿。RF濾波器包括第一電容器與第一電感器,第一電容器耦接到導電桿且耦接到殼體,第一電感器耦接到導電桿。饋通箱包括以串聯耦接的第二電感器和第二電容器。電纜耦接到第一電感器且耦接到第二電感器。電源供應器通過饋通箱和RF濾波器耦接到第二電極。電源供應器在第二電感器和第二電容器之間耦接。
本揭示案的實施例一般係關於用於處理腔室的基板支撐件,以及與其一起使用的RF接地配置。亦描述了將RF電流接地的方法。腔室主體至少部分地在其中界定處理空間。第一電極設置在處理空間中。基座與第一電極相對設置。第二電極設置在基座中。RF濾波器通過導電桿耦接到第二電極。RF濾波器包括第一電容器,第一電容器耦接到導電桿且耦接接地。RF濾波器亦包括耦接到饋通箱的第一電感器。饋通箱包括以串聯耦接的第二電容器和第二電感器。用於第二電極的直流(DC)電源供應器耦接在第二電容器和第二電感器之間。
圖1示出了根據本揭示案的一個實施例的處理腔室100。處理腔室100包括腔室主體102,腔室主體102至少部分地在其中界定處理空間104。基座110設置在處理空間104中。RF接地配置120耦接到基座110。電極101(如噴頭)與基座110相對設置。RF電源106耦接到電極101,以利於處理腔室100內的電漿產生。在處理期間,來自RF電源106的功率電容耦接到基座110。
基座110包括基板支撐件111,基板支撐件111設置在支撐軸112的上端處。基板支撐件111由陶瓷材料(如氮化鋁)形成,而支撐軸112由金屬(如鋁)或陶瓷(如氮化鋁)形成。電阻加熱元件(未圖示)可以可選地設置在基板支撐件111中,以利於基板支撐件111的溫度調節。電極113(如RF網格)設置在基板支撐件111中,以利於處理腔室100內的電漿產生。導電桿107(如RF桿)耦接到電極113且穿過軸112延伸到RF濾波器114。RF濾波器114可經配置為通濾波器(pass filter,如,使所需要的RF頻率通過,同時阻擋不需要的頻率),可經配置為阻斷濾波器(blocking filter,如,經配置為限制或禁止通過電漿傳導的RF能量離開處理腔室),或可經配置為將RF和DC功率組合在單一電極(如電極113或基座110內的另一電極)上。
RF濾波器114包括設置在其中的第一電容器130和第一電感器132。第一電容器130設置在RF桿107到RF濾波器114的導電殼體114a之間,並將RF桿107電連接到RF濾波器114的導電殼體114a。以這種方式,由RF桿107傳導的RF電流通過第一電容器130傳導到導電(如,接地)殼體114a,然後傳導到處理腔室100的導電(如,接地)腔室主體102的內表面。然後,RF電流可返回到RF功率產生器106的接地。第一電感器132在電極113和RF電纜117之間以串聯耦接。第一電感器132有助於阻擋流過RF電纜117的殘餘RF電流。在一個實例中,通過RF濾波器114的13.56 MHz的RF電流在RF接地配置120中約為2.5 A(rms)。
與傳統方法相比,通過將RF功率電流引導到腔室主體102的內表面,第一電容器130和第一電感器132的組合減少流過RF電纜117的RF電流。在一個實例中,與傳統方法相比,流過RF電纜117的RF功率電流減小了約90百分比(%)。因此,減少了處理腔室100中的電弧作用和部件劣化。另外,在本說明書中揭示的實施例中,RF電纜117承載小於3 A(rms),使得與傳統方法相比,RF電纜在較冷的溫度下操作。因為RF電纜117在較冷的溫度下操作,所以減輕了電連接的非預期性或不期望的焊料回流。此外,減少了處理腔室100內的電弧作用。
RF電纜117亦耦接到靜電卡盤(ESC)饋通箱125。高壓直流(HV DC)電源供應器126向ESC饋通箱125輸入功率,以利於位於基座110內的靜電卡盤(未圖示)的操作。ESC饋通箱125利於HV DC電流傳導通過RF電纜117、通過RF濾波器114以及傳導到基座110和電極113。
ESC饋通箱125包括在HV DC電源126和RF電纜117之間以串聯設置的電容器136和電感器134。與傳統方法相比,大幅簡化ESC饋通箱125,例如,省略可變電容器(如通常稱為「底部調諧器」)。饋通箱125耦接接地。
