TW202336092A - 膜及其製造方法、以及圖像顯示裝置 - Google Patents

膜及其製造方法、以及圖像顯示裝置 Download PDF

Info

Publication number
TW202336092A
TW202336092A TW111145917A TW111145917A TW202336092A TW 202336092 A TW202336092 A TW 202336092A TW 111145917 A TW111145917 A TW 111145917A TW 111145917 A TW111145917 A TW 111145917A TW 202336092 A TW202336092 A TW 202336092A
Authority
TW
Taiwan
Prior art keywords
film
polyimide
acrylic resin
bis
acid
Prior art date
Application number
TW111145917A
Other languages
English (en)
Inventor
小川紘平
後裕之
片山敬介
石黒文康
高麗寛人
Original Assignee
日商鐘化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鐘化股份有限公司 filed Critical 日商鐘化股份有限公司
Publication of TW202336092A publication Critical patent/TW202336092A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本發明係關於一種包含聚醯亞胺及丙烯酸系樹脂之膜,於膜面內,折射率最大之第一方向之折射率n 1及與第一方向正交之第二方向之折射率n 2滿足100×(n 1-n 2)/n 2≧1.0。膜之全光線透過率較佳為85%以上,霧度較佳為10%以下,黃度較佳為5以下。此膜例如可藉由將包含聚醯亞胺及丙烯酸系樹脂之無延伸膜向至少一方向進行延伸而製造。

Description

膜及其製造方法、以及圖像顯示裝置
本發明係關於一種膜及其製造方法、以及具備該膜之圖像顯示裝置。
對於液晶顯示裝置、有機EL(Electroluminescence,電致發光)顯示裝置、電子紙等顯示裝置、或太陽電池、觸控面板等電子器件,要求薄型化或輕量化,進而要求軟性化。藉由將該等器件所使用之玻璃材料替換為膜材料,而實現軟性化、薄型化、輕量化。已開發出透明聚醯亞胺膜作為玻璃替代材料,用於顯示用基板或配置在顯示裝置之最表面之覆蓋膜(覆蓋窗)等。
為了應用於軟性顯示器等能夠彎折之用途,正在進行提高透明聚醯亞胺膜之耐彎曲性之研究。例如,專利文獻1中記載了藉由將聚醯亞胺膜進行延伸而提高耐彎曲性。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2019-6933號公報
[發明所欲解決之問題]
聚醯亞胺雖耐熱性優異,但由於玻璃轉移溫度較高,為了將聚醯亞胺膜進行延伸,需要加熱至250℃以上之高溫。聚醯亞胺若加熱至高溫則容易著色黃色,有透明性降低之傾向,兼顧透明性與較高之機械強度並不容易。
鑒於上述,本發明之目的在於提供一種透明性優異,且亦可適用於軟性顯示器之具有優異機械強度之透明膜。 [解決問題之技術手段]
本發明係關於一種包含聚醯亞胺及丙烯酸系樹脂,具有面內之折射率各向異性之膜。於膜面內,折射率最大之第一方向之折射率n 1及與第一方向正交之第二方向之折射率n 2滿足100×(n 1-n 2)/n 2≧1.0。
