TW202348782A - 發光元件、顯示裝置、電子裝置及照明設備 - Google Patents

發光元件、顯示裝置、電子裝置及照明設備 Download PDF

Info

Publication number
TW202348782A
TW202348782A TW112109264A TW112109264A TW202348782A TW 202348782 A TW202348782 A TW 202348782A TW 112109264 A TW112109264 A TW 112109264A TW 112109264 A TW112109264 A TW 112109264A TW 202348782 A TW202348782 A TW 202348782A
Authority
TW
Taiwan
Prior art keywords
light
organic compound
emitting element
compound
emitting
Prior art date
Application number
TW112109264A
Other languages
English (en)
Other versions
TWI835588B (zh
Inventor
大澤信晴
瀬尾哲史
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202348782A publication Critical patent/TW202348782A/zh
Application granted granted Critical
Publication of TWI835588B publication Critical patent/TWI835588B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本發明提供一種發光效率高的發光元件。本發明是一種包含第一至第三有機化合物的發光元件。第一有機化合物具有將三重激發能轉換為發光的功能。第二有機化合物較佳為TADF材料。第三有機化合物為螢光化合物。發光元件所發射的光可以從第三有機化合物得到。發光層中的三重激發能藉由由於第二有機化合物的反系間竄越或者第一有機化合物移動到第三有機化合物。