圖2示出了根據本揭示案的一個態樣的基座110和與其耦接的RF接地配置220。可使用RF接地配置220來代替圖1中所示的RF接地配置120。RF接地配置220包括RF濾波器214。RF濾波器214包括與LC諧振電路240串聯設置的電容器230。LC諧振電路240包括彼此以並聯設置的電容器234和電感器232。ESC電纜236將來自HV DC電源供應器126的HV DC功率透過RF電纜117傳導到基座110。電容器238將RF電纜117耦接到RF濾波器214的導電殼體214a。
在圖2的實例中,RF功率(例如,在13.56 MHz的頻率下)透過處理腔室(如處理腔室100)中的電漿耦接到RF網格或基座110內的另一電極。RF網格或其他電極經由電容器230透過RF桿107連接到接地。選擇電容器230的電容,使得電容器230為13.56 MHz的RF電流提供虛擬接地。而且,選擇電容器230使得加熱器對接地阻抗匹配一已知的一值。LC諧振電路240利於阻擋流過RF電纜117的任何殘餘RF電流。當與圖1中所示的RF接地配置120相比時,LC諧振電路240提供比第一電感器132更高的阻抗。電容器238利於橫跨(across)RF電纜117的RF電壓的接地,使得橫跨RF電纜117的電壓(以及因此電流)為零或接近零。在一個實例中,RF電壓小於10 V(rms)。在一個實例中,透過RF濾波器214的輸出處的感測器量測的13.56 MHz的RF電流約為0.5 A(rms)。
圖3示出了傳統的RF接地配置320。傳統的RF接地配置320耦接到基座310。基座可設置在處理腔室中,如關於圖1描述的處理腔室100。RF接地配置320包括RF濾波器314和底部調諧器340。RF桿312穿過基座310的軸延伸到RF濾波器314。RF濾波器314在其中包括RF帶316,RF帶316將RF桿312耦接到RF電纜318。RF電纜318連接到底部調諧器340。底部調諧器340包括可變電容器342和電感器344,其與固定電容器348和電感器346以並聯設置。在傳統的RF接地配置320中,從基座310傳導的所有RF電流透過底部調諧器340接地到處理腔室的主體,底部調諧器340繼而連接到RF功率產生器接地。在這樣的配置中,底部調諧器340內的13.56 MHz的RF電流約為25 A(rms),這導致先前所論述的問題。
儘管前面所述係針對本揭示案的實施例,但在不背離本揭示案的基本範圍下,可設計本揭示案的其他與進一步的實施例,且本揭示案的範圍由以下專利申請範圍所確定。
100:處理腔室 101:電極 102:腔室主體 104:處理空間 106:RF電源 107:導電桿 110:基座 111:基板支撐件 112:支撐軸 113:電極 114:RF濾波器 114a:導電殼體 117:RF電纜 120:RF接地配置 125:ESC饋通箱 126:HV DC電源供應器 130:第一電容器 132:第一電感器 134:電感器 136:電容器 214:RF濾波器 214a:導電殼體 220:RF接地配置 230:電容器 232:電感器 234:電容器 236:ESC電纜 238:電容器 240:LC諧振電路 310:基座 312:RF桿 314:RF濾波器 316:RF帶 318:RF電纜 320:RF接地配置 340:底部調諧器 342:可變電容器 344:電感器 346:電感器 348:電容器
為了能夠詳細理解本揭示案的上述特徵所用方式,上文所簡要概述的本揭示案的更具體描述可參考實施例進行,一些實施例在所附圖式中示出。然而,值得注意的是,因為本揭示案可允許其他等效之實施例,故所附圖式僅示出了示範實施例且不會視為其範圍之限制。
圖1示出了根據本揭示案的一個態樣的處理腔室。
圖2示出了根據本揭示案的一個態樣的基座和RF接地配置。
圖3示出了利用底部調諧器的傳統RF接地配置。
為便於理解,在可能的情況下,使用相同的元件符號代表圖式中共有相同的元件。可以預期的是一個實施例的元件與特徵可有利地結合在其他實施例中而無需贅述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
100:處理腔室
101:電極
102:腔室主體
104:處理空間
106:RF電源
107:導電桿
110:基座
111:基板支撐件
112:支撐軸
113:電極
114:RF濾波器
114a:導電殼體
117:RF電纜
120:RF接地配置
125:ESC饋通箱
126:HV DC電源供應器
130:第一電容器
132:第一電感器
134:電感器
136:電容器