膜之全光線透過率較佳為85%以上,霧度較佳為10%以下,黃度較佳為5以下。膜之玻璃轉移溫度可為110℃以上且未達250℃。膜中所包含之聚醯亞胺樹脂與丙烯酸系樹脂之比率可處於以重量比計為98:2~2:98之範圍內。
於一實施方式中,膜中所包含之聚醯亞胺包含選自由含氟芳香族四羧酸二酐及脂環式四羧酸二酐所組成之群中之一種以上之四羧酸二酐作為四羧酸二酐成分,包含選自由氟烷基取代聯苯胺及脂環式二胺所組成之群中之一種以上之二胺作為二胺成分。
聚醯亞胺較佳為包含氟烷基取代聯苯胺作為二胺成分者。氟烷基取代聯苯胺之量相對於聚醯亞胺之二胺成分總量可為25莫耳%以上。作為氟烷基取代聯苯胺之例,可例舉2,2'-雙(三氟甲基)聯苯胺。
含氟芳香族四羧酸二酐與脂環式四羧酸二酐之量相對於聚醯亞胺之四羧酸二酐成分總量可為15莫耳%以上。
於一實施方式中,膜中所包含之丙烯酸系樹脂之甲基丙烯酸甲酯及甲基丙烯酸甲酯之改性結構之合計量相對於單體成分總量為60重量%以上。丙烯酸系樹脂之玻璃轉移溫度可為90℃以上。
膜之第一方向之拉伸彈性模數及第二方向之拉伸彈性模數中之至少一者可為4.0 GPa以上。
上述膜例如藉由將包含聚醯亞胺及丙烯酸系樹脂之膜(無延伸膜)向至少一方向延伸而獲得。即,本發明之膜可為向至少一方向延伸之延伸膜。延伸時之溫度可為未達250℃。
於一實施方式中,將聚醯亞胺及丙烯酸系樹脂溶解於有機溶劑中而成之樹脂溶液塗佈於支持體上,去除上述有機溶劑,藉此獲得無延伸膜。藉由將此膜向至少一方向進行延伸,而獲得具有折射率各向異性之延伸膜。 [發明之效果]
上述膜因透明性優異且耐彎曲性等機械強度較高,而亦可合適地用於軟性顯示器之覆蓋膜等。
本發明之一實施方式之膜包含聚醯亞胺樹脂及丙烯酸系樹脂,藉由聚醯亞胺樹脂與丙烯酸系樹脂相溶,而表現出透明性。本發明之透明膜於膜面內具有折射率各向異性,膜面內之折射率最大之第一方向之折射率n 1和與第一方向正交之方向即第二方向之折射率n 2之差(n 1-n 2)為n 2之1%以上。即,膜面內之折射率n 1、n 2滿足100×(n 1-n 2)/n 2≧1.0。
具有折射率各向異性之膜之製造方法並無特別限定。例如,由包含表現出相溶性之聚醯亞胺樹脂及丙烯酸系樹脂之樹脂組合物(樹脂混合物)製作膜,將此膜向至少一方向進行延伸,藉此賦予折射率各向異性。
[聚醯亞胺] 作為與丙烯酸系樹脂表現出相溶性之聚醯亞胺,較佳為可溶於有機溶劑者。可溶於有機溶劑之聚醯亞胺較佳為以相對於N,N-二甲基甲醯胺(DMF)為1重量%以上之濃度溶解者。聚醯亞胺特佳為除了對DMF等醯胺系溶劑可溶以外,亦對非醯胺系溶劑可溶者。
聚醯亞胺係具有通式(I)所表示之結構單元之聚合物,係藉由使藉由四羧酸二酐(以下,有時記載為「酸二酐」)與二胺之加成聚合所獲得之聚醯胺酸脫水環化而獲得。即,聚醯亞胺係四羧酸二酐與二胺之縮聚物,具有源自酸二酐之結構(酸二酐成分)及源自二胺之結構(二胺成分)。
於通式(I)中,Y為2價有機基,X為4價有機基。Y係二胺殘基,係從下述通式(II)所表示之二胺中除去了兩個胺基之有機基。X係四羧酸二酐殘基,係從下述通式(III)所表示之四羧酸二酐中除去了兩個酸酐基之有機基。
換言之,聚醯亞胺包含下述通式(IIa)所表示之結構單元及下述通式(IIIa)所表示之結構單元,藉由源自二胺之結構(IIa)與源自四羧酸二酐之結構(IIIa)形成醯亞胺鍵,而具有通式(I)所表示之結構單元。