Description

發光元件、顯示裝置、電子裝置及照明設備
本發明的一個實施方式係關於一種發光元件或包括該發光元件的顯示裝置、電子裝置及照明設備。
注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。另外,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或組合物(composition of matter)。因此,更明確而言,作為本說明書所公開的本發明的一個實施方式的技術領域的例子,可以舉出半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、這些裝置的驅動方法或製造方法。
近年來,對利用電致發光(Electroluminescence:EL)的發光元件的研究開發日益火熱。這些發光元件的基本結構是在一對電極之間夾有包含發光物質的層(EL層)的結構。藉由將電壓施加到該元件的電極間,可以獲得來自發光物質的發光。
因為上述發光元件是自發光型發光元件,所以使用該發光元件的顯示裝置具有如下優點:具有良好的可見度;不需要背光源;以及功耗低等。而且,該顯示裝置還具有如下優點:能夠被製造得薄且輕;以及回應速度快等。
當使用將有機化合物用作發光性物質並在一對電極間設置包含該發光性物質的EL層的發光元件(例如,有機EL元件)時,藉由將電壓施加到一對電極間,電子和電洞分別從陰極和陽極注入到發光性EL層,而使電流流過。而且,注入的電子與電洞再結合而使發光性有機化合物成為激發態,而可以獲得發光。
作為有機化合物所形成的激發態的種類,有單重激發態(S )及三重激發態(T ),來自單重激發態的發光被稱為螢光,來自三重激發態的發光被稱為磷光。另外,在該發光元件中,單重激發態與三重激發態的統計學上的產生比例是S :T =1:3。因此,與使用發射螢光的化合物(螢光化合物)的發光元件相比,使用發射磷光的化合物(磷光化合物)的發光元件的發光效率更高。因此,近年來,對使用能夠將三重激發能轉換為發光的磷光化合物的發光元件的研究開發日益火熱。
在使用磷光化合物的發光元件中,尤其是發射藍光的發光元件因為難以開發具有高三重激發能階的穩定的化合物,所以尚未投入實際使用。為此,開發了使用更穩定的螢光化合物的發光元件,並已搜索了提高使用螢光化合物的發光元件(螢光發光元件)的發光效率的方法。
作為一個例子,已知有使用熱活化延遲螢光(Thermally Activated Delayed Fluorescence:TADF)材料的發光元件。在熱活化延遲螢光材料中,藉由反系間竄越從三重激發態產生單重激發態,並且單重激發態被轉換為發光。
另外,還已知如下方法:在包含熱活化延遲螢光材料和螢光化合物的發光元件中,將熱活化延遲螢光材料的單重激發能轉移到螢光化合物,並從該螢光化合物獲得發光(參照專利文獻1)。
[專利文獻1] 日本專利申請公開第2014-45179號公報
[非專利文獻1] T.Sajoto等人, J. Am. Chem. Soc., 2009, 131, 9813
螢光性材料不能將三重激發能轉換為發光。因此,螢光發光元件的發光效率容易比磷光發光元件低。為了得到高亮度,需要大量的電流,發熱或電流負載增大,所以難以得到良好的可靠性。
為了提高螢光發光元件的發光效率,較佳的是,發光層中的三重激發能高效地轉換為單重激發能或者高效地移動到螢光發光材料。為此,需要開發從三重激發態高效地生成單重激發態以提高發光元件的發光效率的方法及材料。另外,作為用於發光層的材料,為了降低驅動電壓,需要使用具有良好的載子傳輸性的材料。
因此,本發明的一個實施方式的目的是提供一種發光效率高的發光元件。另外,本發明的一個實施方式的目的是提供一種驅動電壓低的發光元件。另外,本發明的一個實施方式的目的是提供一種可靠性高的發光元件。另外,本發明的一個實施方式的目的是提供一種功耗得到降低的發光元件。另外,本發明的一個實施方式的目的是提供一種顏色純度高的發光元件。另外,本發明的一個實施方式的目的是提供一種新穎的發光元件。另外,本發明的一個實施方式的目的是提供一種新穎的發光裝置。另外,本發明的一個實施方式的目的是提供一種新穎的電子裝置。
注意,上述目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不一定需要實現所有上述目的。另外,上述目的以外的目的可以從說明書等的記載得知並衍生。
如上所述,作為發射螢光的發光元件,需要開發能夠高效地將三重激發能轉換為發光的方法。為此,需要提高發光層所使用的材料間的能量轉移效率。
本發明的一個實施方式是一種發光元件,包括一對電極之間的發光層,其中,發光層包含第一有機化合物、第二有機化合物及第三有機化合物,第一有機化合物具有將三重激發能轉換為發光的功能,第二有機化合物所具有的單重激發能與第二有機化合物所具有的三重激發能之差為0eV以上且0.2eV以下,第三有機化合物具有將單重激發能轉換為發光的功能,並且,從發光層發射的光具有從第三有機化合物發射的光。
本發明的其他實施方式是一種發光元件,包括一對電極之間的發光層,其中,發光層包含第一有機化合物、第二有機化合物及第三有機化合物,第一有機化合物具有將三重激發能轉換為發光的功能,第二有機化合物具有富π電子骨架及缺π電子骨架,第三有機化合物具有將單重激發能轉換為發光的功能,並且,從發光層發射的光具有從第三有機化合物發射的光。
本發明的其他實施方式是一種發光元件,包括一對電極之間的發光層,其中,發光層包含第一有機化合物、第二有機化合物及第三有機化合物,第一有機化合物和第二有機化合物能夠形成激態錯合物,第一有機化合物具有將三重激發能轉換為發光的功能,第二有機化合物所具有的單重激發能階與第二有機化合物所具有的三重激發能階之差為0eV以上且0.2eV以下,第三有機化合物具有將單重激發能轉換為發光的功能,並且,從發光層發射的光具有從第三有機化合物發射的光。
本發明的其他實施方式是一種發光元件,包括一對電極之間的發光層,其中,發光層包含第一有機化合物、第二有機化合物及第三有機化合物,第一有機化合物和第二有機化合物能夠形成激態錯合物,第一有機化合物具有將三重激發能轉換為發光的功能,第二有機化合物具有富π電子骨架及缺π電子骨架,第三有機化合物具有將單重激發能轉換為發光的功能,並且,從發光層發射的光具有從第三有機化合物發射的光。
在上述結構中,第一有機化合物較佳為具有將激發能供應到第三有機化合物的功能。
在上述結構中,激態錯合物較佳為具有將激發能供應到第三有機化合物的功能。
在上述結構中,富π電子骨架及缺π電子骨架較佳為直接鍵合。
在上述結構中,第一有機化合物所具有的三重激發能階較佳為第三有機化合物所具有的單重激發能階以上。
在上述結構中,第一有機化合物較佳為包含Ru、Rh、Pd、Os、Ir或Pt。
在上述結構中,第一有機化合物較佳為具有發射磷光的功能。
在上述結構中,第一有機化合物的最低三重激發能階較佳為第二有機化合物的最低三重激發能階以下。
在上述結構中,激態錯合物所呈現的發射光譜較佳為與第三有機化合物的吸收光譜的最長波長一側的吸收帶具有重疊區域。
在上述結構中,第一有機化合物較佳為在室溫下具有0%以上且40%以下的發光量子產率。
在上述結構中,第三有機化合物較佳為發射螢光。
另外,本發明的另一個實施方式是包括上述各結構的發光元件、以及濾色片和電晶體中的至少一方的顯示裝置。另外,本發明的另一個實施方式是包括上述顯示裝置、以及外殼和觸控感測器中的至少一方的電子裝置。另外,本發明的另一個實施方式是包括上述各結構的發光元件、以及外殼和觸控感測器中的至少一方的照明設備。另外,本發明的一個實施方式是其範疇內不僅包括具有發光元件的發光裝置還包括具有發光裝置的電子裝置。因此,本說明書中的發光裝置是指影像顯示裝置或光源(包括照明設備)。另外,發光裝置有時還包括如下模組:在發光元件中安裝有連接器諸如FPC(Flexible Printed Circuit:撓性電路板)或TCP(Tape Carrier Package:捲帶式封裝)的顯示模組;在TCP端部中設置有印刷線路板的顯示模組;或者IC(積體電路)藉由COG(Chip On Glass:晶粒玻璃接合)方式直接安裝在發光元件上的顯示模組。
根據本發明的一個實施方式可以提供一種發光效率高的發光元件。另外,根據本發明的一個實施方式可以提供一種驅動電壓低的發光元件。另外,根據本發明的一個實施方式可以提供一種可靠性高的發光元件。另外,根據本發明的一個實施方式可以提供一種功耗得到降低的發光元件。另外,根據本發明的一個實施方式可以提供一種顏色純度高的發光元件。另外,根據本發明的一個實施方式可以提供一種新穎的發光元件。另外,根據本發明的一個實施方式可以提供一種新穎的發光裝置。另外,根據本發明的一個實施方式可以提供一種新穎的電子裝置。
注意,這些效果的記載不妨礙其他效果的存在。另外,本發明的一個實施方式並不一定需要具有所有上述效果。另外,上述效果以外的效果可以從說明書、圖式、申請專利範圍等的記載得知並衍生。
以下,參照圖式詳細地說明本發明的實施方式。注意,本發明不侷限於以下說明,其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅侷限在以下所示的實施方式及實施例所記載的內容中。
另外,為了容易理解,有時在圖式等中示出的各結構的位置、大小及範圍等並不表示其實際的位置、大小及範圍等。因此,所公開的發明不一定侷限於圖式等所公開的位置、大小、範圍等。
另外,在本說明書等中,為了容易理解,附加了第一、第二等序數詞,而其有時並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地置換為“第二”或“第三”等而進行說明。另外,本說明書等中所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。
注意,在本說明書等中,當利用圖式說明發明的結構時,有時在不同的圖式中共同使用表示相同的部分的符號。
另外,在本說明書等中,可以將“膜”和“層”相互調換。例如,有時可以將“導電層”換為“導電膜”。另外,有時可以將“絕緣膜”換為“絕緣層”。
另外,在本說明書等中,單重激發態(S *)是指具有激發能的單重態。另外,S1能階是單重激發能階的最低能階,其是指最低單重激發態(S1狀態)的激發能階。另外,三重激發態(T *)是指具有激發能的三重態。另外,T1能階是三重激發能階的最低能階,其是指最低三重激發態(T1狀態)的激發能階。另外,在本說明書等中,雖然有時僅記作“單重激發態”和“單重激發能階”,但是有時其分別表示S1狀態和S1能階。另外,即便在記作“三重激發態”和“三重激發能階”的情況下,有時其分別表示T1狀態和T1能階。
另外,在本說明書等中,螢光化合物是指在從單重激發態返回到基態時在可見光區域發光的化合物。磷光化合物是指在從三重激發態返回到基態時在室溫下以可見光區域發光的化合物。換言之,磷光化合物是指能夠將三重激發能轉換為可見光的化合物之一。
注意,在本說明書等中,室溫是指0℃以上且40℃以下的範圍內的溫度。
另外,在本說明書等中,藍色的波長區域是指400nm以上且小於490nm的波長區域,藍色的發光在該波長區域至少具有一個發射光譜峰值。另外,綠色的波長區域是指490nm以上且小於580nm的波長區域,綠色的發光在該波長區域至少具有一個發射光譜峰值。另外,紅色的波長區域是指580nm以上且680nm以下的波長區域,紅色的發光在該波長區域至少具有一個發射光譜峰值。
實施方式1 在本實施方式中,參照圖1A至圖4B說明本發明的一個實施方式的發光元件。
<發光元件的結構實例1> 首先,下面將參照圖1A至圖1C說明本發明的一個實施方式的發光元件的結構。
圖1A是本發明的一個實施方式的發光元件150的剖面示意圖。
發光元件150包括一對電極(電極101及電極102),並包括設置在該一對電極間的EL層100。EL層100至少包括發光層130。
另外,圖1A所示的EL層100除了發光層130以外還包括電洞注入層111、電洞傳輸層112、電子傳輸層118及電子注入層119等功能層。
注意,雖然在本實施方式中以一對電極中的電極101為陽極並以電極102為陰極進行說明,但是發光元件150的結構並不侷限於此。也就是說,也可以將電極101用作陰極、將電極102用作陽極,並將電極間的各層的順序倒過來層疊。換言之,從陽極一側依次層疊電洞注入層111、電洞傳輸層112、發光層130、電子傳輸層118及電子注入層119即可。
注意,EL層100的結構不侷限於圖1A所示的結構,只要包括選自電洞注入層111、電洞傳輸層112、電子傳輸層118及電子注入層119中的至少一個即可。或者,EL層100也可以包括具有如下功能的功能層:能夠減少電洞或電子的注入能障的功能層;能夠提高電洞或電子的傳輸性的功能層;能夠阻礙電洞或電子的傳輸性的功能層;或者能夠抑制電極所引起的淬滅現象等的功能層。功能層可以為單層也可以為多個層的疊層。
下面說明發光層130。
在本發明的一個實施方式中,發光元件150是發光層130中含有螢光化合物的螢光發光元件。螢光發光元件具有高可靠性且發射光譜比磷光發光元件更尖,因此可以得到高色純度的發光元件。與此相比,有機EL元件的單重態激子與三重態激子的生成比(以下,激子生成概率)的統計概率為1:3。因此,通常的利用從單重態激子的發光的螢光發光元件中僅有25%的生成激子有助於發光。所以,為了實現螢光發光元件的高效率化,使三重態激子有助於發光是十分重要的。
這裡,本發明人發現藉由在發光層中使用能夠將三重激發能轉換為發光的有機化合物、單重激發能與三重激發能之差為0eV以上且0.2eV以下的有機化合物以及呈現螢光發光的有機化合物,高效地能夠將三重激子有助於螢光發光,亦即可以得到高效率的螢光元件。此外,單重激發能與三重激發能之差為0eV以上且0.2eV以下的有機化合物也可以在一個分子中包括富π電子骨架及缺π電子骨架的兩者。
作為單重激發能與三重激發能之差為0eV以上且0.2eV以下的有機化合物,可以舉出熱活化延遲螢光(TADF)材料。熱活化延遲螢光材料是指S1能階和T1能階的差異較小且具有藉由反系間竄越將三重激發能轉換為單重激發能的功能的材料。因此,能夠藉由微小的熱能量將三重激發能上轉換(up-convert)為單重激發能(反系間竄越)並能夠高效地產生單重激發態。由兩種物質形成激基狀態的激態錯合物(Exciplex)因S1能階和T1能階的差異極小而具有將三重激發能轉換為單重激發能的熱活化延遲螢光材料的功能。
由於在一個分子中包括富π電子骨架及缺π電子骨架的有機化合物具有雙極性,載子(電子及電洞)傳輸性良好,所以藉由用於發光元件可以提高載子平衡。此外,可以降低驅動電壓。另外,該結構的有機化合物有時具有TADF性。此時,富π電子骨架及缺π電子骨架較佳為直接鍵合。藉由採用該結構可以提高反系間竄越,所以可以得到發光效率良好的TADF材料。
TADF材料在一個分子中包含具有富π電子骨架及缺π電子骨架的有機化合物。因此,如上所述TADF材料的載子傳輸性良好,藉由將TADF材料用於發光元件可以提高載子平衡。此外,可以降低發光元件的驅動電壓。
作為上述具有將三重激發能轉換為發光的功能的有機化合物,可以舉出能夠發射磷光的化合物(以下稱為磷光化合物)。在本說明書等中,磷光化合物是指在低溫(例如77K)以上且室溫以下的溫度範圍(亦即,77K以上且313K以下)的任一溫度下發射磷光而不發射螢光的化合物。為了使磷光化合物高效地將三重激發能轉換為發光,較佳為包含重原子。另外,在磷光化合物包含重原子的情況下,由於自旋軌域相互作用(電子的自旋角運動量與軌域角運動量之間的相互作用),磷光化合物中的單重基態與三重激發態之間的躍遷被允許。由此,可以提高磷光化合物的單重基態與三重激發態之間的躍遷概率,從而可以提高與該躍遷有關的發光效率及吸收概率。另外,從該磷光化合物的三重激發能階向螢光化合物的單重激發能階的依據福斯特(Förster)機制的能量轉移被允許。為此,較佳為使磷光化合物包含自旋軌域相互作用大的金屬元素,明確而言,較佳為包含過渡金屬元素,尤其較佳為包含鉑族元素(釕(Ru)、銠(Rh)、鈀(Pd)、鋨(Os)、銥(Ir)或鉑(Pt)),特別較佳為包含銥。銥可以提高單重基態與三重激發態之間的直接躍遷的概率,所以是較佳的。另外,作為具有將三重激發能轉換為發光的功能的材料,可以舉出上述TADF材料。
圖1B是示出圖1A所示的發光層130的一個例子的剖面示意圖。圖1B所示的發光層130包括化合物131、化合物132和化合物133。在本發明的一個實施方式中,化合物131具有將三重激發能轉換為發光的功能。另外,化合物132較佳為TADF材料。化合物133是發射螢光的客體材料。
<發光層的結構實例1> 圖1C示出本發明的一個實施方式的發光元件的發光層中的能階相關的一個例子。在本結構實例中,示出化合物131使用磷光化合物時的例子。
另外,圖1C示出發光層130中的化合物131、化合物132以及化合物133的能階相關。圖1C中的標記及符號為如下。 ・Comp(131):化合物131 ・Comp(132):化合物132 ・Guest(133):化合物133 ・T C1:化合物131的T1能階 ・S C2:化合物132的S1能階 ・T C2:化合物132的T1能階 ・S G:化合物133的S1能階 ・T G:化合物133的T1能階
在圖1C中,化合物131或化合物132藉由接收電洞和電子形成激發態。這裡,由於化合物131為磷光化合物,因此允許單重激發態與三重激發態間的系間竄躍。所以,可以使化合物132的單重激發能和三重激發能的兩者快速地轉移到化合物131(圖1C中的路徑A 1)。這裡,較佳為S C2≥T C1且T C2≥T C1。另外,發光層130由化合物131、化合物132和化合物133混合而成,較佳為該混合物中化合物132所佔的比例大於化合物131所佔的比例,明確地說,較佳為化合物131:化合物132為1:9至3:7(重量比)。藉由採用該組成,可以高效地使化合物131激發。另外,由於化合物131是磷光化合物,化合物131所具有的三重激發能可以被高效地轉換為化合物133的單重激發能(圖1C中的路徑A 2)。這裡,如圖1C所示,當S C2≥T C1≥S G時單重激發能能夠高效地轉移至為客體材料的化合物133,所以是較佳的。另外,當T C2≥T C1≥S G時三重激發能能夠高效地轉換為單重激發能並轉移至為客體材料的化合物133,所以是較佳的。
另外,當發生從T C1向T G的三重激發能轉移時,三重激發能失活(圖1C中的路徑A 3)。因此,較佳為路徑A 3的能量轉移少。為了抑制路徑A 3的能量轉移,較佳的是,在化合物131及化合物132的總量與化合物133的重量比中化合物133所佔比例較低,明確而言,相對於化合物131及化合物132的化合物133的重量比較佳為0.001以上且0.05以下,更佳為0.001以上且0.01以下。
注意,當化合物133中的載子的直接再結合過程佔優勢時,在化合物133中產生多個三重態激子,而熱失活導致發光效率的下降。因此,較佳的是,經由路徑A 2的能量轉移過程的比例高於化合物133中的載子直接再結合的過程的比例,以可以降低化合物133的三重激發態的生成概率並抑制熱失活。為此,在化合物131及化合物132的總量與化合物133的重量比中化合物133所佔比例較低,明確而言,相對於化合物131及化合物132的化合物133的重量比較佳為0.001以上且0.05以下,更佳為0.001以上且0.01以下。
在本發明的一個實施方式的發光元件中,化合物132具有呈現熱活化延遲螢光的功能(TADF性)。也就是說,化合物132具有藉由上轉換將三重激發能轉換為單重激發能的功能(圖1C的路徑A 4)。化合物132所包括的單重激發能可以迅速地移動到化合物133(圖1C的路徑A 5)。此時,較佳為S C2≥S G
注意,路徑A 1即使不產生以路徑A 4表示的反系間竄越也會產生。換言之,以路徑A 1表示的能量移動在以路徑A 4表示的反系間竄越產生或不產生下也都會產生。
如上所述,在本發明的一個實施方式的發光元件中,存在有三重激發能經過圖1C中的路徑A 1及路徑A 2移動到客體材料的化合物133的路徑以及經過圖1C中的路徑A 4及路徑A 5移動到化合物133的路徑。藉由存在有三重激發能移動到螢光化合物的路徑,可以提高螢光發光元件的發光效率。此外,藉由存在有三重激發能移動到螢光化合物的多個路徑,可以進一步提高發光效率。
藉由使發光層130具有上述結構,可以高效地獲得來自發光層130的螢光化合物的發光。
另外,T G較佳為2.0eV以下。藉由採用該結構可以得到可靠性高的發光元件。
由於在上述結構中磷光化合物不需要使用發光量子產率高的材料,所以容易進行材料設計,材料選擇範圍寬。明確地說,室溫或常溫下的該化合物的發光量子產率可以為0%以上且50%以下、0%以上且40%以下、0%以上且25%以下、0%以上且10%以下、甚至0%以上且1%以下。此外,該化合物較佳為具有重原子。作為該重原子可以舉出Ru、Rh、Pd、Os、Ir、Pt等。
<發光層的結構實例2> 圖2B示出本發明的一個實施方式的發光元件150的發光層130中的能階相關的一個例子。在本結構實例中,示出化合物131使用磷光化合物、化合物131與化合物132形成激態錯合物時的例子。
作為化合物131與化合物132的組合,只要是能夠形成激態錯合物的組合即可,較佳為其中一個是具有電洞傳輸性的化合物,另一個是具有電子傳輸性的化合物。在該情況下,更容易形成施體-受體型的激態錯合物,而可以高效地形成激態錯合物。另外,當化合物131與化合物132的組合是具有電洞傳輸性的化合物與具有電子傳輸性的化合物的組合時,能夠藉由調整其混合比而容易地控制載子的平衡。明確而言,具有電洞傳輸性的化合物:具有電子傳輸性的化合物較佳為在1:9至9:1(重量比)的範圍內。另外,藉由具有該結構,可以容易地控制載子的平衡,由此也可以容易地對載子再結合區域進行控制。
激態錯合物的形成例如可以藉由如下方法確認:對化合物131的發射光譜、化合物132的發射光譜及混合化合物131和化合物132而成的混合膜的發射光譜進行比較,當觀察到混合膜的發射光譜比各化合物的發射光譜向長波長一側漂移(或者在長波長一側具有新的峰值)的現象時說明形成有激態錯合物;或者,對化合物131的瞬態光致發光(PL)、化合物132的瞬態PL及混合化合物131和化合物132而成的混合膜的瞬態PL進行比較,當觀察到混合膜的瞬態PL壽命與各化合物的瞬態PL壽命相比具有長壽命成分或者延遲成分的比率變大等瞬態回應不同時說明形成有激態錯合物。此外,可以將上述過渡PL稱為過渡電致發光(EL)。換言之,藉由對化合物131的過渡EL、化合物132的過渡EL及這些的混合膜的過度EL進行比較,觀察過渡回應的差異,可以確認到激態錯合物的形成。
另外,作為高效地形成激態錯合物的材料的組合,較佳的是,化合物131及化合物132中的一個的HOMO(Highest Occupied Molecular Orbital,也稱為最高佔據分子軌域)能階高於另一個的HOMO能階,並且其中一個的LUMO(Lowest Unoccupied Molecular Orbital,也稱為最低空分子軌域)能階高於另一個的LUMO能階。明確而言,化合物131的HOMO能階與化合物132的HOMO能階的能量差較佳為0.1eV以上,更佳為0.2eV以上,進一步較佳為0.3eV以上。另外,化合物131的LUMO能階與化合物132的LUMO能階的能量差較佳為0.1eV以上,更佳為0.2eV以上,進一步較佳為0.3eV以上。藉由這種能階相關,從一對電極(電極101及電極102)注入的作為載子的電洞及電子分別容易注入到化合物131及化合物132,所以是較佳的。另外,化合物131的HOMO能階也可以與化合物132的HOMO能階相等,或者,化合物131的LUMO能階也可以與化合物132的LUMO能階相等。
注意,化合物的LUMO能階及HOMO能階可以從藉由循環伏安(CV)測定測得的化合物的電化學特性(還原電位及氧化電位)求出。
例如,當化合物131具有電洞傳輸性而化合物132具有電子傳輸性時,如圖2A所示的能帶圖那樣,較佳的是,化合物131的HOMO能階高於化合物132的HOMO能階,且化合物131的LUMO能階高於化合物132的LUMO能階。藉由這種能階相關,從一對電極(電極101及電極102)注入的作為載子的電洞及電子分別容易注入到化合物131及化合物132,所以是較佳的。
另外,在圖2A中,Comp(131)表示化合物131,Comp(132)表示化合物132,ΔE C1表示化合物131的LUMO能階和HOMO能階的能量差,ΔE C2表示化合物132的LUMO能階和HOMO能階的能量差,並且ΔE E表示化合物132的LUMO能階和化合物131的HOMO能階的能量差。
另外,由化合物131和化合物132形成的激態錯合物在化合物131中具有HOMO的分子軌域並在化合物132中具有LUMO的分子軌域。另外,該激態錯合物的激發能大致相當於化合物132的LUMO能階和化合物131的HOMO能階的能量差(ΔE E),並小於化合物131的LUMO能階和HOMO能階的能量差(ΔE C1)及化合物132的LUMO能階和HOMO能階的能量差(ΔE C2)。因此,藉由由化合物131和化合物132形成激態錯合物,可以以較低的激發能形成激發態。另外,該激態錯合物因具有較低的激發能而能夠形成穩定的激發態。
圖2B示出發光層130中的化合物131、化合物132以及化合物133的能階相關。如下是圖2B中的標記及符號,其他標記及符號與圖1C所示的標記及符號相同。 ・S C1:化合物131的S1能階 ・S E:激態錯合物的S1能階 ・T E:激態錯合物的T1能階
在本結構實例示出的本發明的一個實施方式的發光元件中,發光層130所包含的化合物131及化合物132形成激態錯合物。激態錯合物的S1能階(S E)與激態錯合物的T1能階(T E)成為相鄰的能階(參照圖2B中的路徑A 6)。
當經上述過程生成的激態錯合物因發光或者將激發能供應到其他材料等而失去激發能變為基態時,形成激態錯合物的兩種物質再次作為原來的兩種物質存在。
激態錯合物的激發能階(S E及T E)比形成激態錯合物的各物質(化合物131及化合物132)的S1能階(S C1及S C2)低,所以可以以更低的激發能形成激發態。由此,可以降低發光元件150的驅動電壓。
由於激態錯合物的S1能階(S E)與T1能階(T E)是相鄰的能階,因此具有呈現熱活化延遲螢光的功能。也就是說,激態錯合物具有藉由上轉換將三重激發能轉換為單重激發能的功能。因此,在發光層130中產生的三重激發能的一部分因激態錯合物而轉換為單重激發能。為此,激態錯合物的S1能階(S E)與T1能階(T E)的能量差較佳為大於0eV且為0.2eV以下,更佳為大於0eV且為0.1eV以下。注意,為了高效地使反系間竄越發生,激態錯合物的T1能階(T E)較佳為低於構成激態錯合物的各物質(化合物131及化合物132)的T1能階(T C1及T C2)。由此,不容易產生由化合物131及化合物132形成的激態錯合物的三重激發能的淬滅,而高效地發生激態錯合物的從三重激發能到單重激發能的反系間竄越。
另外,激態錯合物的單重激發能階(S E)較佳為高於作為發光材料的化合物133的單重激發能階(S G)。藉由這種能階相關,所產生的激態錯合物的單重激發能能夠從激態錯合物的單重激發能階(S E)轉移到化合物133的單重激發能階(S G)。
這裡,化合物131與化合物132的能階相關不侷限於圖2B所示。也就是說,化合物131的單重激發能階(S C1)可以高於化合物132的單重激發能階(S C2)也可以低於化合物132的單重激發能階(S C2)。另外,化合物131的三重激發能階(T C1)可以高於化合物132的三重激發能階(T C2)也可以低於化合物132的三重激發能階(T C2)。
另外,在本發明的一個實施方式中,因為使用磷光化合物作為形成激態錯合物的一個化合物,所以允許單重態與三重態之間的系間竄越。由此,可以形成能夠從三重激發態躍遷到單重基態的激態錯合物。在此情況下,激態錯合物的三重激發能階(T E)較佳為高於作為發光材料的化合物133的單重激發能階(S G)。藉由這種能階相關,可以使所生成的激態錯合物的三重激發能從激態錯合物的三重激發能階(T E)向化合物133的單重激發能階(S G)進行能量轉移。注意,激態錯合物的S1能階(S E)和T1能階(T E)彼此相鄰,由此有時在發射光譜中難以明確地區分螢光和磷光。在此情況下,有時可以根據發光壽命區分螢光和磷光。
經上述能量轉移過程,化合物133變為單重激發態,由此能夠發光(參照圖2B中的路徑A 7)。
另外,當發生從T E到T G的三重激發能轉移時,三重激發能失活(圖2B中的路徑A 8)。因此,較佳為路徑A 8的能量轉移少。為了抑制路徑A 8的能量轉移,較佳的是,在化合物131及化合物132的總量與化合物133的重量比中化合物133所佔比例較低,明確而言,相對於化合物131及化合物132的化合物133的重量比較佳為0.001以上且0.05以下,更佳為0.001以上且0.01以下。
注意,當化合物133中的載子的直接再結合過程佔優勢時,在化合物133中產生多個三重態激子,而熱失活導致發光效率的下降。因此,較佳的是,經由激態錯合物的產生過程的能量轉移過程(圖2B中的路徑A 7)的比例高於化合物133中的載子直接再結合的過程的比例,以可以降低化合物133的三重激發態的生成概率並抑制熱失活。為此,如上所述在化合物131及化合物132的總量與化合物133的重量比中化合物133所佔比例較低,明確而言,相對於化合物131及化合物132的化合物133的重量比較佳為0.001以上且0.05以下,更佳為0.001以上且0.01以下。
另外,T G較佳為2.0eV以下。藉由採用該結構可以得到可靠性高的發光元件。
另外,也可以採用化合物131具有電子傳輸性且化合物132具有電洞傳輸性的結構。在此情況下,化合物132的HOMO能階較佳為高於化合物131的HOMO能階,而化合物132的LUMO能階較佳為高於化合物131的LUMO能階。
另外,較佳的是,在化合物131與化合物132的重量比中化合物131所佔比例較低,明確而言,相對於化合物132的化合物131的重量比較佳為0.01以上且0.5以下,更佳為0.05以上且0.3以下。
如上所述,當上述路徑A 6及A 7的能量轉移過程全部高效地發生時,在發光層130中產生的單重激發能及三重激發能的兩者都高效地轉換為化合物133的單重激發能,所以發光元件150能夠以高發光效率發光。
另外,在本發明的一個實施方式的發光元件中,化合物132較佳為具有缺π電子骨架。藉由採用該結構,化合物132的LUMO能階變低,適合於形成激態錯合物。
在本發明的一個實施方式的發光元件中,化合物132較佳為具有富π電子骨架。藉由該結構,化合物132的HOMO能階得到提高,這適合於激態錯合物的形成。
在本發明的一個實施方式的發光元件中,化合物132具有呈現熱活化延遲螢光的功能(TADF性)。因此,在沒有形成激態錯合物的化合物132中,如上述發光層的結構實例所示,具有藉由上轉換將三重激發能轉換為單重激發能的功能(圖2B的路徑A 9)。化合物132所包括的單重激發能可以迅速地移動到化合物133(圖2B的路徑A 10)。此時,較佳為S C2≥S G
如上所述,在本發明的一個實施方式的發光元件中,存在有三重激發能經過圖2B中的路徑A 6及路徑A 7移動到客體材料的化合物133的路徑以及經過圖2B中的路徑A 9及路徑A 10移動到化合物133的路徑。與上述發光層的結構實例同樣地,藉由存在有三重激發能移動到螢光化合物的路徑,可以提高螢光發光元件的發光效率。此外,藉由存在有三重激發能移動到螢光化合物的多個路徑,可以進一步提高發光效率。
在本說明書等中,有時將上述路徑A 6及A 7的過程稱為ExSET(Exciplex-Singlet Energy Transfer:激態錯合物-單重態能量轉移)或ExEF(Exciplex-Enhanced Fluorescence:激態錯合物增強螢光)。換言之,在發光層130中,產生從激態錯合物到螢光化合物的激發能的供應。
藉由使發光層130具有上述結構,可以高效地獲得來自螢光化合物的發光。
<發光層的結構實例3> 圖3示出本發明的一個實施方式的發光元件的發光層中的能階相關的一個例子。在本結構實例中,示出化合物131使用TADF材料時的例子。圖3中的標記及符號與圖1C所示的標記及符號相同。 ・S C1:化合物131的S1能階
在圖3中,化合物131或化合物132藉由接收電洞和電子形成激發態。另外,化合物132的激發能可以快速地轉移到化合物131(圖3中的路徑A 11)。這裡,較佳為S C2≥S C1且T C2≥T C1。這裡,化合物131是熱活化延遲螢光材料,因此化合物131的三重激發能在室溫左右的溫度下上轉換為單重激發能(圖3中的路徑A 12)。另外,由於允許化合物131的單重激發能階(S C1)向化合物133的單重激發能階(S G)進行能量轉移(圖3中的路徑A 13),藉由路徑A 11及路徑A 13可以使化合物131的三重激發能轉移至化合物133的單重激發能階(S G)。這裡,如圖3所示,當T C2≥T C1≥S G時,單重激發能及三重激發能均高效地從化合物131及化合物132轉移到為客體材料的化合物133,所以是較佳的。
為了高效地進行上述上轉換,TADF材料的S1能階(S C2)與T1能階(T C2)的能量差較佳為大於0eV且為0.2eV以下,更佳為大於0eV且為0.1eV以下。
另外,當發生從T C1向T G的三重激發能轉移時,三重激發能失活(圖3中的路徑A 14)。因此,較佳為路徑A 14的能量轉移少。為了抑制路徑A 14的能量轉移,較佳為T C1與T G的能量差大。為此,較佳為T G為2.0eV以下。藉由採用該結構可以得到可靠性高的發光元件。
如上述發光層的結構實例所示,由於化合物132為TADF材料,所以具有藉由上轉換將三重激發能轉換為單重激發能的功能(圖3的路徑A 15)。化合物132所具有的單重激發能可以迅速地移動到化合物133(圖3的路徑A 16)。此時,較佳為S C2≥S G
與上述發光層的結構實例同樣地,在本發明的一個實施方式的發光元件中,存在有三重激發能經過圖3中的路徑A 11至路徑A 13移動到客體材料的化合物133的路徑以及經過圖3中的路徑A 15及路徑A 16移動到化合物133的路徑。藉由存在有三重激發能移動到螢光化合物的路徑,可以提高螢光發光元件的發光效率。藉由存在有三重激發能移動到螢光化合物的多個路徑,可以進一步提高發光效率。
注意,路徑A 11即使不產生以路徑A 15表示的反系間竄越也會產生。換言之,以路徑A 11表示的能量移動在以路徑A 15表示的反系間竄越產生或不產生下也都會產生。
<發光層的結構實例4> 圖4A示出發光層130使用4種材料時的情況。圖4A中的發光層130包括化合物131、化合物132、化合物133及化合物134。在本發明的一個實施方式中,化合物131具有將三重激發能轉換為發光的功能。另外,化合物132較佳為TADF材料。化合物133是發射螢光的客體材料。另外,化合物134是與化合物132形成激態錯合物的有機化合物。
另外,圖4B示出發光層130中的化合物131、化合物132、化合物133以及化合物134的能階相關。如下是圖4B中的標記及符號,其他的標記及符號與圖2B所示的標記及符號相同。 ・S C3:化合物134的S1能階 ・T C3:化合物134的T1能階
在本結構實例示出的本發明的一個實施方式的發光元件中,發光層130所包含的化合物132及化合物134形成激態錯合物。激態錯合物的S1能階(S E)與激態錯合物的T1能階(T E)成為相鄰的能階(參照圖4B中的路徑A 17)。
藉由上述過程生成的激態錯合物如上所述,當失去激發能時,形成激態錯合物的兩種物質再次作為原來的兩種物質存在。
激態錯合物的激發能階(S E及T E)比形成激態錯合物的各物質(化合物132及化合物134)的S1能階(S C2及S C3)低,所以可以以更低的激發能形成激發態。由此,可以降低發光元件150的驅動電壓。
這裡,由於化合物131為磷光化合物,因此允許單重激發態與三重激發態間的系間竄躍。所以,可以使激態錯合物的單重激發能及三重激發能的兩者快速地轉移到化合物131(路徑A 18)。這裡,較佳為T E≥T C1。另外,由於可以使化合物131所具有的三重激發能高效地轉換為化合物133的單重激發能(路徑A 19)。這裡,如圖4B所示,當T E≥T C1≥S G時,化合物131的激發能作為單重激發能高效地轉移至為客體材料的化合物133,所以是較佳的。
此時,作為化合物132與化合物134的組合,只要是能夠形成激態錯合物的組合即可,較佳為其中一個是具有電洞傳輸性的化合物,另一個是具有電子傳輸性的化合物。在該情況下,更容易形成施體-受體型的激態錯合物,而可以高效地形成激態錯合物。另外,當化合物132與化合物134的組合是具有電洞傳輸性的化合物與具有電子傳輸性的化合物的組合時,能夠藉由調整其混合比而容易地控制載子的平衡。明確而言,具有電洞傳輸性的化合物:具有電子傳輸性的化合物較佳為在1:9至9:1(重量比)的範圍內。另外,藉由具有該結構,可以容易地控制載子的平衡,由此也可以容易地對載子再結合區域進行控制。
另外,作為高效地形成激態錯合物的材料的組合,較佳的是,化合物132及化合物134中的一方的HOMO能階高於另一方的HOMO能階,並且一方的LUMO能階高於另一方的LUMO能階。明確而言,化合物132的HOMO能階與化合物134的HOMO能階的能量差較佳為0.1eV以上,更佳為0.2eV以上,進一步較佳為0.3eV以上。另外,化合物132的LUMO能階與化合物134的LUMO能階的能量差較佳為0.1eV以上,更佳為0.2eV以上,進一步較佳為0.3eV以上。藉由這種能階相關,從一對電極(電極101及電極102)注入的作為載子的電洞及電子分別容易注入到化合物132及化合物134,所以是較佳的。另外,化合物132的HOMO能階也可以與化合物134的HOMO能階相等,或者,化合物132的LUMO能階也可以與化合物134的LUMO能階相等。
另外,化合物132與化合物134的能階相關不侷限於圖4B所示。也就是說,化合物132的單重激發能階(S C2)可以高於化合物134的單重激發能階(S C3)也可以低於化合物134的單重激發能階(S C3)。另外,化合物132的三重激發能階(T C2)可以高於化合物134的三重激發能階(T C3)也可以低於化合物134的三重激發能階(T C3)。
