WO2019123190A1 - 発光素子、発光装置、電子機器、及び照明装置 - Google Patents

発光素子、発光装置、電子機器、及び照明装置 Download PDF

Info

Publication number
WO2019123190A1
WO2019123190A1 PCT/IB2018/060157 IB2018060157W WO2019123190A1 WO 2019123190 A1 WO2019123190 A1 WO 2019123190A1 IB 2018060157 W IB2018060157 W IB 2018060157W WO 2019123190 A1 WO2019123190 A1 WO 2019123190A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light
light emitting
layer
carbon atoms
Prior art date
Application number
PCT/IB2018/060157
Other languages
English (en)
French (fr)
Inventor
大澤信晴
瀬尾哲史
門間裕史
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US16/954,692 priority Critical patent/US11404656B2/en
Priority to CN201880080618.XA priority patent/CN111480245A/zh
Priority to JP2019559869A priority patent/JP7304818B2/ja
Priority to KR1020207019756A priority patent/KR20200103025A/ko
Publication of WO2019123190A1 publication Critical patent/WO2019123190A1/ja
Priority to US17/875,838 priority patent/US20220407027A1/en
Priority to JP2023105240A priority patent/JP2023123703A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/10Silver compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds

Definitions

  • One aspect of the present invention relates to a light emitting device having a novel electron injection layer.
  • the present invention relates to a display device, an electronic device, and a lighting device each including the light emitting element.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of one embodiment of the invention disclosed in the present specification and the like relates to an object, a method, or a manufacturing method.
  • one aspect of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, the technical field of one embodiment of the present invention disclosed in the present specification more specifically includes a semiconductor device, a display device, a liquid crystal display device, a light emitting device, a lighting device, a power storage device, a storage device, and a driving method thereof. Or their production methods can be mentioned as an example.
  • the basic configuration of these light-emitting elements is a configuration in which a layer containing a light-emitting substance (EL layer) is sandwiched between a pair of electrodes. By applying a voltage between the electrodes of this element, light emission from the light-emitting substance can be obtained.
  • EL layer a layer containing a light-emitting substance
  • a display device using the light-emitting element has advantages such as excellent visibility, no need for a backlight, and low power consumption. Furthermore, it has the advantages of being able to be made thin and light and having a high response speed.
  • an EL element has an electron injection layer between the cathode and the light emitting layer in order to reduce the driving voltage.
  • the electron injection layer reduces the electron injection barrier between the cathode and the EL layer, so a metal having a small work function such as an alkali metal or an alkaline earth metal represented by lithium (Li) or calcium (Ca). And these compounds are used (for example, Patent Document 1).
  • Metals with a low work function and these compounds are highly reactive with oxygen and water and are difficult to handle.
  • the metal or the metal compound when used for a light-emitting element, the light-emitting element may be affected by oxygen or water, which may cause a decrease in light-emitting efficiency, an increase in driving voltage, or a decrease in reliability. Therefore, development of an electron injection layer that is less susceptible to oxygen and water and has a small electron injection barrier between the cathode and the EL layer is required.
  • an object of one embodiment of the present invention is to provide a light-emitting element with low driving voltage.
  • an object of one embodiment of the present invention is to provide a light-emitting element with high moisture resistance.
  • an object of one embodiment of the present invention is to provide a light-emitting element with high oxygen resistance.
  • an object of one embodiment of the present invention is to provide a light-emitting element with reduced power consumption.
  • an object of one embodiment of the present invention is to provide a highly reliable light-emitting element.
  • an object of one embodiment of the present invention is to provide a novel light-emitting element.
  • an object of one embodiment of the present invention is to provide a novel semiconductor device.
  • an object of one embodiment of the present invention is to provide an organic compound that can be used for a light-emitting element with high moisture resistance.
  • an object of one embodiment of the present invention is to provide an electronic device and a lighting device with high moisture resistance to which the light-emitting element is applied.
  • an object of one embodiment of the present invention is to provide a long-life light-emitting device to which the light-emitting element is applied.
  • one aspect of the present invention has a light emitting layer between the anode and the cathode, a first layer between the light emitting layer and the cathode, and the first layer is a first organic compound and a metal.
  • the metal belongs to any one of Groups 3 to 13 in the periodic table, and the first organic compound has a substituted or unsubstituted heteroaromatic ring having 1 to 30 carbon atoms, and is a heteroaromatic
  • the ring contains nitrogen
  • the first organic compound has a function to interact with the metal at the trident or tetradent at nitrogen, and the first organic compound and the metal are SOMO (half occupied orbital: Single Occupied Molecular It is a light emitting element which forms Orbital.
  • a first light-emitting unit, a second light-emitting unit, and a first light-emitting unit and a second light-emitting unit are provided between an anode and a cathode.
  • the metal belongs to any of Groups 3 to 13 of the periodic table, and the first organic compound is , A substituted or unsubstituted heteroaromatic ring having 1 to 30 carbon atoms, the heteroaromatic ring containing nitrogen, and the first organic compound having a function of interacting with a metal at the trident or tetradent at nitrogen And the first organic compound and the metal form SOMO.
  • the first organic compound is preferably an organic compound represented by General Formula (G0).
  • a 1 , A 2 and A 3 each independently represent a substituted or unsubstituted heteroaromatic ring having 1 to 30 carbon atoms, and A 1 , A 2 and A 3 are mutually condensed It may form a ring.
  • the first organic compound is preferably an organic compound represented by General Formula (G1).
  • X 1 to X 6 each independently represent carbon (C) or nitrogen (N), and carbon is hydrogen, an alkyl group having 1 to 4 carbon atoms, substituted or unsubstituted carbon R 3 to 7 cycloalkyl groups, substituted or unsubstituted aromatic hydrocarbon groups having 6 to 25 carbon atoms, or substituted or unsubstituted heteroaromatic hydrocarbon groups having 3 to 30 carbon atoms
  • 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, or a substituted or unsubstituted aromatic carbon having 6 to 25 carbon atoms
  • Ar represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted cycloal
  • the first organic compound is preferably an organic compound represented by General Formula (G2).
  • X 1 and X 2 each independently represent carbon (C) or nitrogen (N), and carbon is hydrogen, an alkyl group having 1 to 4 carbon atoms, substituted or unsubstituted carbon R 3 to 7 cycloalkyl groups, substituted or unsubstituted aromatic hydrocarbon groups having 6 to 25 carbon atoms, or substituted or unsubstituted heteroaromatic hydrocarbon groups having 3 to 30 carbon atoms
  • 1 to R 8 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, or a substituted or unsubstituted aromatic carbon having 6 to 25 carbon atoms
  • Ar represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted cycloal
  • the first organic compound is preferably an organic compound represented by any one of the general formulas (G3-1) to (G3-3).
  • R 1 to R 8 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted cycloalkyl having 3 to 7 carbon atoms
  • Ar is hydrogen, 1 to 4 carbon atoms
  • the first organic compound is preferably an organic compound represented by any one of the general formulas (G4-1) to (G4-3).
  • Ar is hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, or 2 or more carbon atoms It represents an aromatic hydrocarbon group of 60 or less or a heteroaromatic hydrocarbon group having 2 or more and 60 or less carbon atoms.
  • the first organic compound is preferably an organic compound represented by any one of the following structural formulas (100) to (103).
  • the work function of the metal is preferably 4.0 eV or more and 5.3 eV or less.
  • the LUMO (Lowest Unoccupied Molecular Orbital) level of the first organic compound is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • the metal is preferably a transition metal, more preferably a metal belonging to any of Groups 5, 7, 9, or 11 and, more preferably, 11 It is a transition metal belonging to and more preferably Ag or Cu.
  • the heteroaromatic ring preferably has a substituted or unsubstituted electron-deficient heteroaromatic ring, and more preferably has any one of a pyridine ring, a diazine ring, and a triazine ring.
  • a second layer is further provided between the cathode and the first layer, and the second layer includes a second organic compound having an electron-deficient heteroaromatic ring.
  • the LUMO level of the second organic compound is preferably lower than the energy level of SOMO.
  • the light-emitting element in which the first layer does not have an alkali metal and an alkaline earth metal is preferable.
  • the molar ratio of the metal in the first layer is preferably 0.2 or more and 0.8 or less with respect to the first organic compound.
  • the cathode contains the same metal as the first layer.
  • Another embodiment of the present invention is an organic compound represented by Structural Formulas (200) to (203).
  • Another embodiment of the present invention is an electronic device including the display device with each of the above structures and at least one of a housing or a touch sensor.
  • Another embodiment of the present invention is a lighting device including the light-emitting element with any of the above-described configurations and at least one of a housing and a touch sensor.
  • one embodiment of the present invention includes, in its category, not only a light-emitting device having a light-emitting element but also an electric device having a light-emitting device.
  • a light emitting device herein refers to an image display device or light source (including a lighting device).
  • a display module in which a connector such as a flexible printed circuit (FPC) or a TCP (Tape Carrier Package) is attached to a light emitting element a display module in which a printed wiring board is provided on the tip of TCP, or COG (Chip On) for a light emitting element.
  • a display module in which an IC (integrated circuit) is directly mounted by a glass method is also an aspect of the present invention.
  • a light-emitting element with low driving voltage can be provided.
  • a light-emitting element with high moisture resistance can be provided.
  • a light-emitting element with high oxygen resistance can be provided.
  • a light-emitting element with reduced power consumption can be provided.
  • a highly reliable light-emitting element can be provided.
  • a novel light emitting element can be provided.
  • a novel semiconductor device can be provided.
  • an organic compound which can be used for a light-emitting element with high moisture resistance can be provided.
  • an electronic device and a lighting device with high moisture resistance to which the light-emitting element is applied can be provided.
  • a light-emitting device to which the above-described light-emitting element is applied can be provided with reduced power consumption.
  • a long-life light emitting device to which the above light emitting element is applied can be provided.
  • FIG. 7A and 7B are a schematic cross-sectional view illustrating a light-emitting element of one embodiment of the present invention, and a diagram illustrating correlation of energy levels of an electron injecting layer.
  • FIG. 5 is a schematic cross-sectional view illustrating a light-emitting element of one embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view illustrating a light-emitting element of one embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view illustrating a light-emitting element of one embodiment of the present invention.
  • 6A and 6B are a top view and a schematic cross-sectional view illustrating a display device of one embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view illustrating a display device of one embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view illustrating a display device of one embodiment of the present invention.
  • 5A to 5C illustrate electronic devices of one embodiment of the present invention.
  • 5A to 5C illustrate electronic devices of one embodiment of the present invention.
  • 5A to 5C illustrate electronic devices of one embodiment of the present invention.
  • FIG. 6 illustrates a lighting device of one embodiment of the present invention.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • the figure explaining the reliability test result of a light emitting element concerning an example The figure which demonstrates the current efficiency-luminance characteristic of the light emitting element based on an Example.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • the figure explaining the reliability test result of a light emitting element concerning an example The figure which demonstrates the current efficiency-luminance characteristic of the light emitting element based on an Example.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • FIG. 5 is a schematic cross-sectional view illustrating a light-emitting element of one embodiment of the present invention.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example.
  • FIG. 7 illustrates an electroluminescence spectrum of a light-emitting element according to an example. The figure explaining the reliability test result of a light emitting element concerning an example.
  • the ordinals assigned as the first, second, and the like are used for convenience, and may not indicate the process order or the stacking order. Therefore, for example, “first” can be appropriately replaced with “second” or “third” and the like.
  • the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one embodiment of the present invention.
  • membrane and the term “layer” can be interchanged with each other.
  • conductive layer to the term “conductive film”.
  • insulating film to the term “insulating layer”.
  • Embodiment 1 a light-emitting element of one embodiment of the present invention will be described below with reference to FIG.
  • FIG. 1A is a schematic cross-sectional view of a light-emitting element 150 of one embodiment of the present invention.
  • the light emitting element 150 includes a pair of electrodes (the electrode 101 and the electrode 102), and includes the EL layer 100 provided between the pair of electrodes.
  • the EL layer 100 has at least a light emitting layer 140 and an electron injection layer 130.
  • the EL layer 100 illustrated in FIG. 1A includes functional layers such as the hole injection layer 111, the hole transport layer 112, and the electron transport layer 118.
  • the electrode 101 is used as an anode and the electrode 102 is used as a cathode in the pair of electrodes; however, the structure of the light emitting element 150 is not limited thereto. That is, the electrode 101 may be a cathode, the electrode 102 may be an anode, and the layers may be stacked in the reverse order. That is, the hole injection layer 111, the hole transport layer 112, the light emitting layer 140, the electron transport layer 118, and the electron injection layer 130 may be stacked in order from the anode side.
  • the structure of the EL layer 100 is not limited to the structure illustrated in FIG. 1A, and includes at least the light emitting layer 140 and the electron injecting layer 130, and the hole injecting layer 111, the hole transporting layer 112, and the electron transporting layer 118 may or may not be provided.
  • a layer corresponding to a necessary function may be formed in the EL layer between the pair of electrodes, and the invention is not limited to this. That is, the EL layer between the pair of electrodes reduces the injection barrier of holes or electrons, improves the transportability of holes or electrons, inhibits the transportability of holes or electrons, or causes the quenching phenomenon by the electrodes.
  • a layer having a function of suppressing or the like may be provided.
  • the light emitting layer 140 preferably includes a host material and a guest material (light emitting material).
  • a material having a function of transporting holes (hole transportability) (hole transportable material), and a material having a function of transporting electrons (electron transportability) (electron transportable material) It is preferable to use either one or both of them, and a material having a hole transporting property and an electron transporting property may be used.
  • the host material is a combination of the electron transporting material and the hole transporting material (mixed host)
  • the carrier balance can be easily controlled by having such a configuration, the control of the carrier recombination region can be easily performed.
  • a light emitting compound may be used, and as the light emitting compound, a substance capable of emitting fluorescence (hereinafter, also referred to as a fluorescent compound) or a substance capable of emitting phosphorescence (hereinafter referred to And is also referred to as a phosphorescent compound).
  • the electron injection layer 130 uses a metal material having a small work function and containing an alkali metal or an alkaline earth metal.
  • a metal material with a low work function has high reactivity with oxygen and water, when a reaction with oxygen or water occurs in the light-emitting element, the electron injection property decreases, the light emission efficiency decreases, and the drive voltage increases.
  • This may be a cause of a decrease in device life, a shrink (non-light emitting region at the end of the light emitting portion), or the like, which may lead to a decrease in characteristics of the light emitting device or a decrease in reliability.
  • a metal material with a small work function can be a factor of element deterioration. Therefore, in order to suppress the deterioration in the characteristics and the reliability of the light emitting element, it is preferable that the light emitting element does not have an alkali metal and an alkaline earth metal.
  • the present inventors form a SOMO by the interaction between the metal and the organic compound having a function of interacting with the metal at tridentate or tetradentate, thereby forming a combination of the organic compound and the metal forming the SOMO. It has been found that by using the composite material of the above in the electron injection layer, the electron injection barrier from the cathode to the light emitting layer can be reduced, and a light emitting element excellent in moisture resistance can be obtained. That is, it has been found that the electron injection layer 130 can be manufactured without using an alkali metal and an alkaline earth metal.
  • the light-emitting element of one embodiment of the present invention is a light-emitting element in which a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal is used for an electron injecting layer.
  • the interaction between the organic compound and the metal forms SOMO.
  • the SOMO is an orbital derived from an unpaired electron of a metal, but is also distributed on the orbital of an organic compound. From this, it can be seen that the electron orbitals of the metal and the electron orbitals of the organic compound are interacting. Further, in order to cause the organic compound and the metal to interact efficiently, the organic compound preferably has a large number of interacting atoms. Since an organic compound having a large number of interacting atoms is likely to interact with a metal, SOMO can be easily formed by mixing the organic compound and a metal.
  • the organic compound used for the light-emitting element of one embodiment of the present invention has a function of interacting with a metal at tridentate or tetradentate.
  • SOMO is formed of an organic compound having a large number of interacting atoms and a metal, the SOMO level tends to be high, and the electron injection characteristic from the cathode to the light emitting layer is improved. It can also interact with metals with high work functions to form SOMO. Therefore, it is preferable that the organic compound used for the light-emitting element of one embodiment of the present invention has a function of interacting with a metal at tridentate or tetradentate.
  • the atom interacting with the metal includes a hetero atom having a noncovalent electron pair in the organic compound.
  • oxygen (O), nitrogen (N), sulfur (S), phosphorus (P) may be mentioned, but nitrogen is preferable.
  • Nitrogen has a high electronegativity and thus easily interacts with metals.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate, which is used for the light-emitting element of one embodiment of the present invention is preferably used for an electron injecting layer and therefore has an electron transporting property. Therefore, the organic compound is preferably an organic compound in which conjugation is spread throughout the molecule.
  • the interacting atom is preferably nitrogen, and more preferably nitrogen is contained in the heteroaromatic ring in the organic compound.
  • the heteroaromatic ring is more preferably an even ring such as a 6-membered ring or an 8-membered ring.
  • the total number of electrons of the organic compound and the metal is an odd number. Therefore, when the number of electrons of the organic compound is even, the metal is preferably an odd group in the periodic table. In addition, when the number of electrons of the organic compound is odd, the metal is preferably an even group in the periodic table.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate an organic compound having a function of transporting an electron is preferable.
  • an organic compound that functions as an electron acceptor for the metal is preferable.
  • the organic compound used in one embodiment of the present invention interacts with the metal at the tridentate or tetradentate, the organic compound has a high function of interacting with the metal. Therefore, not only transition metals of groups 3 to 11 but metals of group 12 or 13 having a d-orbit closed nucleus can be used in one embodiment of the present invention. In addition, metals such as gold (Au) and cobalt (Co) having a very large work function can also be suitably used.
  • the work function of the metal is preferably 4.0 eV or more and 5.3 eV or less, more preferably 4.2 eV or more and 5.0 eV or less, still more preferably 4.5 eV or more and 5.0 eV or less, still more preferably 4.7 eV or more and 5.0 eV or less.
  • FIG. 1B is a schematic view of the electron injection layer 130 in the light emitting element of one embodiment of the present invention.
  • the electron injection layer 130 contains a compound 131 and a metal 132.
  • Compound 131 has a function of interacting with metal 132 at tridentate or tetradentate.
  • FIG. 1C shows an energy diagram of the electron injection layer 130 in the light emitting element of one embodiment of the present invention.
  • the compound 131 interacts with the atoms of the metal 132 to form SOMO.
  • the HOMO (Highest Occupied Molecular Orbital) level formed by the interaction of the compound 131 with the atom of the metal 132 is similar to the HOMO level of the original compound 131.
  • the HOMO level of the compound 131 is low, and it is difficult to inject holes into the compound 131.
  • HOMO refers to the highest energy molecular orbital filled with electrons.
  • SOMO is a track having only one electron
  • the SOMO level is preferably lower than the LUMO level of the compound 131.
  • the LUMO level of the compound 131 is preferably high. Specifically, the LUMO level of the compound 131 is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less. When an organic compound having such a LUMO level is mixed with a metal, the SOMO level formed by the interaction becomes a level suitable for electron injection, so the electron injection barrier from the electrode 102 to the light emitting layer 140 is reduced. can do.
  • the HOMO level and LUMO level of the organic compound are generally estimated by CV (cyclic voltammetry), photoelectron spectroscopy, light absorption spectroscopy, inverse photoelectron spectroscopy, or the like. When comparing values between different compounds, it is preferable to use the values estimated in the same measurement.
  • the above-mentioned metal belongs to any of Group 3, Group 5, Group 7, Group 9, Group 11 and Group 13. These odd-group metals have one electron (unpaired electron) in the outermost orbital, and thus tend to form SOMO with the compound 131, which is particularly preferable.
  • 2′-terpyridine (abbreviation: tPy2P), 4 ′, 4 ′ ′ ′ ′-(9, 10-anthryl) bis (2,2 ′: 6 ′, 2′-terpyridine) (abbreviation: tPy2A), 2, 2 ′-(pyridine-2,6-diyl) bis (4-phenylbenzo [h] quinazoline) (abbreviation: 2,6 (P-Bqn) 2Py), 2,2 ′-(2,2′-bipyridine) 6,6'-diyl) bis (4-phenylbenzo [h] quinazoline) (abbreviation: 6,6 '(P-Bqn) 2BPy), 2,4,6-tris (2-pyridyl) -1,3, 5-triazine (abbreviation: 2Py3Tzn), 2,4,6-tris (5-phenylpyrimidin-2-yl) -1,3 A 5-triazine (abbre
  • the LUMO levels of the organic compounds in Table 1 were calculated by cyclic voltammetry (CV) measurement.
  • an electrochemical analyzer manufactured by BAS Co., Ltd., model number: ALS model 600A or 600C was used.
  • the solution in the CV measurement uses dehydrated dimethylformamide (DMF) (99.8%, catalog number: 22705-6, manufactured by Aldrich Co., Ltd.) as a solvent, and tetra-n-butylammonium perchlorate (supporting electrolyte) n-Bu 4 NClO 4 ) (manufactured by Tokyo Chemical Industry Co., Ltd., catalog number; T0836) is dissolved to a concentration of 100 mmol / L, and the measurement target is further dissolved to a concentration of 2 mmol / L. did.
  • a platinum electrode manufactured by BAS Co., Ltd., PTE platinum electrode
  • a platinum electrode A manufactured by BAS Inc., a Pt counter electrode for VC-3 (manufactured by BAS Inc.) as an auxiliary electrode. 5 cm
  • an Ag / Ag + electrode manufactured by BAS Co., Ltd., RE7 non-aqueous solvent-based reference electrode
  • the measurement was performed at room temperature (20 or more and 25 degrees C or less).
  • the scanning speed at the time of CV measurement was unified to 0.1 V / sec, and the oxidation potential Ea [V] and the reduction potential Ec [V] with respect to the reference electrode were measured.
  • Ea was an intermediate potential of the oxidation-reduction wave
  • Ec was an intermediate potential of the reduction-oxidation wave.
  • the HOMO level [eV] ⁇ 4.94-Ea
  • Gaussian 09 was used as a quantum chemistry calculation program. The calculation was performed using a high performance computer (SGI, ICE X). First, the most stable structure in the ground state of a single organic compound, the ground state of a single metal, and the ground state of a composite material of an organic compound and a metal was calculated by density functional theory (DFT). 6-311G (d, p) and LanL2DZ were used as basis functions, and B3LYP was used as a functional. Next, the stabilization energy was calculated from the difference between the total energy of the composite material of the organic compound and the metal and the sum of the total energy of the single organic compound and the total energy of the single metal.
  • DFT density functional theory
  • 6-311G (d, p) and LanL2DZ were used as basis functions
  • B3LYP was used as a functional.
  • the stabilization energy was calculated from the difference between the total energy of the composite material of the organic compound and the metal and the sum of the total energy of the single organic compound and the total energy of
  • (Stabilizing energy) (total energy of composite material of organic compound and metal)-(total energy of organic compound single substance)-(total energy of metal simple substance).
  • the total energy of DFT is represented by the sum of potential energy, electrostatic energy between electrons, kinetic energy of electrons and exchange correlation energy including all interactions between complex electrons.
  • the calculation is highly accurate because the exchange correlation interaction is approximated by the functional of the electron density (the meaning of the function of the function) expressed by the electron density.
  • a composite material using Cu, Ag, Au, which is a Group 11 element, or Co that is a Group 9 element in particular, exhibits a high SOMO level, and has a function of interacting with a metal at tridentity or tetradentity. It has been found that a composite material of an organic compound and a metal belonging to Group 9 or 11 has high electron injection properties.
  • the organic compound having the function of interacting with metal at tridentate or tetradentate and the SOMO level formed by each metal are more in the LUMO level of the organic compound than the work function of each metal. It is suggested to be affected. Therefore, by using an organic compound having a high LUMO level, a composite material of an organic compound and a metal, which has a high SOMO level and is excellent in electron injection characteristics, can be manufactured.
  • the LUMO level of the organic compound is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • the EL layer of the light emitting element are often formed by vacuum evaporation.
  • a material which can be easily vacuum-deposited as a material to be used that is, a material having a low melting point, a boiling point and a sublimation point, and preferably a material having a low vapor pressure at vacuum deposition.
  • the group 11 elements and group 13 elements have a melting point lower than that of the group 7 elements and group 9 elements, and thus can be suitably used for vacuum evaporation.
  • Group 11 elements such as Ag and Al and elements of Group 13 have a low melting point, it is preferable to use a vacuum evaporation method because metal atoms and organic compounds can be easily mixed.
  • Ag, Cu, Au, Al, In can be used as a cathode material. It is preferable to use the same material for the electron injection layer 130 and the electrode 102 because the light emitting element can be easily manufactured. Further, by using the same material for the electron injection layer 130 and the electrode 102, the adhesion between the electron injection layer 130 and the electrode 102 can be improved, and the reliability of the light emitting element can be improved. In addition, the manufacturing cost of the light emitting element can be reduced.
  • a metal with a high work function can be used for the electron injecting layer 130. Therefore, a metal having a work function higher than that of the metal contained in the electrode 102 can be used for the electron injection layer 130. In the light-emitting element of one embodiment of the present invention, even when a metal having a high work function is used, the electron injection barrier between the electrode 102 and the electron injection layer 130 can be reduced, so that the driving voltage can be reduced.
  • the metal 132 be an electron donor and the compound 131 be an electron acceptor.
  • compound 131 preferably has a plurality of electron-deficient heteroaromatic rings. In such a configuration, since the compound 131 easily receives an electron, it easily forms SOMO when interacting with the metal 132 atom. Further, a compound having an electron-deficient heteroaromatic ring is preferable as the compound 131 because the compound has a favorable electron-transporting property and can reduce the driving voltage of the light-emitting element when used in an electron injecting layer.
  • the electron-deficient heteroaromatic ring is preferably a nitrogen-containing heteroaromatic ring, and more preferably at least one of a pyridine ring, a diazine ring (a pyrimidine ring, a pyrazine ring, a pyridazine ring) and a triazine ring. Since these rings are excellent in electrochemical stability, a highly reliable light emitting element can be provided. In addition, since the electron transporting property is excellent, a light emitting element with reduced driving voltage can be provided.
  • the compound having the electron deficient heteroaromatic ring may be a metal complex.
  • the number of carbon atoms is preferably 25 or more and 100 or less. With such a carbon number, an organic compound excellent in sublimation can be obtained, so thermal decomposition of the organic compound can be suppressed in vacuum evaporation, and good material use efficiency can be obtained. Furthermore, it is preferable that a glass transition point (Tg) is 100 degreeC or more. By using an organic compound having such a Tg for the EL layer, the light emitting element can be excellent in heat resistance.
  • the organic compound used in this calculation has a coordination atom N on a heterocycle, and further has conjugated double bonds arranged in the order of N—C—C—N via a plurality of heterocycles. doing. Having such a binding site, the compound 131 and the metal 132 can form a chelate ring upon interaction (the compound 131 and the metal 132 can interact to form a ring structure). It is because. The combination of the compound 131 capable of forming a chelate ring and the metal 132 is preferable because it is easy to interact and to form SOMO.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate that can be suitably used for a light emitting element according to one embodiment of the present invention has a structure represented by the following general formula (G0) .
  • a 1 , A 2 and A 3 each independently represent a substituted or unsubstituted heteroaromatic ring having 1 to 30 carbon atoms, and A 1 , A 2 and A 3 are mutually condensed It may form a ring.
  • the organic compound represented by the general formula (G0) has a conjugated double bond in which N on the heteroaromatic ring is arranged in the order of N—C—C—N, and interacts with metal at trident or more It has a function.
  • the organic compound having such a structure can easily form SOMO when mixed with a metal, and thus can be suitably used for the light-emitting element of one embodiment of the present invention.
  • examples of the substituted or unsubstituted heteroaromatic ring having 1 to 30 carbon atoms represented by A 1 , A 2 and A 3 include, for example, a pyridine ring and a diazine ring (a pyrimidine ring, Pyrazine ring, pyridazine ring), triazine ring, quinoline ring, quinoxaline ring, quinazoline ring, benzoquinazoline ring, phenanthroline ring, azafluoranthene ring, imidazole ring, oxazole ring, oxadiazole ring and the like.
  • a pyridine ring and a diazine ring a pyrimidine ring, Pyrazine ring, pyridazine ring
  • triazine ring quinoline ring, quinoxaline ring, quinazoline ring, benzoquinazoline ring, phenanthroline ring, azaflu
  • heteroaromatic rings shown below (A-1) to (A-16) can be mentioned.
  • the substituted or unsubstituted heteroaromatic ring having 1 to 30 carbon atoms represented by A 1 , A 2 and A 3 is not limited thereto.
  • a 1 , A 2 and A 3 may form a fused ring with each other.
  • a 1 and A 2 may be bonded to each other to form a phenanthroline ring.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate that can be suitably used for a light emitting element according to one embodiment of the present invention has a structure represented by the following general formula (G1) .
  • X 1 to X 6 each independently represent carbon (C) or nitrogen (N), and carbon is hydrogen, an alkyl group having 1 to 4 carbon atoms, substituted or unsubstituted carbon R 3 to 7 cycloalkyl groups, substituted or unsubstituted aromatic hydrocarbon groups having 6 to 25 carbon atoms, or substituted or unsubstituted heteroaromatic hydrocarbon groups having 3 to 30 carbon atoms
  • 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, or a substituted or unsubstituted aromatic carbon having 6 to 25 carbon atoms
  • Ar represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted cycloal
  • an organic compound having a function of interacting with a metal at tridentity or tetradentity is a pyridine ring, a diazine ring (a pyrimidine ring, a pyrazine ring, a pyridazine ring), a triazine ring It is more preferable to have at least one of Since these rings are excellent in electrochemical stability, a highly reliable light emitting element can be provided. In addition, since the electron transporting property is excellent, a light emitting element with reduced driving voltage can be provided.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate that can be suitably used for a light emitting element according to one embodiment of the present invention has a structure represented by the following general formula (G2) .
  • X 1 and X 2 each independently represent carbon (C) or nitrogen (N), and carbon is hydrogen, an alkyl group having 1 to 4 carbon atoms, substituted or unsubstituted carbon R 3 to 7 cycloalkyl groups, substituted or unsubstituted aromatic hydrocarbon groups having 6 to 25 carbon atoms, or substituted or unsubstituted heteroaromatic hydrocarbon groups having 3 to 30 carbon atoms
  • 1 to R 8 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, or a substituted or unsubstituted aromatic carbon having 6 to 25 carbon atoms
  • Ar represents hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted cycloal
  • Organic compounds having a pyridine skeleton tend to have high LUMO levels. Therefore, when an organic compound having a pyridine skeleton as represented by General Formula (G2) is mixed with a metal, a composite material having a high SOMO level can be manufactured. That is, a composite material having high electron injection property can be manufactured by mixing an organic compound having a pyridine ring and having a function of interacting with a metal at tridentate or tetradentate with a metal.
  • organic compounds having a function of interacting with a metal at tridentate or tetradentate that can be suitably used for a light emitting element according to one embodiment of the present invention have the following general formulas (G3-1) to (G3-3) It is represented by any one of
  • R 1 to R 8 each independently represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted cycloalkyl having 3 to 7 carbon atoms
  • Ar is hydrogen, 1 to 4 carbon atoms
  • organic compounds having a function of interacting with metal at tridentate or tetradentate which can be suitably used for a light emitting element according to one embodiment of the present invention, have the following general formulas (G4-1) to (G4-3) It is represented by any one of
  • Ar is hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, or 2 or more carbon atoms It represents an aromatic hydrocarbon group of 60 or less or a heteroaromatic hydrocarbon group having 2 or more and 60 or less carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, n-hexyl group and the like
  • examples of the cycloalkyl group include cyclo A propyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group etc.
  • a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a spiro fluorenyl group etc. can be mentioned as this aryl group as a specific example . More specifically, groups represented by the following structural formulas (R-1) to (R-56) can be mentioned. Note that the substituent represented by R 1 to R 8 or the substituent that C has are not limited to these.
  • Ar is hydrogen, an alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 7 carbon atoms, an aromatic group having 6 to 60 carbon atoms It represents a hydrocarbon group or a heteroaromatic hydrocarbon group having 3 to 60 carbon atoms.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, n-hexyl group and the like
  • examples of the cycloalkyl group include cyclo A propyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group etc.
  • a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a spiro fluorenyl group etc. can be mentioned as this aryl group as a specific example . More specifically, groups represented by the following structural formulas (Ar-1) to (Ar-48) can be mentioned.
  • the group represented by Ar is not limited to these, You may have a substituent.
  • Specific structures of the compounds represented by the general formulas (G0) to (G3) include organic compounds represented by the following structural formulas (100) to (111) and structural formulas (200) to (211). It can be mentioned.
  • or (G3) is not restricted to the following illustration.
  • the molar ratio of the metal 132 to the compound 131 is preferably 0.1 or more and 10 or less, more preferably 0.2 or more and 2 or less, and still more preferably 0.2 or more and 0.8 or less.
  • a light-emitting element with favorable electron injection can be provided. If the molar ratio of the metal 132 to the compound 131 is less than the above ratio, the amount of the compound 131 which interacts with the metal 132 to form SOMO is small, and the electron injection property may be reduced.
  • the transmittance of the electron injection layer 130 is decreased, and thus the light emission efficiency of the light emitting element may be decreased.
  • the LUMO level of the organic compound contained in the electron transporting layer 118 be lower than the SOMO level formed in the electron injecting layer 130. With this configuration, the electron injection barrier between the electron injection layer 130 and the electron transport layer 118 is reduced, so that the driving voltage can be reduced. In addition, since the organic compound contained in the electron transport layer 118 is required to have electron transportability, it is preferable that the organic compound have an electron-deficient heteroaromatic ring.
  • the film thickness of the electron injection layer 130 is preferably 3 nm or more, and more preferably 5 nm or more. With this structure, the metal 132 and the compound 131 can be favorably functioned as a composite material in which the metal 132 and the compound 131 are mixed.
  • the film thickness of the electron injection layer 130 is preferably 50 nm or less, more preferably 20 nm or less, and still more preferably 10 nm or less. With this structure, the influence of light absorption by the electron injection layer 130 can be reduced, and a light emitting element exhibiting high light emission efficiency can be provided.
  • FIG. 2A is a schematic cross-sectional view showing the light-emitting device of one embodiment of the present invention.
  • the same hatch pattern may be used at a part having the same function as the reference numeral shown in FIG. 1 and the reference numeral may be omitted.
  • parts having similar functions may be denoted by the same reference numerals, and the detailed description thereof may be omitted.
  • the light emitting element 152 includes a pair of electrodes (the electrode 101 and the electrode 102), and includes the EL layer 100 provided between the pair of electrodes.
  • the EL layer 100 has at least a light emitting layer 140 and an electron injection layer 130.
  • the buffer layer 127 is provided.
  • the buffer layer 127 is provided between the electron injection layer 130 and the electrode 102.
  • the EL layer 100 illustrated in FIG. 2A includes functional layers such as the hole injection layer 111, the hole transport layer 112, and the electron transport layer 118.
  • a composite material of the above compound 131 and metal 132 is used for the electron injection layer 130, and a compound 133 having an electron-deficient heteroaromatic ring is used for the buffer layer 127. Since the electron-deficient heteroaromatic ring is excellent in electron transportability, the driving voltage of the light-emitting element can be reduced.
  • the thickness of the buffer layer 127 is preferably 1 nm or more and 20 nm or less. With this configuration, the electron injection barrier can be reduced while maintaining high electron transportability.
  • the LUMO level of the compound 133 is preferably lower than the SOMO level formed in the electron injection layer 130. Such a configuration is preferable because the electron injection barrier between the electron injection layer 130 and the electrode 102 can be reduced.
  • FIG. 2B is a schematic cross-sectional view showing the light-emitting element of one embodiment of the present invention.
  • the same hatch pattern may be used at a part having the same function as the reference numeral shown in FIG. 1 and the reference numeral may be omitted.
  • parts having similar functions may be denoted by the same reference numerals, and the detailed description thereof may be omitted.
  • the light emitting element 154 includes a pair of electrodes (the electrode 101 and the electrode 102), and includes the EL layer 100 provided between the pair of electrodes.
  • the EL layer 100 has at least a light emitting layer 140 and an electron injection layer 130. Furthermore, a charge generation layer 129 is provided. The charge generation layer 129 is provided between the electron injection layer 130 and the electrode 102.
  • the EL layer 100 illustrated in FIG. 2B includes functional layers such as the hole injecting layer 111, the hole transporting layer 112, and the electron transporting layer 118.
  • the probability of the electron injection layer 130 coming into contact with oxygen or moisture is reduced, and the moisture resistance of the light emitting element is further reduced. It can be expected to improve the resistance and oxidation resistance.
  • the charge generation layer 129 may have a configuration in which the electron accepting material is added to the hole transporting material, or may have a configuration in which the electron donating material is added to the electron transporting material. Although both of these configurations may be laminated, it is preferable that the electron transporting material is added to the hole transporting material, since the moisture resistance is improved and the number of laminated layers is reduced.
  • the electron injection layer 130 may use a metal material having a small work function and having an alkali metal or an alkaline earth. Since the electron accepting material of the charge generation layer 129 extracts electrons from the material used for the electron injection layer 130, a depletion layer is generated in the vicinity of the interface between the charge generation layer 129 and the electron injection layer 130. Therefore, the drive voltage may increase. In order to suppress the generation of the depletion layer, it is necessary to provide a layer having a function of transferring electrons between the electron injection layer 130 and the charge generation layer 129.
  • the above-described depletion layer is formed by using a composite material of a transition metal and an organic compound having a function of interacting with metal at trident or tetradentity in the electron injection layer 130. Since the charge generation layer 129 can be provided without generation, a light emitting element with a small number of stacked layers and low driving voltage can be manufactured.
  • the film thickness of the charge generation layer 129 is not particularly limited, and can be appropriately adjusted. For example, by adjusting the film thickness from the light emitting layer 140 to the electrode 102, light emission obtained from the light emitting layer 140 can be efficiently extracted to the outside of the light emitting element. That is, by adjusting the film thickness of the charge generation layer 129, the light extraction efficiency can be improved.
  • the charge generation layer 129 and the electrode 102 be provided in contact with each other.
  • the electron injection barrier between the electrode 102 and the EL layer 100 can be reduced, so that the driving voltage of the light-emitting element can be reduced.
  • a light-emitting element with low driving voltage can be manufactured even when the charge generation layer 129 and the electron injection layer 130 are in contact; thus, the number of stacked EL layers 100 can be reduced. Can.
  • a transition metal oxide can be suitably used as the electron accepting material of the charge generation layer 129.
  • the transition metal oxide include titanium oxide, vanadium oxide, tantalum oxide, molybdenum oxide, tungsten oxide, rhenium oxide, ruthenium oxide, chromium oxide, zirconium oxide, hafnium oxide, Silver oxide is mentioned.
  • molybdenum oxide is preferable because it is stable in the air, has low hygroscopicity, and is inexpensive. By using the transition metal oxide, the electron injection barrier between the electrode 102 and the charge generation layer 129 can be reduced, which is preferable.
  • one embodiment of the present invention is a light-emitting element in which the electron injection layer 130 contains a transition metal element and the charge generation layer 129 contains a transition metal element.
  • the electron accepting material of the charge generation layer 129 is not limited to the above-described compounds.
  • a hole transporting material included in the charge generation layer 129 an organic compound containing any one of a pyrrole skeleton, a thiophene skeleton, a furan skeleton, and an aromatic amine skeleton is preferably used.
  • An organic compound having such a skeleton has high hole-transporting property, so that the driving voltage of the light-emitting element can be reduced by using the charge-generating layer 129.
  • the hole transporting material of the charge generation layer 129 is not limited to the above-described compounds.
  • the composite material of the compound 131 which has the function which interacts with a metal in the metal 132 and the metal in tridentate or tetradent above can be used for a thin film solar cell. More specifically, it can be suitably used also as an electron injection layer of a thin film solar cell.
  • the electron injecting layer 130 is a layer containing a substance having a high electron injecting property, and a composite material of the above-described metal and an organic compound having a function of interacting with a metal at trident or tetradent can be suitably used.
  • organic compound having a function of interacting with metal at the tridentate or tetradentate organic compounds represented by General Formulas (G0) to (G4-3) can be used.
  • Organic compounds represented by 100) to (111) and structural formulas (200) to (211) can be used.
  • a heterocyclic compound having a diazine (pyrimidine or pyrazine) skeleton and a triazine skeleton is preferable because it has high electron transportability and contributes to reduction in driving voltage.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate metal preferably has an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more. Note that a substance other than the above may be used for the electron injecting layer 130 as long as the substance has a property of transporting electrons more than holes.
  • the hole injection layer 111 and the charge generation layer 129 have a function of promoting hole injection by reducing the hole injection barrier from one of the pair of electrodes (the electrode 101 or the electrode 102). It is formed of a metal oxide, a phthalocyanine derivative, or an aromatic amine.
  • a metal oxide molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, manganese oxide and the like can be mentioned.
  • phthalocyanine derivatives include phthalocyanine and metal phthalocyanine.
  • aromatic amines include benzidine derivatives and phenylenediamine derivatives.
  • Polymer compounds such as polythiophene and polyaniline can also be used. For example, poly (ethylenedioxythiophene) / poly (styrenesulfonic acid) which is a self-doped polythiophene is a typical example.
  • a layer having a composite material of a hole transporting material and a material exhibiting an electron accepting property to the hole transporting material can also be used.
  • a stack of a layer containing a material exhibiting an electron accepting property and a layer containing a hole transporting material may be used. A charge can be transferred between these materials in the steady state or in the presence of an electric field.
  • the material exhibiting an electron accepting property include organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives.
  • F 4 -TCNQ 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane
  • chloranil 2, 3, 6, 7, 10, 11 Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • HAT-CN Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane abbreviation: Examples thereof include compounds having an electron withdrawing group (in particular, a halogen group such as a fluoro group or a cyano group) such as F6-TCNNQ).
  • a compound in which an electron withdrawing group is bonded to a condensed aromatic ring having a plurality of hetero atoms such as HAT-CN, is thermally stable and preferable.