Claims (39)

  1. 一種用於在一基板上形成一層的方法,該方法包含以下步驟: 傳遞一前驅物至一電漿處理腔室的一處理區域;以及 透過以一第一RF頻率與一量值傳遞一RF功率至一第一電極,而在該基板上產生包含該前驅物的一電漿,該基板放置在設置於該處理腔室的該處理區域中的一基板支座的一基板支撐表面上,其中: 該產生的電漿使得一RF電流從設置於該基板支座內的一第二電極流動至一第一導體,該RF電流隨後從該第一導體流動通過一LC諧振電路至一第二導體與具有一第一電容值的一第一電容器,該第二導體與該第一電容器並聯耦接至地,該第一導體透過一第二電容值電容耦接至地,且在該第一RF頻率下的該RF功率的該量值為大於4.5 kW。
  2. 如請求項1所述之方法,其中該第一RF頻率為13.56 MHz或更大,且該RF功率的該量值為大於6.5 kW。
  3. 如請求項1所述之方法,其中一壓力(Torr)對該RF功率的該量值(W)的一比率為約0.0020至約0.0035之間。
  4. 如請求項1所述之方法,其中一頂流動速率(sccm)對該RF功率的該量值(W)的一比率為約0.5至約0.7之間。
  5. 如請求項1所述之方法,其中該前驅物係選自由下列所組成之群組:C 2H 4、He、N 2、NH 3、WF 6、C 3H 6、Ar、SiH 4、與H 2
  6. 如請求項1所述之方法,其中透過該第二導體測量到的該RF電流為約0.5 A(rms)。
  7. 如請求項1所述之方法,其中該第二電極係由RF網格製成。
  8. 一種用於在一基板上形成一層的方法,該方法包含以下步驟: 傳遞一前驅物至一處理腔室的一處理區域; 施加熱至該基板,該基板放置在設置於該處理腔室的該處理區域中的一基板支座的一基板支撐表面上;以及 透過以一頻率與一量值傳遞一RF功率至一第一電極,而在該基板上產生包含該前驅物的一電漿,該基板放置在設置於該處理腔室的該處理區域中的該基板支座的該基板支撐表面上,其中: 該產生的電漿使得一RF電流從設置於該基板支座內的一第二電極流動至一第一導體,該RF電流隨後從該第一導體流動通過一LC諧振電路至一第二導體與具有一第一電容值的一第一電容器,該第二導體與該第一電容器並聯耦接至地,該第一導體透過一第二電容值電容耦接至地,且在該頻率下的該RF功率的該量值為大於4.5 kW,且該等熱源的一溫度為大於攝氏550度。
  9. 如請求項8所述之方法,其中在該頻率為13.56 MHz時該RF功率的該量值為大於6.5 kW。
  10. 如請求項8所述之方法,其中一壓力(Torr)對該RF功率的該量值(W)的一比率為約0.0020至約0.0035之間。
  11. 如請求項8所述之方法,其中一頂流動速率(sccm)對該RF功率的該量值(W)的一比率為約0.5至約0.7之間。
  12. 如請求項8所述之方法,其中該前驅物係選自由下列所組成之群組:C 2H 4、He、N 2、NH 3、WF 6、C 3H 6、Ar、SiH 4、與H 2
  13. 如請求項8所述之方法,其中透過該第二導體測量到的該RF電流為約0.5 A(rms)。
  14. 如請求項8所述之方法,其中該第二電極係由RF網格製成。