另外,在本發明的一個實施方式的發光元件中,化合物132較佳為具有缺π電子骨架。藉由採用該結構,化合物132的LUMO能階變低,適合於形成激態錯合物。
在本發明的一個實施方式的發光元件中,化合物132較佳為具有富π電子骨架。藉由該結構,化合物132的HOMO能階得到提高,這適合於激態錯合物的形成。
如上述發光層的結構實例所示,由於化合物132為TADF材料,所以沒有形成激態錯合物的化合物132具有藉由上轉換將三重激發能轉換為單重激發能的功能(圖4B的路徑A 21)。化合物132所具有的單重激發能可以迅速地移動到化合物133(圖4B的路徑A 22)。此時,較佳為S C2≥S G
與上述發光層的結構實例同樣地,在本發明的一個實施方式的發光元件中,存在有三重激發能經過圖4B中的路徑A 17至路徑A 19移動到客體材料的化合物133的路徑以及經過圖4B中的路徑A 21及路徑A 22移動到化合物133的路徑。藉由存在有三重激發能移動到螢光化合物的路徑,可以提高螢光發光元件的發光效率。藉由存在有三重激發能移動到螢光化合物的多個路徑,可以進一步提高發光效率。
另外,當發生從T C1向T G的三重激發能轉移時,三重激發能失活(圖4B中的路徑A 20)。因此,較佳為路徑A 20的能量轉移少。為了抑制路徑A 20的能量轉移,較佳的是,化合物131、化合物132及化合物134的總量與化合物133的重量比中,化合物133所佔比例較低,明確地說,較佳為相對於化合物131、化合物132及化合物134的總量的化合物133的重量比為0.001以上且0.05以下,更佳為0.001以上且0.01以下。
另外,T G較佳為2.0eV以下。藉由採用該結構可以得到可靠性高的發光元件。
<能量轉移機制> 下面,對分子間的能量轉移過程的控制因素進行說明。作為分子間的能量轉移的機制,提出了福斯特機制(偶極-偶極相互作用)和德克斯特(Dexter)機制(電子交換相互作用)的兩個機制。注意,雖然在此對有關從處於激發態的第一材料向處於基態的第二材料的激發能供給的第一材料與第二材料的分子間的能量轉移過程進行說明,但是在上述任一個是激態錯合物時也是同樣的。
<<福斯特機制>> 在福斯特機制中,在能量轉移中不需要分子間的直接接觸,藉由第一材料與第二材料間的偶極振盪的共振現象發生能量轉移。藉由偶極振盪的共振現象,第一材料向第二材料供應能量,激發態的第一材料成為基態,基態的第二材料成為激發態。另外,公式(1)示出福斯特機制的速率常數k h* g
在公式(1)中,ν表示振盪數,f’ h(ν)表示第一材料的正規化發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜),ε g(ν)表示第二材料的莫耳吸光係數,N表示亞佛加厥數,n表示介質的折射率,R表示第一材料與第二材料的分子間距,τ表示所測量的激發態的壽命(螢光壽命或磷光壽命),c表示光速,ϕ表示發光量子產率(當討論從單重激發態的能量轉移時為螢光量子產率,當討論從三重激發態的能量轉移時為磷光量子產率),K 2表示第一材料和第二材料的躍遷偶極矩的配向的係數(0至4)。另外,在無規配向中,K 2=2/3。
<<德克斯特機制>> 在德克斯特機制中,第一材料和第二材料接近於產生軌域的重疊的接觸有效距離,藉由交換激發態的第一材料的電子和基態的第二材料的電子,發生能量轉移。另外,公式(2)示出德克斯特機制的速率常數k h* g
在公式(2)中,h表示普朗克常數,K表示具有能量維數(energy dimension)的常數,ν表示振盪數,f’ h(ν)表示第一材料的正規化發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜),ε’ g(ν)表示第二材料的正規化吸收光譜,L表示有效分子半徑,R表示第一材料與第二材料的分子間距。
這裡,從第一材料到第二材料的能量轉移效率ϕ ET以公式(3)表示。k r表示第一材料的發光過程(當討論從單重激發態的能量轉移時為螢光,當討論從三重激發態的能量轉移時為磷光)的速率常數,k n表示第二材料的非發光過程(熱失活或系間竄躍)的速率常數,τ表示所測量的第一材料的激發態的壽命。
從公式(3)可知,為了提高能量轉移效率ϕ ET,可以增大能量轉移的速率常數k h* g來使其他競爭速率常數k r+k n(=1/τ)相對變小。
<<用來提高能量轉移的概念>> 首先,考慮基於福斯特機制的能量轉移。藉由將公式(1)代入到公式(3),可以消去τ。因此,在福斯特機制中,能量轉移效率ϕ ET不取決於第一材料的激發態的壽命τ。另外,當發光量子產率ϕ(當討論從單重激發態的能量轉移時為螢光量子產率,當討論從三重激發態的能量轉移時為磷光量子產率)高時,可以說能量轉移效率ϕ ET較高。
另外,第一材料的發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜)與第二材料的吸收光譜(相當於從單重基態到單重激發態的遷移的吸收)的重疊較佳為大。再者,第二材料的莫耳吸光係數較佳為高。這意味著第一材料的發射光譜與呈現在第二材料的最長波長一側的吸收帶重疊。注意,由於第二材料中的從單重基態到三重激發態的直接躍遷被禁止,因此在第二材料中,三重激發態下的莫耳吸光係數為少到可以忽視的量。由此,可以忽視基於福斯特機制的第一材料的激發態到第二材料的三重激發態的能量轉移過程,只需考慮向第二材料的單重激發態的能量轉移過程。
接著,考慮基於德克斯特機制的能量轉移。從公式(2)可知,為了增大速率常數k h* g,第一材料的發射光譜(當討論從單重激發態的能量轉移時為螢光光譜,當討論從三重激發態的能量轉移時為磷光光譜)與第二材料的吸收光譜(相當於從單重基態到單重激發態的遷移的吸收)的重疊較佳為大。因此,藉由使第一材料的發射光譜與呈現在第二材料的最長波長一側的吸收帶重疊可以實現能量轉移效率的最佳化。
另外,當將公式(2)代入到公式(3)時,可知德克斯特機制中的能量轉移效率ϕ ET取決於τ。因為德克斯特機制是基於電子交換的能量轉移過程,所以與從第一材料的單重激發態到第二材料的單重激發態的能量轉移同樣地,還產生從第一材料的三重激發態到第二材料的三重激發態的能量轉移。
與從第一材料到第二材料的能量轉移同樣地,在從激態錯合物到螢光化合物的能量轉移過程中也有可能發生基於福斯特機制及德克斯特機制的兩者的能量轉移。
在本發明的一個實施方式的發光元件中,第二材料是螢光化合物,所以到第二材料的三重激發態的能量轉移效率較佳為低。也就是說,從第一材料到第二材料的基於德克斯特機制的能量轉移效率較佳為低,而從第一材料到第二材料的基於福斯特機制的能量轉移效率較佳為高。
如上所述,基於福斯特機制的能量轉移效率不取決於第一材料的激發態的壽命τ。另一方面,基於德克斯特機制的能量轉移效率取決於第一材料的激發壽命τ,為了降低基於德克斯特機制的能量轉移效率,第一材料的激發壽命τ較佳為短。
於是,在本發明的一個實施方式中,作為第一材料使用激態錯合物或TADF材料,形成該激態錯合物的一個化合物具有將三重激發能轉換為發光的功能。藉由本發明的一個實施方式的結構,可以促進激態錯合物(第一材料)的從三重激發態向單重激發態的反系間竄越,以縮短激態錯合物(第一材料)的三重激發態的激發壽命τ。另外,可以促進激態錯合物(第一材料)的從三重激發態向單重基態的躍遷,以縮短激態錯合物(第一材料)的三重激發態的激發壽命τ。其結果是,可以降低從激態錯合物(第一材料)的三重激發態向螢光化合物(第二材料)的三重激發態的基於德克斯特機制的能量轉移效率,因此本發明的一個實施方式可以提供發光效率高的發光元件。
另外,在激態錯合物所發射的光中,較佳為熱活化延遲螢光成分的螢光壽命短,明確而言,較佳為10ns以上且50μs以下,更佳為10ns以上且20μs以下,進一步較佳為10ns以上且10μs以下。
另外,福斯特機制的速率常數和第一材料-第二材料間的距離的六次方成反比,而德克斯特機制的速率常數和第一材料-第二材料間的距離的指數函數成反比。因此,當兩個分子間的距離大約為1nm以下時德克斯特機制佔優勢,當兩個分子間的距離大約為1nm以上時福斯特機制佔優勢。因此,為了降低基於德克斯特機制的能量轉移效率,較佳為增大第一材料與第二材料間的距離,明確而言,其距離較佳為0.7nm以上,更佳為0.9nm以上,進一步較佳為1nm以上。另外,為了以福斯特機制高效地進行能量轉移,第一材料與第二材料間的距離較佳為5nm以下。
因此,在本發明的一個實施方式中,作為螢光化合物的化合物133較佳為包括至少兩個碳原子數為2以上的烷基。或者,化合物133較佳為包括至少兩個碳原子數為3以上且10以下的具有支鏈的烷基。或者,化合物133較佳為包括至少兩個的碳原子數為3以上且10以下的環烴基或至少兩個的碳原子數為3以上且10以下的橋環烴基。另外,化合物133較佳為包括碳原子數為3以上且12以下的稠合芳烴。
<材料> 接著,說明根據本發明的一個實施方式的發光元件的組件。
<<發光層>> 下面對能夠用於發光層130的材料分別進行說明。
作為化合物132例如可以舉出TADF材料。較佳的是,化合物132的S1能階與T1能階的能量差小,明確而言,大於0eV且0.2eV以下。
化合物132較佳為包括具有電洞傳輸性的骨架及具有電子傳輸性的骨架。或者,化合物132較佳為具有富π電子骨架或芳香胺骨架且具有缺π電子骨架。由此容易在分子內形成施體-受體型激發態。再者,較佳的是,以在化合物132的分子中同時增強施體性及受體性的方式包括具有電子傳輸性的骨架與具有電洞傳輸性的骨架直接鍵合的結構。或者,較佳的是,包括富π電子骨架或芳香胺骨架與缺π電子骨架直接鍵合的結構。藉由在分子中同時增強施體性及受體性,可以在化合物132中縮小HOMO的分子軌域分佈的區域與LUMO的分子軌域分佈的區域重疊的部分,而可以減少化合物132的單重激發能階與三重激發能階的能量差。此外,可以使化合物132的三重激發能階保持為高。
當熱活化延遲螢光材料由一種材料構成時,例如可以使用如下材料。
首先,可以舉出富勒烯或其衍生物、原黃素等吖啶衍生物、曙紅(eosin)等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為該含金屬卟啉,例如也可以舉出原卟啉-氟化錫錯合物(SnF 2(Proto IX))、中卟啉-氟化錫錯合物(SnF 2(Meso IX))、血卟啉-氟化錫錯合物(SnF 2(Hemato IX))、糞卟啉四甲基酯-氟化錫錯合物(SnF 2(Copro III-4Me))、八乙基卟啉-氟化錫錯合物(SnF 2(OEP))、初卟啉-氟化錫錯合物(SnF 2(Etio I))、八乙基卟啉-氯化鉑錯合物(PtCl 2OEP)等。
[化1]
另外,作為由一種材料構成的熱活化延遲螢光材料,還可以使用具有富π電子骨架及缺π電子骨架的雜環化合物。明確而言,可以舉出2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-啡㗁𠯤-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡𠯤-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA)、4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzBfpm)、4-[4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯基]苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzPBfpm)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-聯-9H-咔唑(簡稱:mPCCzPTzn-02)等。該雜環化合物具有富π電子骨架及缺π電子骨架,因此電子傳輸性及電洞傳輸性高,所以是較佳的。尤其是,在具有缺π電子骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、嗒𠯤骨架)及三嗪骨架穩定且可靠性良好,所以是較佳的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的受體性高且可靠性良好,所以是較佳的。另外,在具有富π電子骨架中,吖啶骨架、啡㗁𠯤骨架、啡噻𠯤骨架、呋喃骨架、噻吩骨架及吡咯骨架穩定且可靠性良好,所以較佳為具有上述骨架中的至少一個。另外,作為呋喃骨架較佳為使用二苯并呋喃骨架,作為噻吩骨架較佳為使用二苯并噻吩骨架。作為吡咯骨架,特別較佳為使用吲哚骨架、咔唑骨架,聯咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。另外,在富π電子骨架和缺π電子骨架直接鍵合的物質中,富π電子骨架的施體性和缺π電子骨架的受體性都強,單重激發態與三重激發態的能階之差值變小,所以是尤其較佳的。另外,也可以使用鍵合有如氰基等拉電子基團的芳香環作為缺π電子骨架。
[化2]
接著,如上所述,化合物131較佳為具有將三重激發能轉換為發光的功能。作為具有該功能的有機化合物,可以舉出磷光材料或熱活化延遲螢光材料。
作為該磷光化合物,可以舉出銥、銠、鉑類有機金屬錯合物或金屬錯合物。另外,可以舉出具有卟啉配體的鉑錯合物或有機銥錯合物,尤其是,較佳為使用銥類鄰位金屬錯合物等有機銥錯合物。作為鄰位金屬化的配體,可以舉出4H-三唑配體、1H-三唑配體、咪唑配體、吡啶配體、嘧啶配體、吡嗪配體或異喹啉配體等。此時,化合物131(磷光化合物)具有三重MLCT(從金屬到配體的電荷轉移:Metal to Ligand Charge Transfer)躍遷的吸收帶。
作為在藍色或綠色處具有發光峰值的物質,例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN 2]苯基-κC}銥(III)(簡稱:Ir(mpptz-dmp) 3)、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:Ir(Mptz) 3)、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPrptz-3b) 3)、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPr5btz) 3)等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:Ir(Mptz1-mp) 3)、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:Ir(Prptz1-Me) 3)等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:Ir(iPrpmi) 3)、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:Ir(dmpimpt-Me) 3)等具有咪唑骨架的有機金屬銥錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C 2’]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C 2’]銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C 2’}銥(III)吡啶甲酸鹽(簡稱:Ir(CF 3ppy) 2(pic))、雙[2-(4’,6’-二氟苯基)吡啶根-N,C 2’]銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬銥錯合物。在上述材料中,具有4H-三唑骨架、1H-三唑骨架及咪唑骨架等含氮五元雜環骨架的有機金屬銥錯合物的三重激發能量很高並具有高可靠性及高發光效率,所以是特別較佳的。
作為在綠色或黃色處具有發光峰值的物質,例如可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:Ir(mppm) 3)、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm) 3)、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:Ir(mppm) 2(acac))、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm) 2(acac))、(乙醯丙酮根)雙[4-(2-降莰基)-6-苯基嘧啶]銥(III)(簡稱:Ir(nbppm) 2(acac))、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:Ir(mpmppm) 2(acac))、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN 3]苯基-κC}銥(III)(簡稱:Ir(dmppm-dmp) 2(acac))、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:Ir(dppm) 2(acac))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:Ir(mppr-Me) 2(acac))、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:Ir(mppr-iPr) 2(acac))等具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶-N,C 2’)銥(III)(簡稱:Ir(ppy) 3)、雙(2-苯基吡啶根-N,C 2’)銥(III)乙醯丙酮(簡稱:Ir(ppy) 2(acac))、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:Ir(bzq) 2(acac))、三(苯并[h]喹啉)銥(III)(簡稱:Ir(bzq) 3)、三(2-苯基喹啉-N,C 2’)銥(III)(簡稱:Ir(pq) 3)、雙(2-苯基喹啉-N,C 2’)銥(III)乙醯丙酮(簡稱:Ir(pq) 2(acac))等具有吡啶骨架的有機金屬銥錯合物;雙(2,4-二苯基-1,3-㗁唑-N,C 2’)銥(III)乙醯丙酮(簡稱:Ir(dpo) 2(acac))、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C 2’}銥(III)乙醯丙酮(簡稱:Ir(p-PF-ph) 2(acac))、雙(2-苯基苯并噻唑-N,C 2’)銥(III)乙醯丙酮(簡稱:Ir(bt) 2(acac))等有機金屬銥錯合物;三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:Tb(acac) 3(Phen))等稀土金屬錯合物。在上述材料中,由於具有嘧啶骨架的有機金屬銥錯合物具有非常高的可靠性及發光效率,所以是尤其較佳的。
另外,作為在黃色或紅色處具有發光峰值的物質,例如可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:Ir(5mdppm) 2(dibm))、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(5mdppm) 2(dpm))、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(d1npm) 2(dpm))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:Ir(tppr) 2(acac))、雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷根)銥(III)(簡稱:Ir(tppr) 2(dpm))、(乙醯丙酮根)雙[2,3-雙(4-氟苯基)喹㗁啉]合銥(III)(簡稱:Ir(Fdpq) 2(acac))等具有吡嗪骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C 2’)銥(III)(簡稱:Ir(piq) 3)、雙(1-苯基異喹啉-N,C 2’)銥(III)乙醯丙酮(簡稱:Ir(piq) 2(acac))等具有吡啶骨架的有機金屬銥錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:Eu(DBM) 3(Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA) 3(Phen))等稀土金屬錯合物。在上述物質中,由於具有嘧啶骨架的有機金屬銥錯合物也具有非常高的可靠性及發光效率,所以是尤其較佳的。另外,具有吡嗪骨架的有機金屬銥錯合物可以獲得色度良好的紅色發光。
另外,作為可以用於化合物131的材料,可以舉出上面所述的熱活化延遲螢光材料。
另外,作為發光層130中的化合物133,較佳為使用螢光化合物。對螢光化合物沒有特別的限制,但是較佳為使用蒽衍生物、稠四苯衍生物、䓛(chrysene)衍生物、菲衍生物、芘衍生物、苝衍生物、二苯乙烯衍生物、吖啶酮衍生物、香豆素(coumarin)衍生物、啡㗁𠯤衍生物、啡噻𠯤衍生物等。
明確而言,作為該材料,可以舉出5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-雙(4-三級丁苯基)芘-1,6-二胺(簡稱:1,6tBu-FLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-3,8-二環己基芘-1,6-二胺(簡稱:ch-1,6FLPAPrn)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、N,N’’-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’-八苯基二苯并[g,p]䓛(chrysene)-2,7,10,15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPABPhA)、9,10-雙(1,1’-聯苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(簡稱:2YGABPhA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素6、香豆素545T、N,N’-二苯基喹吖酮(簡稱:DPQd)、紅螢烯、2,8-二-三級丁基-5,11-雙(4-三級丁苯基)-6,12-二苯基稠四苯(簡稱:TBRb)、尼羅紅、5,12-雙(1,1’-聯苯-4-基)-6,11-二苯基稠四苯(簡稱:BPT)、2-(2-{2-[4-(二甲胺基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCM2)、N,N,N’,N’-四(4-甲基苯基)稠四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊并[1,2-a]丙二烯合茀-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTI)、2-{2-三級丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTB)、2-(2,6-雙{2-[4-(二甲胺基)苯基]乙烯基}-4H-吡喃-4-亞基)丙二腈(簡稱:BisDCM)、2-{2,6-雙[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM)、5,10,15,20-四苯基雙苯并(tetraphenylbisbenzo)[5,6]茚并[1,2,3-cd:1’,2’,3’-lm]苝等。
另外,當以化合物131與化合物132形成激態錯合物時,較佳為所形成的激態錯合物的發光峰值與作為發光材料的化合物133的最長波長一側(低能量一側)的吸收帶重疊的方式選擇化合物131、化合物132以及化合物133。
發光層130也可以由兩層以上的多個層形成。例如,在從電洞傳輸層一側依次層疊第一發光層和第二發光層來形成發光層130的情況下,可以將具有電洞傳輸性的物質用作第一發光層的主體材料,並且將具有電子傳輸性的物質用作第二發光層的主體材料。
另外,如圖4A和圖4B所示,在發光層130中,也可以包含化合物131、化合物132以及化合物133以外的材料(化合物134)。在此情況下,較佳為以化合物132和化合物134形成激態錯合物。為此,較佳為化合物132和化合物134中的一個的HOMO能階在發光層130中的材料中最高而化合物132和化合物134中的另一個的LUMO能階在發光層130中的材料中最低。也就是說,化合物132和化合物134中的一個的HOMO能階較佳為高於化合物132和化合物134中的另一個的HOMO能階及化合物131的HOMO能階,而化合物132和化合物134中的另一個的LUMO能階較佳為低於化合物132和化合物134中的一個的LUMO能階及化合物131的LUMO能階。藉由採用該結構,可以抑制由化合物132和化合物131形成激態錯合物的反應。
作為化合物134,例如可以使用如下電洞傳輸性材料及電子傳輸性材料。
作為電洞傳輸性材料,可以使用電洞傳輸性比電子傳輸性高的材料,較佳為使用具有1×10 -6cm 2/Vs以上的電洞移動率的材料。明確而言,可以使用芳香胺、咔唑衍生物等。上述電洞傳輸性材料也可以是高分子化合物。
作為電洞傳輸性高的材料,例如,作為芳香胺化合物,可以舉出N,N’-二(對甲苯基)-N,N’-二苯基-對苯二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯胺基苯基)-N-苯胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)、1,3,5-三[N-(4-二苯胺基苯基)-N-苯胺基]苯(簡稱:DPA3B)等。
另外,作為咔唑衍生物,明確而言,可以舉出3-[N-(4-二苯胺基苯基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯胺基苯基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzDPA2)、3,6-雙[N-(4-二苯胺基苯基)-N-(1-萘基)氨]-9-苯基咔唑(簡稱:PCzTPN2)、3-[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨]-9-苯基咔唑(簡稱:PCzPCN1)等。
另外,作為咔唑衍生物,還可以舉出4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、1,4-雙[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。
另外,作為電洞傳輸性高的材料,例如,可以使用4,4’-雙[N-(1-萘基)-N-苯胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4’’-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4’’-三[N-(1-萘基)-N-苯胺基]三苯胺(簡稱:1’-TNATA)、4,4’,4’’-三(N,N-二苯胺基)三苯胺(簡稱:TDATA)、4,4’,4’’-三[N-(3-甲基苯基)-N-苯胺基]三苯胺(簡稱:m-MTDATA)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、N-(9,9-二甲基-9H-茀-2-基)-N-{9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-茀-2-基)氨]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、N-(9,9-二甲基-2-二苯胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、2-[N-(4-二苯胺基苯基)-N-苯胺基]螺-9,9’-聯茀(簡稱:DPASF)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4’’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4’’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、N,N’-雙(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(簡稱:PCA2B)、N,N’,N’’-三苯基-N,N’,N’’-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-聯茀-2-胺(簡稱:PCBASF)、2-[N-(9-苯基咔唑-3-基)-N-苯胺基]螺-9,9’-聯茀(簡稱:PCASF)、2,7-雙[N-(4-二苯胺基苯基)-N-苯胺基]螺-9,9’-聯茀(簡稱:DPA2SF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、N,N’-雙[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)等芳香族胺化合物等。另外,可以使用3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、1,3-雙(N-咔唑基)苯(簡稱:mCP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)、4,4’,4’’-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、1,3,5-三(二苯并噻吩-4-基)苯(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)、4-[3-(聯伸三苯-2-基)苯基]二苯并噻吩(簡稱:mDBTPTp-II)等胺化合物、咔唑化合物、噻吩化合物、呋喃化合物、茀化合物、聯伸三苯化合物、菲化合物等。在此所述的物質主要是電洞移動率為1×10 -6cm 2/Vs以上的物質。但是,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述物質以外的物質。
作為電子傳輸性材料,可以使用電子傳輸性比電洞傳輸性高的材料,較佳為使用具有1×10 -6cm 2/Vs以上的電子移動率的材料。作為容易接收電子的化合物(具有電子傳輸性的材料),可以使用含氮雜芳族化合物等的缺π電子型雜芳族化合物或金屬錯合物等。作為具體例子,可以舉出包括喹啉配體、苯并喹啉配體、㗁唑配體或噻唑配體的金屬錯合物。另外,可以舉出㗁二唑衍生物、三唑衍生物、啡啉衍生物、吡啶衍生物、聯吡啶衍生物、嘧啶衍生物、苯并呋喃并嘧啶衍生物或苯并噻吩并嘧啶衍生物等。另外,只要是電子傳輸性高於電洞傳輸性的物質,就可以使用上述物質以外的物質作為電子傳輸層。
作為電子傳輸材料的具體例子,有三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III) (簡稱:Almq 3)、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq 2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等。另外,除此之外,還可以使用如雙[2-(2-苯并㗁唑基)苯酚]鋅(II) (簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等具有㗁唑基類、噻唑類配體的金屬錯合物等。再者,除了金屬錯合物以外,還可以使用2-(4-聯苯基)-5-(4-三級丁苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、3-(4-聯苯基)-4-苯基-5-(4-三級丁苯基)-1,2,4-三唑(簡稱:TAZ)、2,2’,2’’-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBPhen)等雜環化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2CzPDBq-III),7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:7mDBTPDBq-II)、6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:6mDBTPDBq-II)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)等具有二嗪骨架的雜環化合物;PCCzPTzn等具有三嗪骨架的雜環化合物;3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等具有吡啶骨架的雜環化合物;4,4’-雙(5-甲基苯并㗁唑基-2-基)二苯乙烯(簡稱:BzOs)等雜芳香化合物。另外,還可以使用高分子化合物諸如聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)。在此所述的物質主要是電子移動率為1×10 -6cm 2/Vs以上的物質。注意,只要是電子傳輸性高於電洞傳輸性的物質,就可以使用上述物質以外的物質。
另外,當以化合物134與化合物132形成激態錯合物時,較佳為所形成的激態錯合物的發光峰值與化合物131的最長波長一側(低能量一側)的吸收帶重疊的方式選擇化合物131、化合物132以及化合物134。
<<一對電極>> 電極101及電極102具有對發光層130注入電洞及電子的功能。電極101及電極102可以使用金屬、合金、導電性化合物以及它們的混合物或疊層體等形成。金屬的典型例子是鋁(Al),除此之外,可以使用銀(Ag)、鎢、鉻、鉬、銅、鈦等過渡金屬;鋰(Li)或銫等鹼金屬;鈣或鎂(Mg)等第2族金屬。作為過渡金屬,也可以使用鐿(Yb)等稀土金屬。作為合金,可以使用包括上述金屬的合金,例如可以舉出MgAg、AlLi等。作為導電性化合物,例如,可以舉出銦錫氧化物(Indium Tin Oxide,以下稱為ITO)、包含矽或氧化矽的銦錫氧化物(簡稱:ITSO)、銦鋅氧化物(Indium Zinc Oxide)、包含鎢及鋅的銦氧化物等金屬氧化物。作為導電性化合物也可以使用石墨烯等無機碳類材料。如上所述,可以藉由層疊多個這些材料形成電極101和電極102中的一個或兩個。
另外,從發光層130獲得的發光透過電極101和電極102中的一個或兩個被提取。因此,電極101和電極102中的至少一個具有使可見光透過的功能。作為具有透光功能的導電性材料,可以舉出可見光的穿透率為40%以上且100%以下,較佳為60%以上且100%以下,且電阻率為1×10 -2Ω∙cm以下的導電性材料。另外,提取光一側的電極也可以是由具有透光的功能及反射光的功能的導電性材料形成的。作為該導電性材料,可以舉出可見光的反射率為20%以上且80%以下,較佳為40%以上且70%以下,且電阻率為1×10 -2Ω∙cm以下的導電性材料。當將金屬或合金等透光性低的材料用於提取光的電極時,只要以能夠使可見光透過的程度的厚度(例如,1nm至10nm的厚度)形成電極101和電極102中的一個或兩個即可。
注意,在本說明書等中,作為具有透光的功能的電極,使用具有使可見光透光的功能且具有導電性的材料即可,例如有上述以ITO(Indium Tin Oxide)為代表的氧化物導電體層、氧化物半導體層或包含有機物的有機導電體層。作為包含有機物的有機導電體層,例如可以舉出包含混合有機化合物與電子予體(施體)而成的複合材料的層、包含混合有機化合物與電子受體(受體)而成的複合材料的層等。另外,透明導電層的電阻率較佳為1×10 5Ω∙cm以下,更佳為1×10 4Ω∙cm以下。
另外,作為電極101及電極102的成膜方法,可以適用濺射法、蒸鍍法、印刷法、塗佈法、MBE (Molecular Beam Epitaxy:分子束磊晶)法、CVD法、脈衝雷射沉積法、ALD(Atomic Layer Deposition:原子層沉積)法等。
<<電洞注入層>> 電洞注入層111具有降低來自一對電極中的一個(電極101或電極102)的電洞的注入能障促進電洞注入的功能,並例如使用過渡金屬氧化物、酞青衍生物或芳香胺等形成。作為過渡金屬氧化物可以舉出鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等。作為酞青衍生物,可以舉出酞青或金屬酞青等。作為芳香胺,可以舉出聯苯胺衍生物或伸苯基二胺衍生物等。也可以使用聚噻吩或聚苯胺等高分子化合物,典型的是:作為被自摻雜的聚噻吩的聚(乙基二氧噻吩)/聚(苯乙烯磺酸)等。