再者,聚醯亞胺除了由酸二酐及二胺經由聚醯胺酸而合成之方法以外,亦可藉由二異氰酸酯與酸二酐之脫羧所進行之縮合等而合成,但無論於哪一種合成方法中,獲得之聚醯亞胺皆具有源自從四羧酸二酐中除去了四個羧基之酸二酐之結構(四羧酸二酐殘基)X、及源自從二胺中除去了兩個胺基之二胺之結構(二胺殘基)Y。因此,即便用於合成聚醯亞胺之起始原料並非酸二酐或二胺之情形時,亦會將聚醯亞胺中所包含之相當於四羧酸二酐殘基之結構表現為「酸二酐成分」,將相當於二胺殘基之結構表現為「二胺成分」。
<二胺> 聚醯亞胺之二胺成分並無特別限定,就提高與丙烯酸系樹脂之相溶性之觀點而言,聚醯亞胺較佳為包含氟烷基取代聯苯胺及脂環式二胺中之至少一者作為二胺成分者。
(氟烷基取代聯苯胺) 作為氟烷基取代聯苯胺之例,可例舉:2-氟聯苯胺、3-氟聯苯胺、2,3-二氟聯苯胺、2,5-二氟聯苯胺、2,6-二氟聯苯胺、2,3,5-三氟聯苯胺、2,3,6-三氟聯苯胺、2,3,5,6-四氟聯苯胺、2,2'-二氟聯苯胺、3,3'-二氟聯苯胺、2,3'-二氟聯苯胺、2,2',3-三氟聯苯胺、2,3,3'-三氟聯苯胺、2,2',5-三氟聯苯胺、2,2',6-三氟聯苯胺、2,3',5-三氟聯苯胺、2,3',6-三氟聯苯胺、2,2',3,3'-四氟聯苯胺、2,2',5,5'-四氟聯苯胺、2,2',6,6'-四氟聯苯胺、2,2',3,3',6,6'-六氟聯苯胺、2,2',3,3',5,5',6,6'-八氟聯苯胺、2-(三氟甲基)聯苯胺、3-(三氟甲基)聯苯胺、2,3-雙(三氟甲基)聯苯胺、2,5-雙(三氟甲基)聯苯胺、2,6-雙(三氟甲基)聯苯胺、2,3,5-三(三氟甲基)聯苯胺、2,3,6-三(三氟甲基)聯苯胺、2,3,5,6-四(三氟甲基)聯苯胺、2,2'-雙(三氟甲基)聯苯胺、3,3'-雙(三氟甲基)聯苯胺、2,3'-雙(三氟甲基)聯苯胺、2,2',3-三(三氟甲基)聯苯胺、2,3,3'-三(三氟甲基)聯苯胺、2,2',5-三(三氟甲基)聯苯胺、2,2',6-三(三氟甲基)聯苯胺、2,3',5-三(三氟甲基)聯苯胺、2,3',6,-三(三氟甲基)聯苯胺、2,2',3,3'-四(三氟甲基)聯苯胺、2,2',5,5'-四(三氟甲基)聯苯胺、2,2',6,6'-四(三氟甲基)聯苯胺等。
氟烷基取代聯苯胺中,就兼顧聚醯亞胺之溶解性與透明性之觀點而言,氟烷基取代聯苯胺之氟烷基較佳為全氟烷基。作為全氟烷基,較佳為三氟甲基。其中,就聚醯亞胺於有機溶劑中之溶解性及與丙烯酸系樹脂之相溶性之觀點而言,較佳為於聯苯之2位具有全氟烷基之全氟烷基取代聯苯胺,特佳為2,2'-雙(三氟甲基)聯苯胺(以下記載為「TFMB」)。藉由在聯苯之2位及2'位具有三氟甲基,除三氟甲基之拉電子性所致之π電子密度降低以外,還由於三氟甲基之位阻,聯苯之2個苯環之間之鍵扭轉而π共軛之平面性下降,因此吸收端波長進行短波長位移,可減少聚醯亞胺之著色。
氟烷基取代聯苯胺相對於二胺成分總量100莫耳%之含量較佳為25莫耳%以上,更佳為30莫耳%以上,進而較佳為40莫耳%以上,特佳為50莫耳%以上,亦可為60莫耳%以上、70莫耳%以上、80莫耳%以上、85莫耳%以上或90莫耳%以上。藉由氟烷基取代聯苯胺之含量較大,而抑制膜之著色,並且存在鉛筆硬度或彈性模數等機械強度變高之傾向。
(脂環式二胺) 作為具有脂環式結構之二胺,可例舉:異佛爾酮二胺、1,2-環己二胺、1,3-環己二胺、1,4-環己二胺、1,2-雙(胺甲基)環己烷、1,3-雙(胺甲基)環己烷、1,4-雙(胺甲基)環己烷、雙(胺甲基)降𦯉烯、4,4'-亞甲基雙(環己胺)、雙(4-胺基環己基)甲烷、4,4'-亞甲基雙(2-甲基環己胺)、金剛烷-1,3-二胺、2,6-雙(胺甲基)雙環[2.2.1]庚烷、2,5-雙(胺甲基)雙環[2.2.1]庚烷、1,1-雙(4-胺基苯基)環己烷等。