  • [3] radialene derivatives having an electron withdrawing group are preferable because they have very high electron accepting properties, and specifically, ⁇ , ⁇ ′, ⁇ ′ ′- 1,2,3-cyclopropanetriylidenetris [4-cyano-2,3,5,6-tetrafluorobenzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′ ′-1,2,3-cyclopropanetriylidenetris [2,6-Dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′ ′-1,2,3-cycloprop
  • a transition metal oxide for example, an oxide of a Group 4 to Group 8 metal can be used.
  • a transition metal oxide for example, an oxide of a Group 4 to Group 8 metal
  • vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, rhenium oxide and the like are used.
  • molybdenum oxide is preferable because it is stable in the air, has low hygroscopicity, and is easy to handle.
  • the hole transporting material a material having a hole transporting property higher than that of electrons can be used, and a material having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more is preferable.
  • aromatic amines, carbazole derivatives, aromatic hydrocarbons, stilbene derivatives and the like mentioned as hole transporting materials which can be used for the light emitting layer 140 can be used, but carbon containing two or more It is particularly preferable to have a number 1 to 20 heteroaromatic skeleton. In particular, a nitrogen-containing hetero five-membered ring skeleton is preferable.
  • the hole transporting material may be a polymer compound.
  • hole transporting material examples include aromatic hydrocarbons.
  • 2-tert-butyl-9,10-di (2-naphthyl) anthracene abbreviation: t-BuDNA
  • 2-tert-butyl-9,10-di (1-naphthyl) anthracene 9,10-bis (3,5-diphenylphenyl) anthracene
  • DPPA 9,10-bis (3,5-diphenylphenyl) anthracene
  • Anthracene abbreviation: t-BUDBA
  • 9,10-di (2-naphthyl) anthracene abbreviation: DNA
  • 9,10-diphenylanthracene abbreviation: DPAnth
  • 2-tert-butylanthracene abbreviation: t-) BuAnth
  • pentacene, coronene and the like can also be used.
  • an aromatic hydrocarbon having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more and having 14 to 42 carbon atoms.
  • the aromatic hydrocarbon may have a vinyl skeleton.
  • Examples of the aromatic hydrocarbon having a vinyl group include 4,4′-bis (2,2-diphenylvinyl) biphenyl (abbreviation: DPVBi), 9,10-bis [4- (2,2- And diphenylvinyl) phenyl] anthracene (abbreviation: DPVPA) and the like.
  • compounds having a pyrrol skeleton, a furan skeleton, a thiophene skeleton, and an aromatic amine skeleton are preferable because they are stable and have good reliability.
  • a compound having the skeleton has high hole transportability and also contributes to reduction in driving voltage.
  • the hole transport layer 112 is a layer containing a hole transport material, and the materials exemplified as the material of the hole injection layer 111 can be used.
  • the hole transport layer 112 has a function of transporting holes injected from the hole injection layer 111 to the light emitting layer 140.
  • the hole transportable material having the HOMO level between the LUMO level of the acceptor material of the hole injection layer 111 and the HOMO level of the material of the light emitting layer 140 is the hole transport layer 112.
  • the hole transport layer 112 may be formed not only in a single layer but also in two or more layers. In this case, it is preferable to stack a hole transport layer material so that the HOMO level sequentially decreases from the hole injection layer 111 side to the light emitting layer 140.
  • the difference between the HOMO levels of the hole transport materials is preferably 0 eV or more and 0.5 eV or less, in order to transport holes smoothly. Is 0 eV or more and 0.3 eV or less, more preferably 0 eV or more and 0.2 eV or less.
  • NPB 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • TPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • TPD 4,4'-bis [N- (spiro-9,9'-bifluorene-2) -Yl) -N-phenylamino] biphenyl
  • BSPB 4,4'-bis [N- (spiro-9,9'-bifluorene-2) -Yl) -N-phenylamino] biphenyl
  • BPAFLP 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine
  • mBPAFLP 4-phenyl-3 ′-(b) 9-phenylfluoren-9-yl) triphenylamine
  • mBPAFLP 4-phenyl-4 ′-(9-
  • a compound having an aromatic amine skeleton and a compound having a carbazole skeleton are preferable because they have good reliability, have high hole transportability, and contribute to reduction in driving voltage. Further, in addition to the hole transporting material described above, the hole transporting material may be selected from various substances.
  • PCPN 3- [4- (1-naphthyl) -phenyl] -9-phenyl-9H-carbazole
  • PCPPn 3- [4- (9-phenanthryl) -Phenyl] -9-phenyl-9H-carbazole
  • PCBA1BP 4-phenyl-4 '-(9-phenyl-9H-carbazol-3-yl) triphenylamine
  • PCBNBB 4, 4' -Di (1-naphthyl) -4 ′ ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine
  • PCBNBB 4-phenyldiphenyl- (9-phenyl-9H-carbazole-3-) Yl) amine
  • PCA1BP 3,3'-bis (9-phenyl-9H-carbazol
  • carbazole compounds such as 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene (abbreviation: TCPB), and amine compounds
  • CBP 4,4′-di (N-carbazolyl) biphenyl
  • TCPB 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene
  • Dibenzothiophene compounds, dibenzofuran compounds, fluorene compounds, triphenylene compounds, phenanthrene compounds and the like can be used.
  • the substances listed here are mainly substances having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more. However, other substances may be used as long as the substance has a higher hole-transport property than electrons.
  • the light emitting layer 140 has a light emitting material having a function of emitting at least one of purple, blue, blue-green, green, yellowish green, yellow, orange, or red.
  • the light emitting layer 140 includes one or both of an electron transporting material or a hole transporting material as a host material.
  • the light-emitting material a light-emitting substance which can convert singlet excitation energy into light emission or a light-emitting substance which can convert triplet excitation energy into light emission can be used.
  • the light emitting substance include the following.
  • Examples of the luminescent substance capable of converting singlet excitation energy into luminescence include substances that emit fluorescence (fluorescent compounds).
  • the fluorescent compound is not particularly limited, but is preferably anthracene derivative, tetracene derivative, chrysene derivative, phenanthrene derivative, pyrene derivative, perylene derivative, stilbene derivative, acridone derivative, coumarin derivative, phenoxazine derivative, phenothiazine derivative, etc.
  • the following substances can be used.
  • a substance which emits phosphorescence for example, a substance which emits phosphorescence (phosphorescent compound) can be mentioned.
  • the phosphorescent compound include iridium, rhodium, platinum-based organometallic complexes, and metal complexes.
  • platinum complexes and organic iridium complexes having a porphyrin ligand may be mentioned, and among them, organic iridium complexes such as iridium-based ortho metal complexes are preferable.
  • Ligands to be ortho-metalated include 4H-triazole ligands, 1H-triazole ligands, imidazole ligands, pyridine ligands, pyrimidine ligands, pyrazine ligands, or isoquinoline ligands, etc. It can be mentioned.
  • the phosphorescent compound has an absorption band of triplet MLCT (Metal to Ligand Charge Transfer) transition.
  • organometallic iridium complexes having a nitrogen-containing five-membered heterocyclic skeleton such as a 4H-triazole skeleton, a 1H-triazole skeleton and an imidazole skeleton have high triplet excitation energy, and have high reliability and luminous efficiency. It is particularly preferable because it is excellent.
  • an organometallic iridium complex having a pyrimidine skeleton is particularly preferable because it is remarkably excellent in reliability and luminous efficiency.
  • an organometallic iridium complex having a pyrazine skeleton can provide red light emission with good chromaticity.
  • thermally activated delayed fluorescence (TADF) material can be mentioned in addition to a phosphorescent compound. Therefore, the portion described as a phosphorescent compound may be read as a thermally activated delayed fluorescent compound.
  • the thermally activated delayed fluorescent compound is a material having a small difference between the singlet excitation energy level and the triplet excitation energy level, and the function of converting triplet excitation energy into singlet excitation energy by reverse intersystem crossing. is there. Therefore, the triplet excited state can be up-converted to the singlet excited state (reversal intersystem crossing) by a small amount of heat energy, and light emission (fluorescence) from the singlet excited state can be efficiently exhibited.
  • the difference between the singlet excitation energy level and the triplet excitation energy level is preferably more than 0 eV and 0.3 eV or less, more preferably more than 0 eV and 0. 0. It is mentioned that it is 2 eV or less, more preferably more than 0 eV and 0.1 eV or less.
  • thermally activated delayed fluorescent compound is composed of one type of material, for example, the following materials can be used.
  • metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd) and the like can be mentioned.
  • metal-containing porphyrin examples include protoporphyrin-tin fluoride complex (SnF 2 (Proto IX)), mesoporphyrin-tin fluoride complex (SnF 2 (Meso IX)), hematoporphyrin-tin fluoride complex (SnF) 2 (Hemato IX), coproporphyrin tetramethyl ester-tin fluoride complex (SnF 2 (Copro III-4 Me)), octaethyl porphyrin-tin fluoride complex (SnF 2 (OEP)), ethioporphyrin-tin fluoride Complexes (SnF 2 (Etio I)), octaethyl porphyrin-platinum chloride complex (PtCl 2 OEP), etc. may be mentioned.
  • a heterocyclic compound having a ⁇ electron excess heteroaromatic skeleton and a ⁇ electron deficiency heteroaromatic skeleton can also be used.
  • a heterocyclic compound having a ⁇ electron excess heteroaromatic skeleton and a ⁇ electron deficiency heteroaromatic skeleton can also be used.
  • 2- (biphenyl-4-yl) -4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine abbreviation: PIC-TRZ
  • 2- ⁇ 4- [3- (N-phenyl-9H-carbazol-3-yl) -9H-carbazol-9-yl] phenyl ⁇ -4,6-diphenyl-1,3,5- Triazine abbreviation: PCCzPTzn
  • the heterocyclic compound has a ⁇ electron excess heteroaromatic skeleton and a ⁇ electron deficient heteroaromatic skeleton, and thus is high in electron transportability and hole transportability, which is preferable.
  • a diazine skeleton (a pyrimidine skeleton, a pyrazine skeleton, a pyridazine skeleton) or a triazine skeleton is preferable because it is stable and has good reliability.
  • an acridine skeleton, a phenoxazine skeleton, a phenothiazine skeleton, a furan skeleton, a thiophene skeleton, and a pyrrole skeleton are selected from among such skeletons because they are stable and have good reliability. It is preferred to have any one or more.
  • a pyrrole skeleton an indole skeleton, a carbazole skeleton, and a 9-phenyl-3,3'-bi-9H-carbazole skeleton are particularly preferable.
  • the substance in which the ⁇ electron excess heteroaromatic skeleton and the ⁇ electron deficiency heteroaromatic skeleton are directly bonded to each other is the donor property of the ⁇ electron excess heteroaromatic skeleton and the acceptor character of the ⁇ electron deficiency heteroaromatic skeleton Are particularly preferable because they are both strong and the difference between the singlet excitation energy level and the triplet excitation energy level decreases.
  • a material that exhibits thermally activated delayed fluorescence may be a material capable of generating a singlet excited state from a triplet excited state by reverse intersystem crossing alone, or an exciplex (also referred to as an exciplex or Exciplex). May be composed of a plurality of materials forming the.
  • a host material used for the light emitting layer 140 a hole transporting material and an electron transporting material can be used.
  • the material that can be used as a host material of the light emitting layer is not particularly limited.
  • a metal complex such as bis (2- (2-benzothiazolyl) phenolato) zinc (II) (abbreviation: ZnBTZ), 2-) 4-bi
  • fused polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, dibenzo [g, p] chrysene derivatives and the like can be mentioned.
  • 9,10-diphenylanthracene (abbr .: DPAnth) N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9-anthryl) triphenyl Amine (abbreviation: DPhPA), YGAPA, PCAPA, N, 9-diphenyl-N- ⁇ 4- [4- (10-phenyl-9-anthryl) phenyl] phenyl ⁇ -9H-carbazol-3-amine (abbreviation: PCAPBA) ), 2PCAPA, 6,12-dimethoxy-5,11-diphenylchrysene, DBC1).
  • one or a plurality of substances having an energy gap larger than the energy gap of the light emitting material may be selected and used.
  • the light-emitting material is a phosphorescent compound
  • a substance whose triplet excitation energy is larger than the triplet excitation energy of the light-emitting material may be selected as the host material.
  • the light emitting layer can be adjusted by adjusting the mixing ratio of the electron transporting material and the hole transporting material. It becomes easy to optimize the carrier balance of holes and electrons in By optimizing the carrier balance of holes and electrons in the light emitting layer, it is possible to suppress the bias of the region in which the recombination of electrons and holes occurs in the light emitting layer. By suppressing the bias of the region where recombination occurs, the reliability of the light emitting element can be improved.
  • a metal complex having zinc or aluminum, a ⁇ electron deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound, or the like can be used.
  • a metal complex having zinc or aluminum a ⁇ electron deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound, or the like
  • bis (10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 )
  • bis (8-quinolinolato) zinc (II) abbreviation: Znq
  • bis [2- (2-benzoxazolyl) phenolato] zinc (II) abbreviation: ZnPBO
  • bis [2- (2) -Benzothiazolyl) phenolato] metal complexes such as zinc (II) (abbreviation: ZnBTZ)
  • heterocyclic compound having a diazine skeleton and a triazine skeleton and a heterocyclic compound having a pyridine skeleton are preferable because they have excellent reliability.
  • a heterocyclic compound having a diazine (pyrimidine or pyrazine) skeleton and a triazine skeleton has high electron transportability and also contributes to reduction in driving voltage.
  • a ⁇ electron excess heteroaromatic for example, a carbazole derivative or an indole derivative
  • an aromatic amine or the like can be suitably used.
  • the combination of host materials that form an exciplex is not limited to the above compounds, and is a combination that can transport carriers and can form an exciplex, and the luminescence of the exciplex is the absorption of the light emitting material. Any other material may be used as long as it overlaps with the absorption band at the longest wavelength side in the spectrum (the absorption corresponding to the transition from the singlet ground state to the singlet excited state of the light-emitting material).
  • thermally activated delayed fluorescent material may be used as a host material used for the light emitting layer.
  • the electron transporting material used for the light emitting layer the same material as the electron transporting material used for the electron injection layer can be used. By doing so, the light emitting element can be easily manufactured, and the manufacturing cost of the light emitting element can be reduced.
  • the electron transporting layer 118 and the buffer layer 127 are layers each including a substance having a high electron transporting property.
  • a metal complex having a quinoline ligand, a benzoquinoline ligand, an oxazole ligand, or a thiazole ligand, an oxadiazole derivative, a triazole Derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives and the like can be mentioned.
  • an organic compound having a function of interacting with a metal at tridentate or tetradentate exemplified as a compound which can be used for the electron injection layer 130 can also be used.
  • quinoline ligand benzoquinoline ligand, oxazole ligand, metal complex having a thiazole ligand, oxadiazole derivative, triazole derivative, phenanthroline derivative, pyridine derivative, bipyridine derivative Alq 3 , Almq 3 , BeBq 2 , BAlq, bis (8-quinolinolato) zinc (II) (abbreviation: Znq), bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO) And metal complexes such as bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) can be used.
  • a heterocyclic compound having a diazine skeleton and a triazine skeleton and a heterocyclic compound having a pyridine skeleton are preferable because they have excellent reliability.
  • a heterocyclic compound having a diazine (pyrimidine or pyrazine) skeleton and a triazine skeleton has high electron transportability and also contributes to reduction in driving voltage.
  • the substances mentioned here are mainly ones having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more. Note that a substance other than the above may be used for the electron injecting layer 130 as long as the substance has a property of transporting electrons more than holes.
  • the electron transporting layer 118 and the buffer layer 127 are not limited to a single layer, and two or more layers made of the above materials may be stacked.
  • a layer which controls the movement of electron carriers may be provided between the electron transporting layer 118 and the light emitting layer 140.
  • This is a layer in which a small amount of a substance having a high electron trapping property is added to the material having a high electron transporting property as described above, and the carrier balance can be adjusted by suppressing the movement of electron carriers.
  • Such a configuration exerts a great effect in suppressing a problem (for example, a decrease in the device life) caused by electrons penetrating through the light emitting layer.
  • the electron transporting material used for the electron transporting layer the same material as the electron transporting material used for the electron injection layer can be used. Further, as the electron transporting material used for the electron transporting layer, the same material as the electron transporting material used for the light emitting layer can be used. By doing so, the light emitting element can be easily manufactured, and the manufacturing cost of the light emitting element can be reduced.
  • the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer described above are respectively formed by vapor deposition (including vacuum vapor deposition), inkjet, coating, gravure printing, etc. It can be formed.
  • vapor deposition including vacuum vapor deposition
  • inkjet coating
  • gravure printing etc.
  • inorganic compounds such as quantum dots, or high molecular compounds (oligomers, dendrimers , Polymers, etc.) may be used.
  • quantum dots colloidal quantum dots, alloy quantum dots, core / shell quantum dots, core quantum dots, or the like may be used.
  • quantum dots may be used which include element groups of groups 2 and 16, groups 13 and 15, groups 13 and 17, groups 11 and 17, or groups 14 and 15.
  • the quantum dot which has elements, such as aluminum (Al), may be used.
  • the liquid medium used in the wet process includes, for example, ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, aromatic carbons such as toluene, xylene, mesitylene and cyclohexyl benzene
  • Organic solvents such as hydrogens, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and N, N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO) can be used.
  • poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene] (abbreviation: MEH-PPV)
  • polymer compounds poly (N-vinylcarbazole) (abbreviation: PVK), poly (2-vinylnaphthalene), poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine]
  • PVK poly(N-vinylcarbazole)
  • poly (2-vinylnaphthalene) poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine]
  • a high molecular compound such as (abbreviation: PTAA) may be doped with a light emitting low molecular weight compound and used for the light emitting layer.
  • the fluorescent compounds listed above can be used as the light emitting low molecular weight compound.
  • the electrode 101 and the electrode 102 function as an anode or a cathode of the light-emitting element.
  • the electrodes 101 and 102 can be formed using a metal, an alloy, a conductive compound, a mixture or a stacked body of these, or the like.
  • One of the electrode 101 and the electrode 102 is preferably formed of a conductive material having a function of reflecting light.
  • the conductive material include aluminum (Al) or an alloy containing Al.
  • the alloy containing Al include an alloy containing Al and L (L represents one or more of titanium (Ti), neodymium (Nd), nickel (Ni), and lanthanum (La)).
  • L represents one or more of titanium (Ti), neodymium (Nd), nickel (Ni), and lanthanum (La)).
  • an alloy containing Al and Ti, or Al, Ni and La, or the like Aluminum has a low resistance value and a high light reflectance. Further, aluminum is abundant in the crust and inexpensive, so that the manufacturing cost of the light-emitting element can be reduced by using aluminum.
  • Silver (Ag) can be suitably used as an electrode material because it has a high light reflectance.
  • Ag is a transition metal of Group 11, and in one embodiment of the present invention, when Ag is used as a cathode of a light emitting element using Ag for the electron injection layer, adhesion between the electrode and the electron injection layer is improved. Because it is preferable.
  • N is yttrium (Y), Nd, magnesium (Mg), ytterbium (Yb), Al, Ti, gallium (Ga), zinc (Zn), indium (In), tungsten (W), manganese
  • an alloy containing silver for example, an alloy containing silver, palladium and copper, an alloy containing silver and copper, an alloy containing silver and magnesium, an alloy containing silver and nickel, an alloy containing silver and gold, silver and ytterbium Alloy etc. are mentioned.
  • transition metals such as tungsten, chromium (Cr), molybdenum (Mo), copper, titanium and the like can be used.
  • At least one of the electrode 101 and the electrode 102 is preferably formed of a conductive material having a function of transmitting light.
  • a conductive material having a visible light transmittance of 40% to 100%, preferably 60% to 100%, and a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less It can be mentioned.
  • the electrodes 101 and 102 may be formed of a conductive material having a function of transmitting light and a function of reflecting light.
  • the conductive metal, the alloy, the conductive compound, or the like can be formed using one or more kinds.
  • ITO indium tin oxide
  • ITSO indium tin oxide containing silicon oxide
  • ITSO indium oxide-zinc oxide
  • titanium indium Zinc Oxide
  • metal oxides such as indium oxide-tin oxide, indium-titanium oxide, tungsten oxide and indium oxide containing zinc oxide.
  • a metal thin film having a degree of transmitting light preferably, a thickness of 1 nm or more and 30 nm or less
  • the metal for example, Ag, or an alloy of Ag and Al, Ag and Mg, Ag and Au, Ag and Yb or the like can be used.
  • a material having a function of transmitting light may be a material having a function of transmitting visible light and having conductivity, and, for example, an oxide represented by ITO as described above
  • an oxide semiconductor or an organic conductor containing an organic substance is included.
  • the organic conductor containing an organic substance include a composite material obtained by mixing an organic compound and an electron donor (donor), and a composite material obtained by mixing an organic compound and an electron acceptor (acceptor).
  • an inorganic carbon-based material such as graphene may be used.
  • the resistivity of the material is preferably 1 ⁇ 10 5 ⁇ ⁇ cm or less, more preferably 1 ⁇ 10 4 ⁇ ⁇ cm or less.
  • one or both of the electrode 101 and the electrode 102 may be formed by stacking a plurality of the above materials.
  • a material having a refractive index higher than that of the electrode may be formed in contact with the electrode having a function of transmitting light.
  • any material having a function of transmitting visible light may be used, and a material having or not having conductivity may be used.
  • oxide semiconductors and organic substances can be mentioned.
  • the material illustrated to the light emitting layer, the positive hole injection layer, the positive hole transport layer, the electron carrying layer, or the electron injection layer is mentioned, for example.
  • an inorganic carbon-based material or a metal thin film which transmits light can also be used, and a plurality of layers of several nm to several tens of nm may be stacked.
  • the electrode 101 or the electrode 102 has a function as a cathode, it is preferable to have a material with a low work function (3.8 eV or less).
  • the electrode 101 or the electrode 102 is used as an anode, it is preferable to use a material having a large work function (4.0 eV or more).
  • the electrodes 101 and 102 may be a stack of a conductive material having a function of reflecting light and a conductive material having a function of transmitting light. In that case, the electrodes 101 and 102 are preferable because they can have the function of adjusting the optical distance so that the light of the desired wavelength from each light emitting layer can be resonated and the light of the desired wavelength can be intensified. .
  • a sputtering method As a film formation method of the electrodes 101 and 102, a sputtering method, an evaporation method, a printing method, a coating method, MBE (Molecular Beam Epitaxy) method, a CVD method, a pulse laser deposition method, an ALD (Atomic Layer Deposition) method, etc. be able to.
  • MBE Molecular Beam Epitaxy
  • CVD chemical vapor deposition
  • ALD Atomic Layer Deposition
  • the light-emitting element according to one embodiment of the present invention may be manufactured over a substrate formed of glass, plastic, or the like. As the order of manufacturing on the substrate, it may be stacked sequentially from the electrode 101 side or may be stacked sequentially from the electrode 102 side.
  • glass, quartz, plastic, or the like can be used as a substrate on which the light-emitting element according to one embodiment of the present invention can be formed.
  • a flexible substrate may be used.
  • the flexible substrate is a substrate that can be bent (flexible), and examples thereof include plastic substrates made of polycarbonate, polyarylate, and the like.
  • a film, an inorganic vapor deposition film, etc. can also be used.
  • things other than these may be sufficient. Or what is necessary is just to have a function which protects a light emitting element and an optical element.
  • various substrates can be used to form a light-emitting element.
  • the type of substrate is not particularly limited.
  • the substrate include a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel still substrate, a substrate having a stainless steel foil, a tungsten substrate A substrate having a tungsten foil, a flexible substrate, a laminated film, a cellulose nanofiber (CNF) containing a fibrous material, a paper, or a substrate film.
  • the glass substrate include barium borosilicate glass, aluminoborosilicate glass, or soda lime glass.
  • a flexible substrate a laminated film, a base film and the like.
  • plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES) and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PTFE polytetrafluoroethylene
  • acrylic examples include polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride and the like.
  • examples include polyamide, polyimide, aramid, epoxy, inorganic vapor deposited film, or papers.
  • a flexible substrate may be used as the substrate, and the light emitting element may be formed directly on the flexible substrate.
  • a release layer may be provided between the substrate and the light emitting element. The release layer can be used to separate the substrate from the substrate and transfer it to another substrate after the light emitting element is partially or completely completed thereon. At that time, the light emitting element can be transferred to a substrate having low heat resistance or a flexible substrate.
  • a stacked structure of a tungsten film and an inorganic film such as a silicon oxide film, a structure in which a resin film such as polyimide is formed on a substrate, or the like can be used for the peeling layer.
  • a light emitting element may be formed using one substrate, and then the light emitting element may be transposed to another substrate and the light emitting element may be disposed on another substrate.
  • substrates to which light emitting elements are transferred include cellophane substrates, stone substrates, wood substrates, cloth substrates (natural fibers (silk, cotton, hemp), synthetic fibers (nylon, polyurethane, polyester), or in addition to the above-mentioned substrates Examples include regenerated fibers (including acetate, cupra, rayon, regenerated polyester), leather substrates, rubber substrates, and the like.
  • a light-emitting element that is not easily broken a light-emitting element with high heat resistance, a light-weighted light-emitting element, or a thinned light-emitting element can be obtained.
  • a field effect transistor FET
  • the light emitting element 150 may be manufactured on an electrode electrically connected to the FET.
  • FET field effect transistor
  • a light-emitting element having a different structure from the light-emitting element described in Embodiment 1 and a light-emitting mechanism of the light-emitting element are described below with reference to FIG.
  • the same hatch pattern may be used at a part having the same function as the reference numeral shown in FIG. 1 (A), and the reference numeral may be omitted.
  • parts having similar functions may be denoted by the same reference numerals, and the detailed description thereof may be omitted.
  • FIG. 3 is a schematic cross-sectional view of the light emitting element 250a and the light emitting element 250b.
  • the light-emitting element 250 a and the light-emitting element 250 b each include an electrode 101, an electrode 102, an electrode 103, and an electrode 104 over the substrate 200.
  • at least a light emitting unit 106, a light emitting unit 108, and an electron injection layer 130 are provided between the electrode 101 and the electrode 102, between the electrode 102 and the electrode 103, and between the electrode 102 and the electrode 104.
  • a charge generation layer 115 is provided between the light emitting unit 106 and the light emitting unit 108.
  • the light emitting unit 106 and the light emitting unit 108 may have the same configuration or different configurations.
  • the charge generation layer 115 sandwiched between the light emitting unit 106 and the light emitting unit 108 injects electrons into one of the light emitting units and applies holes to the other light emitting unit when a voltage is applied to the electrodes 101 and 102, for example. What is necessary is to inject. For example, in FIG. 1, when a voltage is applied such that the potential of the electrode 102 is higher than the potential of the electrode 101, the charge generation layer 115 injects electrons into the light emitting unit 106, and holes into the light emitting unit 108. Inject.
  • the light emitting unit 106 further includes, for example, a hole injection layer 111, a hole transport layer 112, a light emitting layer 140, and an electron transport layer 113.
  • the light emitting unit 108 further includes, for example, a hole injection layer 116, a hole transport layer 117, a light emitting layer 170, an electron transport layer 118, and an electron injection layer 119.
  • the electron injection layer 130 be provided adjacent to the electron transport layer 113 and between the light emitting unit 108 and the electron transport layer 113.
  • the charge generation layer 115 be provided adjacent to the electron injection layer 130 and between the electron injection layer 130 and the light emitting unit 108.
  • the electrode 101, the electrode 103, and the electrode 104 are described as an anode and the electrode 102 is described as a cathode; however, the structures of the light emitting element 250a and the light emitting element 250b are not limited thereto. That is, the electrode 101, the electrode 103, and the electrode 104 may be used as a cathode, the electrode 102 may be used as an anode, and the layers may be stacked in the reverse order. That is, in the light emitting unit 106, the hole injection layer 111, the hole transport layer 112, the light emitting layer 140, the electron transport layer 113, and the electron injection layer 130 may be stacked in order from the anode side.
  • the light emitting units 108 may be stacked in order of the hole injection layer 116, the hole transport layer 117, the light emitting layer 170, the electron transport layer 118, and the electron injection layer 119 from the anode side.
  • the configuration of the light emitting element 250 a and the light emitting element 250 b is not limited to the configuration shown in FIG. 3, and includes at least the light emitting layer 140, the light emitting layer 170, the charge generation layer 115, and the electron injection layer 130.
  • the layer 111, the hole injection layer 116, the hole transport layer 112, the hole transport layer 117, the electron transport layer 113, the electron transport layer 118, and the electron injection layer 119 may or may not be provided. .
  • a layer corresponding to the function may be formed between the pair of electrodes, and the invention is not limited to this. That is, between the pair of electrodes, the injection barrier of holes or electrons is reduced, the transportability of holes or electrons is improved, the transportability of holes or electrons is inhibited, or the quenching phenomenon by the electrodes is suppressed. It is good also as composition which has a layer which has functions, such as ,.
  • the charge generation layer 115 may also play the role of the hole injection layer of the light emitting unit 108. Because of the presence, it may not be necessary to provide a hole injection layer in the light emitting unit.
  • the light emitting element having two light emitting units is described in FIG. 3, a light emitting element in which three or more light emitting units are stacked may be used.
  • the light emitting element 250a and the light emitting element 250b by arranging a plurality of light emitting units by a charge generation layer between a pair of electrodes, high luminance light emission is possible while keeping the current density low, A light emitting element with a long lifetime can be realized.
  • a light-emitting element with low power consumption can be realized.
  • the electrode 101, the electrode 103, and the electrode 104 have a function of reflecting visible light, and the electrode 102 has a function of transmitting visible light.
  • the electrode 101, the electrode 103, and the electrode 104 have a function of transmitting visible light, and the electrode 102 has a function of reflecting visible light.
  • one embodiment of the present invention is not limited to this, and may be a light-emitting element which extracts light both above and below the substrate 200 where the light-emitting element is formed.
  • the electrode 101 includes a conductive layer 101 a and a conductive layer 101 b in contact with the conductive layer 101 a.
  • the electrode 103 includes a conductive layer 103 a and a conductive layer 103 b in contact with the conductive layer 103 a.
  • the electrode 104 includes a conductive layer 104 a and a conductive layer 104 b in contact with the conductive layer 104 a.
  • the conductive layer 101 b, the conductive layer 103 b, and the conductive layer 104 b have a function of transmitting visible light.
  • the conductive layer 101a, the conductive layer 103a, and the conductive layer 104a have a function of reflecting visible light.
  • the conductive layer 101a, the conductive layer 103a, and the conductive layer 104a have a function of transmitting visible light.
  • a light emitting element 250a shown in FIG. 3A and a light emitting element 250b shown in FIG. 3B are a region 222B held between the electrode 101 and the electrode 102, a region 222G held between the electrode 102 and the electrode 103, And a region between the electrode 102 and the region 104R sandwiched by the electrode 104, and a partition 145 is provided.
  • the partition wall 145 has an insulating property.
  • the partition wall 145 covers an end portion of the electrode 101, the electrode 103, and the electrode 104, and has an opening which overlaps with the electrode.
  • the injection layer 119, the charge generation layer 115, and the electrode 102 are illustrated as being provided in common without being separated in each region, but may be separately provided in each region.
  • Electrons are injected from the cathode into the electron injection layer 119 and holes are injected from the anode into the hole injection layer 111 by applying a voltage between the pair of electrodes (the electrode 102 and the electrode 104). Current flows. Further, electrons are injected from the charge generation layer 115 into the electron injection layer 130, and holes are injected from the charge generation layer 115 into the hole injection layer 116.
  • excitons are formed by recombination of the injected carriers (electrons and holes).
  • carriers (electrons and holes) are recombined to form an exciton in the light emitting layer 140 and the light emitting layer 170 including a light emitting material, the light emitting materials of the light emitting layer 140 and the light emitting layer 170 are excited to emit light Light emission is obtained from the material.
  • the light emitting layer 140 and the light emitting layer 170 have any one or more selected from light emitting materials exhibiting light of purple, blue, blue-green, green, yellow-green, yellow, yellow-orange, orange, or red preferable.
  • the light emitting layer 140 and the light emitting layer 170 may have a structure in which two layers are stacked. Plural light emissions can be obtained at the same time by using two kinds of light emitting materials having different colors, ie, a first compound and a second compound, for two light emitting layers. In particular, it is preferable to select a light-emitting material used for each light-emitting layer so that the light-emitting layer 140 and the light-emitting layer 170 emit white light or a color close to that.
  • the light emitting layer 140 and the light emitting layer 170 may have a structure in which three or more layers are stacked, and a layer not including a light emitting material may be included.
  • a substrate 220 is provided with an optical element 224B, an optical element 224G, and an optical element 224R in the direction in which light emitted from the region 222B, the region 222G, and the region 222R is extracted.
  • Light emitted from each region is emitted to the outside of the light emitting element through each optical element. That is, light emitted from the area 222B is emitted through the optical element 224B, light emitted from the area 222G is emitted through the optical element 224G, and light emitted from the area 222R is the optical element 224R. It is injected through.
  • the optical element 224B, the optical element 224G, and the optical element 224R have a function of selectively transmitting light exhibiting a specific color from the incident light.
  • light emitted from the area 222B emitted through the optical element 224B is light exhibiting blue
  • light emitted from the area 222G emitted through optical element 224G is light exhibiting green
  • the light emitted from the region 222R emitted through the optical element 224R is light exhibiting a red color.
  • a light emitting element 250 a shown in FIG. 3A is a top emission type light emitting element
  • a light emitting element 250 b shown in FIG. 3B is a bottom emission type light emitting element.
  • a light shielding layer 223 is provided between the optical elements.
  • the light shielding layer 223 has a function of shielding light emitted from the adjacent region. Note that the light shielding layer 223 may not be provided.
  • one or more of the optical element 224B, the optical element 224G, and the optical element 224R may not be provided. By not providing the optical element 224B, the optical element 224G, or the optical element 224R, the light extraction efficiency of the light emitting element can be increased.
  • the charge generation layer 115 may be formed of a material in which an electron acceptor (acceptor) is added to a hole transport material, or a material in which an electron donor (donor) is added to an electron transport material. it can.
  • the barrier against electron injection from the charge generation layer 115 to the electron transport layer 113 is reduced, and electrons generated in the charge generation layer 115 are smoothly injected into the electron transport layer 113. And the configuration to be transported is preferred. Therefore, it is preferable to provide the electron injection layer 130 between the charge generation layer 115 and the electron transport layer 113. Since the electron injection layer 119 and the electron injection layer 130 are required to have high electron injection properties, the electron injection layer may be an alkali metal such as lithium (Li) or cesium (Cs) or a compound thereof, such as calcium (Ca). Alkaline earth metals and compounds thereof are used.
  • the metal and the compound are used for the electron injection layer 130, for example, as shown in FIG. 4, when a voltage is applied between the electrode 103 and the electrode 102 to flow a current in the region 222 G, the electron injection layer 130 and A phenomenon in which current flows also to the regions 222B and 222R adjacent to the region 222G through the electron transport layer 113, and light is emitted not only from the region 222G but also from the adjacent regions 222B and 222R Sometimes called "cross talk" may occur.
  • the currents flowing through the regions 222G, 222R, and 222B are indicated by solid arrows.
  • the light emitting element 250b When crosstalk occurs in the light emitting element, light is emitted not only from the desired region (for example, the region 222G) but also from other regions (for example, the regions 222B and 222R). In some cases, the color purity of light emitted by the light emitting element 250b may decrease, or the light emission intensity may decrease.
  • the crosstalk is caused by the diffusion of the alkali metal, the alkaline earth metal, or the compound thereof used for the electron injection layer 130 sandwiched between the charge generation layer 115 and the electron transport layer 113 into the electron transport layer 113 and the conductivity of the electron transport layer 113.
  • the conductivity in particular, the conductivity in the direction perpendicular to the direction in which the voltage is applied
  • the metal having a small atomic number is easily diffused to the electron transport layer 113.
  • the electron injection layer 130 does not have an alkali metal and an alkaline earth metal.
  • an alkali metal, an alkaline earth metal, or a compound thereof is not used for the electron injection layer 130, the electron injection barrier from the charge generation layer 115 to the electron transport layer 113 becomes high. It becomes difficult to inject, and the drive voltage of the light emitting element may increase or the light emission efficiency may decrease.
  • a metal which is excellent in the electron injection property and difficult to diffuse in the organic compound when mixed with the organic compound is used. It is preferable to use for the electron injection layer 130.
  • a metal which is not easily diffused and used for the electron injection layer 130 a metal having a large atomic radius is preferable. In addition, metals having a large atomic weight are preferable.
  • the light-emitting element of one embodiment of the present invention includes a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal.
  • metal metals having a large atomic weight or atomic radius belonging to Groups 3 to 13 can be suitably used. Therefore, one embodiment of the present invention can provide a light-emitting element in which crosstalk is suppressed.
  • a transition metal has a large atomic weight and is difficult to diffuse in an organic compound, a light-emitting element in which crosstalk is suppressed can be provided.
  • the light emitting unit 106, the light emitting unit 108, and the charge generation layer 115 can be formed by an evaporation method (including a vacuum evaporation method), an inkjet method, a coating method, gravure printing, or the like.
  • Embodiment Mode 1 and Embodiment Mode 2 a light-emitting device using the light-emitting element described in Embodiment Mode 1 and Embodiment Mode 2 will be described with reference to FIGS. 5A and 5B.
  • FIG. 5A is a top view of the light emitting device
  • FIG. 5B is a cross-sectional view of FIG. 5A taken along lines AB and CD.
  • the light emitting device includes a drive circuit portion (source side drive circuit) 601, a pixel portion 602, and a drive circuit portion (gate side drive circuit) 603, which are shown by dotted lines, for controlling light emission of the light emitting element.
  • reference numeral 604 denotes a sealing substrate
  • 625 denotes a desiccant
  • 605 denotes a sealant.
  • the inside surrounded by the sealant 605 is a space 607.
  • the lead wiring 608 is a wiring for transmitting signals input to the source driver circuit 601 and the gate driver circuit 603, and a video signal, a clock signal, and the like from an FPC (flexible printed circuit) 609 serving as an external input terminal. Receive start signal, reset signal, etc.
  • FPC flexible printed circuit
  • PWB printed Wiring Board
  • the light emitting device in this specification includes not only a light emitting device main body but also a light emitting device to which an FPC or a PWB is attached.
  • the cross-sectional structure of the light emitting device will be described with reference to FIG. Although a driver circuit portion and a pixel portion are formed over the element substrate 610, here, the source driver circuit 601 which is the driver circuit portion and one pixel in the pixel portion 602 are shown.
  • CMOS circuit in which an n-channel TFT 623 and a p-channel TFT 624 are combined is formed.
  • the driver circuit may be formed of various CMOS circuits, PMOS circuits, and NMOS circuits. Further, although the driver integrated type in which the drive circuit is formed on the substrate is shown in this embodiment mode, the driver circuit is not necessarily required, and the drive circuit can be formed not on the substrate but outside.
  • the pixel portion 602 is formed of a pixel including the switching TFT 611, the current control TFT 612, and the first electrode 613 electrically connected to the drain thereof.
  • an insulator 614 is formed to cover an end portion of the first electrode 613.
  • the insulator 614 can be formed by using a positive photosensitive resin film.
  • a surface having a curvature is formed at the upper end portion or the lower end portion of the insulator 614.
  • a surface having a curvature is formed at the upper end portion or the lower end portion of the insulator 614.
  • photosensitive acrylic as the material of the insulator 614
  • the radius of curvature of the curved surface is preferably 0.2 ⁇ m or more and 0.3 ⁇ m or less.
  • any of negative photosensitive materials and positive photosensitive materials can be used as the insulator 614.
  • an EL layer 616 and a second electrode 617 are formed.
  • a material used for the first electrode 613 which functions as an anode a material having a high work function is preferably used.
  • a single layer such as an ITO film or an indium tin oxide film containing silicon, an indium oxide film containing zinc oxide of 2 wt% or more and 20 wt% or less, a titanium nitride film, a chromium film, a tungsten film, a Zn film, or a Pt film
  • a stacked layer of titanium nitride and a film containing aluminum as a main component a three-layer structure of a titanium nitride film, a film containing aluminum as a main component, and a titanium nitride film can be used. Note that when a stacked structure is employed, the resistance as a wiring is low, a favorable ohmic contact can be obtained, and the electrode
  • the EL layer 616 is formed by various methods such as an evaporation method using an evaporation mask, an inkjet method, a spin coating method, or the like.
  • the material forming the EL layer 616 may be a low molecular weight compound or a high molecular weight compound (including an oligomer and a dendrimer).
  • a material formed on the EL layer 616 and used for the second electrode 617 functioning as a cathode a material having a low work function (Al, Mg, Li, Ca, or an alloy or compound thereof (MgAg, MgIn, It is preferable to use AlLi etc.).
  • a metal thin film with a thin film thickness and a transparent conductive film ITO, 2 wt% to 20 wt% inclusive
  • ITO transparent conductive film
  • ZnO zinc oxide
  • the light emitting element 618 is formed of the first electrode 613, the EL layer 616, and the second electrode 617. It is preferable that the light emitting element 618 be a light emitting element having the configuration of Embodiment 1 and Embodiment 2. Note that although a plurality of light emitting elements are formed in the pixel portion, the light emitting element in this embodiment includes the light emitting elements having the configurations described in Embodiment 1 and Embodiment 2 and the other configurations. Both light emitting elements may be included.
  • the sealing substrate 604 by bonding the sealing substrate 604 to the element substrate 610 with the sealant 605, the light emitting element 618 is provided in the space 607 surrounded by the element substrate 610, the sealing substrate 604, and the sealant 605.
  • the space 607 is filled with a filler, and an inert gas (such as nitrogen or argon), a resin or a desiccant, or both may be used as the filler.
  • an inert gas such as nitrogen or argon
  • an epoxy resin or glass frit is preferably used for the sealant 605.
  • these materials do not transmit moisture and oxygen as much as possible.
  • a glass substrate or a quartz substrate, or a plastic substrate made of FRP (Fiber Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic, or the like can be used as the sealing substrate 604.
  • the light-emitting device using the light-emitting element described in Embodiment 1 and Embodiment 2 can be obtained.
  • FIG. 6 illustrates a light-emitting device in which a light-emitting element which emits white light and a colored layer (color filter) are formed.
  • a coloring layer (red coloring layer 1034R, green coloring layer 1034G, blue coloring layer 1034B) is provided over the transparent base 1033.
  • a black layer (black matrix) 1035 may be further provided.
  • the transparent substrate 1033 provided with the colored layer and the black layer is aligned and fixed to the substrate 1001.
  • the colored layer and the black layer are covered with an overcoat layer 1036.
  • FIG. 6A there are light exiting to the outside without passing through the colored layer and light exiting to outside through the colored layer of each color.
  • the light not passing through the colored layer is white, and the light passing through the colored layer is red, blue, and green. Therefore, an image can be represented by pixels of four colors.
  • FIG. 6B shows an example in which a red colored layer 1034 R, a green colored layer 1034 G, and a blue colored layer 1034 B are formed between the gate insulating film 1003 and the first interlayer insulating film 1020.
  • the coloring layer may be provided between the substrate 1001 and the sealing substrate 1031 as shown in FIG.
  • the light emitting device has a structure (bottom emission structure) for extracting light to the side of the substrate 1001 where the TFT is formed (bottom emission structure) (a top emission structure for extracting light emission to the sealing substrate 1031 side) It is good also as a light-emitting device of.
  • ⁇ Configuration Example 2 of Light Emitting Device> 7A and 7B show cross-sectional views of the top emission type light emitting device.
  • a substrate which does not transmit light can be used as the substrate 1001.
  • the steps up to manufacturing the connection electrode for connecting the TFT and the anode of the light emitting element are performed in the same manner as the bottom emission type light emitting device.
  • a third interlayer insulating film 1037 is formed to cover the electrode 1022.
  • This insulating film may play a role of planarization.
  • the third interlayer insulating film 1037 can be formed using various other materials in addition to the same material as the second interlayer insulating film 1021.
  • the lower electrode 1025 W, the lower electrode 1025 R, the lower electrode 1025 G, and the lower electrode 1025 B of the light emitting element are here an anode, they may be a cathode.
  • the lower electrode 1025W, the lower electrode 1025R, the lower electrode 1025G, and the lower electrode 1025B be reflective electrodes.