  15. 一種用於在一基板上形成一層的方法,該方法包含以下步驟: (a)傳遞一前驅物至一處理腔室的一處理區域; (b)施加熱至該基板,該基板放置在設置於該處理腔室的該處理區域中的一基板支座的一基板支撐表面上;以及 (c)透過以一頻率與一量值傳遞一RF功率至一第一電極,而在該基板上產生包含該前驅物的一電漿,該基板放置在設置於該處理腔室的該處理區域中的該基板支座上,其中: 該產生的電漿使得一RF電流從設置於該基板支座內的一第二電極流動至一第一導體,該RF電流隨後從該第一導體流動通過一LC諧振電路至一第二導體與具有一第一電容值的一第一電容器,該第二導體與該第一電容器並聯耦接至地,該第一導體透過一第二電容值電容耦接至地,且在該頻率下的該RF功率的該量值為大於4.5 kW,且該等熱源的一溫度為大於攝氏550度; (d)關閉該RF功率;以及 (e)重複進行步驟(a)至(d)兩次以上。
  16. 如請求項15所述之方法,其中在該頻率為13.56 MHz時該RF功率的該量值為大於6.5 kW。
  17. 如請求項15所述之方法,其中一壓力(Torr)對該RF功率的該量值(W)的一比率為約0.0020至約0.0035之間。
  18. 如請求項15所述之方法,其中一頂流動速率(sccm)對該RF功率的該量值(W)的一比率為約0.5至約0.7之間。
  19. 如請求項15所述之方法,其中該前驅物係選自由下列所組成之群組:C 2H 4、He、N 2、NH 3、WF 6、C 3H 6、Ar、SiH 4、與H 2
  20. 如請求項15所述之方法,其中透過該第二導體測量到的該RF電流為約0.5 A(rms)。
  21. 如請求項1所述之方法,其中該第二導體與該第一電容器係經由一RF濾波器殼體並聯耦接至地。
  22. 如請求項8所述之方法,其中該第二導體與該第一電容器係經由一RF濾波器殼體並聯耦接至地。
  23. 如請求項15所述之方法,其中該第二導體與該第一電容器係經由一RF濾波器殼體並聯耦接至地。
  24. 一種用於處理一基板的設備,該設備包含: 一基座,該基座包含一基板支座與一軸; 一電極,該電極設置在該基座中; 一導電桿,該導電桿耦接至該電極; 一RF濾波器,該RF濾波器耦接至該導電桿,該RF濾波器包含: 一導電殼體,該導電殼體耦接至地,該導電桿延伸通過該軸並通過該導電殼體的一頂部, 一第一電容器,該第一電容器耦接在該導電桿與該導電殼體之間,以及 一第一電感器,該第一電感器耦接至該導電桿; 一饋通箱,該饋通箱耦接至地,該饋通箱具有設置於其中的串聯耦接的一第二電感器與一第二電容器,該第二電容器耦接在該第二電感器與該饋通箱之間; 一RF電纜,該RF電纜至少部分延伸在該導電殼體與該饋通箱之間,該RF電纜設置為與該RF濾波器以及該饋通箱的該第二電感器串聯;以及 一電源供應器,該電源供應器透過該第二電感器與該RF 濾波器耦接至該電極。
  25. 如請求項24所述之設備,其中該RF濾波器的該導電殼體至少部分延伸通過一腔室主體,該腔室主體至少部分界定該設備的一處理空間。
  26. 如請求項24所述之設備,其中該導電殼體圍繞該第一電容器與該第一電感器。
  27. 如請求項24所述之設備,其中該第一電容器為來自該電極的RF功率創造一接地路徑。