作為電洞注入層111,可以使用具有由電洞傳輸性材料和具有接收來自電洞傳輸性材料的電子的特性的材料構成的複合材料的層。或者,也可以使用包含具有接收電子的特性的材料的層與包含電洞傳輸性材料的層的疊層。在定態或者在存在有電場的狀態下,電荷的授受可以在這些材料之間進行。作為具有接收電子的特性的材料,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。明確而言,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F 4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(簡稱:F6-TCNNQ)等具有拉電子基團(尤其是如氟基等鹵基、氰基)的化合物。尤其是,拉電子基團鍵合於具有多個雜原子的稠合芳香環的化合物諸如HAT-CN等熱穩定,所以是較佳的。另外,包括拉電子基團(尤其是如氟基等鹵基、氰基)的[3]軸烯衍生物的電子接收性非常高所以特別較佳的,明確而言,可以舉出:α,α’,α”-1,2,3-環烷三亞基(ylidene)三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-環丙三亞基(ylidene)三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-環烷三亞基三[2,3,4,5,6-五氟苯乙腈]。也可以使用過渡金屬氧化物、例如第4族至第8族金屬的氧化物。明確而言,可以使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸等。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。
作為電洞傳輸性材料,可以使用電洞傳輸性比電子傳輸性高的材料,較佳為使用具有1×10 -6cm 2/Vs以上的電洞移動率的材料。明確而言,可以使用作為能夠用於發光層130的電洞傳輸性材料而舉出的芳香胺及咔唑衍生物。另外,還可以使用芳烴及二苯乙烯衍生物等。上述電洞傳輸性材料也可以是高分子化合物。
作為芳烴,例如可以舉出2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、2-三級丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-三級丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-三級丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱:DMNA)、2-三級丁基-9,10-雙[2-(1-萘基)苯基]蒽、9,10-雙[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙[(2,3,4,5,6-五苯基)苯基]-9,9’-聯蒽、蒽、稠四苯、紅螢烯、苝、2,5,8,11-四(三級丁基)苝等。另外,除此之外,還可以使用稠五苯、蔻等。如此,更佳為使用具有1×10 -6cm 2/Vs以上的電洞移動率且碳原子數為14以上且42以下的芳烴。
注意,芳烴也可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如,可以舉出4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽(簡稱:DPVPA)等。
另外,也可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
<<電洞傳輸層>> 電洞傳輸層112是包含電洞傳輸性材料的層,可以使用作為電洞注入層111的材料所例示的材料。電洞傳輸層112具有將注入到電洞注入層111的電洞傳輸到發光層130的功能,所以較佳為具有與電洞注入層111的HOMO能階相同或接近的HOMO能階。
作為上述電洞傳輸性材料,可以使用作為電洞注入層111、化合物134的材料例示出的材料。另外,較佳為使用具有1×10 -6cm 2/Vs以上的電洞移動率的物質。但是,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述物質以外的物質。另外,包括具有高電洞傳輸性的物質的層不限於單層,還可以層疊兩層以上的由上述物質構成的層。
<<電子傳輸層>> 電子傳輸層118具有將從一對電極中的另一個(電極101或電極102)經過電子注入層119注入的電子傳輸到發光層130的功能。作為電子傳輸性材料,可以使用電子傳輸性比電洞傳輸性高的材料,較佳為使用具有1×10 -6cm 2/Vs以上的電子移動率的材料。但是,只要是電子傳輸性高於電洞傳輸性的物質,就可以採用上述以外的物質。
作為上述電子傳輸性材料,可以使用作為化合物134的材料例示出的材料。另外,較佳為使用具有1×10 -6cm 2/Vs以上的電子移動率的物質。另外,電子傳輸層118不限於單層,還可以層疊兩層以上的由上述物質構成的層。
另外,還可以在電子傳輸層118與發光層130之間設置控制電子載子的移動的層。該層是對上述電子傳輸性高的材料添加少量的電子俘獲性高的物質的層,藉由抑制電子載子的移動,可以調節載子的平衡。這種結構對抑制因電子穿過發光層而引起的問題(例如元件壽命的下降)發揮很大的效果。
<<電子注入層>> 電子注入層119具有降低來自電極102的電子的注入能障促進電子注入的功能,例如可以使用第1族金屬、第2族金屬或它們的氧化物、鹵化物、碳酸鹽等。也可以使用上述電子傳輸性材料和具有對電子傳輸性材料供應電子的特性的材料的複合材料。作為具有供電子特性的材料,可以舉出第1族金屬、第2族金屬或它們的氧化物等。明確而言,可以使用氟化鋰(LiF)、氟化鈉(NaF)、氟化銫(CsF)、氟化鈣(CaF 2)及鋰氧化物(LiO x)等鹼金屬、鹼土金屬或這些金屬的化合物。另外,可以使用氟化鉺(ErF 3)等稀土金屬化合物。另外,也可以將電子鹽用於電子注入層119。作為該電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以將能夠用於電子傳輸層118的物質用於電子注入層119。
另外,也可以將有機化合物與電子予體(施體)混合形成的複合材料用於電子注入層119。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用如上所述的構成電子傳輸層118的物質(金屬錯合物、雜芳香化合物等)。作為電子予體,只要是對有機化合物呈現電子供給性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。另外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
另外,上述發光層、電洞注入層、電洞傳輸層、電子傳輸層及電子注入層都可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、噴嘴印刷法、凹版印刷等方法形成。另外,作為上述發光層、電洞注入層、電洞傳輸層、電子傳輸層及電子注入層,除了上述材料之外,也可以使用量子點等無機化合物或高分子化合物(低聚物、樹枝狀聚合物、聚合物等)。
作為量子點,可以使用膠狀量子點、合金型量子點、核殼(Core Shell)型量子點、核型量子點等。此外,也可以使用包含第2族與第16族、第13族與第15族、第13族與第17族、第11族與第17族或第14族與第15族的元素群的量子點。或者,可以使用包含鎘(Cd)、硒(Se)、鋅(Zn)、硫(S)、磷(P)、銦(In)、碲(Te)、鉛(Pb)、鎵(Ga)、砷(As)、鋁(Al)等元素的量子點。
作為用於濕處理的液體介質,例如可以使用:甲乙酮、環己酮等的酮類;乙酸乙酯等的甘油脂肪酸酯類;二氯苯等的鹵化芳烴類;甲苯、二甲苯、均三甲苯、環己基苯等的芳烴類;環己烷、十氫化萘、十二烷等的脂肪烴類;二甲基甲醯胺(DMF)、二甲亞碸(DMSO)等的有機溶劑。
作為可以用於發光層的高分子化合物,例如可以舉出:聚伸苯基亞乙烯(PPV)衍生物諸如聚[2-甲氧基-5-(2-乙基己氧基)-1,4-伸苯基伸乙烯基](簡稱:MEH-PPV)、聚(2,5-二辛基-1,4-伸苯基亞乙烯)等;聚茀衍生物諸如聚(9,9-二正辛基茀基-2,7-二基)(簡稱:PF8)、聚[(9,9-二正辛基茀基-2,7-二基)-alt-(苯并[2,1,3]噻二唑-4,8-二基)](簡稱:F8BT)、聚[(9,9-二正辛基茀基-2,7-二基)-alt-(2,2’-聯噻吩-5,5’-二基)](簡稱:F8T2)、聚[(9,9-二辛基-2,7-二伸乙烯基伸茀基(divinylenefluorenylene))-alt-(9,10-蒽)]、聚[(9,9-二己基茀-2,7-二基)-alt-(2,5-二甲基-1,4-亞苯)]等;聚烷基噻吩(PAT)衍生物諸如聚(3-己基噻吩-2,5-二基)(簡稱:P3HT)等、聚亞苯衍生物等。另外,也可以對上述高分子化合物、PVK、聚(2-乙烯基萘)、聚[雙(4-苯基)(2,4,6-三甲基苯基)胺](簡稱:PTAA)等高分子化合物摻雜發光性化合物,而將其用於發光層。作為發光性化合物,可以使用以上舉例的發光性化合物。
雖然作為本發明的一個實施方式混合包括苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架的有機化合物、能夠將三重激發能量轉換為發光的有機化合物及呈現螢光發光的有機化合物的三種而用於發光層130,但是可以使用具有上述骨架或功能的高分子化合物。例如,也可以具有將苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架、能夠將三重激發能量轉換為發光的取代基及呈現螢光發光的取代基的高分子化合物用於發光層130。此外,也可以混合具有苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架及能夠將三重激發能量轉換為發光的取代基的高分子化合物和呈現螢光發光的低分子物質而製造發光層130。藉由使用該高分子化合物,可以提高材料的利用效率,從而可以降低製造成本。
<<基板>> 另外,本發明的一個實施方式的發光元件可以在由玻璃、塑膠等構成的基板上製造。作為在基板上層疊的順序,既可以從電極101一側依次層疊又可以從電極102一側依次層疊。
另外,作為能夠形成本發明的一個實施方式的發光元件的基板,例如可以使用玻璃、石英或塑膠等。或者,也可以使用撓性基板。撓性基板是可以彎曲的基板,例如由聚碳酸酯、聚芳酯製成的塑膠基板等。另外,可以使用薄膜、藉由蒸鍍形成的無機薄膜等。注意,只要在發光元件的製造過程中起支撐物的作用,就可以使用其他材料。或者,只要具有保護發光元件的功能即可。
例如,在本說明書等中,可以使用各種基板形成發光元件。對基板的種類沒有特別的限制。作為該基板的例子,例如可以使用半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、具有不鏽鋼箔的基板、鎢基板、具有鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀材料的纖維素奈米纖維(CNF)、紙或基材薄膜等。作為玻璃基板的例子,有鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鈉鈣玻璃等。作為撓性基板、貼合薄膜、基材薄膜等,可以舉出如下例子。例如,可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)、聚四氟乙烯(PTFE)為代表的塑膠。或者,作為一個例子,可以舉出丙烯酸樹脂等樹脂等。或者,作為一個例子,可以舉出聚丙烯、聚酯、聚氟化乙烯或聚氯乙烯等。或者,作為一個例子,可以舉出聚醯胺、聚醯亞胺、芳族聚醯胺、環氧樹脂、無機蒸鍍薄膜、紙類等。
另外,也可以作為基板使用撓性基板,並在撓性基板上直接形成發光元件。或者,也可以在基板與發光元件之間設置剝離層。當剝離層上製造發光元件的一部分或全部,然後將其從基板分離並轉置到其他基板上時可以使用剝離層。此時,也可以將發光元件轉置到耐熱性低的基板或撓性基板上。另外,作為上述剝離層,例如可以使用鎢膜和氧化矽膜的無機膜的疊層結構或在基板上形成有聚醯亞胺等樹脂膜的結構等。
也就是說,也可以使用一個基板來形成發光元件,然後將發光元件轉置到另一個基板上。作為發光元件被轉置的基板的例子,除了上述基板之外,還可以舉出玻璃紙基板、石材基板、木材基板、布基板(包括天然纖維(絲、棉、麻)、合成纖維(尼龍、聚氨酯、聚酯)或再生纖維(醋酯纖維、銅氨纖維、人造纖維、再生聚酯)等)、皮革基板、橡膠基板等。藉由採用這些基板,可以製造不易損壞的發光元件、耐熱性高的發光元件、實現輕量化的發光元件或實現薄型化的發光元件。
另外,也可以在上述基板上例如形成場效應電晶體(FET),並且在與FET電連接的電極上製造發光元件150。由此,可以製造藉由FET控制發光元件150的驅動的主動矩陣型顯示裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。
實施方式2 在本實施方式中,參照圖5對具有與實施方式1所示的發光元件的結構不同的結構的發光元件進行說明。注意,在圖5中,在具有與圖1A所示的元件符號相同功能的部分,使用相同的陰影,而有時省略元件符號。此外,具有與圖1A相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
<發光元件的結構實例2> 圖5是發光元件250的剖面示意圖。
圖5所示的發光元件250在一對電極(電極101與電極102)之間具有多個發光單元(發光單元106和發光單元108)。多個發光單元中的一個較佳為具有與圖1A所示的EL層100同樣的結構。也就是說,圖1A所示的發光元件150較佳為具有一個發光單元,而發光元件250較佳為具有多個發光單元。注意,在發光元件250中,雖然對電極101為陽極且電極102為陰極時的情況進行說明,但是作為發光元件250的結構也可以採用與此相反的結構。
在圖5所示的發光元件250中,層疊有發光單元106和發光單元108,並且在發光單元106與發光單元108之間設置有電荷產生層115。另外,發光單元106和發光單元108可以具有相同結構或不同結構。例如,發光單元108較佳為採用與EL層100相同的結構。
發光元件250包括發光層120和發光層170。發光單元106除了發光層120之外還包括電洞注入層111、電洞傳輸層112、電子傳輸層113及電子注入層114。發光單元108除了發光層170之外還包括電洞注入層116、電洞傳輸層117、電子傳輸層118及電子注入層119。
在發光元件250中,發光單元106及發光單元108中的任意層包含根據本發明的一個實施方式的有機化合物即可。注意,作為包含該有機化合物的層,電子傳輸層113或電子傳輸層118較佳,發光層120或發光層170更佳。
電荷產生層115既可以是對電洞傳輸性材料添加有作為電子受體的受體性物質的結構,又可以是對電子傳輸性材料添加有作為電子予體的施體性物質的結構。另外,也可以層疊這兩種結構。
當電荷產生層115包含由有機化合物與受體性物質構成的複合材料時,作為該複合材料使用可以用於實施方式1所示的電洞注入層111的複合材料即可。作為有機化合物,可以使用芳香胺化合物、咔唑化合物、芳烴、高分子化合物(低聚物、樹枝狀聚合物、聚合物等)等各種化合物。另外,作為有機化合物,較佳為使用其電洞移動率為1×10 -6cm 2/Vs以上的物質。但是,只要是其電洞傳輸性高於電子傳輸性的物質,就可以使用這些以外的物質。因為由有機化合物和受體性物質構成的複合材料具有良好的載子注入性以及載子傳輸性,所以可以實現低電壓驅動以及低電流驅動。注意,在發光單元的陽極一側的表面接觸於電荷產生層115時,電荷產生層115還可以具有該發光單元的電洞注入層或電洞傳輸層的功能,所以在該發光單元中也可以不設置電洞注入層或電洞傳輸層。或者,在發光單元的陰極一側的表面接觸於電荷產生層115時,電荷產生層115還可以具有該發光單元的電子注入層或電子傳輸層的功能,所以在該發光單元中也可以不設置電子注入層或電子傳輸層。
注意,電荷產生層115也可以是組合包含有機化合物和受體性物質的複合材料的層與由其他材料構成的層的疊層結構。例如,也可以是組合包含有機化合物和受體性物質的複合材料的層與包含選自供電子性物質中的一個化合物和高電子傳輸性的化合物的層的結構。另外,也可以是組合包含有機化合物和受體性物質的複合材料的層與包含透明導電膜的結構。
夾在發光單元106與發光單元108之間的電荷產生層115只要具有在將電壓施加到電極101和電極102之間時,將電子注入到一個發光單元且將電洞注入到另一個發光單元的結構即可。例如,在圖5中,在以使電極101的電位高於電極102的電位的方式施加電壓時,電荷產生層115將電子注入到發光單元106且將電洞注入到發光單元108。
從光提取效率的觀點來看,電荷產生層115較佳為具有可見光透射性(明確而言,可見光的透射率為40%以上)。另外,電荷產生層115即使其導電率小於一對電極(電極101及電極102)也發揮作用。
藉由使用上述材料形成電荷產生層115,可以抑制在層疊發光層時的驅動電壓的增大。
雖然在圖5中說明了具有兩個發光單元的發光元件,但是可以將同樣的結構應用於層疊有三個以上的發光單元的發光元件。如發光元件250所示,藉由在一對電極之間以由電荷產生層將其隔開的方式配置多個發光單元,可以實現在保持低電流密度的同時還可以進行高亮度發光,並且壽命更長的發光元件。另外,還可以實現低功耗的發光元件。
另外,在上述各結構中,用於發光單元106及發光單元108的客體材料的發光顏色既可以相同又可以不同。當發光單元106和發光單元108包含具有發射相同顏色的光的功能的客體材料時,發光元件250成為以較低的電流值呈現高發光亮度的發光元件,所以是較佳的。另外,當發光單元106和發光單元108包含具有發射彼此不同顏色的光的功能的客體材料時,發光元件250發射多個顏色的光,所以是較佳的。此時,當將發光波長不同的多個發光材料用於發光層120和發光層170中的一者或兩者時,合成具有不同的發光峰值的光,因此發光元件250的發射光譜具有至少兩個極大值。
上述結構適合獲得白色發光的情況。藉由使發光層120與發光層170的光為互補色的關係,可以獲得白色發光。尤其較佳為以實現演色性高的白色發光或至少具有紅色、綠色、藍色的發光的方式選擇客體材料。
較佳為將實施方式1所示的發光層130的結構用於發光層120及發光層170的一者或兩者。藉由採用該結構,可以得到發光效率及可靠性良好的發光元件。包括在發光層130中的客體材料為螢光發光材料。因此,藉由將實施方式1所示的發光層130的結構用於發光層120及發光層170的一者或兩者,可以得到發射光譜尖銳且色純度高的發光元件。
另外,在層疊三個以上的發光單元的發光元件中,用於各發光單元的客體材料的發光顏色可以相同或不同。在發光元件包括發射相同顏色的光的多個發光單元的情況下,這些發光單元可以以比其他的顏色低的電流值獲得高發光亮度的發光顏色。這種結構適於發光顏色的調整。尤其較佳為用於使用發光效率不同且呈現不同發光顏色的客體材料的情況。例如,在設置三個發光單元的情況下,藉由設置包含呈現相同發光顏色的螢光材料的兩個發光單元及包含呈現與該螢光材料不同的發光顏色的磷光材料的一個發光單元,可以調整螢光發光及磷光發光的發光強度。換言之,可以根據發光單元的個數調整各顏色的發光強度。
在採用上述包括兩個螢光發光單元及一個磷光發光單元的發光元件的情況下,為了高效地獲得白色發光,較佳為採用如下結構:發光單元包括包含藍色螢光材料的兩個發光單元及包含黃色磷光材料的一個發光單元的結構;發光單元包括包含藍色螢光材料的兩個發光單元及包含紅色磷光材料及綠色磷光材料的一個發光單元的結構;發光單元包括包含藍色螢光材料的兩個發光單元及包含紅色磷光材料、黃色磷光材料及綠色磷光材料的一個發光單元的結構。
此外,也可以將發光層120和發光層170中的至少一個進一步分割為層狀並使各層含有不同的發光材料。也就是說,發光層120和發光層170中的至少一個也可以由兩層以上的多個層形成。例如,在從電洞傳輸層一側依次層疊第一發光層和第二發光層來形成發光層的情況下,可以將具有電洞傳輸性的材料用於第一發光層的主體材料,並且將具有電子傳輸性的材料用於第二發光層的主體材料。在此情況下,第一發光層和第二發光層所包含的發光材料也可以是相同或不同的材料。另外,第一發光層和第二發光層所包含的發光材料可以是具有發射相同顏色的光的功能的材料,也可以是具有發射不同顏色的光的功能的材料。藉由採用具有發射彼此不同顏色的光的功能的多個發光材料的結構,也可以得到由三原色或四種以上的發光顏色構成的演色性高的白色發光。
本實施方式可以與其他實施方式適當地組合。
實施方式3 在本實施方式中,參照圖6A及圖6B對使用實施方式1及實施方式2中說明的發光元件的發光裝置進行說明。
圖6A是示出發光裝置的俯視圖,圖6B是沿圖6A中的A-B以及C-D切割的剖面圖。該發光裝置包括以虛線表示的用來控制發光元件的發光的驅動電路部(源極一側驅動電路)601、像素部602以及驅動電路部(閘極一側驅動電路)603。另外,元件符號604是密封基板,元件符號625是乾燥劑,元件符號605是密封劑,由密封劑605圍繞的內側是空間607。
另外,引導佈線608是用來傳送輸入到源極一側驅動電路601及閘極一側驅動電路603的信號的佈線,並且從用作外部輸入端子的FPC(軟性印刷電路)609接收視訊信號、時脈信號、啟動信號、重設信號等。另外,雖然在此只圖示FPC,但是該FPC也可以安裝有印刷線路板(PWB:Printed Wiring Board)。本說明書中的發光裝置不僅包括發光裝置主體,並且還包括安裝有FPC或PWB的發光裝置。
接下來,參照圖6B說明上述發光裝置的剖面結構。在元件基板610上形成有驅動電路部及像素部,在此示出作為驅動電路部的源極一側驅動電路601及像素部602中的一個像素。
另外,在源極一側驅動電路601中,形成組合n通道TFT623和p通道TFT624的CMOS電路。此外,驅動電路也可以使用各種CMOS電路、PMOS電路或NMOS電路形成。另外,在本實施方式中,雖然示出將驅動電路形成於基板上的驅動器一體型,但不需要必須採用該結構,也可以將驅動電路形成於外部而不形成於基板上。
此外,像素部602由包括開關用TFT611、電流控制用TFT612、電連接於該電流控制用TFT612的汲極的第一電極613的像素形成。另外,以覆蓋第一電極613的端部的方式形成有絕緣物614。絕緣物614可以使用正型光敏樹脂膜來形成。
另外,為了提高形成於絕緣物614上的膜的覆蓋率,將絕緣物614上端部或下端部形成為具有曲率的曲面。例如,在作為絕緣物614的材料使用光敏丙烯酸樹脂的情況下,較佳為僅使絕緣物614上端部具有曲面。該曲面的曲率半徑為0.2μm以上且0.3μm以下。此外,作為絕緣物614,可以使用負型光敏材料或正型光敏材料。
在第一電極613上形成有EL層616及第二電極617。在此,作為用作陽極的第一電極613的材料較佳為使用功函數大的材料。例如,除了ITO膜、包含矽的銦錫氧化物膜、包含2wt%以上且20wt%以下的氧化鋅的氧化銦膜、氮化鈦膜、鉻膜、鎢膜、Zn膜、Pt膜等的單層膜以外,還可以使用由氮化鈦膜和以鋁為主要成分的膜構成的疊層膜以及由氮化鈦膜、以鋁為主要成分的膜和氮化鈦膜構成的三層的疊層膜等。注意,當採用疊層結構時,佈線電阻也低,可以得到良好的歐姆接觸,並且可以將其用作陽極。
另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋塗法等各種方法形成。作為構成EL層616的材料,也可以使用低分子化合物、或者高分子化合物(包含低聚物、樹枝狀聚合物)。
另外,作為形成在EL層616上並用作陰極的第二電極617的材料,較佳為使用功函數小的材料(Al、Mg、Li、Ca、或它們的合金及化合物、MgAg、MgIn、AlLi等)。注意,當使產生在EL層616中的光透過第二電極617時,作為第二電極617較佳為使用由膜厚度減薄了的金屬薄膜和透明導電膜(ITO、包含2wt%以上且20wt%以下的氧化鋅的氧化銦、包含矽的銦錫氧化物、氧化鋅(ZnO)等)構成的疊層。
此外,發光元件618由第一電極613、EL層616、第二電極617形成。該發光元件618較佳為具有實施方式1及實施方式2所示的結構。另外,像素部包括多個發光元件,本實施方式的發光裝置也可以包括具有實施方式1及實施方式2所說明的結構的發光元件和具有其他結構的發光元件的兩者。
再者,藉由利用密封劑605將密封基板604與元件基板610貼合在一起,在由元件基板610、密封基板604及密封劑605圍繞的空間607中設置有發光元件618。另外,在空間607中填充有填充劑,除了填充有惰性氣體(氮、氬等)以外,還有時填充有樹脂或乾燥材料、或者樹脂與乾燥材料的兩者。
作為密封劑605,較佳為使用環氧類樹脂或玻璃粉。另外,這些材料較佳為儘量不使水分、氧透過的材料。此外,作為用於密封基板604的材料,除了玻璃基板、石英基板之外,還可以使用由FRP(Fiber Reinforced Plastics:玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板。
藉由上述方法可以得到使用實施方式1及實施方式2中說明的發光元件的發光裝置。
<發光裝置的結構實例1> 在圖7A和圖7B中,作為發光裝置的一個例子示出形成有發射白色光的發光元件及彩色層(濾色片)的發光裝置的例子。
圖7A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部1042、像素部1040、驅動電路部1041、發光元件的第一電極1024W、1024R、1024G、1024B、分隔壁1026、EL層1028、發光元件的第二電極1029、密封基板1031、密封劑1032、紅色像素1044R、綠色像素1044G、藍色像素1044B、白色像素1044W等。
另外,在圖7A中將彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)設置於透明基材1033上。另外,還可以設置黑色層(黑矩陣)1035。對設置有彩色層及黑色層的透明基材1033進行對準將其固定在基板1001上。此外,彩色層及黑色層由覆蓋層1036覆蓋。另外,圖7A示出光不透過彩色層而透射到外部的發光層及光透過各顏色的彩色層而透射到外部的發光層,不透過彩色層的光成為白色光且透過彩色層的光成為紅色光、藍色光、綠色光,因此能夠以四個顏色的像素顯示影像。
圖7B示出將紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B形成在閘極絕緣膜1003與第一層間絕緣膜1020之間的例子。如圖7B所示,也可以將彩色層設置在基板1001與密封基板1031之間。
另外,雖然作為上述說明的發光裝置採用從形成有TFT的基板1001一側取出發光的結構(底部發射型)的發光裝置,但是也可以採用從密封基板1031一側取出發光的結構(頂部發射型)的發光裝置。
<發光裝置的結構實例2> 圖8A及圖8B示出頂部發射型發光裝置的剖面圖。在此情況下,基板1001可以使用不使光透過的基板。直到製造連接TFT與發光元件的陽極的連接電極為止的製程與底部發射型發光裝置同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該絕緣膜也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜1021相同的材料或其他各種材料形成。
雖然發光元件的下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B在這裡都為陽極,但是也可以為陰極。另外,在圖8A及圖8B所示的頂部發射型發光裝置中,較佳為下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B為反射電極。另外,較佳為第二電極1029具有發射光及使光透過的功能。另外,較佳為在第二電極1029與下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B間採用微腔結構,來放大特定波長的光。EL層1028的結構採用如實施方式1及實施方式2所說明那樣的結構,並且採用能夠得到白色發光的元件結構。
在圖7A及圖7B和圖8A及圖8B中,藉由使用多個發光層或者使用多個發光單元等來實現能夠得到白色發光的EL層的結構,即可。注意,獲得白色發光的結構不侷限於此。
在採用如圖8A及圖8B所示的頂部發射結構的情況下,可以使用設置有彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)的密封基板1031進行密封。可以在密封基板1031上設置有位於像素與像素之間的黑色層(黑矩陣)1035。彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)、黑色層(黑矩陣)也可以由覆蓋層覆蓋。另外,作為密封基板1031使用具有透光性的基板。
此外,雖然在圖8A中示出以紅色、綠色、藍色的三種顏色進行全彩色顯示的結構,但是如圖8B所示,也可以以紅色、綠色、藍色、白色的四種顏色進行全彩色顯示。此外,進行全彩色顯示的結構不侷限於這些結構。例如,也可以以紅色、綠色、藍色、黃色的四種顏色進行全彩色顯示。
根據本發明的一個實施方式的發光元件將螢光材料用作客體材料。因為螢光材料具有比磷光材料尖銳的光譜,所以可以得到色純度高的發光。因此,藉由將該發光元件用於本實施方式所示的發光裝置,可以得到顏色再現性高的發光裝置。
藉由上述方法可以得到使用實施方式1及實施方式2中說明的發光元件的發光裝置。
另外,本實施方式可以與其他實施方式適當地組合。
實施方式4 在本實施方式中,說明本發明的一個實施方式的電子裝置及顯示裝置。
根據本發明的一個實施方式可以製造具有平面、發光效率高且可靠性高的電子裝置及顯示裝置。根據本發明的一個實施方式,可以製造具有曲面、發光效率高且可靠性高的電子裝置及顯示裝置。本發明的一個實施方式的發光元件可以得到色純度高的發光。因此,藉由將該發光元件用於本實施方式所示的發光裝置,可以得到顏色再現性高的電子裝置及顯示裝置。
作為電子裝置,例如可以舉出:電視機;桌上型或膝上型個人電腦;用於電腦等的顯示器;數位相機;數位攝影機;數位相框;行動電話機;可攜式遊戲機;可攜式資訊終端;音頻再生裝置;彈珠機等大型遊戲機等。
圖9A和圖9B所示的可攜式資訊終端900包括外殼901、外殼902、顯示部903及鉸鏈部905等。
外殼901與外殼902藉由鉸鏈部905連接在一起。可攜式資訊終端900可以從折疊狀態(圖9A)轉換成如圖9B所示的展開狀態。由此,攜帶時的可攜性好,並且由於具有大顯示區域,所以使用時的可見度高。
可攜式資訊終端900跨著由鉸鏈部905連接的外殼901和外殼902設置有撓性顯示部903。
可以將使用本發明的一個實施方式製造的發光裝置用於顯示部903。由此,可以以高良率製造可攜式資訊終端。
顯示部903可以顯示文件資訊、靜態影像和動態影像等中的至少一個。當在顯示部中顯示文件資訊時,可以將可攜式資訊終端900用作電子書閱讀器。
當使可攜式資訊終端900展開時,顯示部903被保持為平緩彎曲的狀態。例如,可以以包括以1mm以上且50mm以下,較佳為5mm以上且30mm以下的曲率半徑彎曲的部分的方式保持顯示部903。顯示部903的一部分跨著外殼901和外殼902連續地配置有像素,從而能夠進行曲面顯示。
顯示部903被用作觸控面板,可以用手指或觸控筆等進行操作。
顯示部903較佳為由一個撓性顯示器構成。由此,可以跨著外殼901和外殼902進行連續的顯示。此外,外殼901和外殼902也可以分別設置有顯示器。
為了避免在使可攜式資訊終端900展開時外殼901和外殼902所形成的角度超過預定角度,鉸鏈部905較佳為具有鎖定機構。例如,鎖定角度(達到該角度時不能再繼續打開)較佳為90°以上且小於180°,典型的是,可以為90°、120°、135°、150°或175°等。由此,可以提高可攜式資訊終端900的方便性、安全性和可靠性。
當鉸鏈部905具有上述鎖定機構時,可以抑制過大的力施加到顯示部903,從而可以防止顯示部903的損壞。由此,可以實現可靠性高的可攜式資訊終端。
外殼901和外殼902也可以包括電源按鈕、操作按鈕、外部連接埠、揚聲器、麥克風等。
外殼901和外殼902中的任一個可以設置有無線通訊模組,可以藉由網際網路、局域網(LAN)、無線保真(Wi-Fi:註冊商標)等電腦網路進行資料收發。
圖9C所示的可攜式資訊終端910包括外殼911、顯示部912、操作按鈕913、外部連接埠914、揚聲器915、麥克風916、照相機917等。
可以將利用本發明的一個實施方式製造的發光裝置用於顯示部912。由此,可以以高良率製造可攜式資訊終端。
在可攜式資訊終端910中,在顯示部912中具有觸控感測器。藉由用手指或觸控筆等觸摸顯示部912可以進行打電話或輸入文字等各種操作。
另外,藉由操作按鈕913的操作,可以進行電源的ON、OFF工作或切換顯示在顯示部912上的影像的種類。例如,可以將電子郵件的編寫畫面切換為主功能表畫面。
另外,藉由在可攜式資訊終端910內部設置陀螺儀感測器或加速度感測器等檢測裝置,可以判斷可攜式資訊終端910的方向(縱向或橫向),而對顯示部912的螢幕顯示方向進行自動切換。另外,螢幕顯示方向的切換也可以藉由觸摸顯示部912、操作操作按鈕913或者使用麥克風916輸入聲音來進行。
可攜式資訊終端910例如具有選自電話機、筆記本和資訊閱讀裝置等中的一種或多種功能。明確地說,可攜式資訊終端910可以被用作智慧手機。可攜式資訊終端910例如可以執行行動電話、電子郵件、文章的閱讀及編輯、音樂播放、動畫播放、網路通訊、電腦遊戲等各種應用程式。
圖9D所示的照相機920包括外殼921、顯示部922、操作按鈕923、快門按鈕924等。另外,照相機920安裝有可裝卸的鏡頭926。
可以將利用本發明的一個實施方式製造的發光裝置用於顯示部922。由此,可以製造可靠性高的照相機。
在此,雖然照相機920具有能夠從外殼921拆卸下鏡頭926而交換的結構,但是鏡頭926和外殼921也可以被形成為一體。
藉由按下快門按鈕924,照相機920可以拍攝靜態影像或動態影像。另外,也可以使顯示部922具有觸控面板的功能,藉由觸摸顯示部922進行攝像。
另外,照相機920還可以具備另外安裝的閃光燈裝置及取景器等。另外,這些構件也可以組裝在外殼921中。
圖10A為示出掃地機器人的例子的示意圖。
掃地機器人5100包括頂面上的顯示器5101及側面上的多個照相機5102、刷子5103及操作按鈕5104。雖然未圖示,但是掃地機器人5100的底面設置有輪胎和吸入口等。此外,掃地機器人5100還包括紅外線感測器、超音波感測器、加速度感測器、壓電感測器、光感測器、陀螺儀感測器等各種感測器。另外,掃地機器人5100包括無線通訊單元。
掃地機器人5100可以自動行走,檢測垃圾5120,可以從底面的吸入口吸引垃圾。
另外,掃地機器人5100對照相機5102所拍攝的影像進行分析,可以判斷牆壁、家具或步階等障礙物的有無。另外,在藉由影像分析檢測佈線等可能會繞在刷子5103上的物體的情況下,可以停止刷子5103的旋轉。
可以在顯示器5101上顯示電池的剩餘電量和所吸引的垃圾的量等。另外,也可以在顯示器5101上顯示掃地機器人5100的行走路徑。另外,顯示器5101可以是觸控面板,可以將操作按鈕5104顯示在顯示器5101上。
掃地機器人5100可以與智慧手機等可攜式電子裝置5140互相通訊。照相機5102所拍攝的影像可以顯示在可攜式電子裝置5140上。因此,掃地機器人5100的擁有者在出門時也可以知道房間的情況。另外,可以使用智慧手機等可攜式電子裝置5140確認顯示器5101的顯示內容。
可以將本發明的一個實施方式的發光裝置用於顯示器5101。
圖10B所示的機器人2100包括運算裝置2110、照度感測器2101、麥克風2102、上部照相機2103、揚聲器2104、顯示器2105、下部照相機2106、障礙物感測器2107及移動機構2108。
麥克風2102具有檢測使用者的聲音及周圍的聲音等的功能。另外,揚聲器2104具有發出聲音的功能。機器人2100可以使用麥克風2102及揚聲器2104與使用者交流。
顯示器2105具有顯示各種資訊的功能。機器人2100可以將使用者所希望的資訊顯示在顯示器2105上。顯示器2105可以安裝有觸控面板。顯示器2105可以是可拆卸的資訊終端,藉由將該資訊終端設置在機器人2100的所定位置,可以進行充電及資料的收發。
上部照相機2103及下部照相機2106具有對機器人2100的周圍環境進行攝像的功能。另外,障礙物感測器2107可以檢測機器人2100使用移動機構2108移動時的前方的障礙物的有無。機器人2100可以使用上部照相機2103、下部照相機2106及障礙物感測器2107認知周囲環境而安全地移動。
可以將本發明的一個實施方式的發光裝置用於顯示器2105。
圖10C是示出護目鏡型顯示器的一個例子的圖。護目鏡型顯示器例如包括外殼5000、顯示部5001、揚聲器5003、LED燈5004、操作鍵5005(包括電源開關或操作開關)、連接端子5006、感測器5007(它具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風5008、第二顯示部5002、支撐部5012、耳機5013等。
可以將本發明的一個實施方式的發光裝置用於顯示部5001及第二顯示部5002。
圖11A和圖11B示出可折疊的可攜式資訊終端5150。可折疊的可攜式資訊終端5150包括外殼5151、顯示區域5152及彎曲部5153。圖11A示出展開狀態的可攜式資訊終端5150。圖11B示出折疊狀態的可攜式資訊終端5150。雖然可攜式資訊終端5150具有較大的顯示區域5152,但是藉由將可攜式資訊終端5150折疊,可攜式資訊終端5150變小而可攜性好。
可以由彎曲部5153將顯示區域5152折疊成一半。彎曲部5153由可伸縮的構件和多個支撐構件構成,在折疊時,可伸縮的構件被拉伸,以彎曲部5153具有2mm以上,較佳為5mm以上的曲率半徑的方式進行折疊。
另外,顯示區域5152也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入/輸出裝置)。可以將本發明的一個實施方式的發光裝置用於顯示區域5152。
本實施方式可以與其他實施方式適當地組合。
實施方式5 在本實施方式中,參照圖12說明將本發明的一個實施方式的發光元件適用於各種照明設備的情況的例子。藉由使用本發明的一個實施方式的發光元件,可以製造發光效率及可靠性高的照明設備。