  • the second electrode 1029 preferably has a function of reflecting light and a function of transmitting light.
  • a microcavity structure be applied between the second electrode 1029 and the lower electrode 1025 W, the lower electrode 1025 R, the lower electrode 1025 G, and the lower electrode 1025 B to amplify light of a specific wavelength.
  • the EL layer 1028 has a structure as described in Embodiment Modes 1 and 2, and has a device structure in which white light emission can be obtained.
  • the structure of the EL layer which can emit white light includes using a plurality of light emitting layers and using a plurality of light emitting units. It should be realized by Note that the configuration for obtaining white light emission is not limited to these.
  • sealing is performed with a sealing substrate 1031 provided with colored layers (red colored layer 1034R, green colored layer 1034G, blue colored layer 1034B). Can.
  • a black layer (black matrix) 1035 may be provided on the sealing substrate 1031 so as to be located between the pixels.
  • the colored layer (red colored layer 1034R, green colored layer 1034G, blue colored layer 1034B) or black layer (black matrix) may be covered with an overcoat layer. Note that for the sealing substrate 1031, a light-transmitting substrate is used.
  • FIG. 7A shows a configuration for performing full color display with three colors of red, green and blue, but as shown in FIG. 7B, full color display with four colors of red, green, blue and white You may do Further, the configuration for performing full color display is not limited to these. For example, full color display may be performed with four colors of red, green, blue, and yellow.
  • the light-emitting element according to one embodiment of the present invention uses a fluorescent material as a guest material.
  • a fluorescent material has a sharp spectrum compared to a phosphorescent material, so that light emission with high color purity can be obtained. Therefore, by using the light-emitting element for the light-emitting device described in this embodiment, a light-emitting device with high color reproducibility can be obtained.
  • the light-emitting device using the light-emitting element described in Embodiment 1 and Embodiment 2 can be obtained.
  • Embodiment 4 In this embodiment, an electronic device and a display device of one embodiment of the present invention will be described.
  • a highly reliable electronic device and display device which have a flat surface and high light emission efficiency can be manufactured. Further, according to one embodiment of the present invention, a highly reliable electronic device and a display device which have a curved surface and high light emission efficiency can be manufactured. Light emission with high color purity can be obtained from the light-emitting element of one embodiment of the present invention. Therefore, by using the light-emitting element for the light-emitting device described in this embodiment, an electronic device and a display device with high color reproducibility can be obtained.
  • Examples of the electronic devices include television devices, desktop or notebook personal computers, monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, portable information terminals, acoustics, and the like. Examples include large game consoles such as playback devices and pachinko machines.
  • a portable information terminal 900 illustrated in FIGS. 8A and 8B includes a housing 901, a housing 902, a display portion 903, a hinge portion 905, and the like.
  • the housing 901 and the housing 902 are connected by a hinge portion 905.
  • the portable information terminal 900 can be expanded as shown in FIG. 8B from the folded state (FIG. 8A). Thereby, when carrying, it is excellent in portability, and when using it, it is excellent in visibility by a large display area.
  • a flexible display portion 903 is provided across the housing 901 and the housing 902 connected by the hinge portion 905.
  • the light-emitting device manufactured using one embodiment of the present invention can be used for the display portion 903.
  • a portable information terminal having high reliability can be manufactured.
  • the display unit 903 can display at least one of document information, a still image, a moving image, and the like.
  • the portable information terminal 900 can be used as an electronic book terminal.
  • the display portion 903 is held in a state where the radius of curvature is large.
  • the display portion 903 is held including a portion curved to a curvature radius of 1 mm or more and 50 mm or less, preferably 5 mm or more and 30 mm or less.
  • pixels are continuously arranged from the housing 901 to the housing 902, and curved display can be performed.
  • the display portion 903 functions as a touch panel and can be operated by a finger, a stylus, or the like.
  • the display unit 903 is preferably configured by one flexible display. Thus, continuous display can be performed without interruption between the housing 901 and the housing 902. Note that a display may be provided for each of the housing 901 and the housing 902.
  • the hinge portion 905 preferably has a lock mechanism so that the angle between the housing 901 and the housing 902 does not become larger than a predetermined angle when the portable information terminal 900 is expanded.
  • the angle at which the lock is applied is preferably 90 degrees or more and less than 180 degrees, and typically, 90 degrees, 120 degrees, 135 degrees, 150 degrees, or 175 degrees, etc. be able to. Thereby, the convenience, security, and reliability of the portable information terminal 900 can be enhanced.
  • the hinge portion 905 has a lock mechanism
  • the display portion 903 can be prevented from being damaged without applying an excessive force to the display portion 903. Therefore, a highly reliable portable information terminal can be realized.
  • the housing 901 and the housing 902 may have a power button, an operation button, an external connection port, a speaker, a microphone, and the like.
  • a wireless communication module is provided in one of the housing 901 and the housing 902, and data is transmitted and received through a computer network such as the Internet, a local area network (LAN), or Wi-Fi (registered trademark). Is possible.
  • a computer network such as the Internet, a local area network (LAN), or Wi-Fi (registered trademark). Is possible.
  • a portable information terminal 910 illustrated in FIG. 8C includes a housing 911, a display portion 912, an operation button 913, an external connection port 914, a speaker 915, a microphone 916, a camera 917, and the like.
  • the light-emitting device manufactured using one embodiment of the present invention can be used for the display portion 912.
  • the portable information terminal can be manufactured with high yield.
  • the portable information terminal 910 includes a touch sensor in the display unit 912. All operations such as making a call and inputting characters can be performed by touching the display portion 912 with a finger, a stylus, or the like.
  • the operation button 913 power ON / OFF operation and switching of the type of an image displayed on the display portion 912 can be performed.
  • the mail creation screen can be switched to the main menu screen.
  • the orientation (vertical or horizontal) of the portable information terminal 910 is determined, and the orientation of the screen display of the display unit 912 is determined. It can be switched automatically. The direction of screen display can also be switched by touching the display portion 912, operating the operation button 913, or by voice input using the microphone 916.
  • the portable information terminal 910 has one or more functions selected from, for example, a telephone, a notebook, an information browsing apparatus, and the like. Specifically, it can be used as a smartphone.
  • the portable information terminal 910 can execute various applications such as, for example, mobile phone, electronic mail, text browsing and creation, music reproduction, video reproduction, Internet communication, and games.
  • a camera 920 illustrated in FIG. 8D includes a housing 921, a display portion 922, an operation button 923, a shutter button 924, and the like.
  • a detachable lens 926 is attached to the camera 920.
  • the light-emitting device manufactured using one embodiment of the present invention can be used for the display portion 922. Thereby, a camera having high reliability can be manufactured.
  • the camera 920 is configured such that the lens 926 can be removed from the housing 921 for replacement, but the lens 926 and the housing 921 may be integrated.
  • the camera 920 can capture a still image or a moving image by pressing the shutter button 924.
  • the display portion 922 has a function as a touch panel, and an image can be taken by touching the display portion 922.
  • the camera 920 can be separately attached with a flash device, a view finder, and the like. Alternatively, these may be incorporated in the housing 921.
  • FIG. 9A is a schematic view showing an example of the cleaning robot.
  • the cleaning robot 5100 has a display 5101 disposed on the upper surface, a plurality of cameras 5102 disposed on the side, a brush 5103, and an operation button 5104.
  • the lower surface of the cleaning robot 5100 is provided with a tire, a suction port, and the like.
  • the cleaning robot 5100 further includes various sensors such as an infrared sensor, an ultrasonic sensor, an acceleration sensor, a piezo sensor, an optical sensor, and a gyro sensor.
  • the cleaning robot 5100 is provided with a wireless communication means.
  • the cleaning robot 5100 can self-propelled, detect the dust 5120, and can suction the dust from the suction port provided on the lower surface.
  • the cleaning robot 5100 can analyze the image captured by the camera 5102 to determine the presence or absence of an obstacle such as a wall, furniture, or a step. In addition, when an object that is likely to be entangled in the brush 5103 such as wiring is detected by image analysis, the rotation of the brush 5103 can be stopped.
  • the display 5101 can display the remaining amount of the battery, the amount of suctioned dust, and the like.
  • the path traveled by the cleaning robot 5100 may be displayed on the display 5101.
  • the display 5101 may be a touch panel, and the operation button 5104 may be provided on the display 5101.
  • the cleaning robot 5100 can communicate with a portable electronic device 5140 such as a smartphone.
  • the image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even from outside.
  • the display of the display 5101 can also be confirmed by a portable electronic device such as a smartphone.
  • the light-emitting device of one embodiment of the present invention can be used for the display 5101.
  • the robot 2100 illustrated in FIG. 9B includes an arithmetic device 2110, an illuminance sensor 2101, a microphone 2102, an upper camera 2103, a speaker 2104, a display 2105, a lower camera 2106, an obstacle sensor 2107, and a movement mechanism 2108.
  • the microphone 2102 has a function of detecting the user's speech and environmental sounds.
  • the speaker 2104 has a function of emitting sound.
  • the robot 2100 can communicate with the user using the microphone 2102 and the speaker 2104.
  • the display 2105 has a function of displaying various information.
  • the robot 2100 can display information desired by the user on the display 2105.
  • the display 2105 may have a touch panel.
  • the display 2105 may be an information terminal that can be removed, and by installing the display 2105 at a fixed position of the robot 2100, charging and data transfer can be performed.
  • the upper camera 2103 and the lower camera 2106 have a function of imaging the periphery of the robot 2100. Further, the obstacle sensor 2107 can detect the presence or absence of an obstacle in the traveling direction when the robot 2100 advances using the movement mechanism 2108. The robot 2100 can recognize the surrounding environment and move safely by using the upper camera 2103, the lower camera 2106 and the obstacle sensor 2107.
  • the light-emitting device of one embodiment of the present invention can be used for the display 2105.
  • FIG. 9C is a diagram showing an example of the goggle type display.
  • the goggle display includes, for example, a housing 5000, a display portion 5001, a speaker 5003, an LED lamp 5004, a connection terminal 5006, and a sensor 5007 (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, Magnetic, temperature, chemicals, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, inclination, vibration, smell, or infrared (including the function of measuring infrared), microphone 5008, second A display portion 5002, a support portion 5012, an earphone 5013, and the like are included.
  • the light-emitting device of one embodiment of the present invention can be used for the display portion 5001 and the second display portion 5002.
  • FIG. 10A and 10B illustrate a foldable portable information terminal 5150.
  • the foldable portable information terminal 5150 includes a housing 5151, a display area 5152, and a bending portion 5153.
  • FIG. 10A shows the portable information terminal 5150 in the expanded state.
  • FIG. 10B shows the portable information terminal 5150 in a folded state. Although the portable information terminal 5150 has a large display area 5152, it is compact and portable when folded.
  • the display region 5152 can be folded in half by the bent portion 5153.
  • the bending portion 5153 is configured of an expandable member and a plurality of support members. When the display area is folded, the stretchable member is stretched, and the bending portion 5153 has a curvature radius of 2 mm or more, preferably 5 mm or more.
  • the display area 5152 may be a touch panel (input / output device) on which a touch sensor (input device) is mounted.
  • the light-emitting device of one embodiment of the present invention can be used for the display region 5152.
  • an electronic device or a lighting device having a light-emitting region with a curved surface can be realized.
  • the light-emitting device to which the light-emitting element of one embodiment of the present invention is applied can also be applied to lighting of an automobile, and for example, lighting can be installed on a windshield, a ceiling, or the like.
  • FIG. 11 illustrates an example in which a light-emitting element is used as a lighting device 8501 in a room.
  • the light emitting element can have a large area, a lighting device with a large area can be formed.
  • the lighting device 8502 in which the light emitting region has a curved surface can also be formed.
  • the light-emitting element described in this embodiment has a thin film shape, and the degree of freedom in housing design is high. Therefore, it is possible to form a lighting device with various designs.
  • a large lighting device 8503 may be provided on a wall surface in the room.
  • the lighting devices 8501, 8502, and 8503 may each be provided with a touch sensor to turn on or off the power.
  • the lighting device 8504 can have a function as a table. Note that by using a light-emitting element for part of other furniture, a lighting device having a function as furniture can be provided.
  • a lighting device and an electronic device can be obtained by applying the light-emitting device of one embodiment of the present invention.
  • the light-emitting device of one embodiment of the present invention is not limited to the one described in this embodiment, and can be applied to lighting devices and electronic devices in various fields.
  • the comparative light emitting element 1 is a light emitting element using LiF which is a Li compound generally used for the electron injecting layer, and the light emitting elements 2 to 5 are an embodiment of the present invention, and the electron injecting layer has three bases.
  • it is a light emitting element using a composite material of an organic compound having a function of interacting with a metal at tetradent and a metal.
  • the weight ratio between molybdenum oxide (MoO 3), the (DBT3P-II: MoO 3) is 1: to 0.5, and The co-evaporation was performed to a thickness of 25 nm.
  • PCBBiF was vapor-deposited on the hole injection layer 111 as a hole transport layer 112 so as to have a thickness of 20 nm.
  • a weight ratio (2mDBTBPDBq-II: PCBBiF: Ir (dmdppr-dmp) as 2mDBTBPDBq-II, and PCBBiF and Ir (dmdppr-dmp) 2 (dpm) It co-evaporated so that 2 (dpm) might be set to 0.75: 0.25: 0.08, and it might become thickness 40 nm.
  • 2mDBTBPDBq-II and PCBBiF are host materials
  • Ir (dmdppr-dmp) 2 (dpm) is a guest material (phosphorescent compound).
  • NBPhen was deposited to a thickness of 15 nm as an electron transport layer 118 (2) on the electron transport layer 118 (1).
  • Lithium fluoride LiF was vapor-deposited as an electron injection layer 130 on the electron transport layer 118 (2) to a thickness of 1 nm.
  • Al aluminum
  • the comparative light emitting element 1 was obtained by the above steps.
  • the light-emitting elements 2 to 5 were manufactured in the same steps as the comparative light-emitting element 1 except for the step of forming the electron injection layer 130.
  • the current efficiency-luminance characteristics of the comparative light-emitting element 1 and the light-emitting elements 2 to 5 thus manufactured are shown in FIG. 12, the current-voltage characteristics are shown in FIG.
  • the measurement of each light emitting element was performed at room temperature (in the atmosphere kept at 23 ° C.).
  • an electroluminescent spectrum when current is supplied to each light emitting element at a current density of 2.5 mA / cm 2 is shown in FIG.
  • the measurement was performed at room temperature.
  • Table 4 shows the element characteristics of the comparative light-emitting element 1 and the light-emitting elements 2 to 5 at around 1000 cd / m 2 .
  • the comparative light-emitting element 1 and the light-emitting elements 2 to 5 all exhibited high light-emitting efficiency with an external quantum efficiency exceeding 25%.
  • the light-emitting elements 2 to 5 which are one embodiment of the present invention exhibited high efficiency equivalent to that of the comparative light-emitting element 1 using LiF, which is a material generally used for the electron injection layer.
  • the comparative light-emitting element 1 and the light-emitting elements 2 to 5 exhibited favorable current-voltage characteristics.
  • the light emitting element 2 to the light emitting element 5 have the same current-voltage characteristics as the comparative light emitting element 1 and have a large work function (4.5 eV or more) such as Cu, Ag, or Co and a metal with three or four sites It has been found that a composite material with an organic compound having a function to interact with the compound has a very good electron injection property equivalent to LiF which is a material generally used for the electron injection layer.
  • the peak wavelength of the electroluminescence spectrum of each of the comparative light emitting element 1 and the light emitting elements 2 to 5 is around 619 nm, and the full width at half maximum is about 58 nm for all Indicated. From the obtained electroluminescence spectrum, it was found that the emission was from the guest material Ir (dmdppr-dmp) 2 (dpm).
  • the reliability is lowered due to the influence of moisture.
  • a metal having a low work function with low reactivity with water can be used for the electron injecting layer. Therefore, in the light-emitting element of one embodiment of the present invention, moisture is less likely to enter the inside of the light-emitting element, and a highly reliable light-emitting element can be realized even when driven in the air.
  • the light emitting elements 3 to 5 show excellent reliability. From this, by using a metal having a work function of 4.7 eV or more such as Cu or Co, a light emitting element with excellent reliability can be realized.
  • FIG. 1A A schematic cross-sectional view of the light-emitting element manufactured in this example is shown in FIG. 1A, and the details of the element structure are shown in Tables 5 and 6, respectively.
  • the structures and abbreviations of organic compounds used in this embodiment may be the same as those described in Embodiment 1 and Embodiment 1.
  • the comparative light-emitting element 6 is a light-emitting element in which the electron injection layer is not formed and the electrode is in contact with the electron transport layer, and the light-emitting elements 7 to 10 are an embodiment of the present invention.
  • it is a light emitting element using a composite material of an organic compound having a function of interacting with a metal at tetradent and a metal.
  • the comparative light emitting element 6 was manufactured in the same process as the comparative light emitting element 1 except for the step of forming the electron injection layer 130.
  • the electron injection layer 130 of the comparative light emitting element 6 was not formed, and Al was vapor deposited on the electron transport layer 118 as an electrode 102 so as to have a thickness of 200 nm. That is, in the comparative light emitting element 6, the electrode 102 and the electron transport layer 118 are in contact with each other.
  • the light emitting elements 7 to 10 were manufactured in the same steps as the comparative light emitting element 1 except for the step of forming the electron injection layer 130.
  • Table 7 shows the element characteristics of the comparative light-emitting element 6 and the light-emitting elements 7 to 10 in the vicinity of 1000 cd / m 2 .
  • Light-emitting Element 7 to Light-emitting Element 10 exhibited higher external quantum efficiency than Comparative Light-emitting Element 6.
  • Light-emitting element 9 and Light-emitting element 10 exhibited high external quantum efficiency of more than 25%.
  • Light-emitting Elements 7 to 10 exhibited better current-voltage characteristics than Comparative Light-emitting Element 6.
  • the light-emitting element 9 exhibited excellent current-voltage characteristics. From these results, it can be seen that Light-emitting Elements 7 to 10 have better electron injection characteristics than Comparative Light-emitting Element 6.
  • the light emitting element 7 to the light emitting element 10 use, for the electron injecting layer, a metal having a work function higher than that of Al used for the electrodes. Therefore, focusing on the work function of a metal, it is expected that the comparative light emitting element 6 has better electron injection characteristics than the light emitting elements 7 to 10. However, as described above, the light-emitting elements 7 to 10 have better electron injection characteristics than the comparative light-emitting element 6. Therefore, in the light-emitting element of one embodiment of the present invention, the composite material of the electron injection layer is used by using a composite material of an organic compound having a function of interacting with metal in trident or tetradentity in the electron injection layer and metal. Since SOMO is formed, good electron injection characteristics can be obtained even if a metal having a work function higher than the work function of the electrode material is used for the electron injection layer.
  • the peak wavelength of the electroluminescence spectrum of each of the comparative light emitting element 6 and the light emitting elements 7 to 10 is around 619 nm, and the full width at half maximum is about 58 nm for all Indicated. From the obtained electroluminescence spectrum, it was found that the emission was from the guest material Ir (dmdppr-dmp) 2 (dpm).
  • FIG. 1A A schematic cross-sectional view of the light-emitting element manufactured in this example is shown in FIG. 1A, and the details of the element structure are shown in Tables 8 and 9, respectively.
  • chemical formulas of organic compounds used in this example are shown below. Note that for structures and abbreviations of other compounds, the above Examples and Embodiment 1 may be referred to.
  • the comparative light emitting element 11 is a light emitting element using LiF which is a Li compound generally used for the electron injecting layer
  • the light emitting elements 12 to 15 are one aspect of the present invention, in which the electron injecting layer is This is a light-emitting element using a composite material of an organic compound having a function of interacting with a metal at tetradentity and a metal.
  • the weight ratio between molybdenum oxide (MoO 3), the (DBT3P-II: MoO 3) is 1: to 0.5, and The co-evaporation was performed to a thickness of 40 nm.
  • PCCP was vapor-deposited as a hole transport layer 112 on the hole injection layer 111 to a thickness of 20 nm.
  • 9- [3- (4,6-diphenyl-1,3,5-triazin-2-yl) phenyl] -9'-phenyl-2,3 is formed as the light emitting layer 140 on the hole transport layer 112.
  • the weight ratio (mPCCzPTzn: PCCP: GD270) of '-bi-9H-carbazole (abbreviation: mPCCzPTzn-02) and PCCP and GD270 (manufactured by Jilin OLED) is 0.5: 0.5: 0.1.
  • mPCCzPTzn and PCCP are host materials
  • GD 270 is a guest material (phosphorescent compound).
  • mPCCzPTzn-02 was vapor deposited on the light emitting layer 140 as an electron transporting layer 118 (1) to a thickness of 10 nm.
  • NBPhen was deposited to a thickness of 15 nm as an electron transport layer 118 (2) on the electron transport layer 118 (1).
  • LiF was vapor-deposited as an electron injection layer 130 on the electron transport layer 118 (2) to a thickness of 1 nm.
  • Al aluminum
  • the comparative light emitting element 11 was obtained by the above steps.
  • the light emitting elements 12 to 15 were manufactured in the same steps as the comparative light emitting element 11 except for the steps of forming the electron transporting layer 118 (2) and the electron injection layer 130.
  • NBPhen was vapor-deposited on the electron transport layer 118 (1) as an electron transport layer 118 (2) to a thickness of 15 nm.
  • tPy2P and Ag were co-deposited on the electron transport layer 118 (2) so that the weight ratio (tPy2P: Ag) was 1: 0.3 and the thickness was 5 nm.
  • NBPhen was vapor-deposited on the electron transport layer 118 (1) to a thickness of 10 nm as the electron transport layer 118 (2).
  • NBPhen and Ag are co-deposited as an electron injection layer 130 on the electron transport layer 118 (2) so that the weight ratio (NBPhen: Ag) is 1: 0.3 and the thickness is 5 nm
  • tPy2P and Au were co-deposited such that the weight ratio (tPy2P: Au) was 1: 0.6 and the thickness was 5 nm.
  • NBPhen was vapor-deposited on the electron transport layer 118 (1) as an electron transport layer 118 (2) to a thickness of 15 nm.
  • 2Py3Tzn and Cu were co-evaporated on the electron transport layer 118 (2) so that the weight ratio (2Py3Tzn: Cu) was 1: 0.3 and the thickness was 5 nm.
  • NBPhen was vapor-deposited on the electron transport layer 118 (1) to a thickness of 10 nm as the electron transport layer 118 (2).
  • NBPhen and Cu are co-evaporated on the electron transport layer 118 (2) so that the weight ratio (NBPhen: Cu) is 1: 0.2 and the thickness is 5 nm
  • 2Py3Tzn and Co were co-deposited such that the weight ratio (2Py3Tzn: Co) was 1: 0.2 and the thickness was 5 nm.
  • FIG. 22 The current efficiency-luminance characteristics of the comparative light emitting element 11 and the light emitting elements 12 to 15 manufactured are shown in FIG. 22, the current-voltage characteristic is shown in FIG.
  • FIG. 25 shows an electroluminescent spectrum when current is supplied to each light emitting element at a current density of 2.5 mA / cm 2 . In addition, the measurement was performed at room temperature.
  • Table 10 shows the element characteristics of the comparative light-emitting element 11 and the light-emitting elements 12 to 15 in the vicinity of 1000 cd / m 2 .
  • the comparative light emitting element 11 and the light emitting elements 12 to 15 exhibited equivalent external quantum efficiency.
  • the external quantum efficiencies of the light-emitting elements 12 to 14 exhibited high values exceeding 20%.
  • the comparative light-emitting element 11 and the light-emitting elements 12 to 15 exhibited equivalent current-voltage characteristics. From these results, it can be seen that the light emitting element 12 to the light emitting element 15 have the electron injecting property equivalent to that of the comparative light emitting element 11 using LiF generally used for the electron injecting layer.
  • the peak wavelength of the electroluminescence spectrum of each of the comparative light emitting element 11 and the light emitting elements 12 to 15 is around 520 nm, and the full width at half maximum is all around 63 nm. Indicated. It was found from the obtained electroluminescence spectrum that the light was emitted from the guest material GD270.
  • the light emission state was evaluated by estimating the ratio of the light emission area before and after the constant temperature and constant humidity storage test. Table 11 shows the results.
  • light emitting area ratio (%) light emitting area after constant temperature and constant humidity storage test / light emitting area before constant temperature and constant humidity test ⁇ 100.
  • the comparative light-emitting element 11 using LiF, which is an alkali metal compound, in the electron injection layer was deteriorated by the storage test and became non-light emission.
  • the light-emitting elements 12 to 15 which are light-emitting elements of one embodiment of the present invention have a larger light-emitting area ratio than the comparative light-emitting element 11.
  • the light-emitting element which is one embodiment of the present invention is superior in moisture resistance to a light-emitting element in which a material having a small work function such as an alkali metal is used for the electron injecting layer. This is because a material having a small work function is highly reactive with water, and moisture intrudes into the light emitting element.
  • a metal having a low work reactivity with water and a large work function can be used, moisture does not easily enter the inside of the light-emitting element. Therefore, a light-emitting element with high moisture resistance can be realized.
  • the light-emitting element which is one embodiment of the present invention is a light-emitting element with low driving voltage and high emission efficiency because it is excellent in electron injecting property.
  • the light-emitting element is excellent in moisture resistance.
  • the structure shown in this embodiment can be combined with any of the other embodiments and embodiments as appropriate.
  • the pale red powder obtained above was measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR). The analysis results are shown below.
  • FIGS. 26 (A) and (B) 1 H NMR charts of the obtained pale red powders are shown in FIGS. 26 (A) and (B).
  • FIG. 26B is an enlarged view of the range of 7.0 ppm to 9.5 ppm in FIG. It was found from the measurement results that the target product PAtPy was obtained.
  • the pale red powder obtained above was measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR). The analysis results are shown below.
  • FIGS. 27 (A) and (B) 1 H NMR charts of the obtained pale red powders are shown in FIGS. 27 (A) and (B).
  • FIG. 27B is an enlarged view of the range of 7.0 ppm to 9.0 ppm in FIG. It was found from the measurement results that the target object, BOxtPy, was obtained.
  • the mixture was degassed by stirring under reduced pressure and the flask was purged with nitrogen. To this mixture was added 68 mg (59 ⁇ mol) of tetrakis (triphenylphosphine) palladium (0). The mixture was refluxed at 100 ° C. for 9 hours under nitrogen flow. After stirring, the mixture was cooled to room temperature, and the precipitated solid was suction filtered. The resulting solid chloroform solution was washed with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over magnesium sulfate. The mixture was naturally filtered and the filtrate was concentrated to give a solid.
  • O11 tPy powder 0.71 g was sublimated and purified by a train sublimation method. The sublimation purification was performed by heating O11 tPy at 270 ° C. under a pressure of 4.0 Pa and an argon flow rate of 10 mL / min. After sublimation purification, 0.29 g of O11 tPy white powder was obtained at a recovery rate of 41%.
  • the white powder obtained above was measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR). The analysis results are shown below.
  • FIGS. 28 (A) and (B) 1 H NMR charts of the obtained white powder are shown in FIGS. 28 (A) and (B).
  • FIG. 28 (B) is an enlarged view of the range of 7.0 ppm to 9.0 ppm in FIG. 28 (A). From the measurement results, it was found that the desired product O11 tPy was obtained.
  • the white powder obtained above was measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR). The analysis results are shown below.
  • FIGS. 29 (A) and (B) 1 H NMR charts of the obtained white powder are shown in FIGS. 29 (A) and (B).
  • FIG. 29 (B) is an enlarged view of the range of 7.0 ppm to 9.0 ppm in FIG. 29 (A). From the measurement results, it was found that the desired product Cz2PtPy was obtained.
  • the light brown powder obtained above was measured by nuclear magnetic resonance spectroscopy ( 1 H-NMR). The analysis results are shown below.
  • FIGS. 30 (A) and (B) 1 H NMR charts of the obtained light brown powders are shown in FIGS. 30 (A) and (B).
  • 30B is an enlarged view of the range of 7.0 ppm to 9.5 ppm in FIG. It was found from the measurement results that the target product PPm3Tzn was obtained.
  • a manufacturing example of light-emitting elements 16 to 21, a comparative light-emitting element 33, and a comparative light-emitting element 34 which are examples of tandem elements described later is described.
  • a schematic cross-sectional view of the light-emitting element manufactured in this example is shown in FIG. 31, and the details of the element structure are shown in Tables 12 to 14, respectively.
  • chemical formulas of organic compounds used in this example are shown below. Note that for structures and abbreviations of other compounds, the above Examples and Embodiment 1 may be referred to.
  • Light-emitting Elements 16 to 21 are elements (also referred to as tandem elements) in which a plurality of EL layers are connected in series between a pair of electrodes with a charge generation layer interposed therebetween; 31 shows an example of a light emitting element using a composite material of an organic compound and metal having a function of interacting with metal at tri- or tetra-dentate in the electron injection layer (electron injection layer 114 in FIG. 31) in contact with the charge generation layer 115). It is.
  • the weight ratio (DBT3P-II: MoO 3) is 1: to 0.5, and a thickness of 25nm It co-deposited so that it might become.
  • PCBBiF was vapor-deposited on the hole injection layer 111 as a hole transport layer 112 so as to have a thickness of 20 nm.
  • a weight ratio (2mDBTBPDBq-II: PCBBiF: Ir (dmdppr-dmp) 2 (dpm) of 2mDBTBPDBq-II, PCBBiF, and Ir (dmdppr-dmp) 2 (dpm). ) was co-evaporated so as to be 0.75: 0.25: 0.08 and to have a thickness of 40 nm.
  • 2mDBTBPDBq-II and PCBBiF are host materials
  • Ir (dmdppr-dmp) 2 (dpm) is a guest material (phosphorescent compound).
  • 2,2 ′-(pyridine-2,6-diyl) bis (4-phenylbenzo [h] quinazoline) (abbreviation: 2, 6 (P-Bqn) ) 2Py) and Cu were co-evaporated such that the weight ratio (2, 6 (P-Bqn) 2Py: Cu) was 1: 0.2 and the thickness was 5 nm.
  • the weight ratio (DBT3P-II: MoO 3) is 1: to 0.5, and a thickness of The co-evaporation was performed so as to be 80 nm.
  • PCBBiF was vapor-deposited on the charge generation layer 115 as a hole transport layer 119 so as to have a thickness of 20 nm.
  • NBPhen and Cu were co-evaporated on the electron transport layer 118 (2) so that the weight ratio (NBPhen: Cu) was 1: 0.2 and the thickness was 5 nm.
  • Al was vapor-deposited on the electron injection layer 130 so as to have a thickness of 200 nm as the electrode 102.
  • the light emitting element 16 was sealed by fixing a glass substrate for sealing to a glass substrate on which an organic material was formed using a sealing material for organic EL. Specifically, a sealing material is applied around the organic material formed on the glass substrate, the glass substrate and the glass substrate for sealing are attached to each other, and ultraviolet light having a wavelength of 365 nm is irradiated at 6 J / cm 2. It heat-treated at 80 degreeC for 1 hour. The light emitting element 16 was obtained by the above steps.
  • the current efficiency-brightness characteristics of the manufactured light emitting elements 16 to 21, the comparative light emitting element 33 and the comparative light emitting element 34 are shown in FIG. 32, the current-voltage characteristics are shown in FIG. 33, and the power efficiency-brightness characteristics are shown in FIG.
  • the quantum efficiency-luminance characteristics are respectively shown in FIG.
  • the measurement of each light emitting element was performed at room temperature (in the atmosphere kept at 23 ° C.).
  • FIG. 36 shows an electroluminescent spectrum when current is supplied to each light emitting element at a current density of 2.5 mA / cm 2 . In addition, the measurement was performed at room temperature.
  • Table 15 shows the element characteristics of the light-emitting elements 16 to 21, the comparative light-emitting element 33, and the comparative light-emitting element 34 at around 1000 cd / m 2 .
  • the peak wavelengths of electroluminescence spectra of the light emitting elements 16 to 21, the comparative light emitting element 33 and the comparative light emitting element 34 are all around 620 nm, and the light emitting elements 16 to 21 and the comparative light emitting element It turned out that 33 and the comparative light emitting element 34 show light emission derived from Ir (dmdppr-dmp) 2 (dpm) which is a guest material which each light emitting element has.
  • the light emitting elements 16 to 21 exhibited very high light emission efficiency exceeding 50% of the external quantum efficiency equivalent to that of the comparative light emitting element 33. Also, as shown in FIGS. 32 and 34, high current efficiency and high power efficiency were shown. On the other hand, the comparative light-emitting element 34 had a low external quantum efficiency of 27.2%, so that sufficient efficiency as a tandem element was not obtained. From these results, the light emitting elements 16 to 21 are equivalent to the comparative light emitting element 33 using Li 2 O, which is a Li compound generally used for the electron injection layer in contact with the charge generation layer between the EL layers. It can be seen that it has electron injection properties.
  • Li 2 O is a Li compound generally used for the electron injection layer in contact with the charge generation layer between the EL layers. It can be seen that it has electron injection properties.
  • the light emitting element 16 to the light emitting element 21 have lower driving voltage than the comparative light emitting element 33 and the comparative light emitting element 34, and exhibit favorable current-voltage characteristics.
  • the comparative light-emitting element 34 had a very high driving voltage, and had a problem in the electron injection property from the charge generation layer. From these results, the light emitting elements 16 to 21 inject electrons from the comparative light emitting element 33 using Li 2 O, which is a Li compound generally used for the electron injection layer in contact with the charge generation layer between the EL layers. It can be seen that the sex is good.
  • a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal also has good driving voltage characteristics even when it is used as an electron injection layer in contact with the charge generation layer between EL layers in a tandem device. It turned out to indicate.
  • the comparative light emitting element 34 having no layer has better reliability than the comparative light emitting element 34 having no layer. Therefore, a composite material of an organic compound having a function of interacting with a metal at tridentate or tetradentate and metal is used as an electron injection layer in contact with the charge generation layer between the EL layers in the tandem element, thereby achieving excellent reliability. Thus, the light emitting element can be realized.
  • the light-emitting element which is one embodiment of the present invention is a light-emitting element with low driving voltage and high emission efficiency because it is excellent in electron injecting property.
  • the light-emitting element is excellent in moisture resistance and reliability.
  • the structure shown in this embodiment can be combined with any of the other embodiments and embodiments as appropriate.
  • FIG. 1 is a schematic cross-sectional view of the light-emitting element fabricated in this example, and Table 16 shows the details of the element structure. Note that for structures and abbreviations of other compounds, the above Examples and Embodiment 1 may be referred to.
  • each of the light emitting elements 22 to 25 is a light emitting element using In, which is a metal belonging to group 13 as a metal used for a composite material of an organic compound having a function of interacting with a metal at tridentity or tetradentity and metal. is there.
  • the light emitting device 22 was manufactured in the same process as the comparative light emitting device 1 except for the process of forming the electron injection layer 130.
  • tPy2P and In were co-evaporated on the electron transport layer 118 (2) so that the weight ratio (tPy2P: In) was 1: 0.4 and the thickness was 5 nm.
  • the light emitting device 23 was manufactured in the same process as the comparative light emitting device 1 except for the process of forming the electron transport layer 118 (2) and the electron injection layer 130.
  • NBPhen was vapor deposited on the electron transporting layer 118 (1) so as to have a thickness of 10 nm.
  • NBPhen and Ag were co-deposited on the electron transport layer 118 (2) so that the weight ratio (NBPhen: Ag) was 1: 0.3 and the thickness was 5 nm.
  • 2Py3Tzn and In were co-deposited on the electron injection layer 130 (1) so that the weight ratio (2Py3Tzn: In) was 1: 0.6 and the thickness was 5 nm, as the electron injection layer 130 (2). .
  • the light emitting element 24 and the light emitting element 25 were manufactured in the same steps as the light emitting element 23 except for the step of forming the electron injection layer 130 (2).
  • the light emitting elements 22 to 25 were manufactured in the same manner as the comparative light emitting element 1, and then heat treated at 80 ° C. for 1 hour in the air without sealing.
  • FIG. 37 The current efficiency-luminance characteristics of the manufactured light emitting elements 22 to 25 are shown in FIG. 37, the current-voltage characteristics are shown in FIG. 38, the power efficiency-luminance characteristics are shown in FIG. 39, and the external quantum efficiency-luminance characteristics are shown in FIG. Show.
  • the measurement of each light emitting element was performed at room temperature (in the atmosphere kept at 23 ° C.).
  • FIG. 41 shows an electroluminescent spectrum when current is supplied to each light emitting element at a current density of 2.5 mA / cm 2 .
  • the measurement was performed at room temperature.
  • the peak wavelength of the electroluminescent spectrum of each of the light emitting elements 22 to 25 is around 615 nm, and the light emitting elements 22 to 25 are guest materials of the respective light emitting elements.
  • -Dmp It turned out that the luminescence derived from 2 (dpm) is shown.
  • the light-emitting elements 22 to 25 exhibited favorable current-voltage characteristics. Accordingly, it has been found that In is suitable as a metal used for a composite material of an organic compound having a function of interacting with a metal at tridentate or tetradentate and metal.
  • the light-emitting element which is one embodiment of the present invention is a light-emitting element with low driving voltage and high emission efficiency because it is excellent in electron injecting property.
  • the light-emitting element is excellent in moisture resistance.
  • the structure shown in this embodiment can be combined with any of the other embodiments and embodiments as appropriate.
  • FIG. 1 is a schematic cross-sectional view of the light-emitting element fabricated in this example, and Table 18 shows details of the element structure.
  • chemical formulas of organic compounds used in this example are shown below. Note that for structures and abbreviations of other compounds, the above Examples and Embodiment 1 may be referred to.
  • each of the light-emitting elements 26 to 28 emits light using an organic compound having a triazine skeleton or a bipyridine skeleton as an organic compound used for a composite material of metal and an organic compound having a function of interacting with metal at tridentate or tetradentate. It is an example of an element. Note that, in this embodiment, a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal is used for the electron injection layer 130.
  • the light emitting element 26 to the light emitting element 28 were manufactured in the same steps as the comparative light emitting element 1 except for the step of forming the electron injection layer 130.
  • PPm3Tzn and Cu were co-evaporated on the electron transport layer 118 (2) so that the weight ratio (PPm3Tzn: Cu) was 1: 0.2 and the thickness was 5 nm.
  • PPm3Tzn is an example of an organic compound having a triazine skeleton. Further, it can be said that PPm3Tzn is an organic compound having a pyrimidine skeleton.
  • 2,2 ′-(2,2′-bipyridine-6,6′-diyl) bis (4-phenylbenzo [h] quinazoline) on the electron transport layer 118 (2) (Abbr .: 6, 6 '(P-Bqn) 2BPy) and Ag are co-deposited so that the weight ratio (6, 6' (P-Bqn) 2BPy: Ag) is 1: 0.3 and the thickness is 5 nm did.
  • 6, 6 '(P-Bqn) 2BPy is an example of the organic compound which has bipyridine frame
  • the weight ratio (6, 6 '(P-Bqn) 2 BPy: Cu) of 6, 6' (P-Bqn) 2BPy) and Cu is on the electron transport layer 118 (2)
  • the co-evaporation was performed to be 1: 0.3 and 5 nm in thickness.
  • the light emitting elements 26 to 28 were manufactured in the same manner as the comparative light emitting element 1 after producing a cathode, and then heat-treated at 80 ° C. for 1 hour in the air without sealing.
  • FIG. 42 The current efficiency-luminance characteristics of the manufactured light emitting elements 26 to 28 are shown in FIG. 42, the current-voltage characteristics in FIG. 43, the power efficiency-luminance characteristics in FIG. 44, and the external quantum efficiency-luminance characteristics in FIG. Show.
  • the measurement of each light emitting element was performed at room temperature (in the atmosphere kept at 23 ° C.).
  • FIG. 46 shows an electroluminescent spectrum when current is supplied to each light emitting element at a current density of 2.5 mA / cm 2 .
  • the measurement was performed at room temperature.
  • Table 19 shows the element characteristics of the light-emitting elements 26 to 28 in the vicinity of 1000 cd / m 2 .
  • the peak wavelengths of electroluminescence spectra of the light emitting elements 26 to 28 are all around 618 nm, and the light emitting elements 26 to 28 are guest materials of the respective light emitting elements. -Dmp It turned out that the luminescence derived from 2 (dpm) is shown.
  • an organic compound having a triazine skeleton (or a pyrimidine skeleton) or a bipyridine skeleton (or a quinazoline skeleton) is preferable as an organic compound used for a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal. It turned out that it was.
  • an organic compound having a triazine skeleton (or a pyrimidine skeleton) or a bipyridine skeleton (or a quinazoline skeleton) is preferable as an organic compound used for a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal. It turned out that it was.
  • the light-emitting element which is one embodiment of the present invention is a light-emitting element with low driving voltage and high emission efficiency because it is excellent in electron injecting property.
  • the light-emitting element is excellent in moisture resistance.
  • the structure shown in this embodiment can be combined with any of the other embodiments and embodiments as appropriate.
  • FIG. 1 is a schematic cross-sectional view of the light-emitting element fabricated in this example, and Table 20 shows details of the element structure.
  • chemical formulas of organic compounds used in this example are shown below. Note that for structures and abbreviations of other compounds, the above Examples and Embodiment 1 may be referred to.
  • each of the light-emitting elements 29 to 32 is an example of a light-emitting element using an organic compound having a pyridine skeleton as an organic compound used for a composite material of metal and an organic compound having a function of interacting with metal at tridentate or tetradentate. It is. Note that, in this embodiment, a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal is used for the electron injection layer 130.
  • the light emitting element 29 to the light emitting element 32 were manufactured in the same steps as the comparative light emitting element 1 except for the step of forming the electron injection layer 130.
  • the weight ratio (2, 6 (P-Bqn) 2Py: Ag) of 2, 6 (P-Bqn) 2Py to Ag on the electron transporting layer 118 (2) is 1: 0 And co-evaporated to a thickness of 5 nm.
  • 2, 6 (P-Bqn) 2Py is an example of the organic compound which has a pyridine skeleton.
  • 2,6 (P-Bqn) 2Py is an organic compound having a quinazoline skeleton.
  • the weight ratio (2, 6 (P-Bqn) 2Py: Cu) of 2, 6 (P-Bqn) 2Py to Cu on the electron transporting layer 118 (2) is 1: 0 And co-evaporated to a thickness of 5 nm.
  • a weight ratio (2, 6 '(NP-PPm) 2Py: Ag) of 2, 6' (NP-PPm) 2Py to Ag on the electron transport layer 118 (2) is 1 Co-evaporation: 0.3 and thickness 5 nm.
  • 2, 6 '(NP-PPm) 2Py is an example of the organic compound which has a pyridine skeleton.
  • 2,6 '(NP-PPm) 2Py is an organic compound having a pyrimidine skeleton.
  • the light emitting elements 29 to 32 were manufactured in the same manner as the comparative light emitting element 1 after producing a cathode, and then heat-treated at 80 ° C. for 1 hour in the air without sealing.
  • FIG. 47 The current efficiency-luminance characteristics of the manufactured light-emitting elements 29 to 32 are shown in FIG. 47, the current-voltage characteristics in FIG. 48, the power efficiency-luminance characteristics in FIG. 49, and the external quantum efficiency-luminance characteristics in FIG. Show.
  • the measurement of each light emitting element was performed at room temperature (in the atmosphere kept at 23 ° C.).
  • FIG. 51 shows an electroluminescent spectrum when current is supplied to each light emitting element at a current density of 2.5 mA / cm 2 .
  • the measurement was performed at room temperature.
  • Table 21 shows the element characteristics of the light-emitting elements 29 to 32 in the vicinity of 1000 cd / m 2 .
  • the peak wavelengths of electroluminescence spectra of the light emitting elements 29 to 32 are all around 618 nm, and the light emitting elements 29 to 32 are guest materials of the respective light emitting elements.
  • -Dmp It turned out that the luminescence derived from 2 (dpm) is shown.
  • an organic compound having a pyridine skeleton (a pyrimidine skeleton or a quinazoline skeleton) is suitable as an organic compound used for a composite material of metal and an organic compound having a function of interacting with a metal at tridentity or tetradentity.
  • an organic compound having a triazine skeleton (or a pyrimidine skeleton) or a bipyridine skeleton (or a quinazoline skeleton) is preferable as an organic compound used for a composite material of an organic compound having a function of interacting with metal at tridentate or tetradentate and metal. It turned out that it was.
  • the light-emitting element which is one embodiment of the present invention is a light-emitting element with low driving voltage and high emission efficiency because it is excellent in electron injecting property.
  • the light-emitting element is excellent in moisture resistance.
  • the structure shown in this embodiment can be combined with any of the other embodiments and embodiments as appropriate.
  • EL layer 101: electrode, 101a: conductive layer, 101b: conductive layer, 102: electrode, 103: electrode, 103a: conductive layer, 103b: conductive layer, 104: electrode, 104a: conductive layer, 104b: conductive layer 106: light emitting unit 108: light emitting unit 110: EL layer 111: hole injecting layer 112: hole transporting layer 113: electron transporting layer 115: charge generating layer 116: hole injecting layer 117 : Hole transport layer, 118: Electron transport layer, 119: Electron injection layer, 127: Buffer layer, 129: Charge generation layer, 130: Electron injection layer, 131: Compound, 132: Metal, 133: Compound, 140: Light emission Layer 145: Partition wall 150: light emitting element 152: light emitting element 154: light emitting element 170: light emitting layer 200: substrate 220: substrate 222B: region 222G: region 22R: area, 223: light shielding layer,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Optical Filters (AREA)