  28. 如請求項24所述之設備,該設備進一步包含: 一第二電極;以及 一RF源,該RF源耦接至該第二電極。
  29. 如請求項28所述之設備,其中從該RF源到該第二電極的RF功率具有13.56 MHz的一頻率。
  30. 如請求項24所述之設備,其中該第二電容器耦接至該饋通箱。
  31. 一種設備,包含: 一腔室主體,該腔室主體至少部分界定一處理空間於其中; 一基座,該基座設置在該處理空間中,該基座包含一基板支座與一軸,該軸耦接至該基板支座; 一第一電極,該第一電極設置在該處理空間中與該基座相對; 一第二電極,該第二電極設置在該基座中; 一導電桿,該導電桿延伸通過該基座的該軸,該導電桿耦接至該第二電極;以及 一射頻(RF)濾波器,該RF濾波器設置在一殼體中並耦接至該導電桿,該RF濾波器包含: 一第一電容器,該第一電容器耦接至該導電桿並耦接至該殼體, 一LC諧振電路,該LC諧振電路耦接至該導電桿,以及 一第二電容器,該第二電容器耦接至該LC諧振電路並耦接至該殼體。
  32. 如請求項31所述之設備,該設備進一步包含: 一電源供應器,該電源供應器透過該LC諧振電路與該導電桿耦接至該第二電極。
  33. 如請求項32所述之設備,該設備進一步包含: 一RF電纜,該RF電纜至少部分延伸於該殼體與該電源供應器之間,該RF電纜設置為與該LC諧振電路串聯。
  34. 如請求項33所述之設備,其中該第二電容器將該RF電纜耦接至該殼體。
  35. 如請求項31所述之設備,其中該殼體耦接至地且該導電桿延伸通過該殼體的一頂部,且該殼體為導電的。
  36. 如請求項35所述之設備,其中該殼體至少部分延伸通過該腔室主體,且該殼體圍繞該第一電容器、該LC諧振電路、以及該第二電容器。
  37. 一種用於處理一基板的設備,該設備包含: 一基座,該基座包含一基板支座與一軸; 一電極,該電極設置在該基座中; 一導電桿,該導電桿耦接至該電極; 一RF濾波器,該RF濾波器耦接至該導電桿,該RF濾波器包含: 一殼體,該殼體耦接至地, 一第一電容器,該第一電容器耦接在該導電桿與該殼體之間,以及 一第一電感器,該第一電感器耦接至該導電桿; 一饋通箱,該饋通箱耦接至地,該饋通箱具有設置於其中的串聯耦接的一第二電感器與一第二電容器,該第二電容器耦接在該第二電感器與該饋通箱之間;以及 一RF電纜,該RF電纜至少部分延伸在該導電殼體與該饋通箱之間,該RF電纜設置為與該RF濾波器以及該饋通箱的該第二電感器串聯。
  38. 如請求項37所述之設備,其中該導電桿延伸通過該軸並通過該殼體的一頂部,且該殼體為導電的。
  39. 如請求項38所述之設備,該設備進一步包含: 一電源供應器,該電源供應器透過該第二電感器與該RF濾波器耦接至該電極; 一第二電極;以及 一RF源,該RF源耦接至該第二電極。
TW112148261A 2018-05-03 2019-05-03 用於基座的射頻(rf)接地配置 TW202416380A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862666418P 2018-05-03 2018-05-03
US62/666,418 2018-05-03