藉由將本發明的一個實施方式的發光元件形成在具有撓性的基板上,能夠實現在曲面上具有發光區域的電子裝置或照明設備。
另外,還可以將應用了本發明的一個實施方式的發光元件的發光裝置適用於汽車的照明,其中該照明被設置於擋風玻璃、天花板等。
圖12是將發光元件用於室內照明設備8501的例子。另外,因為發光元件可以實現大面積化,所以也可以形成大面積的照明設備。另外,也可以藉由使用具有曲面的外殼來形成發光區域具有曲面的照明設備8502。本實施方式所示的發光元件為薄膜狀,所以外殼的設計的彈性高。因此,可以形成能夠對應各種設計的照明設備。並且,室內的牆面也可以設置有大型的照明設備8503。也可以在照明設備8501、照明設備8502、照明設備8503中設置觸控感測器,啟動或關閉電源。
另外,藉由將發光元件用於桌子的表面一側,可以提供具有桌子的功能的照明設備8504。另外,藉由將發光元件用於其他家具的一部分,可以提供具有家具的功能的照明設備。
如上所述,藉由應用本發明的一個實施方式的發光元件,能夠得到照明設備及電子裝置。注意,不侷限於本實施方式所示的照明設備及電子裝置,可以應用於各種領域的照明設備及電子裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而使用。 實施例1
在本實施例中說明本發明的一個實施方式的發光元件的製造例子。在本實施例中製造的發光元件的結構與圖1A同樣。表1示出元件結構的詳細內容。下面示出所使用的化合物的結構及簡稱。其他化合物的結構及簡稱可以參照上述實施方式。
[化3]
[表1]
符號 膜厚度(nm) 材料 重量比
發光 元件 1 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 4,6mCzP2Pm -
發光層 130 30 4PCCzBfpm:Ir(ppz) 3:coumarin545T 0.8:0.2:0.005
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 40 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 2 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 4,6mCzP2Pm -
發光層 130 30 4PCCzBfpm:Ir(ppz) 3 0.8:0.2
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 40 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
發光 元件 3 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 4,6mCzP2Pm -
發光層 130 30 4PCCzPBfpm:Ir(ppz) 3:coumarin545T 0.8:0.2:0.005
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 40 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 4 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 4,6mCzP2Pm -
發光層 130 30 4PCCzPBfpm:Ir(ppz) 3 0.8:0.2
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 40 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 5 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 BCP -
發光層 130 30 CBP:Ir(ppz) 3:coumarin545T 0.8:0.2:0.005
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 40 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
<發光元件的製造> 下面示出在本實施例中製造的發光元件的製造方法。
<<發光元件1的製造>> 作為電極101,在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm 2(2mm×2mm)。
作為電洞注入層111,在電極101上將DBT3P-II與氧化鉬(MoO 3)以重量比(DBT3P-II:MoO 3)為1:0.5且厚度為40nm的方式共蒸鍍。
接著,作為電洞傳輸層112,在電洞注入層111上以厚度為20nm的方式蒸鍍9-[3-(9-苯基-9H-茀-9-基)苯基]-9H-咔唑(簡稱:mCzFLP)。
接著,作為發光層130,在電洞傳輸層112上將4PCCzBfpm、三[2-(1H-吡唑-1-基-κN 2)苯基-κC]銥(III)(簡稱:Ir(ppz) 3)及10-(2-苯并噻唑基)-2,3,6,7-四氫-1,1,7,7-四甲基-1H,5H,11H-[1]苯并吡喃並[6,7,8-ij]喹嗪-11-酮(簡稱:coumarin545T)以重量比(4PCCzBfpm:Ir(ppz) 3:coumarin545T)為0.8:0.2:0.005且厚度為30nm的方式共蒸鍍。在發光層130中,coumarin545T為螢光化合物,Ir(ppz) 3為磷光化合物。
接著,作為電子傳輸層118,在發光層130上依次以厚度為20nm的方式蒸鍍4,6mCzP2Pm並且以厚度為10nm的方式蒸鍍NBPhen。接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,在電子注入層119上使用鋁(Al)形成厚度為200nm的電極102。
接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封發光元件1。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和密封用玻璃基板,以6J/cm 2照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程得到發光元件1。
<<比較發光元件2的製造>> 比較發光元件2的與上述發光元件1的不同之處僅在於發光層130的形成製程,而其他製程都與發光元件1採用同樣的製造方法。
作為比較發光元件2的發光層130,將4PCCzBfpm和Ir(ppz) 3以重量比(4PCCzBfpm:Ir(ppz) 3)為0.8:0.2且厚度為30nm的方式共蒸鍍。比較發光元件2與發光元件1的差異是螢光化合物的有無,而其他結構相同。
<<發光元件3的製造>> 發光元件3的與上述發光元件1的不同之處在於發光層130的形成製程,而其他製程都與發光元件1採用同樣的製造方法。
作為發光元件3的發光層130,將4-[4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯基]苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzPBfpm)、Ir(ppz) 3、coumarin545T以重量比(4PCCzPBfpm:Ir(ppz) 3:coumarin545T)為0.8:0.2:0.005且厚度為30nm的方式共蒸鍍。
<<比較發光元件4的製造>> 比較發光元件4的與上述發光元件3的不同之處僅在於發光層130的形成製程,而其他製程都與發光元件3採用同樣的製造方法。
作為比較發光元件4的發光層130,將4PCCzPBfpm和Ir(ppz) 3以重量比(4PCCzPBfpm:Ir(ppz) 3)為0.8:0.2且厚度為30nm的方式共蒸鍍。比較發光元件4與發光元件3的差異是螢光化合物,而其他結構相同。
<<比較發光元件5的製造>> 比較發光元件5的與上述發光元件1的不同之處僅在於發光層130的形成製程及電子傳輸層118的形成製程,而其他製程都與發光元件1採用同樣的製造方法。
作為比較發光元件5的發光層130,將4,4’-雙(9-咔唑)聯苯(簡稱:CBP)、Ir(ppz) 3、coumarin545T以重量比(CBP:Ir(ppz) 3:coumarin545T)為0.8:0.2:0.005且厚度為30nm的方式共蒸鍍。比較發光元件5與發光元件1的差異是主體材料,比較發光元件5使用不是TADF材料的CBP作為主體材料而製造。
接著,作為電子傳輸層118,在發光層130上依次以厚度為10nm的方式蒸鍍浴銅靈(簡稱:BCP)並且以厚度為15nm的方式蒸鍍NBPhen。
<發光元件的特性> 接著,對上述製造的發光元件1、3及比較發光元件2、4、5的特性進行測定。在亮度及CIE色度的測定中,利用色亮度計(由Topcon Technohouse公司製造的BM-5A)。在電致發射光譜的測定中,利用多通道光譜分析儀(由日本濱松光子學公司製造的PMA-11)。
圖13示出發光元件1、發光元件3、比較發光元件2、比較發光元件4及比較發光元件5的電流效率-亮度特性,圖14示出電流-電壓特性,圖15示出外部量子效率-亮度特性。此外,圖16示出以2.5mA/cm 2的電流密度使電流流過發光元件1、發光元件3、比較發光元件2、比較發光元件4及比較發光元件5時的電致發射光譜。另外,各發光元件的測定在室溫(保持為23℃的氛圍)下進行。
表2示出1000cd/m 2附近的發光元件1、發光元件3、比較發光元件2、比較發光元件4及比較發光元件5的元件特性。
[表2]
電壓 (V) 電流密度(mA/cm 2) CIE色度  (x, y) 亮度 (cd/m 2) 電流 效率 (cd/A) 功率 效率 (lm/W) 外部量子效率 (%)
發光元件 1 3.60 3.10 (0.231, 0.652) 1020 33.0 28.8 9.92
比較 發光元件 2 3.50 2.42 (0.249, 0.541) 1040 43.1 38.7 14.4
發光元件 3 3.50 5.02 (0.276, 0.644) 1130 22.5 20.2 6.67
比較 發光元件 4 3.30 2.78 (0.342, 0.592) 1000 36.0 34.2 10.7
比較 發光元件 5 6.00 32.4 (0.212, 0.658) 991 3.1 1.6 0.9
從圖16可知,發光元件1、發光元件3、比較發光元件5的電致發射光譜的峰值波長為509nm,呈現來源於螢光化合物的coumarin545T的綠色發光。如此,本發明的一個實施方式的發光元件1及發光元件3的電致發射光譜的峰值波長短於比較發光元件2及比較發光元件4,且發光元件1及發光元件3的半峰全寬小於發光元件2及比較發光元件4,能夠呈現顏色純度高的發光。因此,本發明的一個實施方式的發光元件適合用於顯示裝置。
如圖13、圖15及表2所示,發光元件1及發光元件3呈現高發光效率(電流效率、功率效率及外部量子效率)。這裡,因從一對電極注入的載子(電洞及電子)的再結合而產生的單重激子的最大產生概率為25%,因此當向外部的光提取效率為25%時,最大外部量子效率為6.25%。雖然在發光元件1及發光元件3中使用螢光發光元件,但是外部量子效率高於6.25%。這是因為在根據本發明的一個實施方式的發光元件1及發光元件3中除了來源於單重激子的發光以外,還可以藉由來源於磷光化合物的Ir(ppz) 3的重原子效應及來源於TADF材料的反系間竄越將三重激子貢獻於螢光發光。
發光元件1及發光元件3的發光效率高於比較發光元件5。如上所述,在比較發光元件5的發光層130中使用不是TADF材料的CBP。因此,比較發光元件5不具有藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子的功能。另一方面,本發明的一個實施方式的發光元件1及發光元件3在發光層130中包含TADF材料。因此,發光元件1及發光元件3能夠藉由反系間竄越將三重激子轉換為單重激子,因此可以實現高發光效率。
<時間分辨發光測定> 接著,進行發光元件1、發光元件3、比較發光元件2及比較發光元件4的時間分辨發光測定。
在測定中,使用皮秒螢光壽命測定系統(日本濱松光子學公司製造)。在本測定中,為了測定發光元件中的螢光發光的壽命,對發光元件施加矩形脈衝電壓,並且使用條紋攝影機對在電壓下降後衰減的發光進行時間分辨測定。以10Hz的頻率施加脈衝電壓,並且藉由將反復測定的資料累計起來獲得S/N比高的資料。另外,以如下條件進行測定:在室溫(300K)下,以發光元件的亮度為1000cd/m 2附近的方式施加3V至4V左右的施加脈衝電壓,施加脈衝時間寬度為100μsec,負偏差電壓為-5V(元件驅動為OFF時),測定時間範圍為20μsec。圖17示出測定結果。注意,在圖17中,縱軸表示以持續注入載子的狀態(脈衝電壓為ON時)下的發光強度正規化的強度。橫軸表示脈衝電壓下降後的經過時間。
如圖17所示,發光元件1及發光元件3的發光的衰減時速度比比較發光元件2及比較發光元件4快。這表示激發能迅速地轉換為發光。因此,在發光層中,即使處於激子密度高的狀態(流過多量的電流的狀態)也可以高效地提取發光。因此,如圖13及圖15所示,發光元件1及發光元件3的衰減(roll-off)較少。此外,關於高亮度區域的15000cd/m 2附近的外部量子效率,發光元件1為8.0%,比較發光元件2為7.3%,發光元件3為4.8%,比較發光元件4為4.2%。換言之,發光元件1的效率高於比較發光元件2,發光元件3的效率高於比較發光元件4。如此,衰減少是本發明的一個實施方式的發光元件的特徵之一。
<CV測定結果> 接著,利用循環伏安法(CV)測定對用於上述發光元件的發光層的材料的電化學特性(氧化反應特性及還原反應特性)進行測定。在測定中,使用電化學分析儀(BAS株式會社(BAS Inc.)製造,ALS型號600A或600C),並且對將各材料溶解於N,N-二甲基甲醯胺(簡稱:DMF)而成的溶液進行測定。在測定中,在適當的範圍內改變工作電極相對於參考電極的電位,來獲得氧化峰值電位以及還原峰值電位。另外,因為參考電極的氧化還原電位估計為-4.94eV,所以從該數值和所得到的峰值電位算出各化合物的HOMO能階及LUMO能階。
藉由CV測定算出的Ir(ppz) 3的HOMO能階為 -5.39eV,LUMO能階為-1.77eV。4PCCzBfpm的HOMO能階為-5.70eV,LUMO能階為-2.84eV。4PCCzPBfpm的HOMO能階為-5.64eV,LUMO能階為-3.01eV。
如上所述,4PCCzBfpm及4PCCzPBfpm的LUMO能階低於Ir(ppz) 3的LUMO能階,Ir(ppz) 3的HOMO能階高於4PCCzBfpm及4PCCzPBfpm的HOMO能階。因此,如發光元件1及發光元件3,在發光層中使用該化合物時,從一對電極注入的載子的電子及電洞高效地注入到4PCCzBfpm或4PCCzPBfpm及Ir(ppz) 3,4PCCzBfpm及4PCCzPBfpm可以與Ir(ppz) 3形成激態錯合物。因此,發光元件1及發光元件3可以說是利用ExEF的發光元件。
由4PCCzBfpm和Ir(ppz) 3形成的激態錯合物的LUMO能階在於4PCCzBfpm,HOMO能階在於Ir(ppz) 3。此外,4PCCzBfpm的LUMO能階和Ir(ppz) 3的HOMO能階的能量差為2.55eV。該值與從圖16所示的比較發光元件2的發射光譜的峰值波長算出的發光能量(2.42eV)大致一致。由此可知,比較發光元件2的發射光譜相當於基於由4PCCzBfpm及Ir(ppz) 3形成的激態錯合物的發光。注意,激態錯合物的S1能階和T1能階的差異小,由此可以將該發光能量看作激態錯合物的S1能階及T1能階的能量(2.42eV)。
同樣地,由4PCCzPBfpm和Ir(ppz) 3形成的激態錯合物的LUMO能階在於4PCCzPBfpm,HOMO能階在於Ir(ppz) 3。此外,4PCCzPBfpm的LUMO能階和Ir(ppz) 3的HOMO能階的能量差為2.38eV。該值與從圖16所示的比較發光元件4的發射光譜的峰值波長算出的發光能量(2.30eV)大致一致。由此可知,比較發光元件4的發射光譜相當於基於由4PCCzPBfpm及Ir(ppz) 3形成的激態錯合物。注意,激態錯合物的S1能階和T1能階的差異小,由此可以將該發光能量看作激態錯合物的S1能階及T1能階的能量(2.30eV)。
<激態錯合物的發射光譜與客體材料的吸收光譜的關係> 圖18示出測定coumarin545T的甲苯溶液中的吸收光譜的結果以及比較發光元件2及比較發光元件4呈現的激態錯合物的發射光譜。使用紫外可見分光光度計(日本分光株式會社製造,V550型)在室溫(保持為23℃的氛圍)下測定了吸收光譜。
如圖18所示,coumarin545T的吸收光譜與比較發光元件2及比較發光元件4所呈現的激態錯合物的發射光譜具有重疊區域。因此,從由4PCCzBfpm和Ir(ppz) 3形成的激態錯合物及由4PCCzPBfpm和Ir(ppz) 3形成的激態錯合物將激發能高效地供應到螢光化合物的coumarin545T。由此,如圖16所示的發光元件1及發光元件3的電致發射光譜那樣,可以提供發射其峰值波長比激態錯合物的電致發射光譜短的光的發光元件。
<T1能階的測定> 接著,求出4PCCzBfpm及4PCCzPBfpm的T1能階。後面說明測定方法。其結果是,4PCCzBfpm的T1能階為2.58eV,4PCCzPBfpm的T1能階為2.46eV。
為了推測Ir(ppz) 3的T1能階,測定吸收光譜及發射光譜。準備溶解有Ir(ppz) 3的二氯甲烷溶液,使用石英皿測定吸收光譜。利用紫外可見分光光度計(日本分光株式會社製造的V550型)測定吸收光譜。從所測定出的樣本的光譜減去石英皿及溶劑的吸收光譜。上述測定在室溫(保持為23℃的氛圍)下進行。
從上述吸收光譜的資料求出吸收端並估計出假設直接躍遷的躍遷能量,其結果是,Ir(ppz) 3的躍遷能量為3.27eV。因為Ir(ppz) 3為磷光化合物,所以最低能量一側的吸收端是基於三重激發態的躍遷的吸收帶。由此,從該吸收端計算出的Ir(ppz) 3的T1能階為3.27eV。
從上述測定結果可知,4PCCzBfpm的T1能階(2.58eV)及4PCCzPBfpm的T1能階(2.46eV)比Ir(ppz) 3的T1能階(3.27eV)低,4PCCzBfpm的T1能階(2.58eV)及4PCCzPBfpm的T1能階(2.46eV)比由4PCCzBfpm和Ir(ppz) 3形成的激態錯合物的T1能階(2.42eV)及由4PCCzPBfpm和Ir(ppz) 3形成的激態錯合物的T1能階(2.30eV)高。因此,由4PCCzBfpm和Ir(ppz) 3及由4PCCzPBfpm和Ir(ppz) 3形成的激態錯合物的三重激發能不因4PCCzBfpm、4PCCzPBfpm及Ir(ppz) 3失活。由此,該激態錯合物的三重激發能可以被轉換為發光,也可以經反系間竄越被轉換為單重激發能,或者也可以被轉移到螢光化合物。
雖然在室溫下測定了Ir(ppz) 3的發射光譜,但是觀察不到Ir(ppz) 3的發光。非專利文獻1揭露Ir(ppz) 3在室溫下的發光量子產率低於1%。由此可知,Ir(ppz) 3是不能在室溫下發光的材料。也就是說,即使在使用發光量子產率低於1%的化合物的情況下也可以得到發光效率高的發光元件。
<主體材料的過渡螢光特性> 這裡,為了確認在發光元件1及發光元件3中使用的4PCCzBfpm及4PCCzPBfpm為TADF材料,進行利用時間分辨發光測定的過渡螢光特性的測定。
對在石英基板上以雙[2-(二苯基磷氧)苯基]醚(簡稱:DPEPO)與4PCCzPBfpm的重量比(DPEPO:4PCCzPBfpm)為0.8:0.2且厚度為50nm的方式進行共蒸鍍的薄膜樣本、以及以DPEPO與4PCCzBfpm的重量比(DPEPO:4PCCzBfpm)為0.8:0.2且厚度為50nm的方式進行共蒸鍍的薄膜樣本進行時間分辨發光測定。
在測定中,使用皮秒螢光壽命測定系統(日本濱松光子學公司製造)。在本測定中,為了測定薄膜所呈現的螢光發光的壽命,對薄膜照射脈衝雷射,並且使用條紋攝影機對在照射雷射之後衰減的發光進行時間分辨測定。作為脈衝雷射使用波長為337nm的氮氣體雷射,以10Hz的頻率對薄膜照射500ps的脈衝雷射,並且藉由將反復測定的資料累計起來獲得S/N比例高的資料。注意,測定在室溫(保持為23℃的氛圍)下進行。
圖19A和圖19B示出藉由測定得到的4PCCzBfpm的過渡螢光特性。圖19A是發光壽命短的發光成分的測定結果,圖19B是發光壽命長的發光成分的測定結果。在圖式中並不示出4PCCzPBfpm的過渡螢光特性,與4PCCzBfpm同樣地對4PCCzPBfpm進行測定並進行如下計算。
使用下述公式(4)對圖19A和圖19B所示的衰減曲線進行擬合。
[公式4]
在公式4中,L表示正規化的發光強度,t表示經過時間。從衰減曲線的擬合結果可知,4PCCzBfpm及4PCCzPBfpm的薄膜樣本所發射的光包含具有不同螢光壽命的多種發光成分。可知4PCCzBfpm的薄膜樣本的發光成分至少包含螢光壽命為11.7ns的暫態螢光成分、217μs的壽命最長的遲延螢光成分,4PCCzPBfpm的薄膜樣本的發光成分至少包含11.0ns的暫態螢光成分、301μs的壽命最長的遲延螢光成分。就是說,4PCCzBfpm及4PCCzPBfpm也可以說是在室溫下呈現延遲螢光的熱活化延遲螢光材料。
<S1能階及T1能階的測定> 為了高效地產生反系間竄越呈現熱活化延遲螢光,S1能階與T1能階的能量差較佳為大於0eV且為0.3eV以下,更佳為大於0eV且為0.2eV以下。下面,進行用來算出4PCCzBfpm及4PCCzPBfpm的S1能階及T1能階的測定。
為了算出S1能階及T1能階,測定4PCCzBfpm及4PCCzPBfpm的發射光譜。圖20示出4PCCzBfpm的發射光譜的測定結果,圖21示出4PCCzPBfpm的發射光譜的測定結果。
在該發射光譜的測定中,使用顯微PL裝置LabRAM HR-PL(由日本株式會社堀場製作所製造),測定溫度為10K,作為激發光使用He-Cd雷射(325nm),作為檢測器使用CCD檢測器。在石英基板上形成50nm厚的用來測定的薄膜,並且在氮氛圍中對該石英基板的蒸鍍面貼合其他石英基板之後,將其用於測定。
此外,在該發射光譜的測定中,除了一般的發射光譜的測定以外,還進行了著眼於發光壽命長的發光的時間分辨發射光譜的測定。由於這兩個發射光譜的測定在低溫(10K)下進行,所以在一般的發射光譜的測定中,除了作為主要發光成分的螢光以外,還部分地觀察到磷光。另外,在著眼於發光壽命長的發光的時間分辨發射光譜的測定中,主要觀察到磷光。
由上述測定的發射光譜的結果可知,4PCCzBfpm的發射光譜的螢光成分及磷光成分的最短波長一側的峰值(包括肩峰)的波長分別為455nm及480nm。此外,4PCCzPBfpm的發射光譜的螢光成分及磷光成分的最短波長一側的峰值(包括肩峰)的波長分別為480nm及505nm。
因此,從上述峰值(包括肩峰)的波長算出的4PCCzBfpm的S1能階為2.72eV,T1能階為2.58eV,S1能階與T1能階的能量差為0.14eV。此外,4PCCzPBfpm的S1能階為2.58eV,T1能階為2.46eV,S1能階與T1能階的能量差為0.12eV。
由上述測定的發射光譜的結果可知,4PCCzBfpm的發射光譜的螢光成分及磷光成分的短波長一側的上升的波長分別為435nm及464nm。4PCCzPBfpm的發射光譜的螢光成分及磷光成分的短波長一側的上升的波長分別為458nm及491nm。此外,作為發射光譜的短波長一側的上升的波長,採用在該光譜的切線的傾斜度具有極大值的波長上的切線與橫軸的交點的波長。
如上所述,從上升的波長算出的4PCCzBfpm的S1能階為2.85eV,T1能階為2.67eV,S1能階與T1能階的能量差為0.18eV。4PCCzPBfpm的S1能階為2.71eV,T1能階為2.53eV,S1能階與T1能階的能量差為0.18eV。
如上所述,從發射光譜的最短波長一側的峰值(包括肩峰)的波長及短波長一側的上升的波長算出的4PCCzPBfpm及4PCCzBfpm的S1能階與T1能階的能量差都極小,亦即大於0eV且為0.2eV以下。由此,4PCCzPBfpm及4PCCzBfpm具有藉由反系間竄越將三重激發能轉換為單重激發能且呈現熱活化延遲螢光的功能。
<發光元件的可靠性> 圖22示出發光元件1、比較發光元件2、發光元件3、比較發光元件4及比較發光元件5的定電流為0.5mA時的驅動測試的結果。從圖22可知,發光元件1的可靠性高於比較發光元件2,發光元件3的可靠性高於比較發光元件4。發光元件1及比較發光元件2的差異與發光元件3及比較發光元件4的差異是螢光化合物的有無。如上所述,可以從發光元件1及發光元件3得到來源於螢光化合物的發光,且可以從比較發光元件2及比較發光元件4得到來源於激態錯合物的發光。因此,可知如本發明的一個實施方式的發光元件那樣從螢光化合物得到發光時可靠性得到提高。此外,可知發光元件1及發光元件3的可靠性高於比較發光元件5。藉由在主體材料中使用具有TADF性的主體材料,可以得到高可靠性的發光元件。 實施例2
在本實施例中說明本發明的一個實施方式的發光元件及比較發光元件的製造例子。在本實施例中製造的發光元件的結構與圖1A同樣。表3示出元件結構的詳細內容。下面示出所使用的化合物的結構及簡稱。其他化合物的結構及簡稱可以參照實施例1及上述實施方式。
[化4]
[表3]
符號 膜厚度 (nm) 材料 重量比
發光 元件 6 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 4,6mCzP2Pm -
發光層 130 40 4PCCzBfpm:GD270:TBRb 0.8:0.2:0.01
電洞傳輸層 112 20 PCBBi1BP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 7 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 4,6mCzP2Pm -
發光層 130 40 4PCCzBfpm:GD270 0.8:0.2
電洞傳輸層 112 20 PCBBi1BP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 8 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 15 NBphen -
118(1) 10 BCP -
發光層 130 30 CBP:GD270:TBRb 0.8:0.2:0.01
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 9 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 20 TmPyPB -
118(1) 5 DPEPO -
發光層 130 30 DPEPO:4PCCzBfpm:TBRb 0.8:0.2
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
<發光元件的製造> 下面示出在本實施例中製造的發光元件的製造方法。
<<發光元件6的製造>> 作為電極101,在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm 2(2mm×2mm)。
接著,作為電洞注入層111,在電極101上將DBT3P-II與氧化鉬(MoO 3)以重量比(DBT3P-II:MoO 3)為1:0.5且厚度為45nm的方式共蒸鍍。
接著,作為電洞傳輸層112,在電洞注入層111上以厚度為20nm的方式蒸鍍PCBBi1BP。
接著,作為發光層130,在電洞傳輸層112上將4PCCzBfpm、GD270(吉林奧來德光電材料股份有限公司製造)、2,8-二-三級丁-5,11-雙(4-三級丁苯基)-6,12-二苯基稠四苯(簡稱:TBRb)以重量比(4PCCzBfpm:GD270:TBRb)為0.8:0.2:0.01且厚度為40nm的方式共蒸鍍。在發光層130中,GD270為磷光化合物,TBRb為螢光化合物。
接著,作為電子傳輸層118,在發光層130上依次以厚度為20nm的方式蒸鍍4,6mCzP2Pm並且以厚度為10nm的方式蒸鍍NBPhen。接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,在電子注入層119上使用鋁(Al)形成厚度為200nm的電極102。
接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封發光元件6。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和密封用玻璃基板,以6J/cm 2照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程得到發光元件6。
<<比較發光元件7的製造>> 比較發光元件7的與上述發光元件6的不同之處僅在於發光層130的形成製程,而其他製程都與發光元件6採用同樣的製造方法。
作為比較發光元件7的發光層130,將4PCCzBfpm和GD270以重量比(4PCCzBfpm:GD270)為0.8:0.2且厚度為40nm的方式共蒸鍍。與發光元件6的發光層130不同,在比較發光元件7的發光層130中不包含螢光化合物的TBRb。
<<比較發光元件8的製造>> 作為電極101,在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm 2(2mm×2mm)。
作為電洞注入層111,在電極101上將DBT3P-II與氧化鉬(MoO 3)以重量比(DBT3P-II:MoO 3)為1:0.5且厚度為45nm的方式共蒸鍍。
接著,作為電洞傳輸層112,在電洞注入層111上以厚度為20nm的方式蒸鍍mCzFLP。
接著,作為發光層130,在電洞傳輸層112上將CBP、GD270、TBRb以重量比(CBP:GD270:TBRb)為0.8:0.2:0.01的方式且厚度為30nm的方式共蒸鍍。發光元件6與比較發光元件8的發光層130的不同之處在於主體材料。在發光元件6中使用TADF材料,在比較發光元件8中使用不是TADF材料的CBP。
接著,作為電子傳輸層118,在發光層130上依次以厚度為10nm的方式蒸鍍浴銅靈(簡稱:BCP)並且以厚度為15nm的方式蒸鍍NBPhen。接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,在電子注入層119上使用鋁(Al)形成厚度為200nm的電極102。
接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封比較發光元件8。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和密封用玻璃基板,以6J/cm 2照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程得到比較發光元件8。
<<比較發光元件9的製造>> 比較發光元件9與上述比較發光元件8的不同之處僅在於發光層130及電子傳輸層118的形成過程,而其他製程都與比較發光元件8採用同樣的製造方法。
作為比較發光元件9的發光層130,將雙[2-(二苯基磷氧)苯基]醚(簡稱:DPEPO)、4PCCzBfpm、TBRb以重量比(DPEPO:4PCCzBfpm:TBRb)為0.8:0.2:0.01且厚度為30nm的方式共蒸鍍。與發光元件6的發光層130不同,在比較發光元件9的發光層130中不包含磷光化合物。
接著,作為電子傳輸層118,在發光層130上以5nm的厚度蒸鍍DPEPO,並且以20nm的厚度蒸鍍1,3,5-三[3-(3-吡啶)苯基]苯(簡稱:TmPyPB)。
<發光元件的特性> 接著,測定上述製造的發光元件6及比較發光元件7至比較發光元件9的特性。注意,測定方法與實施例1相同。
圖23示出發光元件6及比較發光元件7至比較發光元件9的電流效率-亮度特性,圖24示出電流-電壓特性,圖25示出外部量子效率-亮度特性。圖26示出以2.5mA/cm 2的電流密度使電流流過發光元件6及比較發光元件7至比較發光元件9時的電致發射光譜。另外,各發光元件的測定在室溫(保持為23℃的氛圍)下進行。
另外,表4示出1000cd/m 2附近的發光元件6及比較發光元件7至比較發光元件9的元件特性。
[表4]
電壓 (V) 電流密度(mA/cm 2) CIE色度 (x, y) 亮度 (cd/m 2) 電流 效率 (cd/A) 功率 效率 (lm/W) 外部量子效率 (%)
發光元件 6 2.90 1.61 (0.468, 0.526) 1182 73.4 79.6 22.5
比較 發光元件 7 2.90 1.83 (0.338, 0.635) 1143 62.5 67.7 16.9
比較 發光元件 8 4.40 2.31 (0.446, 0.547) 1218 52.7 37.6 15.4
比較 發光元件 9 6.40 7.25 (0.423, 0.507) 1057 14.6 7.2 4.5
如圖26所示,發光元件6、比較發光元件8及比較發光元件9發射黃色光,其中發射光譜的峰值波長分別為565nm、562nm、561nm,半峰全寬分別為72nm、67nm、69nm左右。因此,發光元件6、比較發光元件8及比較發光元件9所發射的光來源於螢光化合物的TBRb。此外,比較發光元件7發射綠色光,其中發射光譜的峰值波長為528nm,半峰全寬為76nm。因此,比較發光元件7所發射的光來源於GD270。因此,本發明的一個實施方式的發光元件6的發射光譜的峰值波長的半峰全寬小於比較發光元件7,可以發射顏色純度高的光。因此,本發明的一個實施方式的發光元件適合用於顯示裝置。
如圖23及圖25及表4所示,雖然發光元件6是螢光發光元件,但是其發光效率高於螢光發光元件的外部量子效率的最大值的6.25%。這是因為在根據本發明的一個實施方式的發光元件6中除了來源於單重激子的發光以外還可以經過磷光化合物的GD270將三重激子貢獻於螢光發光。加上,如上所述,包含在發光元件6中的4PCCzBfpm為TADF材料。因此,可以藉由來源於TADF材料的反系間竄越將三重激子貢獻於螢光發光,所以可以提高發光效率。
發光元件6的發光效率高於比較發光元件8。如上所述,在比較發光元件8的發光層130中使用不是TADF材料的CBP。因此,比較發光元件8不具有藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子的功能。另一方面,本發明的一個實施方式的發光元件6在發光層130中包含TADF材料。因此,發光元件6能夠藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子,可以實現高於比較發光元件8的發光效率。
發光元件6的發光效率高於比較發光元件9。如上所述,在比較發光元件9的發光層130中包含TADF材料,而不包含磷光化合物。因此,比較發光元件9不能藉由磷光化合物將三重激子貢獻於螢光發光。另一方面,本發明的一個實施方式的發光元件6在發光層130中除了TADF材料以外還包含磷光化合物。因此,發光元件6除了藉由由於TADF材料產生的反系間竄越的高效率化效果以外還可以藉由磷光化合物將三重激子貢獻於螢光發光,可以實現高於比較發光元件9的發光效率。
<時間分辨發光測定> 接著,進行發光元件6及比較發光元件7的時間分辨發光測定。圖27示出其結果。測定方法與實施例1所示的方法相同。
如圖27所示,發光元件6的發光的衰減速度比比較發光元件7快。這表示激發能迅速地轉換為發光。因此,在發光層中,即使處於激子密度高的狀態(流過多量的電流的狀態)也可以高效地提取發光。因此,如圖23及圖25所示,發光元件6的衰減較少。發光元件6的發光效率高於比較發光元件7。發光元件6的發光層130具有對比較發光元件7的發光層添加螢光化合物的TBRb的結構。從圖27可知藉由添加螢光化合物,可以提高發光的衰減速度。因此,激子的失活得到抑制,發光元件6與比較發光元件7相比發光效率得到提高。
<發光元件的可靠性> 圖28示出發光元件6、比較發光元件7及比較發光元件8的定電流為2.0mA時的驅動測試的結果。從圖28可知,發光元件6的可靠性高於比較發光元件7。發光元件6與比較發光元件7的差異是螢光化合物的有無。如上所述,發光元件6得到來源於螢光化合物的發光,比較發光元件7得到來源於磷光化合物的發光。因此,可知如本發明的一個實施方式的發光元件那樣從螢光化合物得到發光時可靠性得到提高。此外,可知發光元件6的可靠性高於比較發光元件8。藉由在主體材料中使用具有TADF性的主體材料,可以得到高可靠性的發光元件。 實施例3
在本實施例中說明本發明的一個實施方式的發光元件及比較發光元件的製造例子。在本實施例中製造的發光元件的結構與圖1A同樣。表5示出元件結構的詳細內容。下面示出所使用的化合物的結構及簡稱。其他化合物的結構及簡稱可以參照上述實施例及實施方式。
[化5]
[表5]
符號 膜厚度 (nm) 材料 重量比
發光 元件 10 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 PCCzPTzn -
發光層 130 30 PCCzPTzn:GD270:TBRb 0.8:0.2:0.01
電洞傳輸層 112 20 PCBBi1BP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 11 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 PCCzPTzn -
發光層 130 30 PCCzPTzn:GD270 0.8:0.2