Abstract

要約書 駆動電圧が低く、信頼性が良好な発光素子を提供する。 陰極と発光層の間に電子注入層を有する発光素子である。該電子注入層は金属と3座または4座で金 属と相互作用する機能を有する有機化合物との混合膜であり、金属原子と該有機化合物はSOMOを 形成する。

Description

発光素子、発光装置、電子機器、及び照明装置
 本発明の一態様は、新規な電子注入層を有する発光素子に関する。または該発光素子を有する表示装置、電子機器、及び照明装置に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
 近年、エレクトロルミネッセンス(Electroluminescence:EL)を利用した発光素子の研究開発が盛んに行われている。これら発光素子の基本的な構成は、一対の電極間に発光性の物質を含む層(EL層)を挟んだ構成である。この素子の電極間に電圧を印加することにより、発光性の物質からの発光を得られる。
 上述の発光素子は自発光型であるため、これを用いた表示装置は、視認性に優れ、バックライトが不要であり、消費電力が少ない等の利点を有する。さらに、薄型軽量に作製でき、応答速度が高いなどの利点も有する。
 一般に、EL素子は駆動電圧を低減させるため、陰極と発光層の間に電子注入層を設ける。該電子注入層は陰極とEL層との間の電子注入障壁を低減させるため、リチウム(Li)やカルシウム(Ca)に代表される、アルカリ金属やアルカリ土類金属のような仕事関数の小さい金属やこれらの化合物が用いられる(例えば特許文献1)。
特開2001−102175号公報
仕事関数の小さい金属やこれらの化合物は酸素や水との反応性が高く、取扱いが困難である。また、該金属や該金属化合物を発光素子に用いると酸素や水の影響を受け、発光素子の発光効率の低下、駆動電圧の上昇、または信頼性の低下などが生じる場合がある。そのため、酸素や水の影響を受けにくく、且つ陰極とEL層との間の電子注入障壁が小さい電子注入層の開発が求められている。
 上述した課題に鑑み、本発明の一態様では、駆動電圧が低い発光素子を提供することを課題とする。または、本発明の一態様では、耐湿性が高い発光素子を提供することを課題とする。または、本発明の一態様では、耐酸素性が高い発光素子を提供することを課題とする。または、本発明の一態様では、消費電力が低減された発光素子を提供することを課題とする。または、本発明の一態様では、信頼性の高い発光素子を提供することを課題とする。または、本発明の一態様では、新規な発光素子を提供することを課題とする。または、本発明の一態様は、新規な半導体装置を提供することを課題とする。または、本発明の一態様では、耐湿性が高い発光素子に用いることができる有機化合物を提供することを課題とする。
または、本発明の一態様は、上記発光素子を適用した耐湿性が高い電子機器および照明装置を提供することを課題とする。または、本発明の一態様は、上記発光素子を適用した消費電力が低減された発光装置を提供することを課題とする。または、本発明の一態様は、上記発光素子を適用した長寿命な発光装置を提供することを課題とする。
 なお、上記の課題の記載は、他の課題の存在を妨げない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細書等の記載から自ずと明らかであり、明細書等の記載から上記以外の課題を抽出することが可能である。
上述のように、耐湿性が高く、電子注入特性が高い発光素子の開発が求められている。そのため、仕事関数が小さい金属を用いない発光素子の開発が求められている。
 従って、本発明の一態様は、陽極と陰極との間に発光層を有し、発光層と陰極との間に第1の層を有し、第1の層は第1の有機化合物及び金属を有し、金属は周期表における第3族乃至第13族のいずれかに属し、第1の有機化合物は、置換または無置換の炭素数1以上30以下の複素芳香環を有し、複素芳香環は、窒素を含み、第1の有機化合物は、窒素において3座または4座で前記金属と相互作用する機能を有し、第1の有機化合物と金属はSOMO(半占軌道:Single Occupied Molecular Orbital)を形成する、発光素子である。
 また、本発明の別の一態様は、陽極と、陰極との間に、第1の発光ユニットと、第2の発光ユニットを有し、第1の発光ユニットと、第2の発光ユニットとの間に第1の層を有し、第1の層は第1の有機化合物及び金属を有し、金属は周期表における第3族乃至第13族のいずれかに属し、第1の有機化合物は、置換または無置換の炭素数1以上30以下の複素芳香環を有し、複素芳香環は、窒素を含み、第1の有機化合物は、窒素において3座または4座で金属と相互作用する機能を有し、第1の有機化合物と金属はSOMOを形成する、発光素子である。
上記構成において、第1の有機化合物は一般式(G0)で表される有機化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000008
一般式(G0)中において、A、A及びAはそれぞれ独立に、置換または無置換の炭素数1以上30以下の複素芳香環を表し、A、A及びAは互いに縮合環を形成していても良い。
また、上記構成において、第1の有機化合物は一般式(G1)で表される有機化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000009
一般式(G1)中において、X乃至Xはそれぞれ独立に、炭素(C)または窒素(N)を表し、炭素は、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を有し、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
また、上記構成において、第1の有機化合物は一般式(G2)で表される有機化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000010
一般式(G2)中において、X及びXはそれぞれ独立に、炭素(C)または窒素(N)を表し、炭素は、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を有し、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
また、上記構成において、第1の有機化合物は一般式(G3−1)乃至(G3−3)のいずれか一で表される有機化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000011
一般式(G3−1)乃至(G3−3)中において、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
また、上記構成において、第1の有機化合物は一般式(G4−1)乃至(G4−3)のいずれか一で表される有機化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000012
一般式(G4−1)乃至一般式(G4−3)中において、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数2以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
また、上記構成において、第1の有機化合物は下記構造式(100)乃至(103)のいずれか一で表される有機化合物であると好ましい。
Figure JPOXMLDOC01-appb-C000013
また、上記構成において、金属の仕事関数が4.0eV以上5.3eV以下であると好ましい。
また、上記構成において、第1の有機化合物が有するLUMO(最低空軌道:Lowest Unoccupied Molecular Orbital)準位が−3.6eV以上−2.3eV以下であると好ましい。
また、上記構成において、金属が遷移金属であると好ましく、より好ましくは、第5族、第7族、第9族、または第11族のいずれかに属する金属であり、より好ましくは第11族に属する遷移金属であり、AgまたはCuであるとさらに好ましい。
また、上記構成において、複素芳香環は、置換または無置換の電子不足型複素芳香環を有すると好ましく、ピリジン環、ジアジン環、及びトリアジン環のいずれか一を有するとさらに好ましい。
また、上記構成において、陰極と第1の層の間にさらに第2の層を有し、第2の層は電子不足型複素芳香環を有する第2の有機化合物を含むと好ましい。
上記構成において、第2の有機化合物が有するLUMO準位は、SOMOが有するエネルギー準位より低いと好ましい。
上記構成において、第1の層がアルカリ金属及びアルカリ土類金属を有さない発光素子であると好ましい。
上記構成において、第1の層における、金属のモル比率が第1の有機化合物に対して、0.2以上0.8以下であると好ましい。
上記構成において、陰極が第1の層と同一の金属を含んでいると好ましい。
また、本発明の別の一態様は構造式(200)乃至(203)で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000014
 また、本発明の他の一態様は、上記各構成の表示装置と、筐体またはタッチセンサの少なくとも一とを有する電子機器である。また、本発明の他の一態様は、上記各構成の発光素子と、筐体またはタッチセンサの少なくとも一を有する照明装置である。また、本発明の一態様は、発光素子を有する発光装置だけでなく、発光装置を有する電気機器も範疇に含める。したがって、本明細書中における発光装置とは、画像表示デバイス、もしくは光源(照明装置含む)を指す。また、発光素子にコネクター、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)が取り付けられた表示モジュール、TCPの先にプリント配線板が設けられた表示モジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装された表示モジュールも本発明の一態様である。
 本発明の一態様により、駆動電圧が低い発光素子を提供することができる。また、本発明の一態様により、耐湿性が高い発光素子を提供することができる。また、本発明の一態様により、耐酸素性が高い発光素子を提供することができる。また、本発明の一態様により、消費電力が低減された発光素子を提供することができる。また、本発明の一態様により、信頼性の高い発光素子を提供することができる。また、本発明の一態様により、新規な発光素子を提供することができる。また、本発明の一態様により、新規な半導体装置を提供することができる。または、本発明の一態様により、耐湿性が高い発光素子に用いることができる有機化合物を提供することができる。
また、本発明の一態様により、上記発光素子を適用した耐湿性が高い電子機器および照明装置を提供することができる。また、本発明の一態様により、上記発光素子を適用した消費電力が低減された発光装置を提供することができる。本発明の一態様により、上記発光素子を適用した長寿命な発光装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様の発光素子を説明する断面模式図及び電子注入層に係るエネルギー準位の相関を説明する図。 本発明の一態様の発光素子を説明する断面模式図。 本発明の一態様の発光素子を説明する断面模式図。 本発明の一態様の発光素子を説明する断面模式図。 本発明の一態様の表示装置を説明する上面図及び断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の表示装置を説明する断面模式図。 本発明の一態様の電子機器について説明する図。 本発明の一態様の電子機器について説明する図。 本発明の一態様の電子機器について説明する図。 本発明の一態様の照明装置について説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の信頼性試験結果を説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の信頼性試験結果を説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、化合物のNMRスペクトルを説明する図。 実施例に係る、化合物のNMRスペクトルを説明する図。 実施例に係る、化合物のNMRスペクトルを説明する図。 実施例に係る、化合物のNMRスペクトルを説明する図。 実施例に係る、化合物のNMRスペクトルを説明する図。 本発明の一態様の発光素子を説明する断面模式図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の電力効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の電力効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の電力効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の電流効率−輝度特性を説明する図。 実施例に係る、発光素子の電流−電圧特性を説明する図。 実施例に係る、発光素子の電力効率−輝度特性を説明する図。 実施例に係る、発光素子の外部量子効率−輝度特性を説明する図。 実施例に係る、発光素子の電界発光スペクトルを説明する図。 実施例に係る、発光素子の信頼性試験結果を説明する図。
 以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されない。
 なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いており、工程順又は積層順を示さない場合がある。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の発光素子について、図1を用いて以下説明する。
<発光素子の構成例1>
 図1(A)は、本発明の一態様の発光素子150の断面模式図である。
 発光素子150は、一対の電極(電極101及び電極102)を有し、該一対の電極間に設けられたEL層100を有する。EL層100は、少なくとも発光層140及び電子注入層130を有する。
 また、図1(A)に示すEL層100は、発光層140、電子注入層130の他に、正孔注入層111、正孔輸送層112及び電子輸送層118等の機能層を有する。
なお、本実施の形態においては、一対の電極のうち、電極101を陽極として、電極102を陰極として説明するが、発光素子150の構成としては、その限りではない。つまり、電極101を陰極とし、電極102を陽極とし、当該電極間の各層の積層を、逆の順番にしてもよい。すなわち、陽極側から、正孔注入層111と、正孔輸送層112と、発光層140と、電子輸送層118と、電子注入層130と、が積層する順番とすればよい。
 なお、EL層100の構成は、図1(A)に示す構成に限定されず、少なくとも発光層140及び電子注入層130を有し、正孔注入層111、正孔輸送層112、電子輸送層118、はそれぞれ有していても、有していなくても良い。
 また、一対の電極間のEL層には、必要な機能に応じた層が形成されれば良く、これに限らない。すなわち、一対の電極間のEL層は、正孔または電子の注入障壁を低減する、正孔または電子の輸送性を向上する、正孔または電子の輸送性を阻害する、または電極による消光現象を抑制する、等の機能を有する層を有する構成としても良い。
 また、発光層140は、ホスト材料と、ゲスト材料(発光材料)と、を有すると好ましい。
 また、ホスト材料としては、正孔を輸送する機能(正孔輸送性)を有する材料(正孔輸送性材料)、及び電子を輸送する機能(電子輸送性)を有する材料(電子輸送性材料)のいずれか一方または双方を用いることが好ましく、正孔輸送性及び電子輸送性を有する材料を用いてもよい。
 また、ホスト材料が、電子輸送性材料と正孔輸送性材料との組み合わせ(混合ホスト)である場合、その混合比によってキャリアバランスを容易に制御することが可能となる。具体的には、電子輸送性材料:正孔輸送性材料=1:9から9:1(重量比)の範囲が好ましい。また、該構成を有することで、容易にキャリアバランスを制御することができることから、キャリア再結合領域の制御も簡便に行うことができる。
 また、ゲスト材料としては、発光性の化合物を用いればよく、該発光性の化合物としては、蛍光を発することができる物質(以下、蛍光性化合物ともいう)または燐光を発することができる物質(以下、燐光性化合物ともいう)であると好適である。
発光素子の駆動電圧を低減させるためには、発光層140と電極102との間の電子注入障壁を小さくする必要がある。そのため、発光層140と電極102との間に電子注入層130を設けることが好ましい。従来の発光素子においては電子注入層130には仕事関数が小さい、アルカリ金属やアルカリ土類金属を有する金属材料が用いられている。しかし、仕事関数が小さい金属材料は酸素や水との反応性が高いため、発光素子中で酸素や水との反応が生じると、電子注入性が低下し、発光効率の低下、駆動電圧の上昇、素子寿命の低下や、シュリンク(発光部端部における非発光領域)発生等の原因になり、発光素子の特性低下や信頼性の低下に繋がる場合がある。換言すると、仕事関数が小さい金属材料が、素子劣化の要因となり得る。したがって、発光素子の特性低下や信頼性の低下を抑制するためには、発光素子がアルカリ金属およびアルカリ土類金属を有さないことが好ましい。
一方、仕事関数が大きい金属は酸素や水との反応性は低いものの、電子注入層130に用いた場合、発光層140と電極102との間の電子注入障壁が大きくなるため、発光素子の駆動電圧が高くなる場合や、発光効率が低下してしまうという問題点がある。
ここで、本発明者らは、3座または4座で金属と相互作用する機能を有する有機化合物と金属とが相互作用することでSOMOを形成し、当該SOMOを形成する組み合わせの有機化合物と金属の複合材料を電子注入層に用いることで、陰極から発光層への電子注入障壁を低減し、且つ耐湿性に優れた発光素子が得られることを見出した。すなわち、アルカリ金属およびアルカリ土類金属を用いなくても電子注入層130が作製できることを見出した。
よって本発明の一態様の発光素子は、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料を電子注入層に用いた発光素子である。
該有機化合物と金属とが相互作用することによりSOMOを形成する。該SOMOは、金属が有する不対電子に由来する軌道であるが、有機化合物の軌道上にも分布する。このことから、金属の電子軌道と有機化合物との電子軌道が相互作用していることが分かる。また、有機化合物と金属を効率良く相互作用させるためには、有機化合物は相互作用する原子を多く有すると好ましい。相互作用する原子を多く有する有機化合物は、金属と相互作用しやすいため、該有機化合物と金属を混合することで、容易にSOMOを形成することができる。そのため、本発明の一態様の発光素子に用いる有機化合物は3座または4座で金属と相互作用する機能を有すると好ましい。また、相互作用する原子を多く有する有機化合物と金属でSOMOを形成した場合、SOMO準位は高くなりやすく、陰極から発光層への電子注入特性が良好となる。また、高い仕事関数を有する金属とも相互作用し、SOMOを形成することができる。そのため、本発明の一態様の発光素子に用いる有機化合物は3座または4座で金属と相互作用する機能を有すると好ましい。
該金属と相互作用する原子としては有機化合物中で非共有電子対を有するヘテロ原子が挙げられる。例えば、酸素(O)、窒素(N)、硫黄(S)、リン(P)が挙げられるが窒素であると好ましい。窒素は電気陰性度が高いため、金属と相互作用しやすい。また、本発明の一態様の発光素子に用いる3座または4座で金属と相互作用する機能を有する有機化合物は、電子注入層に用いるため、電子輸送性を有すると好ましい。そのため該有機化合物は共役が分子全体に広がった有機化合物が好ましい。ここで、窒素は有機化合物中において、共役結合を形成することができるため、窒素を分子中、特に複素芳香環中に用いることによって、キャリア輸送性が高い有機化合物とすることができる。よって、相互作用する原子は窒素であると好ましく、さらに窒素は有機化合物中において、複素芳香環に含まれているとより好ましい。該構成とすることによって、金属との相互作用能を有しつつ、キャリア輸送性に優れた有機化合物とすることができる。また、該複素芳香環は6員環や8員環等、偶数環であるとさらに好ましい。該構成とすることによって、窒素上の非共有電子対は共役に関与しないため、金属と相互作用しやすくなる。
3座または4座で金属と相互作用する機能を有する有機化合物と金属とが相互作用することでSOMOを形成するためには、当該有機化合物と金属の電子数の合計が奇数であると好ましい。したがって、当該有機化合物の電子数が偶数である場合、該金属は周期表における奇数の族であると好ましい。また、当該有機化合物の電子数が奇数である場合、該金属は周期表における偶数の族であると好ましい。
また、3座または4座で金属と相互作用する機能を有する化合物としては、電子を輸送する機能を有する有機化合物が好ましい。また、該金属に対して電子受容体として機能する有機化合物が好ましい。
また、本発明の一態様に用いる有機化合物は、3座または4座で該金属と相互作用するため、金属と相互作用する機能が高い。そのため、3乃至11族の遷移金属だけでなく、閉核したd軌道を持つ12族や13族の金属も本発明の一態様に用いることができる。また、仕事関数が非常に大きい金(Au)やコバルト(Co)等の金属も好適に用いることができる。
第3乃至第13族に属する金属のような仕事関数が大きい金属は水や酸素との反応性が乏しいため、発光素子に用いた場合、仕事関数が小さい金属を用いた場合に懸念される、水や酸素による素子劣化が少ない。具体的には、金属の仕事関数は4.0eV以上5.3eV以下であると好ましく、より好ましくは4.2eV以上5.0eV以下、さらに好ましくは4.5eV以上5.0eV以下、さらに好ましくは4.7eV以上5.0eV以下である。該構成とすることで、本発明の一態様は耐湿性、耐酸素性に優れた発光素子を提供することができる。
図1(B)は本発明の一態様の発光素子における、電子注入層130の概略図を示す。電子注入層130は化合物131と金属132を有する。化合物131は3座または4座で金属132と相互作用する機能を有する。
図1(C)は本発明の一態様の発光素子における、電子注入層130におけるエネルギーダイヤグラムを示す。金属132と化合物131を混合すると、化合物131が金属132の原子と相互作用することで、SOMOが形成される。このとき、化合物131が金属132の原子と相互作用して形成されるHOMO(Highest Occupied Molecular Orbital)準位は元の化合物131が有するHOMO準位と同様であると好ましい。化合物131に電子を輸送する機能を有する有機化合物を用いる場合、化合物131が有するHOMO準位は低く、化合物131に正孔が注入されにくい。そのため、化合物131と金属132とが相互作用して形成するHOMO準位が元の化合物131が有するHOMO準位と同等である場合、電子注入層130と電極102との間の正孔注入障壁が大きくなるため、電子注入層130から電極102へ正孔が抜けにくく発光素子中のキャリアバランスを向上できるため好ましい。なお、本明細書等の中でHOMOとは、電子で満たされている最もエネルギーが高い分子軌道を指す。
SOMOは一つだけ電子を有する軌道であるため、発光素子150に電圧を印加するとSOMO中の電子が発光素子中のキャリアとなり、電子輸送層118、及び発光層140へ輸送される。また、電極102から電子注入層130へ容易に電子注入することが可能となり、さらに電子注入層130から電子輸送層118を通して発光層140へ容易に電子注入することが可能となる。すなわち、電子注入層130がSOMOを形成する組み合わせの材料を有することで、電極102から発光層140中に容易に電子注入を行うことができる。また、SOMO準位は化合物131が有するLUMO準位より、低いと好ましい。そのため、化合物131のLUMO準位は高い方が好ましい。具体的には、化合物131のLUMO準位が−3.6eV以上−2.3eV以下であると好ましい。このようなLUMO準位を有する有機化合物を金属と混合すると、相互作用により形成されるSOMO準位は電子注入に好適な準位となるため、電極102から発光層140への電子注入障壁を低減することができる。
なお、有機化合物のHOMO準位及びLUMO準位は一般にCV(サイクリックボルタンメトリー)や光電子分光法、光吸収分光法、逆光電子分光法等によって見積もられる。異なる化合物間の値を比較する場合は、同じ測定で見積もられた値を用いることが好ましい。
ここで上述の金属は第3族、第5族、第7族、第9族、第11族、第13族のいずれかに属すると好ましい。これら奇数族の金属は最外殻の軌道に1つ電子(不対電子)を有するため、化合物131とSOMOを形成しやすく、特に好ましい。
<量子化学計算による金属132と化合物131の相互作用におけるSOMO準位の見積もり>
本発明の一態様の発光素子において、化合物131と金属132がSOMOを形成するが、SOMO準位が著しく低い場合、電子注入層としては不適当である。そこで、化合物131が金属原子と相互作用した際に形成されるSOMOの準位について量子化学計算による見積もりを行った。その結果を表1に示す。なお、3座または4座で金属と相互作用する機能を有する有機化合物としては下記に示す、4’,4’’’’−(1,4−フェニレン)ビス(2,2’:6’,2“−テルピリジン)(略称:tPy2P)、4’,4’’’’−(9,10−アントリル)ビス(2,2’:6’,2“−テルピリジン)(略称:tPy2A)、2,2’−(ピリジン−2,6−ジイル)ビス(4−フェニルベンゾ[h]キナゾリン)(略称:2,6(P−Bqn)2Py)、2,2’−(2,2’−ビピリジン−6,6’−ジイル)ビス(4−フェニルベンゾ[h]キナゾリン)(略称:6,6’(P−Bqn)2BPy)、2,4,6−トリス(2−ピリジル)−1,3,5−トリアジン(略称:2Py3Tzn)、2,4,6−トリス(5−フェニルピリミジン−2−イル)−1,3,5−トリアジン(略称:PPm3Tzn)を用いた。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-T000016
また、表1中の有機化合物のLUMO準位はサイクリックボルタンメトリー(CV)測定により算出した。
測定装置としては電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アルドリッチ製、99.8%、カタログ番号;22705−6)を用い、支持電解質である過塩素酸テトラ−n−ブチルアンモニウム(n−BuNClO)((株)東京化成製、カタログ番号;T0836)を100mmol/Lの濃度となるように溶解させ、さらに測定対象を2mmol/Lの濃度となるように溶解させて調製した。また、作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極(5cm))を、参照電極としてはAg/Ag電極(ビー・エー・エス(株)製、RE7非水溶媒系参照電極)をそれぞれ用いた。なお、測定は室温(20以上25℃以下)で行った。また、CV測定時のスキャン速度は、0.1V/secに統一し、参照電極に対する酸化電位Ea[V]および還元電位Ec[V]を測定した。Eaは酸化−還元波の中間電位とし、Ecは還元−酸化波の中間電位とした。ここで、本実施例で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[eV]であることが分かっているため、HOMO準位[eV]=−4.94−Ea、LUMO準位[eV]=−4.94−Ecという式から、HOMO準位およびLUMO準位をそれぞれ求めることができる。
量子化学計算プログラムとしては、Gaussian09を使用した。計算は、ハイパフォーマンスコンピュータ(SGI社製、ICE X)を用いて行った。まず、有機化合物単体の基底状態、金属単体の基底状態、及び有機化合物と金属との複合材料の基底状態における最安定構造を密度汎関数法(DFT)で計算した。基底関数としては6−311G(d,p)およびLanL2DZを用い、汎関数としてはB3LYPを用いた。次に、有機化合物と金属との複合材料の全エネルギーと、有機化合物単体の全エネルギーと金属単体の全エネルギーの和と、の差より安定化エネルギーを算出した。すなわち、(安定化エネルギー)=(有機化合物と金属との複合材料の全エネルギー)−(有機化合物単体の全エネルギー)−(金属単体の全エネルギー)とした。なお、DFTの全エネルギーは、ポテンシャルエネルギー、電子間静電エネルギー、電子の運動エネルギーと複雑な電子間の相互作用を全て含む交換相関エネルギーの和で表される。DFTでは、電子密度で表現された−電子ポテンシャルの汎関数(関数の関数の意)で交換相関相互作用を近似しているため、計算は高精度である。
表1に、第7族の遷移金属であるマンガン(Mn)、第9族の遷移金属であるコバルト(Co)、第11族の遷移金属である銅(Cu)、銀(Ag)、金(Au)、第13族の金属であるアルミニウム(Al)とインジウム(In)について、各有機化合物と各金属とが形成するSOMO準位の計算結果を示す。また、電子注入層材料として広く用いられている、リチウム(Li)と各有機化合物が形成するSOMO準位も合わせて計算した。計算の結果、表1に示す有機化合物と金属との組み合わせで、いずれも有機化合物が有する複素芳香環中の窒素付近において有機化合物と金属とが相互作用し安定化し、安定化エネルギーが負の値を示す結果が得られた。すなわち、これら有機化合物と金属とを混合した場合、有機化合物と金属とが相互作用した方が相互作用しない場合と比較して、エネルギーが安定になる。このように、3座または4座で金属と相互作用する機能を有する有機化合物と金属とが相互作用することで安定な複合材料となる。また、表1より、3座または4座で金属と相互作用する機能を有する有機化合物と各金属で形成するSOMO準位は、各有機化合物とLiとが形成するSOMO準位と概ね同等であった。よって、3座または4座で金属と相互作用する機能を有する有機化合物と該金属との複合材料は、高い電子注入性を有していることが分かった。また、特に第11族元素である、Cu、Ag、Auや第9族元素であるCoを用いた複合材料は高いSOMO準位を示し、3座または4座で金属と相互作用する機能を有する有機化合物と第9族または第11族に属する金属の複合材料は高い電子注入特性を有していることが分かった。
また、表1より、3座または4座で金属と相互作用する機能を有する有機化合物と各金属で形成するSOMO準位は、各金属が有する仕事関数よりも、該有機化合物のLUMO準位に影響を受けることが示唆される。よって、LUMO準位が高い有機化合物を用いることによって、高いSOMO準位を有する、電子注入特性に優れた、有機化合物と金属の複合材料を作製することができる。上述の通り、該有機化合物のLUMO準位は−3.6eV以上−2.3eV以下であると好ましい。
一方、発光素子の作製工程を考慮すると、一般に発光素子のEL層、特に電子注入層や陰極は真空蒸着法によって成膜される場合が多い。このとき、用いる材料としては簡便に真空蒸着が行える材料、すなわち融点や沸点、昇華点が低い材料を用いることが好ましく、真空蒸着時の蒸気圧となる温度が低い材料を用いることが好ましい。ここで、第11族、第13族元素は第7族や第9族元素と比較し、融点が低いため、真空蒸着に好適に用いることができる。特に、AgやAl等の第11族元素や第13族元素は融点が低いため、真空蒸着法を用いることにより、簡便に金属原子と有機化合物を混合することができるため好ましい。
また、AgやCu、Au、Al、Inは陰極材料としても用いることができる。電子注入層130及び電極102に同一の材料を用いることによって発光素子の作製を簡便に行うことができるため好ましい。また、電子注入層130と電極102に同一の材料を用いることによって、電子注入層130と電極102の密着性を高めることができ、発光素子の信頼性を向上させることができる。また、発光素子の製造コストを低減することができる。
また、本発明の一態様の発光素子においては、仕事関数が大きい金属を電子注入層130へ用いることができる。そのため、電極102に含まれる金属の仕事関数以上の仕事関数を有する金属を電子注入層130へ用いることができる。本発明の一態様の発光素子においては仕事関数が大きい金属を用いても、電極102と電子注入層130との電子注入障壁を低減することができるため、駆動電圧を低減することができる。
また、化合物131が金属132と相互作用した場合、金属132が電子ドナー、化合物131が電子のアクセプターになると好ましい。この場合、化合物131は複数の電子不足型複素芳香環を有すると好ましい。このような構成の場合、化合物131は電子を受け取りやすいため、金属132原子と相互作用したときSOMOを形成しやすい。また、電子不足型複素芳香環を有する化合物は電子輸送性が良好なため、電子注入層に用いた場合、発光素子の駆動電圧を低減することができるため化合物131として好ましい。
該電子不足型複素芳香環は含窒素複素芳香環であると好ましく、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有するとより好ましい。これらの環は電気化学的安定性に優れるため、信頼性の良好な発光素子を提供することができる。また、電子輸送性に優れるため、駆動電圧が低減された発光素子を提供することができる。なお、当該電子不足型複素芳香環を有する化合物としては、金属錯体であってもよい。
また、化合物131として有機化合物を用いる場合の炭素数は25以上100以下であると好ましい。このような炭素数とすることで、昇華性に優れた有機化合物とすることができるため、真空蒸着において有機化合物の熱分解を抑制することができ、良好な材料使用効率を得ることができる。さらに、ガラス転移点(Tg)が100℃以上であると好ましい。このようなTgを有する有機化合物をEL層に用いることで耐熱性に優れた発光素子とすることができる。
なお、本計算に用いた有機化合物は、配位原子であるNが複素環上に存在し、さらに複数の複素環を介し、N−C−C−Nの順に並んだ共役二重結合を有している。このような結合部位を有していると、化合物131と金属132とが相互作用した際にキレート環を形成する(化合物131と金属132とが相互作用し、環構造を形成する)ことが可能なためである。キレート環を形成できる化合物131と金属132の組合せは相互作用をしやすく、SOMOを形成しやすいため好ましい。
よって、本発明の一態様に係る発光素子に好適に用いることができる、3座または4座で金属と相互作用する機能を有する有機化合物は以下の一般式(G0)で表される構造である。
Figure JPOXMLDOC01-appb-C000017
一般式(G0)中において、A、A及びAはそれぞれ独立に、置換または無置換の炭素数1以上30以下の複素芳香環を表し、A、A及びAは互いに縮合環を形成していでも良い。
一般式(G0)で表される有機化合物は、複素芳香環上のNがN−C−C−Nの順に並んだ共役二重結合を有しており、三座以上で金属と相互作用する機能を有している。上述のように、このような構造を有する有機化合物は、金属と混合した際に、SOMOを形成しやすいため、本発明の一態様の発光素子に好適に用いることができる。
また、上記一般式(G0)中、A、A及びAで表される置換または無置換の炭素数1以上30以下の複素芳香環としては、例えばピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環、キノリン環、キノキサリン環、キナゾリン環、ベンゾキナゾリン環、フェナントロリン環、アザフルオランテン環、イミダゾール環、オキサゾール環、オキサジアゾール環等があげられる。具体的には、以下(A−1)乃至(A−16)で示す複素芳香環があげられる。ただし、A、A及びAで表される置換または無置換の炭素数1以上30以下の複素芳香環はこれらに限られない。A、A及びAは互いに縮合環を形成していても良い。例えば、AとAが互いに結合し、フェナントロリン環を形成しても構わない。
Figure JPOXMLDOC01-appb-C000018
また、本発明の一態様に係る発光素子に好適に用いることができる、3座または4座で金属と相互作用する機能を有する有機化合物は以下の一般式(G1)で表される構造である。
Figure JPOXMLDOC01-appb-C000019
一般式(G1)中において、X乃至Xはそれぞれ独立に、炭素(C)または窒素(N)を表し、炭素は、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を有し、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
一般式(G1)で表される有機化合物のように、3座または4座で金属と相互作用する機能を有する有機化合物がピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有するとより好ましい。これらの環は電気化学的安定性に優れるため、信頼性の良好な発光素子を提供することができる。また、電子輸送性に優れるため、駆動電圧が低減された発光素子を提供することができる。
また、本発明の一態様に係る発光素子に好適に用いることができる、3座または4座で金属と相互作用する機能を有する有機化合物は以下の一般式(G2)で表される構造である。
Figure JPOXMLDOC01-appb-C000020
一般式(G2)中において、X及びXはそれぞれ独立に、炭素(C)または窒素(N)を表し、炭素は、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を有し、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数3以上60以下の複素芳香族炭化水素基を表す。
ピリジン骨格を有する有機化合物は、高いLUMO準位を有する傾向がある。よって、一般式(G2)で表されるようなピリジン骨格を有する有機化合物を金属と混合した際に、高いSOMO準位を有する複合材料を作製できる。すなわち、ピリジン環を有し、3座または4座で金属と相互作用する機能を有する有機化合物を金属と混合することで、高い電子注入性を有する複合材料を作製することができる。
また、本発明の一態様に係る発光素子に好適に用いることができる、3座または4座で金属と相互作用する機能を有する有機化合物は以下の一般式(G3−1)乃至(G3−3)のいずれか一で表される。
Figure JPOXMLDOC01-appb-C000021
一般式(G3−1)乃至(G3−3)中において、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
また、本発明の一態様に係る発光素子に好適に用いることができる、3座または4座で金属と相互作用する機能を有する有機化合物は以下の一般式(G4−1)乃至(G4−3)のいずれか一で表される。
Figure JPOXMLDOC01-appb-C000022
一般式(G4−1)乃至一般式(G4−3)中において、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数2以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。
<置換基の例>
一般式(G0)乃至(G3)において、R乃至Rで表される置換基またはCが有する置換基としては、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基があげられる。該アルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、n−ヘキシル基などを挙げることができ、該シクロアルキル基としては例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などを挙げることができ、該アリール基としては、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、スピロフルオレニル基などを具体例として挙げることができる。より具体的には例えば、下記構造式(R−1)乃至(R−56)で表される基が挙げられる。なお、R乃至Rで表される置換基またはCが有する置換基はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000023
また、一般式(G0)乃至(G3)において、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数3以上60以下の複素芳香族炭化水素基を表す。該アルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、n−ヘキシル基などを挙げることができ、該シクロアルキル基としては例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などを挙げることができ、該アリール基としては、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、スピロフルオレニル基などを具体例として挙げることができる。より具体的には例えば、下記構造式(Ar−1)乃至(Ar−48)で表される基が挙げられる。なお、Arで表される基はこれらに限定されず、置換基を有していても良い。
Figure JPOXMLDOC01-appb-C000024
<化合物の具体例>
一般式(G0)乃至(G3)として表される化合物の具体的な構造としては、下記構造式(100)乃至(111)及び構造式(200)乃至(211)で表される有機化合物等を挙げることができる。なお、一般式(G0)乃至(G3)として表される有機化合物は、下記例示に限られない。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
また、金属132の化合物131に対するモル比率が、0.1以上10以下であると好ましく、0.2以上2以下であるとより好ましく、0.2以上0.8以下であるとさらに好ましい。このような比率で、金属132と化合物131を混合することで、良好な電子注入性を有する発光素子を提供することができる。化合物131に対して、上記割合よりも金属132のモル比率が少なすぎる場合は、金属132と相互作用し、SOMOを形成する化合物131の量が少ないため、電子注入性が低下する場合がある。また、化合物131に対して、上記割合よりも金属132のモル比率が多すぎる場合は、電子注入層130の透過率が低下するため、発光素子の発光効率が低下する場合がある。
また、電子輸送層118に含まれる有機化合物のLUMO準位は、電子注入層130において形成されるSOMO準位よりも低いと好ましい。該構成とすることで、電子注入層130と電子輸送層118との間の電子注入障壁が小さくなるため、駆動電圧を低減することができる。また、電子輸送層118に含まれる有機化合物は電子輸送性が求められるため、電子不足型の複素芳香環を有すると好ましい。
また、電子注入層130の膜厚としては3nm以上が好ましく、5nm以上がより好ましい。該構成とすることで、金属132と化合物131とが混合された複合材料として良好に機能させることができる。また、電子注入層130の膜厚としては、50nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。該構成とすることで、電子注入層130による光吸収の影響を小さくし、高い発光効率を示す発光素子を提供することができる。
<発光素子の構成例2>
次に、図1に示す発光素子150と異なる構成例について、図2(A)を用いで、以下説明を行う。
 図2(A)は、本発明の一態様の発光装置を示す断面模式図である。なお、図2(A)において、図1に示す符号と同様の機能を有する箇所には、同様のハッチパターンを用い、符号を省略する場合がある。また、同様の機能を有する箇所には、同様の符号を付し、その詳細な説明は省略する場合がある。
 発光素子152は、一対の電極(電極101及び電極102)を有し、該一対の電極間に設けられたEL層100を有する。EL層100は、少なくとも発光層140及び電子注入層130を有する。さらにバッファ層127を有する。バッファ層127は電子注入層130と電極102の間に設けられる。
 また、図2(A)に示すEL層100は、発光層140の他に、正孔注入層111、正孔輸送層112及び電子輸送層118等の機能層を有する。
本発明の一態様は電子注入層130には上述の化合物131と金属132の複合材料を用い、バッファ層127には電子不足型複素芳香環を有する化合物133を用いる。電子不足型複素芳香環は電子輸送性に優れるため発光素子の駆動電圧を低減することができる。
電子注入層130と電極102の間にバッファ層127を挟むことによって、電極102と電子注入層130との電子注入障壁を低減することができるため好ましい。また、バッファ層127の膜厚は1nm以上20nm以下が好ましい。該構成にすることで、高い電子輸送性を保ちつつ、電子注入障壁を低減することができる。
また、化合物133のLUMO準位は、電子注入層130で形成されるSOMO準位よりも低いと好ましい。このような構成にすることによって、電子注入層130と電極102との間の電子注入障壁を小さくすることができるため好ましい。
<発光素子の構成例3>
また、図1(A)に示す発光素子150及び図2(A)に示す発光素子152と異なる構成例について、図2(B)を用いて、以下説明を行う。
 図2(B)は、本発明の一態様の発光素子を示す断面模式図である。なお、図2(B)において、図1に示す符号と同様の機能を有する箇所には、同様のハッチパターンを用い、符号を省略する場合がある。また、同様の機能を有する箇所には、同様の符号を付し、その詳細な説明は省略する場合がある。
 発光素子154は、一対の電極(電極101及び電極102)を有し、該一対の電極間に設けられたEL層100を有する。EL層100は、少なくとも発光層140及び電子注入層130を有する。さらに電荷発生層129を有する。電荷発生層129は電子注入層130と電極102の間に設けられる。
 また、図2(B)に示すEL層100は、発光層140の他に、正孔注入層111、正孔輸送層112及び電子輸送層118等の機能層を有する。
電荷発生層129を図2(B)に示すように電極102と電子注入層130の間に設けることによって、電子注入層130が酸素や水分に接触する確率が低下するため、さらに発光素子の耐湿性や耐酸化性の向上が期待できる。