Publications (1)

Publication Number Publication Date
TW202416380A true TW202416380A (zh) 2024-04-16

Family

ID=68385096

Family Applications (2)

Application Number Title Priority Date Filing Date
TW112148261A TW202416380A (zh) 2018-05-03 2019-05-03 用於基座的射頻(rf)接地配置
TW108115374A TWI828686B (zh) 2018-05-03 2019-05-03 用於基座的射頻(rf)接地配置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108115374A TWI828686B (zh) 2018-05-03 2019-05-03 用於基座的射頻(rf)接地配置

Country Status (7)

Country Link
US (3) US11569072B2 (zh)
JP (2) JP7408570B2 (zh)
KR (1) KR20200139842A (zh)
CN (3) CN117612918A (zh)
SG (1) SG11202010037QA (zh)
TW (2) TW202416380A (zh)
WO (1) WO2019212799A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
KR20220110816A (ko) * 2019-12-06 2022-08-09 램 리써치 코포레이션 통합된 rf 필터들을 가진 기판 지지부들
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
CN114695051A (zh) * 2020-12-31 2022-07-01 拓荆科技股份有限公司 半导体处理设备及方法
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11984306B2 (en) 2021-06-09 2024-05-14 Applied Materials, Inc. Plasma chamber and chamber component cleaning methods
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
CN117441223A (zh) * 2021-06-21 2024-01-23 应用材料公司 用于控制处理腔室中的射频电极阻抗的方法及设备
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11776788B2 (en) 2021-06-28 2023-10-03 Applied Materials, Inc. Pulsed voltage boost for substrate processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US12111341B2 (en) 2022-10-05 2024-10-08 Applied Materials, Inc. In-situ electric field detection method and apparatus
US20240186123A1 (en) * 2022-12-02 2024-06-06 Applied Materials, Inc. Heated Pedestal With Impedance Matching Radio Frequency (RF) Rod

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685610B2 (ja) * 1989-12-07 1997-12-03 東京エレクトロン株式会社 プラズマ処理装置
US6063234A (en) * 1997-09-10 2000-05-16 Lam Research Corporation Temperature sensing system for use in a radio frequency environment
US6922324B1 (en) * 2000-07-10 2005-07-26 Christopher M. Horwitz Remote powering of electrostatic chucks
US6706138B2 (en) * 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
JP4515755B2 (ja) 2003-12-24 2010-08-04 東京エレクトロン株式会社 処理装置
JP4879159B2 (ja) 2004-03-05 2012-02-22 アプライド マテリアルズ インコーポレイテッド アモルファス炭素膜堆積のためのcvdプロセス
US7109114B2 (en) 2004-05-07 2006-09-19 Applied Materials, Inc. HDP-CVD seasoning process for high power HDP-CVD gapfil to improve particle performance
TW200631095A (en) * 2005-01-27 2006-09-01 Koninkl Philips Electronics Nv A method of manufacturing a semiconductor device
US7312162B2 (en) 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7790634B2 (en) 2006-05-30 2010-09-07 Applied Materials, Inc Method for depositing and curing low-k films for gapfill and conformal film applications
US7750645B2 (en) * 2007-08-15 2010-07-06 Applied Materials, Inc. Method of wafer level transient sensing, threshold comparison and arc flag generation/deactivation
US20090236214A1 (en) * 2008-03-20 2009-09-24 Karthik Janakiraman Tunable ground planes in plasma chambers
US20140069584A1 (en) 2008-07-23 2014-03-13 Applied Materials, Inc. Differential counter electrode tuning in a plasma reactor with an rf-driven ceiling electrode
US8734664B2 (en) 2008-07-23 2014-05-27 Applied Materials, Inc. Method of differential counter electrode tuning in an RF plasma reactor
CN104115300B (zh) 2012-02-15 2017-02-22 应用材料公司 沉积包封膜的方法
JP6027374B2 (ja) * 2012-09-12 2016-11-16 東京エレクトロン株式会社 プラズマ処理装置及びフィルタユニット
US10125422B2 (en) 2013-03-27 2018-11-13 Applied Materials, Inc. High impedance RF filter for heater with impedance tuning device
US10032608B2 (en) 2013-03-27 2018-07-24 Applied Materials, Inc. Apparatus and method for tuning electrode impedance for high frequency radio frequency and terminating low frequency radio frequency to ground
US9589767B2 (en) * 2013-07-19 2017-03-07 Advanced Energy Industries, Inc. Systems, methods, and apparatus for minimizing cross coupled wafer surface potentials
CN104753486B (zh) * 2013-12-31 2019-02-19 北京北方华创微电子装备有限公司 一种射频滤波器及半导体加工设备
KR102247560B1 (ko) * 2014-07-14 2021-05-03 삼성전자 주식회사 Rps에서의 플라즈마 생성방법, 및 그 플라즈마 생성방법을 포함한 반도체 소자 제조방법
US10879041B2 (en) * 2015-09-04 2020-12-29 Applied Materials, Inc. Method and apparatus of achieving high input impedance without using ferrite materials for RF filter applications in plasma chambers
WO2017100136A1 (en) * 2015-12-07 2017-06-15 Applied Materials, Inc. Method and apparatus for clamping and declamping substrates using electrostatic chucks
JP6674800B2 (ja) 2016-03-07 2020-04-01 日本特殊陶業株式会社 基板支持装置
US10435789B2 (en) 2016-12-06 2019-10-08 Asm Ip Holding B.V. Substrate treatment apparatus
WO2018226370A1 (en) 2017-06-08 2018-12-13 Applied Materials, Inc. High-density low temperature carbon films for hardmask and other patterning applications