電洞傳輸層 112 20 PCBBi1BP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 12 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 PCCzPTzn -
發光層 130 30 PCCzPTzn:TBRb 1:0.01
電洞傳輸層 112 20 PCCP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
<發光元件的製造> 下面示出在本實施例中製造的發光元件的製造方法。
<<發光元件10的製造>> 作為電極101,在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm 2(2mm×2mm)。
作為電洞注入層111,在電極101上將DBT3P-II與氧化鉬(MoO 3)以重量比(DBT3P-II:MoO 3)為1:0.5且厚度為45nm的方式共蒸鍍。
接著,作為電洞傳輸層112在電洞注入層111上以厚度為20nm的方式蒸鍍PCBBi1BP。
接著,作為發光層130,在電洞傳輸層112上將PCCzPTzn、GD270(吉林奧來德光電材料股份有限公司製造)及TBRb以重量比(PCCzPTzn:GD270:TBRb)為0.8:0.2:0.01且厚度為40nm的方式共蒸鍍。在發光層130中,GD270為磷光化合物,TBRb為螢光化合物。
接著,作為電子傳輸層118,在發光層130上依次以厚度為20nm的方式蒸鍍PCCzPTzn並且以厚度為10nm的方式蒸鍍NBPhen。接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,在電子注入層119上使用鋁(Al)形成厚度為200nm的電極102。
接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封發光元件10。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和密封用玻璃基板,以6J/cm 2照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程得到發光元件10。
<<比較發光元件11的製造>> 比較發光元件11的與上述發光元件10的不同之處僅在於發光層130的形成製程,而其他製程都與發光元件10採用同樣的製造方法。
作為比較發光元件11的發光層130,將PCCzPTzn和GD270以重量比(PCCzPTzn:GD270)為0.8:0.2且厚度為40nm的方式共蒸鍍。與發光元件10的發光層130不同,在比較發光元件11的發光層130中不包含螢光化合物的TBRb。
<<比較發光元件12的製造>> 比較發光元件12的與上述發光元件10的不同之處僅在於電洞傳輸層112及發光層130的形成製程,而其他製程都與發光元件10同樣的製造方法。
作為比較發光元件12的電洞傳輸層112,在電洞注入層111上以厚度為20nm的方式蒸鍍PCCP。
接著,作為發光層130,將PCCzPTzn和TBRb以重量比(PCCzPTzn:TBRb)為1:0.01且厚度為30nm的方式共蒸鍍。與發光元件10的發光層130不同,在比較發光元件12的發光層130中不包含磷光化合物的GD270。
<發光元件的特性> 接著,測定上述製造的發光元件10、比較發光元件11、比較發光元件12及上述比較發光元件8的特性。注意,測定方法與實施例1相同。
圖29示出發光元件10、比較發光元件11、比較發光元件12及比較發光元件8的電流效率-亮度特性,圖30示出電流-電壓特性,圖31示出外部量子效率-亮度特性。此外,圖32示出以2.5mA/cm 2的電流密度使電流流過發光元件10、比較發光元件11、比較發光元件12及比較發光元件8時的電致發射光譜。另外,各發光元件的測定在室溫(保持為23℃的氛圍)下進行。
表6示出1000cd/m 2附近的發光元件10、比較發光元件11及比較發光元件12的元件特性。
[表6]
電壓 (V) 電流密度(mA/cm 2) CIE色度 (x, y) 亮度 (cd/m 2) 電流 效率 (cd/A) 功率 效率 (lm/W) 外部量子效率 (%)
發光元件 10 2.40 0.73 (0.472, 0.523) 648 88.3 115.6 27.2
比較 發光元件 11 2.50 1.43 (0.345, 0.631) 992 69.2 87.0 18.8
比較 發光元件 12 2.70 3.37 (0.435, 0.536) 894 26.5 30.9 7.95
如圖32所示,發光元件10、比較發光元件8及比較發光元件12發射黃色光,其中發射光譜的峰值波長分別為566nm、562nm、560nm,半峰全寬分別為74nm、67nm、69nm左右。因此,發光元件10、比較發光元件8及比較發光元件12所發射的光來源於螢光化合物的TBRb。此外,比較發光元件11發射綠色光,其中發射光譜的峰值波長為533nm,半峰全寬為78nm。因此,比較發光元件11所發射的光來源於GD270。因此,本發明的一個實施方式的發光元件10的發射光譜的峰值波長的半峰全寬小於比較發光元件11,可以發射顏色純度高的光。因此,本發明的一個實施方式的發光元件適合用於顯示裝置。
如圖29、圖31及表6所示,雖然發光元件10為螢光發光元件,但是其外部量子效率高於6.25%。這是因為在根據本發明的一個實施方式的發光元件10中除了來源於單重激子的發光以外還可以經過磷光化合物的GD270將三重激子貢獻於螢光發光。加上,如後面說明,包含在發光元件10中的PCCzPTzn為TADF材料。因此,可以藉由來源於TADF材料的反系間竄越將三重激子貢獻於螢光發光,所以可以提高發光效率。
發光元件10的發光效率高於比較發光元件8。如上所述,在比較發光元件8的發光層130中使用不是TADF材料的CBP。因此,比較發光元件8不具有藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子的功能。另一方面,本發明的一個實施方式的發光元件10在發光層130中包含TADF材料。因此,發光元件10能夠藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子,可以實現高於比較發光元件8的發光效率。
發光元件10的發光效率高於比較發光元件12。如上所述,在比較發光元件12的發光層130中包含TADF材料,而不包含磷光化合物。因此,比較發光元件12不能藉由磷光化合物將三重激子貢獻於螢光發光。另一方面,本發明的一個實施方式的發光元件10在發光層130中除了TADF材料以外還包含磷光化合物。因此,發光元件10除了藉由由於TADF材料產生的反系間竄越的高效率化效果以外還可以藉由磷光化合物將三重激子貢獻於螢光發光,可以實現高於比較發光元件12的發光效率。
<時間分辨發光測定> 接著,進行發光元件10及比較發光元件11的時間分辨發光測定。圖33示出其結果。測定方法與上述實施例所示的方法相同。
如圖33所示,發光元件10的發光的衰減速度比比較發光元件11快。這表示激發能迅速地轉換為發光。因此,在發光層中,即使處於激子密度高的狀態(流過多量的電流的狀態)也可以高效地提取發光。因此,如圖29及圖31所示,發光元件10的衰減較少。發光元件10的發光效率高於比較發光元件11。發光元件10的發光層130具有對比較發光元件11的發光層130添加螢光化合物的TBRb的結構。從圖33可知藉由添加螢光化合物,可以提高發光的衰減速度。因此,激子的失活得到抑制,發光元件10與比較發光元件11相比發光效率得到提高。
<主體材料的過渡螢光特性> 這裡,為了確認在發光元件10中使用的PCCzPTzn為TADF材料,進行利用時間分辨發光測定的過渡螢光特性的測定。時間分辨發光測定與實施例1所示的方法相同。此外,作為測定的樣本使用在石英基板上以厚度為50nm的方式蒸鍍PCCzPTzn的薄膜。
圖34示出藉由測量獲得的PCCzPTzn的過渡螢光特性。
使用公式4對圖34所示的衰減曲線進行擬合。從其結果可知,PCCzPTzn的薄膜樣本發射的光包含具有不同螢光壽命的多種發光成分。PCCzPTzn的薄膜樣本的發光成分至少包含螢光壽命為15.0ns的暫態螢光成分以及1.5μs的壽命最長的延遲螢光成分。換言之,可以說PCCzPTzn是在室溫下呈現延遲螢光的熱活化延遲螢光材料。
<S1能階及T1能階的測定> 接著,為了算出PCCzPTzn的S1能階及T1能階,測定低溫(10K)下的PCCzPTzn的發射光譜。測定方法與實施例1所示的方法相同。圖35示出測定結果。
從圖35可知,PCCzPTzn的發射光譜的螢光成分及磷光成分的最短波長一側的峰值(包括肩峰)的波長分別為472nm及491nm。
因此,從上述峰值(包括肩峰)的波長算出的PCCzPTzn的S1能階為2.63eV,T1能階為2.53eV,S1能階與T1能階的能量差為0.10eV。
從圖35可知,PCCzPTzn的發射光譜的螢光成分及磷光成分的短波長一側的上升的波長分別為450nm及477nm。此外,作為發射光譜的短波長一側的上升的波長,採用在該光譜的切線的傾斜度具有極大值的波長上的切線與橫軸的交點的波長。
如上所述,從上升的波長算出的PCCzPTzn的S1能階為2.76eV,T1能階為2.60eV,S1能階與T1能階的能量差為0.16eV。
如上所述,從發射光譜的最短波長一側的峰值(包括肩峰)的波長及短波長一側的上升的波長算出的PCCzPTzn的S1能階與T1能階的能量差都極小,亦即大於0eV且為0.2eV以下。由此,PCCzPTzn具有藉由反系間竄越將三重激發能轉換為單重激發能且呈現熱活化延遲螢光的功能。
<發光元件的可靠性> 圖36示出發光元件10、比較發光元件11、比較發光元件12及比較發光元件8的定電流為2.0mA時的驅動測試的結果。從圖36可知,發光元件10的可靠性高於比較發光元件11。如上所述,發光元件10得到來源於螢光化合物的發光,比較發光元件11得到來源於磷光化合物的發光。因此,可知如本發明的一個實施方式的發光元件那樣從螢光化合物得到發光時可靠性得到提高。此外,可知發光元件10的可靠性高於比較發光元件12。如上所述,發光元件10能夠藉由TADF材料及磷光化合物將三重激發能移動到螢光化合物。另一方面,比較發光元件12只藉由TADF材料將三重激發能移動到螢光化合物。因此,如本發明的一個實施方式的發光元件那樣,當具有多個將三重激發能移動到螢光化合物的路徑時發光元件的可靠性良好。此外,可知發光元件10的可靠性高於比較發光元件8。藉由作為主體材料使用具有TADF性的主體材料,可以得到高可靠性的發光元件。
藉由本發明的一個實施方式,可以提供一種發光效率高且可靠性良好的發光元件。另外,藉由本發明的一個實施方式,可以提供一種驅動電壓低且功耗低的發光元件。 實施例4
在本實施例中說明本發明的一個實施方式的發光元件及比較發光元件的製造例子。在本實施例中製造的發光元件的結構與圖1A同樣。表7示出元件結構的詳細內容。所使用的化合物的結構及簡稱可以參照上述實施例及實施方式。
[表7]
符號 膜厚度 (nm) 材料 重量比
發光 元件 13 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 40 mPCCzPTzn-02:GD270:TBRb 0.8:0.2:0.01
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 45 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 14 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 40 mPCCzPTzn-02:GD270 0.8:0.2
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 45 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 15 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 30 mPCCzPTzn-02:TBRb 1:0.01
電洞傳輸層 112 20 PCCP -
電洞注入層 111 45 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
<發光元件的製造> 下面示出在本實施例中製造的發光元件的製造方法。
<<發光元件13的製造>> 作為電極101,在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm 2(2mm×2mm)。
作為電洞注入層111,在電極101上將DBT3P-II與氧化鉬(MoO 3)以重量比(DBT3P-II:MoO 3)為1:0.5且厚度為45nm的方式共蒸鍍。
接著,作為電洞傳輸層112在電洞注入層111上以厚度為20nm的方式蒸鍍mCzFLP。
接著,作為發光層130,在電洞傳輸層112上將mPCCzPTzn-02、GD270(吉林奧來德光電材料股份有限公司製造)及TBRb以重量比(mPCCzPTzn-02:GD270:TBRb)為0.8:0.2:0.01且厚度為40nm的方式共蒸鍍。在發光層130中,GD270為磷光化合物,TBRb為螢光化合物。
接著,作為電子傳輸層118,在發光層130上依次以厚度為20nm的方式蒸鍍mPCCzPTzn-02並且以厚度為10nm的方式蒸鍍NBPhen。接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,在電子注入層119上使用鋁(Al)形成厚度為200nm的電極102。
接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封發光元件13。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和密封用玻璃基板,以6J/cm 2照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程得到發光元件13。
<<比較發光元件14的製造>> 比較發光元件14的與上述發光元件13的不同之處僅在於發光層130的形成製程,而其他製程都與發光元件13採用同樣的製造方法。
作為比較發光元件14的發光層130,將mPCCzPTzn-02和GD270以重量比(mPCCzPTzn-02:GD270)為0.8:0.2且厚度為40nm的方式共蒸鍍。與發光元件13的發光層130不同,在比較發光元件14的發光層130中不包含螢光化合物的TBRb。
<<比較發光元件15的製造>> 比較發光元件15的與上述發光元件13的不同之處僅在於電洞傳輸層112及發光層130的形成製程,而其他製程都與發光元件13同樣的製造方法。
作為比較發光元件15的電洞傳輸層112,在電洞注入層111上以厚度為20nm的方式蒸鍍PCCP。
接著,作為發光層130,將mPCCzPTzn-02和TBRb以重量比(mPCCzPTzn-02:TBRb)為1:0.01且厚度為30nm的方式共蒸鍍。與發光元件13的發光層130不同,在比較發光元件15的發光層130中不包含磷光化合物的GD270。
<發光元件的特性> 接著,測定上述製造的發光元件13、比較發光元件14、比較發光元件15及上述比較發光元件8的特性。注意,測定方法與實施例1相同。
圖37示出發光元件13、比較發光元件14、比較發光元件15及上述比較發光元件8的電流效率-亮度特性,圖38示出電流-電壓特性,圖39示出外部量子效率-亮度特性。此外,圖40示出以2.5mA/cm 2的電流密度使電流流過發光元件13、比較發光元件14、比較發光元件15及上述比較發光元件8時的電致發射光譜。另外,各發光元件的測定在室溫(保持為23℃的氛圍)下進行。
表8示出1000cd/m 2附近的發光元件13、比較發光元件14及比較發光元件15的元件特性。
[表8]
電壓 (V) 電流密度(mA/cm 2) CIE色度 (x, y) 亮度 (cd/m 2) 電流 效率 (cd/A) 功率 效率 (lm/W) 外部量子效率 (%)
發光元件 13 3.20 1.10 (0.462, 0.532) 977 88.9 87.3 27.1
比較 發光元件 14 3.30 1.18 (0.339, 0.634) 983 83.6 79.6 22.6
比較 發光元件 15 2.90 5.91 (0.451, 0.534) 871 14.7 16.0 4.44
如圖40所示,發光元件13、比較發光元件8及比較發光元件15發射黃色光,其中發射光譜的峰值波長分別為564nm、562nm、562nm,半峰全寬分別為72nm、67nm、69nm左右。因此,發光元件13、比較發光元件8及比較發光元件15所發射的光來源於螢光化合物的TBRb。此外,比較發光元件14發射綠色光,其中發射光譜的峰值波長為527nm,半峰全寬為73nm。因此,比較發光元件14所發射的光來源於GD270。因此,本發明的一個實施方式的發光元件13的發射光譜的峰值波長的半峰全寬小於比較發光元件14,可以發射顏色純度高的光。因此,本發明的一個實施方式的發光元件適合用於顯示裝置。
如圖37、圖39及表8所示,雖然發光元件13為螢光發光元件,但是其外部量子效率高於6.25%。這是因為在根據本發明的一個實施方式的發光元件13中除了來源於單重激子的發光以外還可以經過磷光化合物的GD270將三重激子貢獻於螢光發光。加上,如後面說明,包含在發光元件13中的mPCCzPTzn-02為TADF材料。因此,可以藉由來源於TADF材料的反系間竄越將三重激子貢獻於螢光發光,所以可以提高發光效率。
發光元件13的發光效率高於比較發光元件8。如上所述,在比較發光元件8的發光層130中使用不是TADF材料的CBP。因此,比較發光元件8不具有藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子的功能。另一方面,本發明的一個實施方式的發光元件13在發光層130中包含TADF材料。因此,發光元件13能夠藉由由於TADF材料產生的反系間竄越將三重激子轉換為單重激子,可以實現高於比較發光元件8的發光效率。
發光元件13的發光效率高於比較發光元件15。如上所述,在比較發光元件15的發光層130中包含TADF材料,而不包含磷光化合物。因此,比較發光元件15不能藉由磷光化合物將三重激子貢獻於螢光發光。另一方面,本發明的一個實施方式的發光元件13在發光層130中除了TADF材料以外還包含磷光化合物。因此,可以藉由磷光化合物將三重激子貢獻於螢光發光,可以實現高於比較發光元件15的發光效率。
<時間分辨發光測定> 接著,為了調查mPCCzPTzn-02為TADF材料,進行時間分辨發光測定。圖41示出其結果。測定方法與上述實施例所示的方法相同。此外,在測定中使用具有以下表9所示的元件結構的發光元件16。
[表9]
符號 膜厚度 (nm) 材料 重量比
發光 元件 16 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 30 mPCCzPTzn-02 -
電洞傳輸層 112 20 PCCP -
電洞注入層 111 30 DBT3P-II:MoO 3 1:0.5
陽極 101 70 ITSO -
如圖41所示,從發光元件16觀察到具有不同的螢光壽命的多種發光成分,除了發光壽命短的暫態螢光成分以外還觀察到發光壽命長的延遲螢光成分。因此,mPCCzPTzn-02可以說是TADF材料。另一方面,從圖41可知,發光成分整體(暫態發光成分+延遲螢光成分)中延遲螢光成分所佔的比率為10%左右,在將三重激子轉換為單重激子後,轉換為發光的比率為4%左右。因此,mPCCzPTzn-02具有TADF性,但其發光效率不高。但是,如上所述,可以從發光元件13得到非常高的外部量子效率,亦即超過27%。因此,用於本發明的一個實施方式的發光元件的TADF材料至少具有TADF性即可,而TADF材料的發光效率也可以較低。
<S1能階及T1能階的測定> 接著,為了算出mPCCzPTzn-02的S1能階及T1能階,測定低溫(10K)下的mPCCzPTzn-02的發射光譜。測定方法與實施例1所示的方法相同。圖42示出測定結果。
從圖42可知,mPCCzPTzn-02的發射光譜的螢光成分及磷光成分的最短波長一側的峰值(包括肩峰)的波長分別為471nm及496nm。
因此,從上述峰值(包括肩峰)的波長算出的mPCCzPTzn-02的S1能階為2.63eV,T1能階為2.50eV,S1能階與T1能階的能量差為0.13eV。
如上所述,從發射光譜的最短波長一側的峰值(包括肩峰)的波長算出的mPCCzPTzn-02的S1能階與T1能階的能量差都極小,亦即大於0eV且為0.2eV以下。由此,mPCCzPTzn-02具有藉由反系間竄越將三重激發能轉換為單重激發能且呈現熱活化延遲螢光的功能。
<發光元件的可靠性> 圖43示出發光元件13、比較發光元件14、比較發光元件15及比較發光元件8的定電流為2.0mA時的驅動測試的結果。從圖43可知,發光元件13的可靠性高於比較發光元件14。如上所述,發光元件13得到來源於螢光化合物的發光,比較發光元件14得到來源於磷光化合物的發光。因此,可知如本發明的一個實施方式的發光元件那樣從螢光化合物得到發光時可靠性得到提高。此外,可知發光元件13的可靠性高於比較發光元件15。如上所述,發光元件13能夠藉由TADF材料及磷光化合物將三重激發能移動到螢光化合物。另一方面,比較發光元件15只藉由TADF材料將三重激發能移動到螢光化合物。因此,如本發明的一個實施方式的發光元件那樣,當具有多個將三重激發能移動到螢光化合物的路徑時發光元件的可靠性良好。此外,可知發光元件13的可靠性高於比較發光元件8。藉由作為主體材料使用具有TADF性的主體材料,可以得到高可靠性的發光元件。
藉由本發明的一個實施方式,可以提供一種發光效率高且可靠性良好的發光元件。另外,藉由本發明的一個實施方式,可以提供一種驅動電壓低且功耗低的發光元件。 實施例5
在本實施例中說明本發明的一個實施方式的發光元件及比較發光元件的製造例子。在本實施例中製造的發光元件的結構與圖1A同樣。表10示出元件結構的詳細內容。所使用的化合物的結構及簡稱可以參照上述實施例及實施方式。
[表10]
符號 膜厚度 (nm) 材料 重量比
發光 元件 17 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 40 mPCCzPTzn-02:PCCP:GD270:TBRb 0.5:0.5:0.1:0.01
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
比較 發光 元件 18 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 40 mPCCzPTzn-02:PCCP:GD270 0.5:0.5:0.1
電洞傳輸層 112 20 mCzFLP -
電洞注入層 111 45 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
<發光元件的製造> 下面示出在本實施例中製造的發光元件的製造方法。
<<發光元件17的製造>> 作為電極101,在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm 2(2mm×2mm)。
作為電洞注入層111,在電極101上將DBT3P-II與氧化鉬(MoO 3)以重量比(DBT3P-II:MoO 3)為1:0.5且厚度為45nm的方式共蒸鍍。
接著,作為電洞傳輸層112在電洞注入層111上以厚度為20nm的方式蒸鍍mCzFLP。
接著,作為發光層130,在電洞傳輸層112上將mPCCzPTzn-02、PCCP、GD270及TBRb以重量比(mPCCzPTzn-02:PCCP:GD270:TBRb)為0.5:0.5:0.1:0.01且厚度為40nm的方式共蒸鍍。在發光層130中,TBRb為螢光化合物。
接著,作為電子傳輸層118,在發光層130上依次以厚度為20nm的方式蒸鍍mPCCzPTzn-02並且以厚度為10nm的方式蒸鍍NBPhen。接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,在電子注入層119上使用鋁(Al)形成厚度為200nm的電極102。
接著,在氮氛圍的手套箱中使用有機EL用密封劑將密封用玻璃基板固定於形成有有機材料的玻璃基板上,由此密封發光元件17。明確而言,將密封劑塗佈於形成在玻璃基板上的有機材料的周圍,貼合該玻璃基板和密封用玻璃基板,以6J/cm 2照射波長為365nm的紫外光,並且以80℃進行1小時的加熱處理。藉由上述製程得到發光元件17。
<<比較發光元件18的製造>> 比較發光元件18的與上述發光元件17的不同之處僅在於發光層130的形成製程,而其他製程都與發光元件17採用同樣的製造方法。
作為比較發光元件18的發光層130,將mPCCzPTzn-02、PCCP和GD270以重量比(mPCCzPTzn-02:PCCP:GD270)為0.5:0.5:0.1且厚度為40nm的方式共蒸鍍。與發光元件17的發光層130相比,在比較發光元件18的發光層130中不包含螢光化合物的TBRb。
<發光元件的特性> 接著,測定上述製造的發光元件17、比較發光元件18及發光元件13的特性。注意,測定方法與實施例1相同。
圖44示出發光元件17、比較發光元件18及發光元件13的電流效率-亮度特性,圖45示出電流-電壓特性,圖46示出外部量子效率-亮度特性。此外,圖47示出以2.5mA/cm 2的電流密度使電流流過發光元件17、比較發光元件18及發光元件13時的電致發射光譜。另外,各發光元件的測定在室溫(保持為23℃的氛圍)下進行。
表11示出1000cd/m 2附近的發光元件17及比較發光元件18的元件特性。
[表11]
電壓 (V) 電流密度(mA/cm 2) CIE色度 (x, y) 亮度 (cd/m 2) 電流 效率 (cd/A) 功率 效率 (lm/W) 外部量子效率 (%)
發光元件 17 3.60 1.12 (0.434, 0.557) 1123 100.5 87.7 29.2
比較 發光元件 18 3.60 1.05 (0.318, 0.649) 949 90.8 79.3 24.5
如圖47所示,發光元件17及發光元件13發射黃色光,其中電致發射光譜的峰值波長分別為559nm、564nm,半峰全寬分別為71nm、72nm左右。因此,發光元件17及發光元件13所發射的光來源於螢光化合物的TBRb。此外,比較發光元件18發射綠色光,其中電致發射光譜的峰值波長為524nm,半峰全寬為72nm。因此,比較發光元件18所發射的光來源於磷光化合物的GD270。
如圖44、圖46及表11所示,發光元件17、比較發光元件18及發光元件13具有非常高的發光效率(電流效率、功率效率及外部量子效率)。雖然發光元件17是螢光發光元件,但是外部量子效率非常高,亦即大大超過6.25%。這示出除了來源於藉由載子(電洞及電子)的再結合生成的單重激子的發光以外來源於三重激子的發光,激發能經過磷光化合物的GD270移動到螢光化合物的TBRb。加上,如上所述,包含在發光元件17中的mPCCzPTzn-02為TADF材料。因此,可以藉由來源於TADF材料的反系間竄越將三重激子貢獻於螢光發光,所以可以提高發光效率。
<CV測定結果> 接著,對上述化合物的電化學特性(氧化反應特性及還原反應特性)進行循環伏安法(CV)測定來計算出HOMO能階及LUMO能階。測定方法與上述實施例1相同。
根據CV測定算出:mPCCzPTzn-02的HOMO能階為-5.69eV,LUMO能階為-3.00eV,PCCP的HOMO能階為-5.63eV,LUMO能階為-1.96eV。
因此,mPCCzPTzn-02的HOMO能階比PCCP高,而LUMO能階比PCCP低。由此,mPCCzPTzn-02和PCCP是在發光層中形成激態錯合物的組合。
根據從由mPCCzPTzn-02和PCCP形成的激態錯合物的發射光譜的峰值波長算出的S1能階及T1能階為2.45eV。在此,GD270的T1能階為2.44eV(從氯仿溶液的吸收端算出),激態錯合物所具有的激發能可以移動到GD270。
<激態錯合物形成的調查> 為了調查是否由mPCCzPTzn-02和PCCP形成激態錯合物,製造表12所示的發光元件19及上述發光元件16。此外,激態錯合物形成的有無藉由對mPCCzPTzn-02的發射光譜與mPCCzPTzn-02和PCCP的混合膜的發射光譜進行比較來調查。
[表12]
符號 膜厚度 (nm) 材料 重量比
發光 元件 19 電極 102 200 Al -
電子注入層 119 1 LiF -
電子 傳輸層 118(2) 10 NBphen -
118(1) 20 mPCCzPTzn-02 -
發光層 130 30 mPCCzPTzn-02:PCCP 0.8:0.2
電洞傳輸層 112 20 PCCP -
電洞注入層 111 30 DBT3P-II: MoO 3 1:0.5
陽極 101 70 ITSO -
<<EL光譜>> 圖48示出使2.5mA/cm 2的電流流過發光元件16及發光元件19時得到的EL光譜。從圖48可知,在發光元件16中得到來源於mPCCzPTzn-02的光。這裡,來自於發光元件19的光與來自於發光元件16的光相比在更長的波長一側具有峰值。從發光元件19的發射光譜的峰值波長算出的發光能量(2.45eV)大致與mPCCzPTzn-02的LUMO能階和PCCP的HOMO能階的差異(2.63eV)一致。因此,可以說由mPCCzPTzn-02和PCCP形成激態錯合物。
<<時間分辨螢光測定>> 對發光元件16及發光元件19進行時間分辨螢光測定。圖49示出其結果。從圖49可知,發光元件19中的延遲螢光成分的比率大於發光元件16。此外,可知發光元件19中包含其壽命比發光元件16長的發光成分。換言之,發光元件16與發光元件19的過渡回應特性不同。因此,可以說由mPCCzPTzn-02和PCCP形成激態錯合物。
<激態錯合物的發射光譜與客體材料的吸收光譜的關係> 圖50示出測定TBRb的甲苯溶液的吸收光譜的結果以及比較發光元件18所呈現的發射光譜。測定與上述實施例相同。
如圖50所示,TBRb的吸收光譜和比較發光元件18所呈現的發射光譜具有重疊區域。因此,能夠從由mPCCzPTzn-02和PCCP形成的激態錯合物將激發能經過GD270高效地供應到螢光化合物的TBRb。藉由將能量經過磷光化合物的GD270移動到TBRb,可以使三重激發能有助於螢光發光。當使沒有形成激態錯合物的mPCCzPTzn-02激發時,由於mPCCzPTzn-02具有TADF性,所以藉由反系間竄越從三重激子生成單重激子。在發光層130中,藉由由於上述TADF材料的單重激子的生成及經過磷光化合物的GD270向螢光化合物的TBRb移動三重激發能,發光元件17可以得到極高的發光效率。
<發光元件的可靠性> 對發光元件17、比較發光元件18及發光元件13進行定電流為2.0mA時的驅動測試。表13示出該驅動測試的LT 60(亮度減少40%的時間)。
[表13]
LT 60(h)
發光元件17 690
比較發光元件18 430
發光元件13 580
從表13可知,發光元件17、比較發光元件18及發光元件13具有良好的可靠性。此外,可知發光元件17的可靠性高於比較發光元件18。此外,發光元件17的LT 60比發光元件13長。因此,藉由在主體材料中使用TADF材料且利用激態錯合物,可以得到可靠性良好的發光元件。
100:EL層 101:電極 102:電極 106:發光單元 108:發光單元 111:電洞注入層 112:電洞傳輸層 113:電子傳輸層 114:電子注入層 115:電荷產生層 116:電洞注入層 117:電洞傳輸層 118:電子傳輸層 119:電子注入層 120:發光層 130:發光層 131:化合物 132:化合物 133:化合物 134:化合物 150:發光元件 170:發光層 250:發光元件 601:源極一側驅動電路 602:像素部 603:閘極一側驅動電路 604:密封基板 605:密封劑 607:空間 608:佈線 609:FPC 610:元件基板 611:開關用TFT 612:電流控制用TFT 613:電極 614:絕緣物 616:EL層 617:電極 618:發光元件 623:n通道型TFT 624:p通道型TFT 625:乾燥劑 900:可攜式資訊終端 901:外殼 902:外殼 903:顯示部 905:鉸鏈部 910:可攜式資訊終端 911:外殼 912:顯示部 913:操作按鈕 914:外部連接埠 915:揚聲器 916:麥克風 917:照相機 920:照相機 921:外殼 922:顯示部 923:操作按鈕 924:快門按鈕 926:透鏡 1001:基板 1002:基底絕緣膜 1003:閘極絕緣膜 1006:閘極電極 1007:閘極電極 1008:閘極電極 1020:層間絕緣膜 1021:層間絕緣膜 1022:電極 1024B:電極 1024G:電極 1024R:電極 1024W:電極 1025B:下部電極 1025G:下部電極 1025R:下部電極 1025W:下部電極 1026:分隔壁 1028:EL層 1029:電極 1031:密封基板 1032:密封劑 1033:基材 1034B:彩色層 1034G:彩色層 1034R:彩色層 1035:黑色層 1036:保護層 1037:層間絕緣膜 1040:像素部 1041:驅動電路部 1042:周邊部 1044B:藍色像素 1044G:綠色像素 1044R:紅色像素 1044W:白色像素 2100:機器人 2101:照度感測器 2102:麥克風 2103:上部照相機 2104:揚聲器 2105:顯示器 2106:下部照相機 2107:障礙物感測器 2108:移動機構 2110:運算裝置 5000:外殼 5001:顯示部 5002:顯示部 5003:揚聲器 5004:LED燈 5005:操作鍵 5006:連接端子 5007:感測器 5008:麥克風 5012:支撐部 5013:耳機 5100:掃地機器人 5101:顯示器 5102:照相機 5103:刷子 5104:操作按鈕 5120:垃圾 5140:可攜式電子裝置 5150:可攜式資訊終端 5151:外殼 5152:顯示區域 5153:彎曲部 8501:照明設備 8502:照明設備 8503:照明設備 8504:照明設備
在圖式中: 圖1A至圖1C是本發明的一個實施方式的發光元件的剖面示意圖及說明發光層的能階相關的圖; 圖2A和圖2B是說明本發明的一個實施方式的發光元件的發光層的能階相關的圖; 圖3是說明本發明的一個實施方式的發光元件的發光層的能階相關的圖; 圖4A和圖4B是說明本發明的一個實施方式的發光元件的發光層的能階相關的圖; 圖5是本發明的一個實施方式的發光元件的剖面示意圖; 圖6A和圖6B是說明本發明的一個實施方式的顯示裝置的俯視圖及剖面示意圖; 圖7A和圖7B是說明本發明的一個實施方式的顯示裝置的剖面示意圖; 圖8A和圖8B是說明本發明的一個實施方式的顯示裝置的剖面示意圖; 圖9A至圖9D是說明本發明的一個實施方式的電子裝置的圖; 圖10A至圖10C是說明本發明的一個實施方式的電子裝置的圖; 圖11A和圖11B是說明本發明的一個實施方式的電子裝置的圖; 圖12是說明本發明的一個實施方式的照明設備的圖; 圖13是說明根據實施例的發光元件的電流效率-亮度特性的圖; 圖14是說明根據實施例的發光元件的電流-電壓特性的圖; 圖15是說明根據實施例的發光元件的外部量子效率-亮度特性的圖; 圖16是說明根據實施例的發光元件的發射光譜的圖; 圖17是說明根據實施例的時間分辨發光測定的結果的圖; 圖18是說明根據實施例的發射光譜和吸收光譜的關係的圖; 圖19A和圖19B是說明根據實施例的過渡螢光特性的圖; 圖20是說明根據實施例的化合物的發射光譜的圖; 圖21是說明根據實施例的化合物的發射光譜的圖; 圖22是說明根據實施例的發光元件的可靠性測試結果的圖; 圖23是說明根據實施例的發光元件的電流效率-亮度特性的圖; 圖24是說明根據實施例的發光元件的電流-電壓特性的圖; 圖25是說明根據實施例的發光元件的外部量子效率-亮度特性的圖; 圖26是說明根據實施例的發光元件的發射光譜的圖; 圖27是說明根據實施例的時間分辨發光測定的結果的圖; 圖28是說明根據實施例的發光元件的可靠性測試結果的圖; 圖29是說明根據實施例的發光元件的電流效率-亮度特性的圖; 圖30是說明根據實施例的發光元件的電流-電壓特性的圖; 圖31是說明根據實施例的發光元件的外部量子效率-亮度特性的圖; 圖32是說明根據實施例的發光元件的發射光譜的圖; 圖33是說明根據實施例的時間分辨發光測定的結果的圖; 圖34是說明根據實施例的時間分辨發光測定的結果的圖; 圖35是說明根據實施例的化合物的發射光譜的圖; 圖36是說明根據實施例的發光元件的可靠性測試結果的圖; 圖37是說明根據實施例的發光元件的電流效率-亮度特性的圖; 圖38是說明根據實施例的發光元件的電流-電壓特性的圖; 圖39是說明根據實施例的發光元件的外部量子效率-亮度特性的圖; 圖40是說明根據實施例的發光元件的發射光譜的圖; 圖41是說明根據實施例的時間分辨發光測定的結果的圖; 圖42是說明根據實施例的化合物的發射光譜的圖; 圖43是說明根據實施例的發光元件的可靠性測試結果的圖; 圖44是說明根據實施例的發光元件的電流效率-亮度特性的圖; 圖45是說明根據實施例的發光元件的電流-電壓特性的圖; 圖46是說明根據實施例的發光元件的外部量子效率-亮度特性的圖; 圖47是說明根據實施例的發光元件的發射光譜的圖; 圖48是說明根據實施例的發光元件的發射光譜的圖; 圖49是說明根據實施例的時間分辨發光測定的結果的圖; 圖50是說明根據實施例的發射光譜和吸收光譜的關係的圖。
131:化合物
132:化合物
133:化合物