電荷発生層129は、正孔輸送性材料に電子受容性材料が添加された構成であっても、電子輸送性材料に電子供与性材料が添加された構成であってもよい。また、これらの両方の構成が積層されていても良いが、正孔輸送性材料に電子受容性材料が添加された構成であると、耐湿性が良好になり、積層数も少なくなるため好ましい。
上述のように、電荷発生層129は、正孔輸送性材料と電子受容性材料を有する構成の場合、電子注入層130に仕事関数が小さい、アルカリ金属やアルカリ土類を有する金属材料を用いると、電子注入層130に用いた材料から、電荷発生層129の電子受容性材料が電子を引き抜くため、電荷発生層129及び電子注入層130の界面近傍において空乏層が発生する。そのため駆動電圧が上昇する場合がある。該空乏層の発生を抑制するためには、電子注入層130と電荷発生層129との間に電子を受け渡す機能を有する層を設ける必要があった。
一方、本発明の一態様の発光素子では、電子注入層130に遷移金属と3座または4座で金属と相互作用する機能を有する有機化合物との複合材料を用いることによって、上述の空乏層を発生させることなく電荷発生層129を設けることができるため、積層数が少なく、駆動電圧が低い発光素子が作製できる。
また、電荷発生層129の膜厚は特に制限は無く、適宜調整することができる。例えば、発光層140から電極102までの膜厚を調整することによって、発光層140から得られる発光を効率良く発光素子外部へ取り出すことができる。すなわち、電荷発生層129の膜厚を調整することによって、光取出し効率を向上させることができる。
また、電荷発生層129と電極102は接して設けられると好ましい。該構成とすることによって、電極102とEL層100との間の電子注入障壁を低減できるため発光素子の駆動電圧を低減することができる。さらに、電荷発生層129と電子注入層130が接しているとより好ましい。本発明の一態様では、電荷発生層129と電子注入層130が接している場合でも駆動電圧が低い発光素子が作製できるため、該構成とすることで、EL層100の積層数を低減することができる。
また、電荷発生層129が有する電子受容性材料としては、遷移金属酸化物を好適に用いることができる。該遷移金属酸化物としては、例えば、チタン酸化物、バナジウム酸化物、タンタル酸化物、モリブデン酸化物、タングステン酸化物、レニウム酸化物、ルテニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、銀酸化物が挙げられる。特にモリブデン酸化物は大気中で安定であり、吸湿性も低く、安価であるため好ましい。該遷移金属酸化物を用いることによって、電極102と電荷発生層129の間の電子注入障壁を低減できるため好ましい。したがって、本発明の一態様は、電子注入層130が遷移金属元素を有し、且つ電荷発生層129が遷移金属元素を有する発光素子である。なお、電荷発生層129が有する電子受容性材料としては、上述の化合物に限られない。
また、電荷発生層129が有する正孔輸送性材料としては、ピロール骨格、チオフェン骨格、フラン骨格または芳香族アミン骨格のいずれか一を含む有機化合物を用いると好ましい。該骨格を有する有機化合物は、正孔輸送性が高いため、電荷発生層129に用いることによって発光素子の駆動電圧を低減することができる。電荷発生層129が有する正孔輸送性材料としては、上述の化合物に限られない。
 なお、上記、金属132と3座または4座で金属と相互作用する機能を有する化合物131の複合材料は、薄膜太陽電池に用いることができる。より具体的には、薄膜太陽電池の電子注入層としても好適に用いることができる。
<発光素子の構成要素>
 次に、図1及び図2に示す発光素子の構成要素の詳細について、以下説明を行う。
≪電子注入層≫
 電子注入層130は、電子注入性の高い物質を含む層であり、上述の金属と3座または4座で金属と相互作用する機能を有する有機化合物の複合材料を好適に用いることができる。該3座または4座で金属と相互作用する機能を有する有機化合物としては、一般式(G0)乃至(G4−3)で表される有機化合物を用いることができ、具体的には構造式(100)乃至(111)及び構造式(200)乃至(211)で表される有機化合物を用いることができる。特に、ジアジン(ピリミジンやピラジン)骨格及びトリアジン骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与するため好ましい。また、金属と3座または4座で金属と相互作用する機能を有する有機化合物は、1×10−6cm/Vs以上の電子移動度を有すると好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子注入層130にて用いてもよい。
≪正孔注入層≫
 正孔注入層111及び電荷発生層129は、一対の電極の一方(電極101または電極102)からのホ−ル注入障壁を低減することでホ−ル注入を促進する機能を有し、例えば遷移金属酸化物、フタロシアニン誘導体、あるいは芳香族アミンなどによって形成される。遷移金属酸化物としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物などが挙げられる。フタロシアニン誘導体としては、フタロシアニンや金属フタロシアニンなどが挙げられる。芳香族アミンとしてはベンジジン誘導体やフェニレンジアミン誘導体などが挙げられる。ポリチオフェンやポリアニリンなどの高分子化合物を用いることもでき、例えば自己ドープされたポリチオフェンであるポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)などがその代表例である。
 正孔注入層111及び電荷発生層129として、正孔輸送性材料と、これに対して電子受容性を示す材料の複合材料を有する層を用いることもできる。あるいは、電子受容性を示す材料を含む層と正孔輸送性材料を含む層の積層を用いても良い。これらの材料間では定常状態、あるいは電界存在下において電荷の授受が可能である。電子受容性を示す材料としては、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを挙げることができる。具体的には、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)、1,3,4,5,7,8−ヘキサフルオロテトラシアノ−ナフトキノジメタン(略称:F6−TCNNQ)等の電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する化合物を挙げることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロー3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。また、遷移金属酸化物、例えば第4族から第8族金属の酸化物を用いることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどである。中でも酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。
 正孔輸送性材料としては、電子よりも正孔の輸送性の高い材料を用いることができ、1×10−6cm/Vs以上の正孔移動度を有する材料であることが好ましい。具体的には、発光層140に用いることができる正孔輸送性材料として挙げた芳香族アミン、カルバゾ−ル誘導体、芳香族炭化水素、スチルベン誘導体などを用いることができるが、二つ以上含む炭素数1から20の複素芳香族骨格を有すると特に好ましい。特に含窒素複素五員環骨格が好ましい。また、該正孔輸送性材料は高分子化合物であっても良い。
 また、正孔輸送性材料として他には芳香族炭化水素が挙げられ、例えば、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、2−tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−tert−ブチル−9,10−ビス(4−フェニルフェニル)アントラセン(略称:t−BuDBA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジフェニルアントラセン(略称:DPAnth)、2−tert−ブチルアントラセン(略称:t−BuAnth)、9,10−ビス(4−メチル−1−ナフチル)アントラセン(略称:DMNA)、2−tert−ブチル−9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、2,3,6,7−テトラメチル−9,10−ジ(1−ナフチル)アントラセン、2,3,6,7−テトラメチル−9,10−ジ(2−ナフチル)アントラセン、9,9’−ビアントリル、10,10’−ジフェニル−9,9’−ビアントリル、10,10’−ビス(2−フェニルフェニル)−9,9’−ビアントリル、10,10’−ビス[(2,3,4,5,6−ペンタフェニル)フェニル]−9,9’−ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネン等も用いることができる。このように、1×10−6cm/Vs以上の正孔移動度を有し、炭素数14乃至炭素数42である芳香族炭化水素を用いることがより好ましい。
 なお、芳香族炭化水素は、ビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素としては、例えば、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(2,2−ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
 また、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)等のチオフェン化合物、フラン化合物、フルオレン化合物、トリフェニレン化合物、フェナントレン化合物等を用いることができる。上述した化合物の中でも、ピロ−ル骨格、フラン骨格、チオフェン骨格、芳香族アミン骨格を有する化合物は、安定で信頼性が良好であり好ましい。また、当該骨格を有する化合物は、正孔輸送性が高く、駆動電圧低減にも寄与する。
≪正孔輸送層≫
 正孔輸送層112は正孔輸送性材料を含む層であり、正孔注入層111の材料として例示した材料を使用することができる。正孔輸送層112は正孔注入層111から注入された正孔を発光層140へ輸送する機能を有する。
 このとき、正孔注入層111が有するアクセプター材料のLUMO準位と、発光層140が有する材料のHOMO準位との、間のHOMO準位を有する正孔輸送性材料を、正孔輸送層112に用いることが好ましい。また、正孔輸送層112は、単層だけでなく、二層以上積層してもよい。この場合、正孔注入層111側から発光層140へとHOMO準位が順に低くなるよう正孔輸送層性材料を積層することが好ましい。正孔輸送層112を二層以上積層する場合、正孔を円滑に輸送するためには、各正孔輸送性材料のHOMO準位の差としては、好ましくは0eV以上0.5eV以下、より好ましくは0eV以上0.3eV以下、より好ましくは0eV以上0.2eV以下である。
 正孔輸送性を有する材料としては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。また、以上で述べた正孔輸送性材料の他、様々な物質の中から正孔輸送性材料を選んでも良い。
 さらに、正孔輸送性の高い物質として、例えば、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4、4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、1,3,5−トリ(ジベンゾチオフェン−4−イル)−ベンゼン(略称:DBT3P−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン骨格を有する化合物、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等が挙げられる。その他、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)等のカルバゾール化合物やアミン化合物、ジベンゾチオフェン化合物、ジベンゾフラン化合物、フルオレン化合物、トリフェニレン化合物、フェナントレン化合物等を用いることができる。ここに挙げた物質は、主に1×10−6cm/Vs以上の正孔移動度を有する物質である。ただし、電子よりも正孔の輸送性の高い物質であれば、これら以外の物質を用いてもよい。
 なお、これら正孔輸送層として用いることが出来る化合物を、正孔注入層として用いても良い。また、電荷発生層129に用いられる正孔輸送材料としても好適に用いることができる。
≪発光層≫
 発光層140は、紫色、青色、青緑色、緑色、黄緑色、黄色、橙色、または赤色の少なくとも一つの発光を呈する機能を有する発光材料を有する。また、発光層140は、発光材料に加えて、ホスト材料として電子輸送性材料または正孔輸送性材料の一方または双方を含む。
 また、発光材料としては、一重項励起エネルギーを発光に変換できる発光性物質や三重項励起エネルギーを発光に変換できる発光性物質を用いることができる。なお、上記発光性物質としては、以下のようなものが挙げられる。
 一重項励起エネルギーを発光に変換できる発光性物質としては、蛍光を発する物質(蛍光性化合物)が挙げられる。蛍光性化合物としては、特に限定はないが、アントラセン誘導体、テトラセン誘導体、クリセン誘導体、フェナントレン誘導体、ピレン誘導体、ペリレン誘導体、スチルベン誘導体、アクリドン誘導体、クマリン誘導体、フェノキサジン誘導体、フェノチアジン誘導体などが好ましく、例えば以下の物質を用いることができる。
 具体的には、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−N,N’−ビス(4−tert−ブチルフェニル)−ピレン−1,6−ジアミン(略称:1,6tBu−FLPAPrn)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−3,8−ジシクロヘキシルピレン−1,6−ジアミン(略称:ch−1,6FLPAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマリン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAPhA)、クマリン6、クマリン545T、N,N’−ジフェニルキナクリドン(略称:DPQd)、ルブレン、2,8−ジ−tert−ブチル−5,11−ビス(4−tert−ブチルフェニル)−6,12−ジフェニルテトラセン(略称:TBRb)、ナイルレッド、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテトラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:BisDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJTM)、5,10,15,20−テトラフェニルビスベンゾ[5,6]インデノ[1,2,3−cd:1’,2’,3’−lm]ペリレン、などが挙げられる。
 また、三重項励起エネルギーを発光に変換できる発光性物質としては、例えば、燐光を発する物質(燐光性化合物)が挙げられる。燐光性化合物としては、イリジウム、ロジウム、または白金系の有機金属錯体、あるいは金属錯体が挙げられる。また、ポルフィリン配位子を有する白金錯体や有機イリジウム錯体が挙げられ、中でも有機イリジウム錯体、例えばイリジウム系オルトメタル錯体が好ましい。オルトメタル化する配位子としては4H−トリアゾール配位子、1H−トリアゾール配位子、イミダゾール配位子、ピリジン配位子、ピリミジン配位子、ピラジン配位子、あるいはイソキノリン配位子などが挙げられる。このとき、燐光性化合物は三重項MLCT(Metal to Ligand Charge Transfer)遷移の吸収帯を有する。
 青色または緑色に発光ピークを有する物質としては、例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN]フェニル−κC}イリジウム(III)(略称:Ir(mpptz−dmp))、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Mptz))、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(iPrptz−3b))、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(iPr5btz))、のような4H−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:Ir(Mptz1−mp))、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:Ir(Prptz1−Me))のような1H−トリアゾール骨格を有する有機金属イリジウム錯体や、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:Ir(iPrpmi))、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:Ir(dmpimpt−Me))のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:Ir(CFppy)(pic))、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。上述した中でも、4H−トリアゾール骨格、1H−トリアゾール骨格およびイミダゾール骨格のような含窒素五員複素環骨格を有する有機金属イリジウム錯体は、高い三重項励起エネルギーを有し、信頼性や発光効率にも優れるため、特に好ましい。
 また、緑色または黄色に発光ピークを有する物質としては、例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm))、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm))、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(mppm)(acac))、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)(acac))、(アセチルアセトナト)ビス[4−(2−ノルボルニル)−6−フェニルピリミジナト]イリジウム(III)(略称:Ir(nbppm)(acac))、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:Ir(mpmppm)(acac))、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN3]フェニル−κC}イリジウム(III)(略称:Ir(dmppm−dmp)(acac))、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:Ir(dppm)(acac))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−Me)(acac))、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:Ir(mppr−iPr)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:Ir(ppy))、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(ppy)(acac))、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)(acac))、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:Ir(bzq))、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:Ir(pq))、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(pq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体や、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(dpo)(acac))、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:Ir(p−PF−ph)(acac))、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(bt)(acac))など有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:Tb(acac)(Phen))のような希土類金属錯体が挙げられる。上述した中でも、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
 また、黄色または赤色に発光ピークを有する物質としては、例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:Ir(5mdppm)(dibm))、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(5mdppm)(dpm))、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(d1npm)(dpm))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:Ir(tppr)(acac))、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:Ir(tppr)(dpm))、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:Ir(Fdpq)(acac))のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:Ir(piq))、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:Ir(piq)(acac))のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)(Phen))、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:Eu(TTA)(Phen))のような希土類金属錯体が挙げられる。上述した中でも、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
 なお、三重項励起エネルギーを発光に変換できる材料としては、燐光性化合物の他に、熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。したがって、燐光性化合物と記載した部分に関しては、熱活性化遅延蛍光性化合物と読み替えても構わない。熱活性化遅延蛍光性化合物は、一重項励起エネルギー準位と三重項励起エネルギー準位との差が小さく、逆項間交差によって三重項励起エネルギーを一重項励起エネルギーへ変換する機能を有する材料である。そのため、わずかな熱エネルギーによって三重項励起状態を一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈することができる。熱活性化遅延蛍光が効率良く得られる条件としては、一重項励起エネルギー準位と三重項励起エネルギー準位との差が、好ましくは0eVより大きく0.3eV以下、より好ましくは0eVより大きく0.2eV以下、さらに好ましくは0eVより大きく0.1eV以下であることが挙げられる。
 熱活性化遅延蛍光性化合物が、一種類の材料から構成される場合、例えば以下の材料を用いることができる。
 まず、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(PtClOEP)等が挙げられる。
 また、一種の材料から構成される熱活性化遅延蛍光性化合物としては、π電子過剰型複素芳香族骨格及びπ電子不足型複素芳香族骨格を有する複素環化合物も用いることができる。具体的には、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)等が挙げられる。該複素環化合物は、π電子過剰型複素芳香族骨格及びπ電子不足型複素芳香族骨格を有するため、電子輸送性及び正孔輸送性が高く、好ましい。中でも、π電子不足型複素芳香族骨格のうち、ジアジン骨格(ピリミジン骨格、ピラジン骨格、ピリダジン骨格)、またはトリアジン骨格は、安定で信頼性が良好なため、好ましい。また、π電子過剰型複素芳香族骨格の中でも、アクリジン骨格、フェノキサジン骨格、フェノチアジン骨格、フラン骨格、チオフェン骨格、及びピロール骨格は、安定で信頼性が良好なため、当該骨格の中から選ばれるいずれか一つまたは複数を有することが、好ましい。なお、ピロール骨格としては、インドール骨格、カルバゾール骨格、及び9−フェニル−3,3’−ビ−9H−カルバゾール骨格、が特に好ましい。なお、π電子過剰型複素芳香族骨格とπ電子不足型複素芳香族骨格とが直接結合した物質は、π電子過剰型複素芳香族骨格のドナー性とπ電子不足型複素芳香族骨格のアクセプター性が共に強く、一重項励起エネルギー準位と三重項励起エネルギー準位の差が小さくなるため、特に好ましい。
 また、熱活性化遅延蛍光を示す材料は、単独で逆項間交差により三重項励起状態から一重項励起状態を生成できる材料であっても良いし、励起錯体(エキサイプレックス、またはExciplexともいう)を形成する複数の材料から構成されても良い。
 また、発光層140に用いるホスト材料としては、正孔輸送性材料および電子輸送性材料を用いることができる。
 また、発光層のホスト材料として用いることが可能な材料としては、特に限定はないが、例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、バソキュプロイン(略称:BCP)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)などの複素環化合物、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物が挙げられる。また、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられ、具体的には、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、2PCAPA、6,12−ジメトキシ−5,11−ジフェニルクリセン、DBC1、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)などを挙げることができる。これら及び様々な物質の中から、上記発光材料のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。また、発光材料が燐光性化合物である場合、ホスト材料としては、発光材料の三重項励起エネルギーよりも三重項励起エネルギーの大きい物質を選択すれば良い。
 また、発光層のホスト材料として、複数の材料を用いる場合、励起錯体を形成する2種類の化合物を組み合わせて用いることが好ましい。この場合、様々なキャリア輸送材料を適宜用いることができるが、効率よく励起錯体を形成するために、電子輸送性材料と、正孔輸送性材料とを組み合わせることが特に好ましい。
 なぜならば、電子輸送性材料と、正孔輸送性材料とを組み合わせて励起錯体を形成するホスト材料とする場合、電子輸送性材料及び正孔輸送性材料の混合比率を調節することで、発光層における正孔と電子のキャリアバランスを最適化することが容易となる。発光層における正孔と電子のキャリアバランスを最適化することにより、発光層中で電子と正孔の再結合が起こる領域が偏ることを抑制できる。再結合が起こる領域の偏りを抑制することで、発光素子の信頼性を向上させることができる。
 電子輸送性材料としては、亜鉛やアルミニウムを有する金属錯体や、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族化合物などを用いることができる。具体的には、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)などのアゾール骨格を有する複素環化合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、4−{3−[3’−(9H−カルバゾール−9−イル)]ビフェニル−3−イル}ベンゾフロ[3,2−d]ピリミジン(略称:4mCzBPBfpm)などのジアジン骨格を有する複素環化合物や、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)、2,4,6−トリス(2−ピリジル)−1,3,5−トリアジン(略称:2Py3Tz)などのトリアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格及びトリアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格及びトリアジン骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
 正孔輸送性材料としては、π電子過剰型複素芳香族(例えばカルバゾール誘導体やインドール誘導体)又は芳香族アミンなどを好適に用いることができる。具体的には、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1−TNATA)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオンン−2,7−ジアミン(略称:YGA2F)、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、9−フェニル−9H−3−(9−フェニル−9H−カルバゾール−3−イル)カルバゾール(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。
 なお、励起錯体を形成するホスト材料の組み合わせとしては、上述した化合物に限定されることなく、キャリアを輸送でき、且つ励起錯体を形成できる組み合わせであり、当該励起錯体の発光が、発光材料の吸収スペクトルにおける最も長波長側の吸収帯(発光材料の一重項基底状態から一重項励起状態への遷移に相当する吸収)と重なっていればよく、他の材料を用いても良い。
 また、発光層に用いるホスト材料として、熱活性化遅延蛍光材料を用いても良い。
 また、発光層に用いる電子輸送性材料に、電子注入層に用いる電子輸送性材料と同じ材料を用いることができる。そうすることで、発光素子の作製を簡便に行うことができ、発光素子の製造コストを低減することができる。
≪電子輸送層及びバッファ層≫
 電子輸送層118及びバッファ層127は、電子輸送性の高い物質を含む層である。電子輸送層118及びバッファ層127に用いることができる有機化合物としては、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体などが挙げられる。また、電子注入層130に用いることができる化合物として例示した3座または4座で金属と相互作用する機能を有する有機化合物も用いることができる。
 上述のキノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体として具体的には、Alq、Almq、BeBq、BAlq、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体を用いることができる。また、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、3−(4’−tert−ブチルフェニル)−4−フェニル−5−(4’’−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOS)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)などのアゾール骨格を有する複素環化合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、4−{3−[3’−(9H−カルバゾール−9−イル)]ビフェニル−3−イル}ベンゾフロ[3,2−d]ピリミジン(略称:4mCzBPBfpm)などのジアジン骨格を有する複素環化合物や、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)、2,4,6−トリス(2−ピリジル)−1,3,5−トリアジン(略称:2Py3Tz)などのトリアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格及びトリアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格及びトリアジン骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。ここに述べた物質は、主に1×10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子注入層130に用いてもよい。
 また、電子輸送層118及びバッファ層127は、単層のものだけでなく、上記物質からなる層が2層以上積層してもよい。
 また、電子輸送層118と発光層140との間に電子キャリアの移動を制御する層を設けても良い。これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加した層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節することが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
 また、電子輸送層に用いる電子輸送性材料に、電子注入層に用いる電子輸送性材料と同じ材料を用いることができる。また、電子輸送層に用いる電子輸送性材料に、発光層に用いる電子輸送性材料と同じ材料を用いることができる。そうすることで、発光素子の作製を簡便に行うことができ、発光素子の製造コストを低減することができる。
 なお、上述した、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層は、それぞれ、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法、グラビア印刷等で形成することができる。また、上述した、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層には、上述した材料の他、量子ドットなどの無機化合物、または高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いてもよい。
 なお、量子ドットとしては、コロイド状量子ドット、合金型量子ドット、コア・シェル型量子ドット、コア型量子ドット、などを用いてもよい。また、2族と16族、13族と15族、13族と17族、11族と17族、または14族と15族の元素グループを含む量子ドットを用いてもよい。または、カドミウム(Cd)、セレン(Se)、亜鉛(Zn)、硫黄(S)、リン(P)、インジウム(In)、テルル(Te)、鉛(Pb)、ガリウム(Ga)、ヒ素(As)、アルミニウム(Al)、等の元素を有する量子ドットを用いてもよい。
 ウェットプロセスに用いる液媒体としては、たとえば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の有機溶媒を用いることができる。
 また、発光層に用いることができる高分子化合物としては、例えば、ポリ[2−メトキシ−5−(2−エチルヘキシルオキシ)−1,4−フェニレンビニレン](略称:MEH−PPV)、ポリ(2,5−ジオクチル−1,4−フェニレンビニレン)等のポリフェニレンビニレン(PPV)誘導体、ポリ(9,9−ジ−n−オクチルフルオレニル−2,7−ジイル)(略称:PF8)、ポリ[(9,9−ジ−n−オクチルフルオレニル−2,7−ジイル)−alt−(ベンゾ[2,1,3]チアジアゾール−4,8−ジイル)](略称:F8BT)、ポリ[(9,9−ジ−n−オクチルフルオレニル−2,7−ジイル)−alt−(2,2’−ビチオフェン−5,5’−ジイル)](略称F8T2)、ポリ[(9,9−ジオクチル−2,7−ジビニレンフルオレニレン)−alt−(9,10−アントラセン)]、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−alt−(2,5−ジメチル−1,4−フェニレン)]等のポリフルオレン誘導体、ポリ(3−ヘキシルチオフェン)(略称:P3HT)等のポリアルキルチオフェン(PAT)誘導体、ポリフェニレン誘導体等が挙げられる。また、これらの高分子化合物や、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(2−ビニルナフタレン)、ポリ[ビス(4−フェニル)(2,4,6−トリメチルフェニル)アミン](略称:PTAA)等の高分子化合物に、発光性の低分子化合物をドープして発光層に用いてもよい。発光性の低分子化合物としては、先に挙げた蛍光性化合物を用いることができる。
≪一対の電極≫
 電極101及び電極102は、発光素子の陽極または陰極としての機能を有する。電極101及び電極102は、金属、合金、導電性化合物、およびこれらの混合物や積層体などを用いて形成することができる。
 電極101または電極102の一方は、光を反射する機能を有する導電性材料により形成されると好ましい。該導電性材料としては、アルミニウム(Al)またはAlを含む合金等が挙げられる。Alを含む合金としては、AlとL(Lは、チタン(Ti)、ネオジム(Nd)、ニッケル(Ni)、及びランタン(La)の一つまたは複数を表す)とを含む合金等が挙げられ、例えばAlとTi、またはAlとNiとLaを含む合金等である。アルミニウムは、抵抗値が低く、光の反射率が高い。また、アルミニウムは、地殻における存在量が多く、安価であるため、アルミニウムを用いることによる発光素子の作製コストを低減することができる。また、銀(Ag)は光の反射率が高いため電極材料として好適に用いることができる。また、Agは11族の遷移金属であり、本発明の一態様である、電子注入層にAgを用いた発光素子の陰極としてAgを用いると、電極と電子注入層との密着性が向上するため好ましい。またはAgとN(Nは、イットリウム(Y)、Nd、マグネシウム(Mg)、イッテルビウム(Yb)、Al、Ti、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、タングステン(W)、マンガン(Mn)、スズ(Sn)、鉄(Fe)、Ni、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、または金(Au)の一つまたは複数を表す)とを含む合金等を用いても良い。銀を含む合金としては、例えば、銀とパラジウムと銅を含む合金、銀と銅を含む合金、銀とマグネシウムを含む合金、銀とニッケルを含む合金、銀と金を含む合金、銀とイッテルビウムを含む合金等が挙げられる。その他、タングステン、クロム(Cr)、モリブデン(Mo)、銅、チタンなどの遷移金属を用いることができる。
 また、発光層から得られる発光は、電極101及び電極102の一方または双方を通して取り出される。したがって、電極101または電極102の少なくとも一方は、光を透過する機能を有する導電性材料により形成されると好ましい。該導電性材料としては、可視光の透過率が40%以上100%以下、好ましくは60%以上100%以下であり、かつその抵抗率が1×10−2Ω・cm以下の導電性材料が挙げられる。
 また、電極101及び電極102は、光を透過する機能と、光を反射する機能と、を有する導電性材料により形成されても良い。該導電性材料としては、可視光の反射率が20%以上80%以下、好ましくは40%以上70%以下であり、かつその抵抗率が1×10−2Ω・cm以下の導電性材料が挙げられる。例えば、導電性を有する金属、合金、導電性化合物などを1種又は複数種用いて形成することができる。具体的には、例えば、インジウム錫酸化物(Indium Tin Oxide、以下ITO)、珪素または酸化珪素を含むインジウム錫酸化物(略称:ITSO)、酸化インジウム−酸化亜鉛(Indium Zinc Oxide)、チタンを含有した酸化インジウム−錫酸化物、インジウム−チタン酸化物、酸化タングステン及び酸化亜鉛を含有した酸化インジウムなどの金属酸化物を用いることができる。また、光を透過する程度(好ましくは、1nm以上30nm以下の厚さ)の金属薄膜を用いることができる。金属としては、例えば、Ag、またはAgとAl、AgとMg、AgとAu、AgとYbなどの合金等を用いることができる。
 なお、本明細書等において、光を透過する機能を有する材料は、可視光を透過する機能を有し、且つ導電性を有する材料であればよく、例えば上記のようなITOに代表される酸化物導電体に加えて、酸化物半導体、または有機物を含む有機導電体を含む。有機物を含む有機導電体としては、例えば、有機化合物と電子供与体(ドナー)とを混合してなる複合材料、有機化合物と電子受容体(アクセプター)とを混合してなる複合材料等が挙げられる。また、グラフェンなどの無機炭素系材料を用いても良い。また、当該材料の抵抗率としては、好ましくは1×10Ω・cm以下、さらに好ましくは1×10Ω・cm以下である。
 また、上記の材料の複数を積層することによって電極101及び電極102の一方または双方を形成してもよい。
 また、光取り出し効率を向上させるため、光を透過する機能を有する電極と接して、該電極より屈折率の高い材料を形成してもよい。このような材料としては、可視光を透過する機能を有する材料であればよく、導電性を有する材料であっても有さない材料であってもよい。例えば、上記のような酸化物導電体に加えて、酸化物半導体、有機物が挙げられる。有機物としては、例えば、発光層、正孔注入層、正孔輸送層、電子輸送層、または電子注入層に例示した材料が挙げられる。また、無機炭素系材料や光が透過する程度の金属薄膜も用いることができ、数nm乃至数十nmの層を複数積層させてもよい。
 電極101または電極102が陰極としての機能を有する場合には、仕事関数が小さい(3.8eV以下)材料を有することが好ましい。
 また、電極101または電極102を陽極として用いる場合、仕事関数の大きい(4.0eV以上)材料を用いることが好ましい。
 また、電極101及び電極102は、光を反射する機能を有する導電性材料と、光を透過する機能を有する導電性材料との積層としてもよい。その場合、電極101及び電極102は、各発光層からの所望の波長の光を共振させ、所望の波長の光を強めることができるように、光学距離を調整する機能を有することができるため好ましい。
 電極101及び電極102の成膜方法は、スパッタリング法、蒸着法、印刷法、塗布法、MBE(Molecular Beam Epitaxy)法、CVD法、パルスレーザ堆積法、ALD(Atomic Layer Deposition)法等を適宜用いることができる。
≪基板≫
 また、本発明の一態様に係る発光素子は、ガラス、プラスチックなどからなる基板上に作製すればよい。基板上に作製する順番としては、電極101側から順に積層しても、電極102側から順に積層しても良い。
 なお、本発明の一態様に係る発光素子を形成できる基板としては、例えばガラス、石英、又はプラスチックなどを用いることができる。また可撓性基板を用いてもよい。可撓性基板とは、曲げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリアリレートからなるプラスチック基板等が挙げられる。また、フィルム、無機蒸着フィルムなどを用いることもできる。なお、発光素子、及び光学素子の作製工程において支持体として機能するものであれば、これら以外のものでもよい。あるいは、発光素子、及び光学素子を保護する機能を有するものであればよい。
 例えば、本明細書等においては、様々な基板を用いて発光素子を形成することが出来る。基板の種類は、特に限定されない。その基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含むセルロースナノファイバ(CNF)や紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下が挙げられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などがある。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、発光素子を形成してもよい。または、基板と発光素子との間に剥離層を設けてもよい。剥離層は、その上に発光素子を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、耐熱性の劣る基板や可撓性の基板にも発光素子を転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜等の無機膜の積層構造や、基板上にポリイミド等の樹脂膜が形成された構成等を用いることができる。
 つまり、ある基板を用いて発光素子を形成し、その後、別の基板に発光素子を転置し、別の基板上に発光素子を配置してもよい。発光素子が転置される基板の一例としては、上述した基板に加え、セロファン基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用いることにより、壊れにくい発光素子、耐熱性の高い発光素子、軽量化された発光素子、または薄型化された発光素子とすることができる。
 また、上述した基板上に、例えば電界効果トランジスタ(FET)を形成し、FETと電気的に接続された電極上に発光素子150を作製してもよい。これにより、FETによって発光素子の駆動を制御するアクティブマトリクス型の表示装置を作製できる。