Also Published As

Publication number Publication date
US20190341232A1 (en) 2019-11-07
CN118448237A (zh) 2024-08-06
US20230170190A1 (en) 2023-06-01
JP7408570B2 (ja) 2024-01-05
US10923334B2 (en) 2021-02-16
JP2021523559A (ja) 2021-09-02
US20190341227A1 (en) 2019-11-07
CN117612918A (zh) 2024-02-27
US11569072B2 (en) 2023-01-31
SG11202010037QA (en) 2020-11-27
KR20200139842A (ko) 2020-12-14
TWI828686B (zh) 2024-01-11
CN112106169B (zh) 2024-06-04
CN112106169A (zh) 2020-12-18
TW201947660A (zh) 2019-12-16
JP2024041772A (ja) 2024-03-27
WO2019212799A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
TW202416380A (zh) 用於基座的射頻(rf)接地配置
KR102539151B1 (ko) 기판 처리 방법
JP5129433B2 (ja) プラズマ処理チャンバ
TWI355015B (en) Dual frequency rf match
TWI627653B (zh) 使用處理腔室中之調諧電極以調諧電漿分佈之設備及方法
KR102384836B1 (ko) 기판 처리 장치
US7871490B2 (en) Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes and improved field distribution
JPH10241898A (ja) Hdp−cvdチャンバ用のプラズマソース
US10032608B2 (en) Apparatus and method for tuning electrode impedance for high frequency radio frequency and terminating low frequency radio frequency to ground
WO2000068985A1 (fr) Appareil de traitement au plasma
JP2001520457A5 (zh)
KR102111504B1 (ko) 기판 처리 장치 및 기판 처리 방법
TW503442B (en) Coil and coil support for generating a plasma
JP2020517103A (ja) 遠隔窒素ラジカル源によって可能となる高堆積速度高品質の窒化ケイ素
TW200302682A (en) Plasma processing apparatus capable of performing uniform plasma treatment by preventing drift in plasma discharge current
JPH0850996A (ja) プラズマ処理装置
JP4488662B2 (ja) プラズマ処理装置、マッチングボックス
WO2020116259A1 (ja) プラズマ処理装置及びプラズマ処理方法
KR20210030545A (ko) 플라즈마 에칭 장치
US20230253232A1 (en) Substrate treatment apparatus
TWI716831B (zh) 可切換匹配網路及電感耦合電漿處理器
TW202247712A (zh) 電漿處理裝置及基板處理方法
JP2010159493A (ja) プラズマ処理装置、インピーダンス整合器、結合器
CN115602518A (zh) 基片支承体、基片支承体组件和等离子体处理装置
JP2017224697A (ja) ガス輸送管及びプラズマ処理装置