Claims (23)

  1. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為2以上的烷基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  2. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的具有支鏈的烷基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  3. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的環烴基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  4. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的橋環烴基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  5. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為2以上的烷基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  6. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的具有支鏈的烷基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  7. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的環烴基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  8. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的橋環烴基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物具有富π電子骨架及缺π電子骨架, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  9. 根據請求項1~8中任一項之發光元件,其中該富π電子骨架及該缺π電子骨架直接鍵合。
  10. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為2以上的烷基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  11. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的具有支鏈的烷基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  12. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的環烴基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  13. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的橋環烴基之第三有機化合物, 該第一有機化合物包含Ru、Rh、Pd、Os、Ir或Pt, 該第一有機化合物具有將三重激發能轉換為發光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  14. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為2以上的烷基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  15. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的具有支鏈的烷基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  16. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的環烴基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  17. 一種發光元件,包括: 一對電極之間的發光層,其中, 該發光層包含第一有機化合物、第二有機化合物及包括至少兩個以上的碳原子數為3以上且10以下的橋環烴基之第三有機化合物, 該第一有機化合物具有發射磷光的功能, 該第二有機化合物所具有的S1能階與該第二有機化合物所具有的T1能階之差為0eV以上且0.2eV以下, 該第三有機化合物具有將單重激發能轉換為發光的功能, 具有源自該第三有機化合物的發光。
  18. 根據請求項1~8及請求項10~17中任一項之發光元件,其中該第一有機化合物具有將激發能供應到該第三有機化合物的功能。
  19. 根據請求項1~8及請求項10~17中任一項之發光元件,其中該第一有機化合物在室溫下具有0%以上且40%以下的發光量子產率。
  20. 根據請求項1~8及請求項10~17中任一項之發光元件,其中該第三有機化合物發射螢光。
  21. 一種顯示裝置,包括: 請求項1~8及請求項10~17中任一項之發光元件;以及 濾色片和電晶體中的至少一個。
  22. 一種電子裝置,包括: 請求項21之顯示裝置;以及 外殼和觸控感測器中的至少一個。
  23. 一種照明設備,包括: 請求項1~8及請求項10~17中任一項之發光元件;以及 外殼和觸控感測器中的至少一個。
TW112109264A 2017-11-02 2018-10-30 發光元件、顯示裝置、電子裝置及照明設備 TWI835588B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017213080 2017-11-02
JP2017-213080 2017-11-02