 以上、本実施の形態に示す構成は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態においては、実施の形態1に示す発光素子の構成と異なる構成の発光素子、及び当該発光素子の発光機構について、図3を用いて、以下説明を行う。なお、図3において、図1(A)に示す符号と同様の機能を有する箇所には、同様のハッチパターンを用い、符号を省略する場合がある。また、同様の機能を有する箇所には、同様の符号を付し、その詳細な説明は省略する場合がある。
<発光素子の構成例4>
 図3は、発光素子250a及び発光素子250bの断面模式図である。
 発光素子250a及び発光素子250bは、基板200上に電極101と、電極102と、電極103と、電極104とを有する。また、電極101と電極102との間、及び電極102と電極103との間、及び電極102と電極104との間に、少なくとも発光ユニット106及び発光ユニット108と電子注入層130と、を有する。また、発光ユニット106と発光ユニット108との間には電荷発生層115が設けられる。なお、発光ユニット106と発光ユニット108は、同じ構成でも異なる構成でもよい。
 発光ユニット106と発光ユニット108とに挟まれる電荷発生層115は、例えば電極101と電極102とに電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入するものであれば良い。例えば、図1において、電極102の電位の方が電極101の電位よりも高くなるように電圧を印加した場合、電荷発生層115は、発光ユニット106に電子を注入し、発光ユニット108に正孔を注入する。
また、発光ユニット106は、例えば正孔注入層111と、正孔輸送層112と、発光層140と、電子輸送層113と、を有する。また発光ユニット108は、例えば正孔注入層116と、正孔輸送層117と、発光層170と、電子輸送層118と、電子注入層119と、を有する。
ここで、図3に示すように、電子注入層130は電子輸送層113と隣接し且つ、発光ユニット108と電子輸送層113との間に設けられると好ましい。また、図3に示すように、電荷発生層115が電子注入層130に隣接しかつ、電子注入層130と発光ユニット108との間に設けられると好ましい。このような構成にすることで、発光ユニット106へ効率良く電子を輸送することができる。
なお、本実施の形態においては、電極101、電極103、及び電極104を陽極として、電極102を陰極として説明するが、発光素子250a及び発光素子250bの構成としては、その限りではない。つまり、電極101、電極103、及び電極104を陰極とし、電極102を陽極とし、当該電極間の各層の積層を、逆の順番にしてもよい。すなわち、発光ユニット106は、陽極側から、正孔注入層111と、正孔輸送層112と、発光層140と、電子輸送層113と、電子注入層130と、が積層する順番とすればよく、発光ユニット108は、陽極側から、正孔注入層116と、正孔輸送層117と、発光層170と、電子輸送層118と、電子注入層119と、が積層する順番とすればよい。
 また、発光素子250a及び発光素子250bの構成としては、図3に示す構成に限定されず、少なくとも発光層140、発光層170、電荷発生層115、及び電子注入層130を有し、正孔注入層111、正孔注入層116、正孔輸送層112、正孔輸送層117、電子輸送層113、電子輸送層118、電子注入層119はそれぞれ有していても、有していなくても良い。
 また、一対の電極間には、その機能に応じた層が形成されれば良く、これに限らない。すなわち、一対の電極間には、正孔または電子の注入障壁を低減する、正孔または電子の輸送性を向上する、正孔または電子の輸送性を阻害する、または電極による消光現象を抑制する、等の機能を有する層を有する構成としても良い。
 なお、発光ユニット108のように、発光ユニットの陽極側の面が電荷発生層115に接している場合は、電荷発生層115が発光ユニット108の正孔注入層の役割も担うことができる場合があるため、該発光ユニットには正孔注入層を設けなくとも良い場合がある。
 また、図3においては、2つの発光ユニットを有する発光素子について説明したが、3つ以上の発光ユニットを積層した発光素子としてもよい。発光素子250a及び発光素子250bに示すように、一対の電極間に複数の発光ユニットを電荷発生層で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な発光素子を実現できる。また、消費電力が低い発光素子を実現することができる。
 発光素子250aにおいて、電極101、電極103、及び電極104は、可視光を反射する機能を有し、電極102は、可視光を透過する機能を有する。また、発光素子250bにおいて、電極101、電極103、及び電極104は、可視光を透過する機能を有し、電極102は、可視光を反射する機能を有する。
 そのため、発光素子250aが呈する光は、電極102を通して外部へ射出され、発光素子250bが呈する光は、電極101、電極103、及び電極104を通して外部へ射出される。ただし、本発明の一態様はこれに限定されず、発光素子が形成される基板200の上方及び下方の双方に光を取り出す発光素子であってもよい。
 また、電極101は、導電層101aと、導電層101a上に接する導電層101bと、を有する。また、電極103は、導電層103aと、導電層103a上に接する導電層103bと、を有する。電極104は、導電層104aと、導電層104a上に接する導電層104bと、を有する。
 導電層101b、導電層103b、及び導電層104bは、可視光を透過する機能を有する。また、発光素子250aにおいて導電層101a、導電層103a、及び導電層104aは、可視光を反射する機能を有する。また、発光素子250bにおいて、導電層101a、導電層103a、及び導電層104aは、可視光を透過する機能を有する。
 図3(A)に示す発光素子250a、及び図3(B)に示す発光素子250bは、電極101と電極102とで挟持された領域222B、電極102と電極103とで挟持された領域222G、及び電極102と電極104とで挟持された領域222R、の間に、隔壁145を有する。隔壁145は、絶縁性を有する。隔壁145は、電極101、電極103、及び電極104の端部を覆い、該電極と重畳する開口部を有する。隔壁145を設けることによって、各領域の基板200上の該電極を、それぞれ島状に分離することが可能となる。
 なお、図3においては、正孔注入層111、正孔注入層116、正孔輸送層112、正孔輸送層117、発光層140、発光層170、電子輸送層113、電子輸送層118、電子注入層119、電荷発生層115、及び電極102は、各領域でそれぞれ分離せずに共通して設けた状態で例示されているが、各領域でそれぞれ分離して設けても良い。
 本発明の一態様の発光素子250a及び発光素子250bにおいては、領域222Bの一対の電極(電極101及び電極102)間、領域222Gの一対の電極(電極102及び電極103)間、及び領域222Rの一対の電極(電極102及び電極104)間に電圧を印加することにより、それぞれ陰極から電子が電子注入層119に注入され、陽極から正孔(ホール)が正孔注入層111に注入されることで電流が流れる。また、電荷発生層115から電子が電子注入層130に注入され、電荷発生層115から正孔(ホール)が正孔注入層116に注入される。そして、注入されたキャリア(電子及び正孔)が再結合することによって、励起子が形成される。発光材料を有する発光層140及び発光層170において、キャリア(電子及び正孔)が再結合し、励起子が形成されると、発光層140及び発光層170が有する発光材料が励起状態となり、発光材料から発光が得られる。
 発光層140及び発光層170は、紫色、青色、青緑色、緑色、黄緑色、黄色、黄橙色、橙色、または赤色の光を呈する発光材料の中から選ばれるいずれか一つまたは複数を有すると好ましい。
 また、発光層140及び発光層170は、2層が積層された構成としてもよい。2層の発光層に、第1の化合物及び第2の化合物という、異なる色を呈する機能を有する2種類の発光材料をそれぞれ用いることで、複数の発光を同時に得ることができる。特に発光層140及び発光層170が呈する発光によって白色またはそれに近い色となるよう、各発光層に用いる発光材料を選択すると好ましい。
 また、発光層140及び発光層170は、3層以上が積層された構成としても良く、発光材料を有さない層が含まれていても良い。
 また、発光素子250a及び発光素子250bは、領域222B、領域222G、及び領域222Rから呈される光が取り出される方向に、それぞれ光学素子224B、光学素子224G、及び光学素子224Rが設けられた基板220を有する。各領域から呈される光は、各光学素子を介して発光素子外部に射出される。すなわち、領域222Bから呈される光は、光学素子224Bを介して射出され、領域222Gから呈される光は、光学素子224Gを介して射出され、領域222Rから呈される光は、光学素子224Rを介して射出される。
 また、光学素子224B、光学素子224G、及び光学素子224Rは、入射される光から特定の色を呈する光を選択的に透過する機能を有する。例えば、光学素子224Bを介して射出される領域222Bから呈される光は、青色を呈する光となり、光学素子224Gを介して射出される領域222Gから呈される光は、緑色を呈する光となり、光学素子224Rを介して射出される領域222Rから呈される光は、赤色を呈する光となる。
 なお、図3(A)および図3(B)において、各光学素子を介して各領域から射出される光を、青色(B)を呈する光、緑色(G)を呈する光、赤色(R)を呈する光、として、それぞれ破線の矢印で模式的に図示している。図3(A)に示す発光素子250aはトップエミッション型の発光素子であり、図3(B)に示す発光素子250bはボトムエミッション型の発光素子である。
 また、各光学素子の間には、遮光層223を有する。遮光層223は、隣接する領域から発せられる光を遮光する機能を有する。なお、遮光層223を設けない構成としても良い。また、光学素子224B、光学素子224G、または光学素子224Rのいずれか一つまたは2以上を設けない構成としてもよい。光学素子224B、光学素子224G、または光学素子224Rを設けない構成とすることで、発光素子から呈される光の取出し効率を高めることができる。
 また、電荷発生層115としては、正孔輸送性材料に電子受容体(アクセプター)が添加された材料、または電子輸送性材料に電子供与体(ドナー)が添加された材料により、形成することができる。
ここで、発光素子の駆動電圧を低減させるためには、電荷発生層115から電子輸送層113への電子注入障壁を低減させ、電荷発生層115で発生した電子を電子輸送層113へ円滑に注入および輸送させる構成が好ましい。したがって、電荷発生層115及び電子輸送層113の間に電子注入層130を設けることが好ましい。電子注入層119や電子注入層130は高い電子注入性が求められるため、該電子注入層にはリチウム(Li)やセシウム(Cs)のようなアルカリ金属やこれらの化合物、カルシウム(Ca)のようなアルカリ土類金属やこれらの化合物が用いられる。しかし、該金属及び該化合物を電子注入層130に用いると、例えば図4に示すように電極103及び電極102の間に電圧を印加し領域222Gに電流を流した際に、電子注入層130及び電子輸送層113を介して、領域222Gに隣接する領域222B及び領域222Rにも電流が流れ、領域222Gから発光が呈されるだけでなく隣接する領域222B及び領域222Rからも発光が呈される現象(クロストークという)が生じる場合がある。なお、図4において領域222G、領域222R及び領域222Bに流れる電流を実線の矢印で表している。
発光素子においてクロストークが生じると、所望の領域(例えば領域222G)から発光が呈されるだけでなく、他の領域(例えば領域222B及び222R)からも発光が呈されるため、発光素子250a及び発光素子250bが呈する発光の色純度が低下する場合や、発光強度が低下する場合がある。
クロストークは、電荷発生層115及び電子輸送層113に挟持された電子注入層130に用いるアルカリ金属、アルカリ土類金属、またはこれらの化合物が電子輸送層113に拡散し電子輸送層113の導電性(特に電圧を印加する方向に垂直な方向の導電性)が向上することが一因である。中でもLiやCaのような原子番号が小さい金属やこれらの化合物が電子注入層130に用いられると、該原子番号が小さい金属が電子輸送層113に拡散しやすい。したがって、クロストークを抑制するためには、電子注入層130がアルカリ金属およびアルカリ土類金属を有さないことが好ましい。一方、電子注入層130にアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いない場合、電荷発生層115から電子輸送層113への電子注入障壁が高くなるため、電子輸送層113に電子が注入されにくくなり、発光素子の駆動電圧が高くなる場合や発光効率が低下する場合がある。
したがって、発光素子の駆動電圧を低減し、発光効率を向上させ、クロストークを抑制するためには、電子注入性に優れ、有機化合物と混合した場合に、該有機化合物中を拡散しにくい金属を電子注入層130に用いることが好ましい。電子注入層130に用いる拡散しにくい金属としては、原子半径が大きい金属が好ましい。また、原子量が大きい金属が好ましい。
ここで、本発明の一態様の発光素子は、3座または4座で金属と相互作用する機能を有する有機化合物と金属との複合材料を有する。該金属には第3族乃至第13族に属する原子量または原子半径が大きい金属を好適に用いることができる。そのため、本発明の一態様は、クロストークが抑制された発光素子を提供することができる。
特に、遷移金属は原子量が大きく有機化合物中を拡散しにくいため、クロストークが抑制された発光素子を提供することができる。
 なお、発光ユニット106、発光ユニット108、及び電荷発生層115は、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法、グラビア印刷等で形成することができる。
 なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では実施の形態1及び実施の形態2で説明した発光素子を用いた発光装置について、図5(A)及び図5(B)を用いて説明する。
図5(A)は、発光装置を示す上面図、図5(B)は図5(A)を線A−Bおよび線C−Dで切断した断面図である。この発光装置は、発光素子の発光を制御するものとして、点線で示された駆動回路部(ソース側駆動回路)601、画素部602、駆動回路部(ゲート側駆動回路)603を含んでいる。また、604は封止基板、625は乾燥材、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース側駆動回路601及びゲート側駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB:Printed Wiring Board)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、FPCもしくはPWBが取り付けられた発光装置も含むものとする。
次に、上記発光装置の断面構造について図5(B)を用いて説明する。素子基板610上に駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース側駆動回路601と画素部602中の一つの画素が示されている。
なお、ソース側駆動回路601はnチャネル型TFT623とpチャネル型TFT624とを組み合わせたCMOS回路が形成される。また、駆動回路は種々のCMOS回路、PMOS回路、NMOS回路で形成しても良い。また本実施の形態では、基板上に駆動回路を形成したドライバー一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく、外部に形成することもできる。
また、画素部602はスイッチング用TFT611と電流制御用TFT612とそのドレインに電気的に接続された第1の電極613とを含む画素により形成される。なお、第1の電極613の端部を覆うように絶縁物614が形成されている。絶縁物614は、ポジ型の感光性樹脂膜を用いることにより形成することができる。
また、絶縁物614上に形成される膜の被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する面が形成されるようにする。例えば、絶縁物614の材料としで感光性アクリルを用いた場合、絶縁物614の上端部のみに曲面をもたせることが好ましい。該曲面の曲率半径は0.2μm以上0.3μm以下が好ましい。また、絶縁物614として、ネガ型の感光材料、ポジ型の感光材料のいずれも使用することができる。
第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成されている。ここで、陽極として機能する第1の電極613に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したインジウム錫酸化物膜、2wt%以上20wt%以下の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616を構成する材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
さらに、EL層616上に形成され、陰極として機能する第2の電極617に用いる材料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化合物(MgAg、MgIn、AlLi等)等)を用いることが好ましい。なお、第2の電極617にEL層616で生じた光を透過させる場合には、第2の電極617として、膜厚を薄くした金属薄膜と、透明導電膜(ITO、2wt%以上20wt%以下の酸化亜鉛を含む酸化インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いるのが良い。
なお、第1の電極613、EL層616、第2の電極617により、発光素子618が形成されている。発光素子618は実施の形態1及び実施の形態2の構成を有する発光素子であると好ましい。なお、画素部には複数の発光素子が形成されているが、本実施の形態における発光装置では、実施の形態1及び実施の形態2で説明した構成を有する発光素子と、それ以外の構成を有する発光素子の両方が含まれていても良い。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素子618が備えられた構造になっている。なお、空間607には、充填材が充填されており、該充填材としては、不活性気体(窒素やアルゴン等)、樹脂若しくは乾燥材又はその両方が用いられる場合もある。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604として、ガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
以上のようにして、実施の形態1及び実施の形態2で説明した発光素子を用いた発光装置を得ることができる。
<発光装置の構成例1>
図6には表示装置の一例として、白色発光を呈する発光素子および着色層(カラーフィルタ)を形成した発光装置を示す。
図6(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光素子の第1の電極1024W、1024R、1024G、1024B、隔壁1026、EL層1028、発光素子の第2の電極1029、封止基板1031、シール材1032、赤色画素1044R、緑色画素1044G、青色画素1044B、白色画素1044Wなどが図示されている。
また、図6(A)、図6(B)には着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を透明な基材1033に設けている。また、黒色層(ブラックマトリックス)1035をさらに設けても良い。着色層及び黒色層が設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及び黒色層は、オーバーコート層1036で覆われている。また、図6(A)においては、着色層を透過せずに外部へ出る光と、各色の着色層を透過して外部に出る光がある。着色層を透過しない光は白、着色層を透過する光は赤、青、緑となることから、4色の画素で映像を表現することができる。
図6(B)では赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034Bをゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。図6(B)に示すように着色層は基板1001と封止基板1031の間に設けられても良い。
また、以上に説明した発光装置では、TFTが形成されている基板1001側に光を取り出す構造(ボトムエミッション構造)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション構造)の発光装置としても良い。
<発光装置の構成例2>
トップエミッション型の発光装置の断面図を図7(A)及び(B)に示す。この場合、基板1001は光を通さない基板を用いることができる。TFTと発光素子の陽極とを接続する接続電極を作製するまでの工程は、ボトムエミッション型の発光装置と同様に行う。その後、第3の層間絶縁膜1037を電極1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜1021と同様の材料の他、他の様々な材料を用いて形成することができる。
発光素子の下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025Bはここでは陽極とするが、陰極であっても構わない。また、図7(A)及び(B)のようなトップエミッション型の発光装置である場合、下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025Bは反射電極とすることが好ましい。なお、第2の電極1029は光を反射する機能と、光を透過する機能を有すると好ましい。また、第2の電極1029と下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025Bとの間でマイクロキャビティ構造を適用し特定波長の光を増幅すると好ましい。EL層1028は、実施の形態1及び実施の形態2で説明したような構成とし、白色の発光が得られるような素子構造とする。
図6(A)、図6(B)、図7(A)及び(B)において、白色の発光が得られるEL層の構成は、発光層を複数層用いること、複数の発光ユニットを用いることなどにより実現すればよい。なお、白色発光を得る構成はこれらに限られない。
図7(A)及び(B)のようなトップエミッション構造では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するように黒色層(ブラックマトリックス)1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)や黒色層(ブラックマトリックス)はオーバーコート層によって覆われていても良い。なお封止基板1031は透光性を有する基板を用いる。
また、図7(A)では赤、緑、青の3色でフルカラー表示を行う構成を示したが、図7(B)に示すように、赤、緑、青、白の4色でフルカラー表示を行っても構わない。また、フルカラー表示を行う構成はこれらに限定されない。例えば、赤、緑、青、黄の4色でフルカラー表示を行ってもよい。
本発明の一態様に係る発光素子は、ゲスト材料として蛍光材料を用いる。蛍光材料は燐光材料と比較し、スペクトルがシャープであるため、色純度が高い発光を得ることができる。そのため、本実施の形態に示す発光装置に該発光素子を用いることによって、色再現性が高い発光装置を得ることができる。
以上のようにして、実施の形態1及び実施の形態2で説明した発光素子を用いた発光装置を得ることができる。
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
(実施の形態4)
本実施の形態では、本発明の一態様の電子機器及び表示装置について説明する。
本発明の一態様によって、平面を有し、発光効率が良好な、信頼性の高い電子機器及び表示装置を作製できる。また、本発明の一態様により、曲面を有し、発光効率が良好な、信頼性の高い電子機器及び表示装置を作製できる。本発明の一態様の発光素子からは色純度が高い発光を得ることができる。そのため、本実施の形態に示す発光装置に該発光素子を用いることによって、色再現性が高い電子機器及び表示装置を得ることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図8(A)、(B)に示す携帯情報端末900は、筐体901、筐体902、表示部903、及びヒンジ部905等を有する。
筐体901と筐体902は、ヒンジ部905で連結されている。携帯情報端末900は、折り畳んだ状態(図8(A))から、図8(B)に示すように展開させることができる。これにより、持ち運ぶ際には可搬性に優れ、使用するときには大きな表示領域により、視認性に優れる。
携帯情報端末900には、ヒンジ部905により連結された筐体901と筐体902に亘って、フレキシブルな表示部903が設けられている。
本発明の一態様を用いて作製された発光装置を、表示部903に用いることができる。これにより、高信頼性を有する携帯情報端末を作製することができる。
表示部903は、文書情報、静止画像、及び動画像等のうち少なくとも一つを表示することができる。表示部に文書情報を表示させる場合、携帯情報端末900を電子書籍端末として用いることができる。
携帯情報端末900を展開すると、表示部903が曲率半径が大きい状態で保持される。例えば、曲率半径1mm以上50mm以下、好ましくは5mm以上30mm以下に湾曲した部分を含んで、表示部903が保持される。表示部903の一部は、筐体901から筐体902にかけて、連続的に画素が配置され、曲面状の表示を行うことができる。
表示部903は、タッチパネルとして機能し、指やスタイラスなどにより操作することができる。
表示部903は、一つのフレキシブルディスプレイで構成されていることが好ましい。これにより、筐体901と筐体902の間で途切れることのない連続した表示を行うことができる。なお、筐体901と筐体902のそれぞれに、ディスプレイが設けられる構成としてもよい。
ヒンジ部905は、携帯情報端末900を展開したときに、筐体901と筐体902との角度が所定の角度よりも大きい角度にならないように、ロック機構を有することが好ましい。例えば、ロックがかかる(それ以上に開かない)角度は、90度以上180度未満であることが好ましく、代表的には、90度、120度、135度、150度、または175度などとすることができる。これにより、携帯情報端末900の利便性、安全性、及び信頼性を高めることができる。
ヒンジ部905がロック機構を有すると、表示部903に無理な力がかかることなく、表示部903が破損することを防ぐことができる。そのため、信頼性の高い携帯情報端末を実現できる。
筐体901及び筐体902は、電源ボタン、操作ボタン、外部接続ポート、スピーカ、マイク等を有していてもよい。
筐体901または筐体902のいずれか一方には、無線通信モジュールが設けられ、インターネットやLAN(Local Area Network)、Wi−Fi(登録商標)などのコンピュータネットワークを介して、データを送受信することが可能である。
図8(C)に示す携帯情報端末910は、筐体911、表示部912、操作ボタン913、外部接続ポート914、スピーカ915、マイク916、カメラ917等を有する。
本発明の一態様を用いて作製された発光装置を、表示部912に用いることができる。これにより、高い歩留まりで携帯情報端末を作製することができる。
携帯情報端末910は、表示部912にタッチセンサを備える。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部912に触れることで行うことができる。
また、操作ボタン913の操作により、電源のON、OFF動作や、表示部912に表示される画像の種類の切り替えを行うことができる。例えば、メール作成画面から、メインメニュー画面に切り替えることができる。
また、携帯情報端末910の内部に、ジャイロセンサまたは加速度センサ等の検出装置を設けることで、携帯情報端末910の向き(縦か横か)を判断して、表示部912の画面表示の向きを自動的に切り替えることができる。また、画面表示の向きの切り替えは、表示部912に触れること、操作ボタン913の操作、またはマイク916を用いた音声入力等により行うこともできる。
携帯情報端末910は、例えば、電話機、手帳または情報閲覧装置等から選ばれた一つまたは複数の機能を有する。具体的には、スマートフォンとして用いることができる。携帯情報端末910は、例えば、移動電話、電子メール、文章閲覧及び作成、音楽再生、動画再生、インターネット通信、ゲームなどの種々のアプリケーションを実行することができる。
図8(D)に示すカメラ920は、筐体921、表示部922、操作ボタン923、シャッターボタン924等を有する。またカメラ920には、着脱可能なレンズ926が取り付けられている。
本発明の一態様を用いて作製された発光装置を、表示部922に用いることができる。これにより、高信頼性を有するカメラを作製することができる。
ここではカメラ920を、レンズ926を筐体921から取り外して交換することが可能な構成としたが、レンズ926と筐体921とが一体となっていてもよい。
カメラ920は、シャッターボタン924を押すことにより、静止画または動画を撮像することができる。また、表示部922はタッチパネルとしての機能を有し、表示部922をタッチすることにより撮像することも可能である。
なお、カメラ920は、ストロボ装置や、ビューファインダーなどを別途装着することができる。または、これらが筐体921に組み込まれていてもよい。
図9(A)は、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器で確認することもできる。
本発明の一態様の発光装置はディスプレイ5101に用いることができる。
図9(B)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。また、ディスプレイ2105は取り外しのできる情報端末であっても良く、ロボット2100の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。
本発明の一態様の発光装置はディスプレイ2105に用いることができる。
図9(C)はゴーグル型ディスプレイの一例を表す図である。ゴーグル型ディスプレイは、例えば、筐体5000、表示部5001、スピーカ5003、LEDランプ5004、接続端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン5008、第2の表示部5002、支持部5012、イヤホン5013等を有する。
本発明の一態様の発光装置は表示部5001および第2の表示部5002に用いることができる。
また、図10(A)、(B)に、折りたたみ可能な携帯情報端末5150を示す。折りたたみ可能な携帯情報端末5150は筐体5151、表示領域5152および屈曲部5153を有している。図10(A)に展開した状態の携帯情報端末5150を示す。図10(B)に折りたたんだ状態の携帯情報端末5150を示す。携帯情報端末5150は、大きな表示領域5152を有するにも関わらず、折りたためばコンパクトで可搬性に優れる。
表示領域5152は屈曲部5153により半分に折りたたむことができる。屈曲部5153は伸縮可能な部材と複数の支持部材とで構成されている。表示領域を折りたたむ場合は、伸縮可能な部材が伸びて、屈曲部5153は2mm以上、好ましくは5mm以上の曲率半径を有する。
なお、表示領域5152は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。本発明の一態様の発光装置を表示領域5152に用いることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、本発明の一態様の発光素子を様々な照明装置に適用する一例について、図11を用いて説明する。本発明の一態様である発光素子を用いることで、発光効率が良好な、信頼性の高い照明装置を作製できる。
 本発明の一態様の発光素子を、可撓性を有する基板上に作製することで、曲面を有する発光領域を有する電子機器、照明装置を実現することができる。
 また、本発明の一態様の発光素子を適用した発光装置は、自動車の照明にも適用することができ、例えば、フロントガラス、天井等に照明を設置することもできる。
 図11は、発光素子を室内の照明装置8501として用いた例である。なお、発光素子は大面積化も可能であるため、大面積の照明装置を形成することもできる。その他、曲面を有する筐体を用いることで、発光領域が曲面を有する照明装置8502を形成することもできる。本実施の形態で示す発光素子は薄膜状であり、筐体のデザインの自由度が高い。したがって、様々な意匠を凝らした照明装置を形成することができる。さらに、室内の壁面に大型の照明装置8503を備えても良い。また、照明装置8501、8502、8503に、タッチセンサを設けて、電源のオンまたはオフを行ってもよい。
 また、発光素子をテーブルの表面側に用いることによりテーブルとしての機能を備えた照明装置8504とすることができる。なお、その他の家具の一部に発光素子を用いることにより、家具としての機能を備えた照明装置とすることができる。
 以上のようにして、本発明の一態様の発光装置を適用して照明装置及び電子機器を得ることができる。なお、本発明の一態様の発光装置は、本実施の形態に示したものに限らず、あらゆる分野の照明装置および電子機器に適用することが可能である。
 また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
 本実施例では、本発明の一態様の発光素子である発光素子2乃至発光素子5及び比較発光素子1の作製例を示す。本実施例で作製した発光素子の断面模式図を図1(A)に、素子構造の詳細を表2及び表3にそれぞれ示す。また、本実施例で用いる有機化合物の化学式を以下に示す。なお、他の化合物の構造と略称については、先の実施の形態1を参酌すれば良い。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
<発光素子の作製>
 以下に、本実施例で作製した発光素子の作製方法を示す。比較発光素子1は電子注入層に一般的に用いられる、Li化合物であるLiFを用いた発光素子であり、発光素子2乃至発光素子5は本発明の一態様である、電子注入層に3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料を用いた発光素子である。
≪比較発光素子1の作製≫
 ガラス基板上に電極101として、ITSO膜を厚さが110nmになるように形成した。なお、電極101の電極面積は、4mm(2mm×2mm)とした。
次に、電極101上に正孔注入層111として、DBT3P−IIと、酸化モリブデン(MoO)と、を重量比(DBT3P−II:MoO)が1:0.5になるように、且つ厚さが25nmになるように共蒸着した。
次に、正孔注入層111上に正孔輸送層112として、PCBBiFを厚さが20nmになるように蒸着した。
 次に、正孔輸送層112上に発光層140として、2mDBTBPDBq−IIと、PCBBiFとIr(dmdppr−dmp)(dpm)と、を重量比(2mDBTBPDBq−II:PCBBiF:Ir(dmdppr−dmp)(dpm))が0.75:0.25:0.08になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層140において、2mDBTBPDBq−II及びPCBBiFがホスト材料であり、Ir(dmdppr−dmp)(dpm)がゲスト材料(燐光性化合物)である。
 次に、発光層140上に電子輸送層118(1)として、2mDBTBPDBq−IIを厚さが20nmになるように蒸着した。
次に、電子輸送層118(1)上に電子輸送層118(2)として、NBPhenを厚さが15nmになるように蒸着した。
 電子輸送層118(2)上に電子注入層130として、フッ化リチウム(LiF)を厚さが1nmになるように蒸着した。
 次に、電子注入層130上に、電極102として、アルミニウム(Al)を厚さが200nmになるように形成した。
 次に、封止を行わずに大気中で80℃にて1時間熱処理した。以上の工程により比較発光素子1を得た。
≪発光素子2乃至発光素子5の作製≫
 発光素子2乃至発光素子5は、電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
<発光素子2の作製>
 電子輸送層118(2)上に電子注入層130として、tPy2PとAgを重量比(tPy2P:Ag)が1:0.3、且つ厚さが5nmになるように共蒸着した。
<発光素子3の作製>
 電子輸送層118(2)上に電子注入層130として、2Py3TznとCuを重量比(2Py3Tzn:Cu)が1:0.3、且つ厚さが5nmになるように共蒸着した。
<発光素子4の作製>
 電子輸送層118(2)上に電子注入層130として、Pm3TznとCuを重量比(Pm3Tzn:Cu)が1:0.3、且つ厚さが5nmになるように共蒸着した。
<発光素子5の作製>
 電子輸送層118(2)上に電子注入層130として、tPy2PとCoを重量比(tPy2P:Co)が1:0.2、且つ厚さが5nmになるように共蒸着した。
<発光素子の特性>
 次に、上記作製した比較発光素子1及び発光素子2乃至発光素子5の素子特性を測定した。輝度およびCIE色度の測定には色彩輝度計(トプコン社製、BM−5A)を用い、電界発光スペクトルの測定にはマルチチャンネル分光器(浜松ホトニクス社製、PMA−11)を用いた。
作製した比較発光素子1及び発光素子2乃至発光素子5の電流効率−輝度特性を図12に、電流−電圧特性を図13に、外部量子効率−輝度特性を図14にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図15に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、比較発光素子1及び発光素子2乃至発光素子5の素子特性を表4に示す。
Figure JPOXMLDOC01-appb-T000030
 図14及び表4で示すように、比較発光素子1及び発光素子2乃至発光素子5はいずれも外部量子効率が25%を超える、高い発光効率を示した。また、本発明の一態様である、発光素子2乃至発光素子5は電子注入層に一般的に用いられる材料であるLiFを用いた比較発光素子1と同等の高い効率を示した。
また、図13及び表4に示すように、比較発光素子1及び発光素子2乃至発光素子5は良好な電流−電圧特性を示した。発光素子2乃至発光素子5は比較発光素子1と同等の電流−電圧特性を示し、CuやAg、Coのような仕事関数が大きい(4.5eV以上)遷移金属と3座または4座で金属と相互作用する機能を有する有機化合物との複合材料は、電子注入層に一般的に用いられる材料であるLiFと同等の非常に良好な電子注入性を有していることが分かった。
 また、図15に示すように、比較発光素子1及び発光素子2乃至発光素子5の、電界発光スペクトルのピーク波長はいずれも619nm付近であり、半値全幅はいずれも58nm程度である赤色の発光を示した。得られた電界発光スペクトルから、ゲスト材料であるIr(dmdppr−dmp)(dpm)からの発光であることが分かった。
<発光素子の定電流駆動試験結果>
次に、比較発光素子1及び発光素子2乃至発光素子5の1.0mAにおける定電流駆動試験を大気雰囲気下にて行った。その結果を図16に示す。なお、前述の通り、比較発光素子1及び発光素子2乃至発光素子5は封止を行っていない。図16から分かるように発光素子2乃至発光素子5は大気雰囲気下で比較発光素子1より良好な信頼性を有することが分かった。比較発光素子1には、仕事関数の小さな金属を有する材料を電子注入層に用いている。仕事関数の小さな金属は水との反応性が高く、発光素子内部に水分が侵入してしまう恐れがある。そのため、発光素子1を大気雰囲気下で駆動させた場合、水分の影響により信頼性が低下する。一方、本発明の一態様である発光素子は、水との反応性が乏しい仕事関数が大きな金属を電子注入層に用いることができる。そのため、本発明の一態様の発光素子は、発光素子内部に水分が侵入しにくく、大気雰囲気下で駆動させても信頼性の高い発光素子を実現することができる。また、発光素子3乃至発光素子5は、優れた信頼性を示している。このことから、CuやCoのような仕事関数が4.7eV以上の金属を用いることで、優れた信頼性を有する発光素子を実現することができる。
 本実施例では、本発明の一態様の発光素子である発光素子7乃至発光素子10及び比較発光素子6の作製例を示す。本実施例で作製した発光素子の断面模式図を図1(A)に、素子構造の詳細を表5及び表6にそれぞれ示す。また、本実施例で用いる有機化合物の構造と略称については、先の実施の形態1及び実施例1を参酌すれば良い。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
<発光素子の作製>
 以下に、本実施例で作製した発光素子の作製方法を示す。比較発光素子6は電子注入層が形成されていない、電極と電子輸送層が接している発光素子であり、発光素子7乃至発光素子10は本発明の一態様である、電子注入層に3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料を用いた発光素子である。
≪比較発光素子6の作製≫
 比較発光素子6は、電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
 比較発光素子6の電子注入層130は成膜せず、電子輸送層118上に電極102としてAlを厚さが200nmとなるように蒸着した。すなわち、比較発光素子6は電極102と電子輸送層118が接している。
≪発光素子7乃至発光素子10の作製≫
 発光素子7乃至発光素子10は、電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
〈発光素子7の作製〉
 電子輸送層118(2)上に発光素子7の電子注入層130として、tPy2PとAuを重量比(tPy2P:Au)が1:0.6、且つ厚さが5nmになるように共蒸着した。
〈発光素子8の作製〉
 電子輸送層118(2)上に発光素子8の電子注入層130として、2Py3TznとAgを重量比(2Py3Tzn:Ag)が1:0.5、且つ厚さが5nmになるように共蒸着した。
〈発光素子9の作製〉
 電子輸送層118(2)上に発光素子9の電子注入層130として、tPy2PとCuを重量比(tPy2P:Cu)が1:0.2、且つ厚さが5nmになるように共蒸着した。
〈発光素子10の作製〉
 電子輸送層118(2)上に発光素子10の電子注入層130として、2Py3TznとCoを重量比(2Py3Tzn:Co)が1:0.3、且つ厚さが5nmになるように共蒸着した。
<発光素子の特性>
 次に、上記作製した比較発光素子6及び発光素子7乃至発光素子10の素子特性を測定した。測定は実施例1と同様に行った。
作製した比較発光素子6及び発光素子7乃至発光素子10の電流効率−輝度特性を図17に、電流−電圧特性を図18に、外部量子効率−輝度特性を図19にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図20に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、比較発光素子6及び発光素子7乃至発光素子10の素子特性を表7に示す。
Figure JPOXMLDOC01-appb-T000033
 図19及び表7で示すように、発光素子7乃至発光素子10は比較発光素子6よりも高い外部量子効率を示すことが分かった。特に発光素子9及び発光素子10は25%を超える高い外部量子効率を示した。また、図18に示すように、発光素子7乃至発光素子10は比較発光素子6よりも良好な電流−電圧特性を示した。特に、発光素子9では優れた電流−電圧特性を示した。これらの結果より、発光素子7乃至発光素子10は比較発光素子6よりも良好な電子注入特性を有していることが分かる。
比較発光素子6は電極と電子輸送層が接しており、発光素子7乃至発光素子10は、電極に使用したAlの仕事関数よりも仕事関数が高い金属を電子注入層に使用している。よって金属の仕事関数に着目すると、比較発光素子6の方が、発光素子7乃至発光素子10よりも、電子注入特性が良好であると予想される。しかし、上述の通り、発光素子7乃至発光素子10の方が、比較発光素子6よりも良好な電子注入特性を有している。よって、本発明の一態様の発光素子では、電子注入層に3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料を用いることによって、電子注入層に該複合材料のSOMOが形成されるため、電極材料の仕事関数より高い仕事関数を有する金属を電子注入層に用いても、良好な電子注入特性を得ることができる。
 また、図20に示すように、比較発光素子6及び発光素子7乃至発光素子10の、電界発光スペクトルのピーク波長はいずれも619nm付近であり、半値全幅はいずれも58nm程度である赤色の発光を示した。得られた電界発光スペクトルから、ゲスト材料であるIr(dmdppr−dmp)(dpm)からの発光であることが分かった。
<発光素子の定電流駆動試験結果>
次に、比較発光素子6及び発光素子7乃至発光素子10の1.0mAにおける定電流駆動試験を大気雰囲気下にて行った。その結果を図21に示す。なお、比較発光素子6及び発光素子7乃至発光素子10は封止を行っていない。図21より、発光素子7乃至発光素子10は比較発光素子6よりも良好な信頼性を有していることが分かった。ここで、図18及び図19より比較発光素子6の電子注入特性は発光素子7乃至発光素子10よりも劣っており、比較発光素子6のキャリアバランスは悪く、信頼性にも悪影響を及ぼしている。一方、本発明の一態様である発光素子は、電子注入特性が良好なため、それぞれの発光素子中でのキャリアバランスが良好であるため、高い信頼性を有する発光素子を実現することができる。