Publications (2)

Publication Number Publication Date
TW202348782A true TW202348782A (zh) 2023-12-16
TWI835588B TWI835588B (zh) 2024-03-11

Family

ID=66331504

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107138332A TWI797182B (zh) 2017-11-02 2018-10-30 發光元件、顯示裝置、電子裝置及照明設備
TW112109264A TWI835588B (zh) 2017-11-02 2018-10-30 發光元件、顯示裝置、電子裝置及照明設備

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107138332A TWI797182B (zh) 2017-11-02 2018-10-30 發光元件、顯示裝置、電子裝置及照明設備

Country Status (6)

Country Link
US (2) US11637263B2 (zh)
JP (4) JP7242252B2 (zh)
KR (1) KR20200072546A (zh)
CN (1) CN111656549A (zh)
TW (2) TWI797182B (zh)
WO (1) WO2019087003A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI650399B (zh) 2012-08-03 2019-02-11 日商半導體能源研究所股份有限公司 發光元件
JPWO2018168292A1 (ja) * 2017-03-16 2020-01-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
US11690238B2 (en) 2017-10-27 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
JP7395136B2 (ja) * 2019-10-10 2023-12-11 国立大学法人九州大学 組成物および有機発光素子
KR20210067752A (ko) * 2019-11-29 2021-06-08 삼성전자주식회사 유기 발광 소자
CN111162186B (zh) * 2019-12-30 2021-05-28 电子科技大学 基于阶梯式多反系间窜越过程的有机白光发光器件及其制备方法
TW202147665A (zh) * 2020-04-28 2021-12-16 日商半導體能源研究所股份有限公司 發光器件、金屬錯合物、發光裝置、電子裝置及照明設備
CN111640878B (zh) * 2020-06-11 2023-04-18 京东方科技集团股份有限公司 有机发光材料、有机电致发光元件及显示装置
KR20230137317A (ko) * 2021-01-28 2023-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 장치, 전자 기기, 표시 장치,조명 장치
KR20220132678A (ko) * 2021-03-22 2022-10-04 삼성디스플레이 주식회사 발광 소자

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1202608B2 (en) 2000-10-30 2012-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic light-emitting devices
TW519770B (en) 2001-01-18 2003-02-01 Semiconductor Energy Lab Light emitting device and manufacturing method thereof
ITTO20010692A1 (it) 2001-07-13 2003-01-13 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico basato sull'emissione di ecciplessi od elettroplessi e sua realizzazione.
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6869695B2 (en) 2001-12-28 2005-03-22 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6951694B2 (en) 2002-03-29 2005-10-04 The University Of Southern California Organic light emitting devices with electron blocking layers
ITBO20020165A1 (it) 2002-03-29 2003-09-29 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico con droganti cromofori
TWI314947B (en) 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
CN100387607C (zh) 2003-03-24 2008-05-14 南加利福尼亚大学 Ir的苯基-吡唑配合物
US7175922B2 (en) 2003-10-22 2007-02-13 Eastman Kodak Company Aggregate organic light emitting diode devices with improved operational stability
US7597967B2 (en) 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
US20060134464A1 (en) 2004-12-22 2006-06-22 Fuji Photo Film Co. Ltd Organic electroluminescent element
JP2007015933A (ja) 2005-07-05 2007-01-25 Sony Corp アントラセン誘導体の合成方法、有機電界発光素子、および表示装置
US20070090756A1 (en) 2005-10-11 2007-04-26 Fujifilm Corporation Organic electroluminescent element
CN101321755B (zh) 2005-12-01 2012-04-18 新日铁化学株式会社 有机电致发光元件用化合物及有机电致发光元件
JP2008288344A (ja) 2007-05-16 2008-11-27 Nippon Hoso Kyokai <Nhk> 有機el素子
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
JP5325707B2 (ja) 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
CN105679953A (zh) 2008-09-05 2016-06-15 株式会社半导体能源研究所 发光元件、发光器件和电子器件
WO2011042443A1 (en) 2009-10-05 2011-04-14 Thorn Lighting Ltd. Multilayer organic device
KR101352116B1 (ko) 2009-11-24 2014-01-14 엘지디스플레이 주식회사 백색 유기 발광 소자
EP2511360A4 (en) 2009-12-07 2014-05-21 Nippon Steel & Sumikin Chem Co Organic light-emitting material and organic light-emitting element
DE202012013753U1 (de) 2011-02-16 2021-03-01 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
CN107342369B (zh) 2011-02-16 2020-10-16 株式会社半导体能源研究所 发光元件
TWI680600B (zh) 2011-02-28 2019-12-21 日商半導體能源研究所股份有限公司 發光元件
JP5694019B2 (ja) 2011-03-17 2015-04-01 株式会社東芝 有機電界発光素子、表示装置および照明装置
DE202012013737U1 (de) 2011-03-23 2020-09-30 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
KR102255816B1 (ko) 2011-03-30 2021-05-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR101419810B1 (ko) 2012-04-10 2014-07-15 서울대학교산학협력단 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
KR102079562B1 (ko) 2012-04-20 2020-02-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
DE112013002110B4 (de) 2012-04-20 2017-09-07 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
US8994013B2 (en) 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP5959970B2 (ja) 2012-07-20 2016-08-02 出光興産株式会社 有機エレクトロルミネッセンス素子
DE102013214661B4 (de) 2012-08-03 2023-01-05 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung und Beleuchtungsvorrichtung
TWI650399B (zh) 2012-08-03 2019-02-11 日商半導體能源研究所股份有限公司 發光元件
WO2014104315A1 (ja) 2012-12-28 2014-07-03 出光興産株式会社 有機エレクトロルミネッセンス素子
KR102257137B1 (ko) 2013-03-26 2021-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 화합물, 유기 화합물, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 조명 장치 및 전자 기기
JP6137898B2 (ja) 2013-03-26 2017-05-31 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
CN105683173B (zh) 2013-07-26 2018-02-13 株式会社半导体能源研究所 有机化合物、发光元件、发光装置、电子设备及照明装置
KR102191957B1 (ko) 2013-08-14 2020-12-16 고쿠리쓰다이가쿠호진 규슈다이가쿠 유기 일렉트로루미네선스 소자
KR102513242B1 (ko) 2013-08-26 2023-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
JP6507534B2 (ja) 2013-09-11 2019-05-08 東ソー株式会社 ベンゾチエノピリミジン化合物、その製造方法、及びそれを含有する有機電界発光素子
KR102331669B1 (ko) 2013-11-13 2021-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
WO2015083025A1 (en) 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic appliance, and lighting device
JP5905916B2 (ja) 2013-12-26 2016-04-20 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
WO2015105316A1 (ko) 2014-01-10 2015-07-16 삼성에스디아이 주식회사 축합환 화합물, 및 이를 포함한 유기 발광 소자
US9502656B2 (en) 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
KR101917938B1 (ko) * 2014-03-07 2018-11-12 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자, 표시 장치, 조명 장치 및 발광성 조성물
KR20160007380A (ko) 2014-07-11 2016-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 화합물, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
DE102015213426B4 (de) 2014-07-25 2022-05-05 Semiconductor Energy Laboratory Co.,Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elekronisches Gerät, Beleuchtungsvorrichtung und organische Verbindung
KR102245164B1 (ko) 2014-08-22 2021-04-27 엘지디스플레이 주식회사 유기 발광 소자 및 그의 제조 방법
US10741772B2 (en) 2014-08-29 2020-08-11 Samsung Electronics Co., Ltd. Organic light-emitting device
KR102353647B1 (ko) 2014-08-29 2022-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR20230051628A (ko) 2014-09-30 2023-04-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US20160104855A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
KR20160067629A (ko) 2014-12-04 2016-06-14 서울대학교산학협력단 유기발광소자
CN105810846B (zh) 2014-12-31 2020-07-07 北京维信诺科技有限公司 一种有机电致发光器件
US10903440B2 (en) 2015-02-24 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10062861B2 (en) 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
TWI779405B (zh) * 2015-03-09 2022-10-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
TW202404148A (zh) 2015-03-09 2024-01-16 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
TWI757234B (zh) 2015-05-21 2022-03-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置、及照明裝置
DE112016002297T5 (de) 2015-05-21 2018-03-15 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Anzeigevorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
KR20180013958A (ko) 2015-05-29 2018-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR20160140393A (ko) 2015-05-29 2016-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
WO2017006222A1 (en) 2015-07-08 2017-01-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20180095919A (ko) 2015-12-25 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 화합물, 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
JP2019061974A (ja) 2015-12-28 2019-04-18 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
JP2017120903A (ja) * 2015-12-29 2017-07-06 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
KR20180114033A (ko) 2016-02-24 2018-10-17 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
US20190013476A1 (en) 2016-02-24 2019-01-10 Idemitsu Kosan Co., Ltd. Organic electroluminescent element, and electronic device
US20170271610A1 (en) 2016-03-18 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20230012101A (ko) 2016-05-06 2023-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US10756286B2 (en) 2016-05-06 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN109994628B (zh) * 2017-12-29 2021-05-04 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法
CN111640878B (zh) * 2020-06-11 2023-04-18 京东方科技集团股份有限公司 有机发光材料、有机电致发光元件及显示装置

Also Published As

Publication number Publication date
TW201924108A (zh) 2019-06-16
US11956981B2 (en) 2024-04-09
JP2023107854A (ja) 2023-08-03
CN111656549A (zh) 2020-09-11
JP2019087743A (ja) 2019-06-06
TWI835588B (zh) 2024-03-11
JP2023024584A (ja) 2023-02-16
JP7292486B2 (ja) 2023-06-16
KR20200072546A (ko) 2020-06-22
US11637263B2 (en) 2023-04-25
US20230269955A1 (en) 2023-08-24
JP7242252B2 (ja) 2023-03-20
TWI797182B (zh) 2023-04-01
WO2019087003A1 (en) 2019-05-09
US20200343469A1 (en) 2020-10-29
JP2023065664A (ja) 2023-05-12
JP7305073B2 (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
TWI835588B (zh) 發光元件、顯示裝置、電子裝置及照明設備
TWI782973B (zh) 發光元件、顯示裝置、電子裝置以及照明設備
CN107305926B (zh) 发光元件、显示装置、电子设备及照明装置
CN109075260B (zh) 发光元件、显示装置、电子设备及照明装置
TWI834660B (zh) 發光元件、顯示裝置、電子裝置、有機化合物及照明設備
TWI791649B (zh) 發光元件、顯示裝置、電子裝置、及照明裝置
TW202005955A (zh) 發光元件、顯示裝置、電子裝置、有機化合物及照明設備
WO2019123190A1 (ja) 発光素子、発光装置、電子機器、及び照明装置
TW202030303A (zh) 發光元件、發光機器、顯示裝置、電子機器及照明裝置
KR20220007605A (ko) 발광 디바이스, 발광 기기, 표시 장치, 전자 기기, 및 조명 장치