 本実施例では、本発明の一態様の発光素子である発光素子12乃至発光素子15及び比較発光素子11の作製例を示す。本実施例で作製した発光素子の断面模式図を図1(A)に、素子構造の詳細を表8及び表9にそれぞれ示す。また、本実施例で用いる有機化合物の化学式を以下に示す。なお、他の化合物の構造と略称については、先の実施例及び実施の形態1を参酌すれば良い。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
<発光素子の作製>
 以下に、本実施例で作製した発光素子の作製方法を示す。比較発光素子11は電子注入層に一般的に用いられるLi化合物であるLiFを使用した発光素子であり、発光素子12乃至発光素子15は本発明の一態様である、電子注入層に3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料を用いた発光素子である。
≪比較発光素子11の作製≫
 ガラス基板上に電極101として、ITSO膜を厚さが70nmになるように形成した。なお、電極101の電極面積は、4mm(2mm×2mm)とした。
次に、電極101上に正孔注入層111として、DBT3P−IIと、酸化モリブデン(MoO)と、を重量比(DBT3P−II:MoO)が1:0.5になるように、且つ厚さが40nmになるように共蒸着した。
次に、正孔注入層111上に正孔輸送層112として、PCCPを厚さが20nmになるように蒸着した。
 次に、正孔輸送層112上に発光層140として、9−[3−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)フェニル]−9’−フェニル−2,3’−ビ−9H−カルバゾール(略称:mPCCzPTzn−02)と、PCCPとGD270(吉林OLED社製)と、を重量比(mPCCzPTzn:PCCP:GD270)が0.5:0.5:0.1になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層140において、mPCCzPTzn及びPCCPがホスト材料であり、GD270がゲスト材料(燐光性化合物)である。
 次に、発光層140上に電子輸送層118(1)として、mPCCzPTzn−02を厚さが10nmになるように蒸着した。
次に、電子輸送層118(1)上に電子輸送層118(2)として、NBPhenを厚さが15nmになるように蒸着した。
 電子輸送層118(2)上に電子注入層130として、LiFを厚さが1nmになるように蒸着した。
 次に、電子注入層130上に、電極102として、アルミニウム(Al)を厚さが200nmになるように形成した。
 次に、封止を行わずに大気中で80℃にて1時間熱処理した。以上の工程により比較発光素子11を得た。
≪発光素子12乃至発光素子15の作製≫
 発光素子12乃至発光素子15は、電子輸送層118(2)及び電子注入層130の形成工程以外は比較発光素子11と同様の工程で作製した。
<発光素子12の作製>
電子輸送層118(1)上に電子輸送層118(2)としてNBPhenを厚さが15nmになるように蒸着した。次に、電子輸送層118(2)上に電子注入層130として、tPy2PとAgを重量比(tPy2P:Ag)が1:0.3、且つ厚さが5nmになるように共蒸着した。
<発光素子13の作製>
電子輸送層118(1)上に電子輸送層118(2)としてNBPhenを厚さが10nmになるように蒸着した。次に、電子輸送層118(2)上に電子注入層130として、NBPhenとAgを重量比(NBPhen:Ag)が1:0.3、且つ厚さが5nmになるように共蒸着し、その上にtPy2PとAuを重量比(tPy2P:Au)が1:0.6、且つ厚さが5nmになるように共蒸着した。
<発光素子14の作製>
電子輸送層118(1)上に電子輸送層118(2)としてNBPhenを厚さが15nmになるように蒸着した。次に、電子輸送層118(2)上に電子注入層130として、2Py3TznとCuを重量比(2Py3Tzn:Cu)が1:0.3、且つ厚さが5nmになるように共蒸着した。
<発光素子15の作製>
電子輸送層118(1)上に電子輸送層118(2)としてNBPhenを厚さが10nmになるように蒸着した。次に、電子輸送層118(2)上に電子注入層130として、NBPhenとCuを重量比(NBPhen:Cu)が1:0.2、且つ厚さが5nmになるように共蒸着し、その上に2Py3TznとCoを重量比(2Py3Tzn:Co)が1:0.2、且つ厚さが5nmになるように共蒸着した。
<発光素子の特性>
 次に、上記作製した比較発光素子11及び発光素子12乃至発光素子15の素子特性を測定した。測定は実施例1と同様に行った。
作製した比較発光素子11及び発光素子12乃至発光素子15の電流効率−輝度特性を図22に、電流−電圧特性を図23に、外部量子効率−輝度特性を図24にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図25に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、比較発光素子11及び発光素子12乃至発光素子15の素子特性を表10に示す。
Figure JPOXMLDOC01-appb-T000037
 図24及び表10で示すように、比較発光素子11と発光素子12乃至発光素子15とは同等の外部量子効率を示すことが分かった。また、発光素子12乃至発光素子14の外部量子効率は20%を超える高い値を示した。また、図23及び表10で示すように、比較発光素子11と発光素子12乃至発光素子15とは、同等の電流−電圧特性を示した。これらの結果より、発光素子12乃至発光素子15は電子注入層に一般的に用いられるLiFを用いた比較発光素子11と同等な電子注入性を有していることが分かる。
 また、図25に示すように、比較発光素子11と発光素子12乃至発光素子15の、電界発光スペクトルのピーク波長はいずれも520nm付近であり、半値全幅はいずれも63nm程度である緑色の発光を示した。得られた電界発光スペクトルから、ゲスト材料であるGD270からの発光であることが分かった。
<発光素子の信頼性評価>
次に比較発光素子11と発光素子12乃至発光素子15について恒温恒湿保存試験を行った。各発光素子は封止を行っていないため、陰極及びEL層が試験環境の雰囲気に曝される状態の発光素子である。一般に、発光素子に水分が侵入すると、ダークスポット(発光部内部における非発光領域)やシュリンク(発光部端部における非発光領域)が発生し、発光素子の信頼性に悪影響を及ぼす。そのため、恒温恒湿保存試験を行うことで、発光素子の水分に対する信頼性を評価することができる。
比較発光素子11及び発光素子12乃至発光素子15をそれぞれ温度が40℃、湿度が90%の一定に保たれた恒温槽内に350時間放置した後、それぞれの発光素子の発光状態を調査した。
発光状態の評価は、恒温恒湿保存試験前後における、発光面積の割合を見積もることで行った。表11にその結果を示す。
Figure JPOXMLDOC01-appb-T000038
表11中、発光面積比(%)=恒温恒湿保存試験後の発光面積/恒温恒湿試験前の発光面積×100である。表11より、アルカリ金属化合物である、LiFを電子注入層に用いた比較発光素子11は、保存試験により劣化し非発光となった。一方、本発明の一態様の発光素子である、発光素子12乃至発光素子15は、比較発光素子11よりも発光面積比が大きい結果となった。すなわち、本発明の一態様である発光素子は、アルカリ金属のような仕事関数の小さな材料を電子注入層に用いた発光素子よりも、耐湿性に優れることが示された。これは、仕事関数の小さな材料は水との反応性が高く、発光素子内部に水分が侵入してしまうためである。一方、本発明の一態様である発光素子は、水との反応性に乏しい、仕事関数が大きな金属を用いることができるため発光素子内部に水分が侵入しにくい。そのため、耐湿性が高い発光素子を実現することができる。
以上より、本発明の一態様である発光素子は、電子注入性に優れるため、駆動電圧が低く、発光効率の高い発光素子である。また、仕事関数が高い材料を用いることが可能であるため、耐湿性に優れた発光素子である。本実施例に示す構成は、他の実施例及び実施の形態と適宜組み合わせて用いる事ができる。
 本実施例では、本発明の一態様に係る発光素子に用いることができる、有機化合物の例とその合成例について説明する。
<4’−[4−(10−フェニル−9−アントリル)フェニル]−2,2’:6’,2’’−ターピリジン(略称:PAtPy)(構造式(200))の合成>
100mL3口フラスコに4’−(4−ブロモフェニル)−2,2’:6’,2’’−ターピリジン1.0g(2.6mmol)、10−フェニル−9−アントリルボロン酸0.86g(2.9mmol)、炭酸ナトリウム0.85g(8.0mmol)、トルエン20mL、エタノール5mL、水5mLを加えた。この混合物を減圧下において攪拌しながら脱気し、その後、フラスコ内を窒素置換した。この混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)65mg(56μmol)を加え、窒素気流下、100℃で8時間還流した。撹拌後、反応混合物を室温まで冷却し、析出した固体を吸引濾過にて回収した。得られた固体のクロロホルム溶液を、水、飽和炭酸水素ナトリウム、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。クロロホルム溶液と硫酸マグネシウムの混合物を自然濾過し、濾液を濃縮して固体を得た。得られた固体のメタノール懸濁液に超音波を照射し、固体を吸引濾過により回収した。さらに、トルエンにより再結晶したところ、目的物の淡赤色粉末を収量1.2g、収率81%で得た。本合成スキームを下記式(a−1)に示す。
Figure JPOXMLDOC01-appb-C000039
得られた淡赤色粉末1.2gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力4.5Pa、アルゴン流量10mL/minの条件で、PAtPyを290℃で加熱して行った。昇華精製後のPAtPyの淡赤色粉末を0.55g、回収率47%で得た。
上記得られた淡赤色粉末を核磁気共鳴分光法(H−NMR)により測定した。分析結果を下記に示す。
H−NMR(CDCl,300MHz):δ=7.34−7.40(m、6H)、7.49−7.79(m、11H)、7.91(dt、J=1.5Hz、7.2Hz、2H)、8.16(d、J=7.8Hz、2H)、8.72−8.78(m、4H)、8.93(s、2H)。
また、得られた淡赤色粉末のH NMRチャートを図26(A)(B)に示す。なお、図26(B)は図26(A)における7.0ppmから9.5ppmの範囲の拡大図である。測定結果から目的物であるPAtPyが得られたことが分かった。
 本実施例では、本発明の一態様に係る発光素子に用いることができる、有機化合物の例とその合成例について説明する。
<2−[4’−(2,2’:6’,2’’−ターピリジン−4’−イル)ビフェニル−4−イル]ベンゾオキサゾール(略称:BOxtPy)(構造式(201))の合成>
100mL3口フラスコに4’−(4−ブロモフェニル)−2,2’:6’,2’’−ターピリジン1.0g(2.6mmol)、4−(ベンゾオキサゾール−2−イル)フェニルボロン酸0.68g(2.9mmol)、炭酸ナトリウム0.62g(5.8mmol)、トルエン20mL、エタノール5mL、水3mLを加えた。この混合物を減圧下で攪拌しながら脱気し、その後フラスコ内を窒素置換した。この混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)63mg(55μmol)を加え、窒素気流下において、100℃で5時間還流した。還流後、この反応混合物を室温まで冷却し、析出した固体を吸引濾過にて回収した。得られた固体のクロロホルム溶液を、水、飽和炭酸水素ナトリウム、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。得られたクロロホルム溶液と硫酸マグネシウムの混合物を自然濾過し、濾液を濃縮して固体を得た。得られた固体をトルエンにより再結晶し、目的物の淡赤色粉末を収量1.0g、収率78%で得た。本合成スキームを下記式(b−1)に示す。
Figure JPOXMLDOC01-appb-C000040
得られたBOxtPyの粉末1.0gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力4.4Pa、アルゴン流量10mL/minの条件で、BOxtPyを280℃で加熱して行った。昇華精製後BOxtPyの淡赤色粉末を0.64g、回収率63%で得た。
上記得られた淡赤色粉末を核磁気共鳴分光法(H−NMR)により測定した。分析結果を下記に示す。
H−NMR(CDCl,300MHz):δ=7.32−7.41(m、4H)、7.59−7.65(m、1H)、7.78−7.93(m、7H)、8.05(d、J=8.4Hz、2H)、8.37(d、J=7.8Hz、2H)、8.70(d、J=7.8Hz、2H)、8.75−8.77(m、2H)、8.81(s、2H)。
また、得られた淡赤色粉末のH NMRチャートを図27(A)(B)に示す。なお、図27(B)は図27(A)における7.0ppmから9.0ppmの範囲の拡大図である。測定結果から目的物であるBOxtPyが得られたことが分かった。
 本実施例では、本発明の一態様に係る発光素子に用いることができる、有機化合物の例とその合成例について説明する。
4’−{4−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]フェニル}−2,2’:6’,2’’−ターピリジン(略称:O11tPy)(構造式(202))の合成>
100mL3口フラスコに4’−(4−ブロモフェニル)−2,2’:6’,2’’−ターピリジン1.0g(2.6mmol)、4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニルボロン酸0.73g(2.7mmol)、炭酸ナトリウム0.71g(6.7mmol)、トルエン20mL、エタノール5mL、水3mLを加えた。この混合物を減圧下で攪拌する事で脱気し、フラスコ内を窒素置換した。この混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)68mg(59μmol)を加えた。この混合物を窒素気流下、100℃で9時間還流した。撹拌後、この混合物を室温まで冷却し、析出した固体を吸引濾過した。得られた固体のクロロホルム溶液を、水、飽和炭酸水素ナトリウム水溶液、飽和食塩水により洗浄し、硫酸マグネシウムにより乾燥した。この混合物を自然濾過し、濾液を濃縮して固体を得た。得られた固体をメタノールで洗浄後、さらに、トルエン/ヘキサンで再結晶したところ、目的物の白色粉末を収量0.72g、収率51%で得た。本合成スキームを下記式(c−1)に示す。
Figure JPOXMLDOC01-appb-C000041
得られたO11tPyの粉末0.71gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力4.0Pa、アルゴン流量10mL/minの条件で、O11tPyを270℃で加熱して行った。昇華精製後O11tPyの白色粉末を0.29g、回収率41%で得た。
上記得られた白色粉末を核磁気共鳴分光法(H−NMR)により測定した。分析結果を下記に示す。
H−NMR(CDCl,300MHz):δ=7.35−7.39(m、2H)、7.52−7.58(m、3H)、7.79−7.93(m、6H)、8.04(d、J=8.4Hz、2H)、8.16−8.19(m、2H)、8.24(d、J=8.4Hz、2H)、8.69(d、J=7.8Hz、2H)、8.74−8.76(m、2H)、8.80(s、2H)。
また、得られた白色粉末のH NMRチャートを図28(A)(B)に示す。なお、図28(B)は図28(A)における7.0ppmから9.0ppmの範囲の拡大図である。測定結果から目的物であるO11tPyが得られたことが分かった。
 本実施例では、本発明の一態様に係る発光素子に用いることができる、有機化合物の例とその合成例について説明する。
9,9’−[5−(2,2’:6’,2’’−ターピリジン−4’−イル)−1,3−フェニレン]ビス(9H−カルバゾール)(略称:Cz2PtPy)(構造式(203)の合成>
100mL3口フラスコに4’−ブロモ−2,2’:6’,2’’−ターピリジン0.94g(3.0mmol)、3,5−ビス(9H−カルバゾール−9−イル)フェニルボロン酸1.4g(3.2mmol)、炭酸ナトリウム0.86g(6.2mmol)、トルエン30mL、エタノール5mL、水3mLを加えた。この混合物を減圧下で攪拌する事で脱気し、フラスコ内を窒素置換した。この混合物に、テトラキス(トリフェニルホスフィン)パラジウム(0)72mg(62μmol)を加えた。この混合物を窒素気流下、80℃で7時間撹拌した。撹拌後、この混合物の水層をトルエンにより抽出し、抽出溶液と有機層とを合わせ、飽和炭酸水素ナトリウム水溶液、飽和食塩水により洗浄し、硫酸マグネシウムにより乾燥した。この混合物を自然濾過し、濾液を濃縮して固体を得た。得られた固体をメタノールで洗浄後、さらに、トルエンで再結晶したところ、目的物の白色粉末を収量1.1g、収率55%で得た。本合成スキームを下記式(d−1)に示す。
Figure JPOXMLDOC01-appb-C000042
得られたCz2PtPyの粉末0.83gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.2Pa、アルゴン流量5.0mL/minの条件で、Cz2PtPyを290℃で加熱して行った。昇華精製後Cz2PtPyの白色粉末を0.71g、回収率86%で得た。
上記得られた白色粉末を核磁気共鳴分光法(H−NMR)により測定した。分析結果を下記に示す。
H−NMR(CDCl,300MHz):δ=7.31−7.37(m、6H)、7.47(dt、J=0.9Hz、7.2Hz、4H)、7.59(d、J=8.1Hz、4H)、7.85−7.92(m、3H)、8.17−8.22(m、6H)、8.66−8.69(m、4H)、8.82(s、2H)。
また、得られた白色粉末のH NMRチャートを図29(A)(B)に示す。なお、図29(B)は図29(A)における7.0ppmから9.0ppmの範囲の拡大図である。測定結果から目的物であるCz2PtPyが得られたことが分かった。
 本実施例では、本発明の一態様に係る発光素子に用いることができる、有機化合物の例とその合成例について説明する。
2,4,6−トリス(5−フェニル−2−ピリミジン−2−イル)−1,3,5−トリアジン(略称:PPm3Tzn)(構造式(105)の合成>
50mL2口フラスコに5−フェニルピリミジン−2−カルボキシミドアミド0.80g(4.0mmol)、2−シアノ−5−フェニルピリジン1.4g(7.7mmol)、ジグライム2mL、1,2,3,4−テトラヒドロナフタレン1mLを加えた。この混合物を、窒素気流下、180℃で29時間、200℃で100時間撹拌した。撹拌後、この混合物を室温まで冷却し、酢酸エチルにより洗浄したところ、褐色粉末を収量0.82gで得た。本合成スキームを下記式(e−1)に示す。また、後述する昇華精製を行う前のH−NMRを測定したところ、プロトン比が、PPm3Tzn:5−フェニルピリミジン−2−カルボキシミドアミド=1:1.7であり、褐色粉末は目的物と原料が混在していることが分かった。また、2−シアノ−5−フェニルピリジンに由来するシグナルは観測されなかった。
Figure JPOXMLDOC01-appb-C000043
得られた褐色粉末0.79gをトレインサブリメーション法により昇華精製した。昇華精製は、圧力3.7Pa、アルゴン流量15mL/minの条件で、310℃で加熱して行った。昇華精製後2,4,6−トリス(5−フェニル−2−ピリミジン−2−イル)−1,3,5−トリアジンの淡褐色粉末を0.19gで得た。昇華精製後のH−NMRを測定したところ、5−フェニルピリミジン−2−カルボキシミドアミドに由来するシグナルが消失していた。よって、昇華精製により簡便に目的物の精製を行えることが分かった。
上記得られた淡褐色粉末を核磁気共鳴分光法(H−NMR)により測定した。分析結果を下記に示す。
H−NMR(CDCl,300MHz):δ=7.52−7.63(m、9H)、7.73(dd、J=1.5Hz、7.8Hz、6H)、9.35(s、6H)。
また、得られた淡褐色粉末のH NMRチャートを図30(A)(B)に示す。なお、図30(B)は図30(A)における7.0ppmから9.5ppmの範囲の拡大図である。測定結果から目的物であるPPm3Tznが得られたことが分かった。
本発明の一態様の発光素子として、後述のタンデム素子の一例である発光素子16乃至発光素子21及び比較発光素子33及び比較発光素子34の作製例を示す。本実施例で作製した発光素子の断面模式図を図31に、素子構造の詳細を表12乃至表14にそれぞれ示す。また、本実施例で用いる有機化合物の化学式を以下に示す。なお、他の化合物の構造と略称については、先の実施例及び実施の形態1を参酌すれば良い。なお、発光素子16乃至発光素子21は一対の電極間に複数層のEL層を電荷発生層を介して直列に接続した素子(タンデム素子ともいう)において、EL層の間の電荷発生層(図31における電荷発生層115)に接する電子注入層(図31における電子注入層114)に3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料を用いた発光素子の一例である。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
≪発光素子16の作製≫
 ガラス基板上に電極101として、ITSO膜を厚さが110nmになるように形成した。電極面積は4mm(2mm×2mm)とした。
次に、電極101上に正孔注入層111として、DBT3P−IIと、MoOと、を重量比(DBT3P−II:MoO)が1:0.5になるように、且つ厚さが25nmになるように共蒸着した。
次に、正孔注入層111上に正孔輸送層112として、PCBBiFを厚さが20nmになるように蒸着した。
 次に、正孔輸送層112上に発光層170として、2mDBTBPDBq−IIとPCBBiFとIr(dmdppr−dmp)(dpm)を重量比(2mDBTBPDBq−II:PCBBiF:Ir(dmdppr−dmp)(dpm))が0.75:0.25:0.08になるように、且つ厚さが40nmになるように共蒸着した。なお、発光層170において、2mDBTBPDBq−II及びPCBBiFがホスト材料であり、Ir(dmdppr−dmp)(dpm)がゲスト材料(燐光性化合物)である。
 次に、発光層170上に電子輸送層113(1)として、2mDBTBPDBq−IIを厚さが10nmになるように蒸着した。続いて、電子輸送層113(2)としてNBPhenを15nmとなるように蒸着した。
 電子輸送層113(2)上に電子注入層114として、2,2’−(ピリジン−2,6−ジイル)ビス(4−フェニルベンゾ[h]キナゾリン)(略称:2,6(P−Bqn)2Py)とCuを重量比(2,6(P−Bqn)2Py:Cu)が1:0.2且つ厚さが5nmになるように共蒸着した。
次に、電子注入層114上に電荷発生層115として、DBT3P−IIと、MoOと、を重量比(DBT3P−II:MoO)が1:0.5になるように、且つ厚さが80nmになるように共蒸着した。
次に、電荷発生層115上に正孔輸送層119として、PCBBiFを厚さが20nmになるように蒸着した。
 次に、正孔輸送層119上に発光層140として、2mDBTBPDBq−IIと、PCBBiFとIr(dmdppr−dmp)(dpm)と、を重量比(2mDBTBPDBq−II:PCBBiF:Ir(dmdppr−dmp)(dpm))が0.75:0.25:0.08になるように、且つ厚さが40nmになるように共蒸着した。
 次に、発光層140上に電子輸送層118(1)として、2mDBTBPDBq−IIを厚さが25nmになるように蒸着した。続いて、電子輸送層118(1)上に電子輸送層118(2)として、NBPhenを厚さが10nmになるように蒸着した。
 電子輸送層118(2)上に電子注入層130として、NBPhenとCuを重量比(NBPhen:Cu)が1:0.2且つ厚さが5nmになるように共蒸着した。
 次に、電子注入層130上に、電極102として、Alを厚さが200nmになるように蒸着した。
 次に、窒素雰囲気のグローブボックス内において、封止するためのガラス基板を、有機EL用シール材を用いて、有機材料を形成したガラス基板に固定することで、発光素子16を封止した。具体的には、ガラス基板に形成した有機材料の周囲にシール材を塗布し、該ガラス基板と封止するためのガラス基板とを貼り合わせ、波長が365nmの紫外光を6J/cm照射し、80℃にて1時間熱処理した。以上の工程により発光素子16を得た。
≪発光素子17乃至発光素子21、比較発光素子33及び比較発光素子34の作製≫
 発光素子17乃至発光素子21、比較発光素子33及び比較発光素子34は、先に示す発光素子16と同様に作製した。素子構造の詳細は表12乃至表14に示す通りであるため、作製方法の詳細は省略する。
≪各発光素子の測定≫
上記作製した発光素子16乃至発光素子21、比較発光素子33及び比較発光素子34の素子特性を測定した。輝度およびCIE色度の測定には色彩輝度計(トプコン社製、BM−5A)を用い、電界発光スペクトルの測定にはマルチチャンネル分光器(浜松ホトニクス社製、PMA−11)を用いた。
作製した発光素子16乃至発光素子21、比較発光素子33及び比較発光素子34の電流効率−輝度特性を図32に、電流−電圧特性を図33に、電力効率−輝度特性を図34に、外部量子効率−輝度特性を図35にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図36に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、発光素子16乃至発光素子21、比較発光素子33及び比較発光素子34の素子特性を表15に示す。
Figure JPOXMLDOC01-appb-T000048
 図36に示すように、発光素子16乃至発光素子21、比較発光素子33及び比較発光素子34の電界発光スペクトルのピーク波長はいずれも620nm付近であり、発光素子16乃至発光素子21、比較発光素子33及び比較発光素子34は、それぞれの発光素子が有するゲスト材料であるIr(dmdppr−dmp)(dpm)に由来する発光を示すことがわかった。
 また、図35及び表15で示すように、発光素子16乃至発光素子21はいずれも、比較発光素子33と同等の外部量子効率50%を超える、非常に高い発光効率を示した。また、図32及び図34に示すように、高い電流効率、高い電力効率を示した。一方、比較発光素子34は、外部量子効率が27.2%と低く、タンデム素子として十分な効率が得られなかった。これらの結果より、発光素子16乃至発光素子21は、EL層の間の電荷発生層に接する電子注入層に一般的に用いられるLi化合物であるLiOを用いた比較発光素子33と同等の電子注入性を有していることが分かる。
また、図33及び表15に示すように、発光素子16乃至発光素子21は、比較発光素子33及び比較発光素子34よりも駆動電圧が低く良好な電流−電圧特性を示した。また、比較発光素子34は、駆動電圧が非常に高く、電荷発生層からの電子注入性に問題があることが分かった。これらの結果より、発光素子16乃至発光素子21は、EL層の間の電荷発生層に接する電子注入層に一般的に用いられるLi化合物であるLiOを用いた比較発光素子33より電子注入性が良好であることが分かる。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料はタンデム素子におけるEL層の間の電荷発生層に接する電子注入層として用いても、良好な駆動電圧特性を示すことがわかった。
<発光素子の定電流駆動試験結果>
次に、発光素子18、発光素子19、比較発光素子33、及び比較発光素子34の1.0mAにおける定電流駆動試験を室温にて行った。その結果を図52に示す。図52から分かるように発光素子18及び発光素子19は比較発光素子33及び比較発光素子34より良好な信頼性を有することが分かった。これらの結果より、発光素子18及び発光素子19は、電荷発生層に接する電子注入層に一般的に用いられるLi化合物であるLiOを用いた比較発光素子33及び電荷発生層に接する電子注入層を有さない比較発光素子34より優れた信頼性を有していることが分かる。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料はタンデム素子におけるEL層の間の電荷発生層に接する電子注入層として用いることで、優れた信頼性を有する発光素子を実現することができる。
以上より、本発明の一態様である発光素子は、電子注入性に優れるため、駆動電圧が低く、発光効率の高い発光素子である。また、仕事関数が高い材料を用いることが可能であるため、耐湿性に優れ信頼性に優れた発光素子である。本実施例に示す構成は、他の実施例及び実施の形態と適宜組み合わせて用いる事ができる。
本発明の一態様の発光素子として、発光素子22乃至発光素子25の作製例を示す。本実施例で作製した発光素子の断面模式図を図1に、素子構造の詳細を表16にそれぞれ示す。なお、他の化合物の構造と略称については、先の実施例及び実施の形態1を参酌すれば良い。なお、発光素子22乃至発光素子25は3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる金属として第13族に属する金属であるInを用いた発光素子である。
Figure JPOXMLDOC01-appb-T000049
≪発光素子22の作製≫
 発光素子22は、電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
発光素子22の電子注入層130として、電子輸送層118(2)上にtPy2PとInを重量比(tPy2P:In)が1:0.4且つ厚さが5nmになるように共蒸着した。
≪発光素子23の作製≫
 発光素子23は、電子輸送層118(2)及び電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
発光素子23の電子輸送層118(2)として、電子輸送層118(1)上に、NBPhenを膜厚が10nmとなるように蒸着した。
次に、電子注入層130(1)として、電子輸送層118(2)上にNBPhenとAgを重量比(NBPhen:Ag)が1:0.3且つ厚さが5nmになるように共蒸着した。続いて、電子注入層130(2)として、電子注入層130(1)上に2Py3TznとInを重量比(2Py3Tzn:In)が1:0.6且つ厚さが5nmになるように共蒸着した。
≪発光素子24及び発光素子25の作製≫
 発光素子24及び発光素子25は、電子注入層130(2)の形成工程以外は発光素子23と同様の工程で作製した。
<発光素子24の作製>
発光素子24の電子注入層130(2)として、電子輸送層130(1)上に2,6(P−Bqn)2PyとInを重量比(2,6(P−Bqn)2Py:In)が1:0.3且つ厚さが5nmになるように共蒸着した。
<発光素子25の作製>
発光素子25の電子注入層130(2)として、電子輸送層130(1)上に2,6(NP−PPm)2PyとInを重量比(2,6(NP−PPm)2Py:In)が1:0.3且つ厚さが5nmになるように共蒸着した。
なお、発光素子22乃至発光素子25は比較発光素子1と同様に陰極を作製した後、封止を行わずに大気中で80℃にて1時間熱処理した。
≪各発光素子の測定≫
上記作製した発光素子22乃至発光素子25の素子特性を測定した。輝度およびCIE色度の測定には色彩輝度計(トプコン社製、BM−5A)を用い、電界発光スペクトルの測定にはマルチチャンネル分光器(浜松ホトニクス社製、PMA−11)を用いた。
作製した発光素子22乃至発光素子25の電流効率−輝度特性を図37に、電流−電圧特性を図38に、電力効率−輝度特性を図39に、外部量子効率−輝度特性を図40にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図41に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、発光素子22乃至発光素子25の素子特性を表17に示す。
Figure JPOXMLDOC01-appb-T000050
 図41に示すように、発光素子22乃至発光素子25の電界発光スペクトルのピーク波長はいずれも615nm付近であり、発光素子22乃至発光素子25はそれぞれの発光素子が有するゲスト材料であるIr(dmdppr−dmp)(dpm)に由来する発光を示すことがわかった。
 また、図40及び表17で示すように、発光素子22乃至発光素子25はいずれも外部量子効率25%を超える、非常に高い発光効率を示した。図37及び図39に示すように、高い電流効率、高い電力効率を示した。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる金属としてInは好適であることが分かった。
また、図38に示すように、発光素子22乃至発光素子25は良好な電流−電圧特性を示した。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる金属としてInは好適であることが分かった。
以上より、本発明の一態様である発光素子は、電子注入性に優れるため、駆動電圧が低く、発光効率の高い発光素子である。また、仕事関数が高い材料を用いることが可能であるため、耐湿性に優れた発光素子である。本実施例に示す構成は、他の実施例及び実施の形態と適宜組み合わせて用いる事ができる。
本発明の一態様の発光素子の一例である発光素子26乃至発光素子28の作製例を示す。本実施例で作製した発光素子の断面模式図を図1に、素子構造の詳細を表18にそれぞれ示す。また、本実施例で用いる有機化合物の化学式を以下に示す。なお、他の化合物の構造と略称については、先の実施例及び実施の形態1を参酌すれば良い。なお、発光素子26乃至発光素子28は3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる有機化合物として、トリアジン骨格またはビピリジン骨格を有する有機化合物を用いた発光素子の一例である。なお、本実施例において、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料は電子注入層130に用いている。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-T000052
≪発光素子26乃至発光素子28の作製≫
 発光素子26乃至発光素子28は、電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
発光素子26の電子注入層130として、電子輸送層118(2)上にPPm3TznとCuを重量比(PPm3Tzn:Cu)が1:0.2且つ厚さが5nmになるように共蒸着した。なお、PPm3Tznはトリアジン骨格を有する有機化合物の一例である。また、PPm3Tznはピリミジン骨格を有する有機化合物であるとも言える。
発光素子27の電子注入層130として、電子輸送層118(2)上に2,2’−(2,2’−ビピリジン−6,6’−ジイル)ビス(4−フェニルベンゾ[h]キナゾリン)(略称:6,6’(P−Bqn)2BPy)とAgを重量比(6,6’(P−Bqn)2BPy:Ag)が1:0.3且つ厚さが5nmになるように共蒸着した。なお、6,6’(P−Bqn)2BPyはビピリジン骨格を有する有機化合物の一例である。また、6,6’(P−Bqn)2BPyはキナゾリン骨格を有する有機化合物であるとも言える。
発光素子28の電子注入層130として、電子輸送層118(2)上に6,6’(P−Bqn)2BPy)とCuを重量比(6,6’(P−Bqn)2BPy:Cu)が1:0.3且つ厚さが5nmになるように共蒸着した。
なお、発光素子26乃至発光素子28は比較発光素子1と同様に陰極を作製した後、封止を行わずに大気中で80℃にて1時間熱処理した。
≪各発光素子の測定≫
上記作製した発光素子26乃至発光素子28の素子特性を測定した。輝度およびCIE色度の測定には色彩輝度計(トプコン社製、BM−5A)を用い、電界発光スペクトルの測定にはマルチチャンネル分光器(浜松ホトニクス社製、PMA−11)を用いた。
作製した発光素子26乃至発光素子28の電流効率−輝度特性を図42に、電流−電圧特性を図43に、電力効率−輝度特性を図44に、外部量子効率−輝度特性を図45にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図46に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、発光素子26乃至発光素子28の素子特性を表19に示す。
Figure JPOXMLDOC01-appb-T000053
 図46に示すように、発光素子26乃至発光素子28の電界発光スペクトルのピーク波長はいずれも618nm付近であり、発光素子26乃至発光素子28はそれぞれの発光素子が有するゲスト材料であるIr(dmdppr−dmp)(dpm)に由来する発光を示すことがわかった。
 また、図45及び表19で示すように、発光素子26乃至発光素子28はいずれも外部量子効率29%を超える、非常に高い発光効率を示した。図42及び図44に示すように、高い電流効率、高い電力効率を示した。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる有機化合物として、トリアジン骨格(またはピリミジン骨格)またはビピリジン骨格(またはキナゾリン骨格)を有する有機化合物は好適であることが分かった。
また、図43に示すように、発光素子26乃至発光素子28は良好な電流−電圧特性を示した。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる有機化合物として、トリアジン骨格(またはピリミジン骨格)またはビピリジン骨格(またはキナゾリン骨格)を有する有機化合物は好適であることが分かった。
以上より、本発明の一態様である発光素子は、電子注入性に優れるため、駆動電圧が低く、発光効率の高い発光素子である。また、仕事関数が高い材料を用いることが可能であるため、耐湿性に優れた発光素子である。本実施例に示す構成は、他の実施例及び実施の形態と適宜組み合わせて用いる事ができる。
本発明の一態様の発光素子の一例である発光素子29乃至発光素子32の作製例を示す。本実施例で作製した発光素子の断面模式図を図1に、素子構造の詳細を表20にそれぞれ示す。また、本実施例で用いる有機化合物の化学式を以下に示す。なお、他の化合物の構造と略称については、先の実施例及び実施の形態1を参酌すれば良い。なお、発光素子29乃至発光素子32は3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる有機化合物として、ピリジン骨格を有する有機化合物を用いた発光素子の一例である。なお、本実施例において、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料は電子注入層130に用いている。
Figure JPOXMLDOC01-appb-T000054
≪発光素子29乃至発光素子32の作製≫
 発光素子29乃至発光素子32は、電子注入層130の形成工程以外は比較発光素子1と同様の工程で作製した。
発光素子29の電子注入層130として、電子輸送層118(2)上に2,6(P−Bqn)2PyとAgを重量比(2,6(P−Bqn)2Py:Ag)が1:0.3且つ厚さが5nmになるように共蒸着した。なお、2,6(P−Bqn)2Pyはピリジン骨格を有する有機化合物の一例である。また、2,6(P−Bqn)2Pyはキナゾリン骨格を有する有機化合物であるとも言える。
発光素子30の電子注入層130として、電子輸送層118(2)上に2,6(P−Bqn)2PyとCuを重量比(2,6(P−Bqn)2Py:Cu)が1:0.2且つ厚さが5nmになるように共蒸着した。
発光素子31の電子注入層130として、電子輸送層118(2)上に2,6’(NP−PPm)2PyとAgを重量比(2,6’(NP−PPm)2Py:Ag)が1:0.3且つ厚さが5nmになるように共蒸着した。なお、2,6’(NP−PPm)2Pyはピリジン骨格を有する有機化合物の一例である。また、2,6’(NP−PPm)2Pyはピリミジン骨格を有する有機化合物であるとも言える。
なお、発光素子29乃至発光素子32は比較発光素子1と同様に陰極を作製した後、封止を行わずに大気中で80℃にて1時間熱処理した。
≪各発光素子の測定≫
上記作製した発光素子29乃至発光素子32の素子特性を測定した。輝度およびCIE色度の測定には色彩輝度計(トプコン社製、BM−5A)を用い、電界発光スペクトルの測定にはマルチチャンネル分光器(浜松ホトニクス社製、PMA−11)を用いた。
作製した発光素子29乃至発光素子32の電流効率−輝度特性を図47に、電流−電圧特性を図48に、電力効率−輝度特性を図49に、外部量子効率−輝度特性を図50にそれぞれ示す。なお、各発光素子の測定は室温(23℃に保たれた雰囲気)で行った。また、各発光素子に2.5mA/cmの電流密度で電流を流した際の電界発光スペクトルを図51に示す。なお、測定は室温で行った。
 また、1000cd/m付近における、発光素子29乃至発光素子32の素子特性を表21に示す。
Figure JPOXMLDOC01-appb-T000055
 図51に示すように、発光素子29乃至発光素子32の電界発光スペクトルのピーク波長はいずれも618nm付近であり、発光素子29乃至発光素子32はそれぞれの発光素子が有するゲスト材料であるIr(dmdppr−dmp)(dpm)に由来する発光を示すことがわかった。
 また、図50及び表21で示すように、発光素子29乃至発光素子32はいずれも外部量子効率28%を超える、非常に高い発光効率を示した。図47及び図49に示すように、高い電流効率、高い電力効率を示した。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる有機化合物として、ピリジン骨格(、ピリミジン骨格またはキナゾリン骨格)を有する有機化合物は好適であることが分かった。
また、図48に示すように、発光素子29乃至発光素子32は良好な電流−電圧特性を示した。よって、3座または4座で金属と相互作用する機能を有する有機化合物と金属の複合材料に用いる有機化合物として、トリアジン骨格(またはピリミジン骨格)またはビピリジン骨格(またはキナゾリン骨格)を有する有機化合物は好適であることが分かった。
以上より、本発明の一態様である発光素子は、電子注入性に優れるため、駆動電圧が低く、発光効率の高い発光素子である。また、仕事関数が高い材料を用いることが可能であるため、耐湿性に優れた発光素子である。本実施例に示す構成は、他の実施例及び実施の形態と適宜組み合わせて用いる事ができる。
100:EL層、101:電極、101a:導電層、101b:導電層、102:電極、103:電極、103a:導電層、103b:導電層、104:電極、104a:導電層、104b:導電層、106:発光ユニット、108:発光ユニット、110:EL層、111:正孔注入層、112:正孔輸送層、113:電子輸送層、115:電荷発生層、116:正孔注入層、117:正孔輸送層、118:電子輸送層、119:電子注入層、127:バッファ層、129:電荷発生層、130:電子注入層、131:化合物、132:金属、133:化合物、140:発光層、145:隔壁、150:発光素子、152:発光素子、154:発光素子、170:発光層、200:基板、220:基板、222B:領域、222G:領域、222R:領域、223:遮光層、224B:光学素子、224G:光学素子、224R:光学素子、250a:発光素子、250b:発光素子、601:ソース側駆動回路、602:画素部、603:ゲート側駆動回路、604:封止基板、605:シール材、607:空間、608:配線、610:素子基板、611:スイッチング用TFT、612:電流制御用TFT、613:電極、614:絶縁物、616:EL層、617:電極、618:発光素子、623:nチャネル型TFT、624:pチャネル型TFT、900:携帯情報端末、901:筐体、902:筐体、903:表示部、905:ヒンジ部、910:携帯情報端末、911:筐体、912:表示部、913:操作ボタン、914:外部接続ポート、915:スピーカ、916:マイク、917:カメラ、920:カメラ、921:筐体、922:表示部、923:操作ボタン、924:シャッターボタン、926:レンズ、1001:基板、1002:下地絶縁膜、1003:ゲート絶縁膜、1006:ゲート電極、1007:ゲート電極、1008:ゲート電極、1020:層間絶縁膜、1021:層間絶縁膜、1022:電極、1024B:電極、1024G:電極、1024R:電極、1024W:電極、1025B:下部電極、1025G:下部電極、1025R:下部電極、1025W:下部電極、1026:隔壁、1028:EL層、1029:電極、1031:封止基板、1032:シール材、1033:基材、1034B:着色層、1034G:着色層、1034R:着色層、1036:オーバーコート層、1037:層間絶縁膜、1040:画素部、1041:駆動回路部、1042:周辺部、2100:ロボット、2101:照度センサ、2102:マイクロフォン、2103:上部カメラ、2104:スピーカ、2105:ディスプレイ、2106:下部カメラ、2107:障害物センサ、2108:移動機構、2110:演算装置、5000:筐体、5001:表示部、5002:表示部、5003:スピーカ、5004:LEDランプ、5005:操作キー、5006:接続端子、5007:センサ、5008:マイクロフォン、5012:支持部、5013:イヤホン、5100:掃除ロボット、5101:ディスプレイ、5102:カメラ、5103:ブラシ、5104:操作ボタン、5120:ゴミ、5140:携帯電子機器、5150:携帯情報端末、5151:筐体、5152:表示領域、5153:屈曲部、8501:照明装置、8502:照明装置、8503:照明装置、8504:照明装置

Claims (28)

  1.  陽極と陰極との間に発光層を有し、
     前記発光層と前記陰極との間に第1の層を有し、
     前記第1の層は第1の有機化合物及び金属を有し、
     前記金属は周期表における第3族乃至第13族のいずれかに属し、
     前記第1の有機化合物は、置換または無置換の炭素数1以上30以下の複素芳香環を有し、
     前記複素芳香環は、窒素を含み、
     前記第1の有機化合物は、前記窒素において3座または4座で前記金属と相互作用する機能を有し、
     前記第1の有機化合物と前記金属はSOMOを形成する、発光素子。
  2.  陽極と、陰極との間に、第1の発光ユニットと、第2の発光ユニットを有し、
     前記第1の発光ユニットと、前記第2の発光ユニットとの間に第1の層を有し、
     前記第1の層は第1の有機化合物及び金属を有し、
     前記金属は周期表における第3族乃至第13族のいずれかに属し、
     前記第1の有機化合物は、置換または無置換の炭素数1以上30以下の複素芳香環を有し、
     前記複素芳香環は、窒素を含み、
     前記第1の有機化合物は、前記窒素において3座または4座で前記金属と相互作用する機能を有し、
     前記第1の有機化合物と前記金属はSOMOを形成する、発光素子。
  3.  請求項1または請求項2において、
     前記第1の有機化合物は一般式(G0)で表される、発光素子。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(G0)中において、A、A及びAはそれぞれ独立に、置換または無置換の炭素数1以上30以下の複素芳香環を表し、A、A及びAは互いに縮合環を形成していても良い。)
  4.  請求項3において、前記有機化合物は一般式(G1)で表される、発光素子。
    Figure JPOXMLDOC01-appb-C000002
     (一般式(G1)中において、X乃至Xはそれぞれ独立に、炭素(C)または窒素(N)を表し、前記炭素は、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を有し、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。)
  5.  請求項3において、前記有機化合物は一般式(G2)で表される、発光素子。
    Figure JPOXMLDOC01-appb-C000003
     (一般式(G2)中において、X及びXはそれぞれ独立に、炭素(C)または窒素(N)を表し、前記炭素は、水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を有し、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。)
  6.  請求項3において、前記有機化合物は一般式(G3−1)乃至(G3−3)で表される、発光素子。
    Figure JPOXMLDOC01-appb-C000004
     (一般式(G3−1)乃至一般式(G3−3)中において、R乃至Rは、それぞれ独立に水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、置換若しくは無置換の炭素数6以上25以下の芳香族炭化水素基または置換若しくは無置換の炭素数3以上30以下の複素芳香族炭化水素基を表し、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数6以上60以下の芳香族炭化水素基、または炭素数2以上60以下の複素芳香族炭化水素基を表す。)
  7.  請求項3において、前記有機化合物は一般式(G4−1)乃至一般式(G4−3)で表される、発光素子。
    Figure JPOXMLDOC01-appb-C000005
     (一般式(G4−1)乃至一般式(G4−3)中において、Arは水素、炭素数1乃至4のアルキル基、置換もしくは無置換の炭素数3乃至7のシクロアルキル基、炭素数2以上60以下の芳香族炭化水素基、または炭素数3以上60以下の複素芳香族炭化水素基を表す。)
  8.  請求項3において、前記有機化合物は構造式(100)乃至(103)のいずれか一で表される、発光素子。
    Figure JPOXMLDOC01-appb-C000006
  9.  請求項1または請求項2において、
     前記金属の仕事関数が4.0eV以上5.3eV以下である、発光素子。
  10.  請求項1または請求項2において、
     前記金属は遷移金属である、発光素子。
  11.  請求項1または請求項2において、
     前記金属は周期表における第5族、第7族、第9族、または第11族のいずれかに属する、 発光素子。
  12.  請求項1または請求項2において、
     前記金属は周期表における第11族に属する、発光素子。
  13.  請求項1または請求項2において、
     前記金属はAgまたはCuである、発光素子。
  14.  請求項1または請求項2において、
     前記複素芳香環は、置換または無置換の電子不足型複素芳香環を有する、発光素子。
  15.  請求項14において、
     前記電子不足型複素芳香環は、ピリジン環、ジアジン環、及びトリアジン環のいずれか一を有する、発光素子。
  16.  請求項1または請求項2において、
     前記第1の有機化合物が有するLUMO準位が−3.6eV以上−2.3eV以下である、発光素子。
  17.  請求項1または請求項2において、
     前記陰極と前記第1の層との間に第2の層を有し、
     前記第2の層は電子不足型複素芳香環を有する第2の有機化合物を含む、発光素子。
  18.  請求項17において、
     前記第2の有機化合物が有するLUMO準位は、前記SOMOが有するエネルギー準位より低い、発光素子。
  19.  請求項1または請求項2において、
     前記第1の層にアルカリ金属およびアルカリ土類金属を有さない、発光素子。
  20.  請求項1または請求項2において、
     前記第1の層における、前記金属のモル比率が前記第1の有機化合物に対して、0.2以上0.8以下である、発光素子。
  21.  請求項1または請求項2において、
     前記陰極が前記金属を含む、発光素子。
  22.  請求項1または請求項2において、
     前記陰極と前記第1の層が接する、発光素子。
  23.  請求項1または請求項2において、
     前記金属の仕事関数が前記陰極に含まれる金属の仕事関数以上である、発光素子。
  24.  請求項1乃至請求項23のいずれか一項に記載の発光素子と、
     カラーフィルタまたはトランジスタの少なくとも一方と、
     を有する発光装置。
  25.  請求項24に記載の発光装置と、
     筐体または表示部の少なくとも一方と、
     を有する電子機器。
  26.  請求項1乃至請求項23のいずれか一項に記載の発光素子と、
     筐体を有する照明装置。
  27.  構造式(200)乃至(203)のいずれか一で表される、有機化合物。
    Figure JPOXMLDOC01-appb-C000007
  28. 請求項27に記載の有機化合物のいずれか一または複数を用いた発光素子。
PCT/IB2018/060157 2017-12-22 2018-12-17 発光素子、発光装置、電子機器、及び照明装置 WO2019123190A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/954,692 US11404656B2 (en) 2017-12-22 2018-12-17 Light-emitting device, light-emitting apparatus, electronic device, and lighting device
CN201880080618.XA CN111480245A (zh) 2017-12-22 2018-12-17 发光元件、发光装置、电子设备及照明装置
JP2019559869A JP7304818B2 (ja) 2017-12-22 2018-12-17 発光素子、発光装置、電子機器、及び照明装置
KR1020207019756A KR20200103025A (ko) 2017-12-22 2018-12-17 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US17/875,838 US20220407027A1 (en) 2017-12-22 2022-07-28 Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, and Lighting Device
JP2023105240A JP2023123703A (ja) 2017-12-22 2023-06-27 発光素子、発光装置、電子機器、及び照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017246022 2017-12-22
JP2017-246022 2017-12-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/954,692 A-371-Of-International US11404656B2 (en) 2017-12-22 2018-12-17 Light-emitting device, light-emitting apparatus, electronic device, and lighting device
US17/875,838 Continuation US20220407027A1 (en) 2017-12-22 2022-07-28 Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, and Lighting Device

Publications (1)

Publication Number Publication Date
WO2019123190A1 true WO2019123190A1 (ja) 2019-06-27

Family

ID=66993167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/060157 WO2019123190A1 (ja) 2017-12-22 2018-12-17 発光素子、発光装置、電子機器、及び照明装置

Country Status (5)

Country Link
US (2) US11404656B2 (ja)
JP (2) JP7304818B2 (ja)
KR (1) KR20200103025A (ja)
CN (1) CN111480245A (ja)
WO (1) WO2019123190A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606866A (zh) * 2020-06-30 2020-09-01 上海天马有机发光显示技术有限公司 一种有机化合物及其电致发光的应用
KR20220079454A (ko) 2020-12-04 2022-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 패널, 정보 처리 장치, 표시 패널의 제조 방법
CN116746297A (zh) * 2021-12-20 2023-09-12 诺瓦尔德股份有限公司 包含公共电荷产生层的显示装置及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230030716A (ko) * 2021-08-25 2023-03-07 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026221A (ja) * 2003-06-13 2005-01-27 Semiconductor Energy Lab Co Ltd 発光素子用電子注入性組成物、発光素子、および発光装置
WO2013137234A1 (ja) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 透明電極、電子デバイス、および透明電極の製造方法
WO2013141097A1 (ja) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
CN104030974A (zh) * 2014-06-23 2014-09-10 南京工业大学 一种含芳基取代的三联吡啶类化合物及其制备方法和应用
JP2016152400A (ja) * 2015-02-19 2016-08-22 株式会社オートネットワーク技術研究所 基板ユニット
EP3107131A1 (en) * 2015-06-18 2016-12-21 LG Display Co., Ltd. Organi light emitting display device
CN107464885A (zh) * 2016-06-06 2017-12-12 清华大学 一种有机电致发光器件
WO2018185642A1 (en) * 2017-04-07 2018-10-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729154B2 (ja) 1999-09-29 2011-07-20 淳二 城戸 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
US6489638B2 (en) 2000-06-23 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
WO2004048395A1 (ja) 2002-11-26 2004-06-10 Semiconductor Energy Laboratory Co., Ltd. 燐光性化合物および前記燐光性化合物を用いた電界発光素子
CN101575352B (zh) * 2004-05-20 2012-11-28 株式会社半导体能源研究所 发光元件及发光装置
JP4622357B2 (ja) 2004-07-16 2011-02-02 セイコーエプソン株式会社 有機el装置および電子機器
US8889266B2 (en) 2005-03-17 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element, light-emitting device and electronic-device using the organometallic complex
JP4448148B2 (ja) * 2006-03-29 2010-04-07 キヤノン株式会社 有機発光装置
WO2008117633A1 (en) 2007-03-23 2008-10-02 Semiconductor Energy Laboratory Co., Ltd. Composition, method for fabricating light-emitting element, light-emitting element, light-emitting device, and electronic device
JP5217931B2 (ja) * 2007-11-29 2013-06-19 住友化学株式会社 有機エレクトロルミネッセンス素子及びその製造方法
KR101548306B1 (ko) * 2007-11-30 2015-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치 및 전자기기
JP5829828B2 (ja) 2010-04-06 2015-12-09 株式会社半導体エネルギー研究所 有機金属錯体、発光素子及び発光装置
US9260463B2 (en) 2011-11-30 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Substituted pyrimidinato iridium complexes and substituted pyrazinato iridium complexes having an alicyclic diketone ligand
JP5911419B2 (ja) * 2012-12-27 2016-04-27 キヤノン株式会社 有機発光素子及び表示装置
JP6095390B2 (ja) * 2013-02-06 2017-03-15 キヤノン株式会社 有機発光素子及び表示装置
US9673403B2 (en) * 2013-02-07 2017-06-06 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device using the same
JP6488082B2 (ja) 2013-12-02 2019-03-20 株式会社半導体エネルギー研究所 発光装置、電子機器、および照明装置
KR101857146B1 (ko) * 2014-10-28 2018-05-11 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
US9957280B2 (en) * 2014-12-15 2018-05-01 Samsung Electronics Co., Ltd. Luminescent compound and electroluminescent device exhibiting thermally activated delayed fluorescence
CN116018040A (zh) 2015-02-18 2023-04-25 株式会社半导体能源研究所 有机化合物、发光元件、显示模块、照明模块、发光装置、显示装置、电子设备以及照明装置
CN107851736B (zh) * 2015-06-23 2020-06-05 诺瓦尔德股份有限公司 包含极性基质和金属掺杂剂的n型掺杂半导体材料
KR102037816B1 (ko) * 2016-11-16 2019-10-29 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
US10276801B2 (en) * 2017-01-25 2019-04-30 Industrial Technology Research Institute Triazine-based compound and light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026221A (ja) * 2003-06-13 2005-01-27 Semiconductor Energy Lab Co Ltd 発光素子用電子注入性組成物、発光素子、および発光装置
WO2013137234A1 (ja) * 2012-03-15 2013-09-19 コニカミノルタ株式会社 透明電極、電子デバイス、および透明電極の製造方法
WO2013141097A1 (ja) * 2012-03-22 2013-09-26 コニカミノルタ株式会社 透明電極、電子デバイス及び有機エレクトロルミネッセンス素子
CN104030974A (zh) * 2014-06-23 2014-09-10 南京工业大学 一种含芳基取代的三联吡啶类化合物及其制备方法和应用
JP2016152400A (ja) * 2015-02-19 2016-08-22 株式会社オートネットワーク技術研究所 基板ユニット
EP3107131A1 (en) * 2015-06-18 2016-12-21 LG Display Co., Ltd. Organi light emitting display device
CN107464885A (zh) * 2016-06-06 2017-12-12 清华大学 一种有机电致发光器件
WO2018185642A1 (en) * 2017-04-07 2018-10-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606866A (zh) * 2020-06-30 2020-09-01 上海天马有机发光显示技术有限公司 一种有机化合物及其电致发光的应用
KR20220079454A (ko) 2020-12-04 2022-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 패널, 정보 처리 장치, 표시 패널의 제조 방법
CN116746297A (zh) * 2021-12-20 2023-09-12 诺瓦尔德股份有限公司 包含公共电荷产生层的显示装置及其制造方法

Also Published As

Publication number Publication date
KR20200103025A (ko) 2020-09-01
US11404656B2 (en) 2022-08-02
JPWO2019123190A1 (ja) 2020-12-24
JP7304818B2 (ja) 2023-07-07
US20220407027A1 (en) 2022-12-22
US20200388779A1 (en) 2020-12-10
CN111480245A (zh) 2020-07-31
JP2023123703A (ja) 2023-09-05

Similar Documents

Publication Publication Date Title
JP7297978B2 (ja) 発光素子、表示装置、電子機器、及び照明装置
CN107305926B (zh) 发光元件、显示装置、电子设备及照明装置
JP2023082169A (ja) 電子デバイス、表示装置、電子機器、及び照明装置
JP7305073B2 (ja) 発光素子、表示装置、電子機器、及び照明装置
US12048176B2 (en) Light-emitting element, display device, electronic device, and lighting device
JP2020017721A (ja) 発光素子、表示装置、電子機器、有機化合物及び照明装置
WO2019215535A1 (ja) 発光素子、表示装置、電子機器、有機化合物及び照明装置
US20220407027A1 (en) Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, and Lighting Device
JP7573082B2 (ja) 発光デバイス、電子機器及び照明装置
JP7538132B2 (ja) 有機化合物、発光デバイス用材料、発光デバイス、発光装置、電子機器及び照明装置
WO2020026106A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019559869

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207019756

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18890200

Country of ref document: EP

Kind code of ref document: A1