聚醯亞胺亦可包含氟烷基取代聯苯胺以外之二胺作為二胺成分。作為表現出與丙烯酸系樹脂之相溶性之聚醯亞胺中之二胺成分,除氟烷基取代聯苯胺及脂環式二胺以外,可例舉:具有茀骨架之二胺、具有碸基之二胺、含氟二胺。
(具有茀骨架之二胺) 作為具有茀骨架之二胺之例,可例舉9,9-雙(4-胺基苯基)茀。
(含碸基二胺) 作為具有碸基之二胺,可例舉:3,3'-二胺基二苯基碸、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、雙[4-(3-胺基苯氧基)苯基]碸、雙[4-(4-胺基苯氧基)苯基]碸、4,4'-雙[4-(4-胺基-α,α-二甲基苄基)苯氧基]二苯基碸、4,4'-雙[4-(4-胺基苯氧基)苯氧基]二苯基碸等。該等中,較佳為3,3'-二胺基二苯基碸(3,3'-DDS)、4,4'-二胺基二苯基碸(4,4'-DDS)等二胺基二苯基碸。
例如,藉由除了使用氟烷基取代聯苯胺作為二胺以外,還使用二胺基二苯基碸作為二胺,而存在聚醯亞胺樹脂於溶劑中之溶解性或透明性提高之情形。另一方面,當二胺基二苯基碸之比率較大時,存在與丙烯酸系樹脂之相溶性降低之情形。二胺基二苯基碸相對於二胺總量100莫耳%之含量可為1~40莫耳%、3~30莫耳%或5~25莫耳%。
(含氟二胺) 作為含氟二胺,較佳為具有氟烷基者。作為具有氟烷基之二胺(上述氟烷基取代聯苯胺以外者),可例舉:1,4-二胺基-2-(三氟甲基)苯、1,4-二胺基-2,3-雙(三氟甲基)苯、1,4-二胺基-2,5-雙(三氟甲基)苯、1,4-二胺基-2,6-雙(三氟甲基)苯、1,4-二胺基-2,3,5-三(三氟甲基)苯、1,4-二胺基、2,3,5,6-四(三氟甲基)苯等具有鍵結有氟烷基之芳香環之二胺;2,2-雙(4-胺基苯基)六氟丙烷、2,2-雙(3-胺基苯基)六氟丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]六氟丙烷等具有未直接鍵結於芳香環之氟烷基之二胺。
作為上述以外之含氟二胺,可例舉:2-氟聯苯胺、3-氟聯苯胺、2,3-二氟聯苯胺、2,5-二氟聯苯胺、2,6-二氟聯苯胺、2,3,5-三氟聯苯胺、2,3,6-三氟聯苯胺、2,3,5,6-四氟聯苯胺、2,2'-二氟聯苯胺、3,3'-二氟聯苯胺、2,3'-二氟聯苯胺、2,2',3-三氟聯苯胺、2,3,3'-三氟聯苯胺、2,2',5-三氟聯苯胺、2,2',6-三氟聯苯胺、2,3',5-三氟聯苯胺、2,3',6-三氟聯苯胺、2,2',3,3'-四氟聯苯胺、2,2',5,5'-四氟聯苯胺、2,2',6,6'-四氟聯苯胺、2,2',3,3',6,6'-六氟聯苯胺、2,2',3,3',5,5',6,6'-八氟聯苯胺、1,4-二胺基-2-氟苯、1,4-二胺基-2,3-二氟苯、1,4-二胺基-2,5-二氟苯、1,4-二胺基-2,6-二氟苯、1,4-二胺基-2,3,5-三氟苯、1,4-二胺基-2,3,5,6-四氟苯、2,2'-二甲基聯苯胺等。
(具有醯胺鍵之二胺) 作為聚醯亞胺之二胺成分,可使用具有醯胺鍵之二胺。例如,於二羧酸之兩端之羧基鍵結二胺所生成之醯胺由通式(IV)所表示。
於通式(IV)中,Y 1及Y 2為二胺殘基,Z為二羧酸殘基。於通式(IV)中,示出了1個二羧酸與2個二胺縮合之結構,但亦可2個二羧酸與3個二胺縮合,亦可3個以上之二羧酸與4個以上之二胺縮合。
包含具有通式(IV)所表示之醯胺結構之二胺作為二胺成分之聚醯亞胺除了包含醯亞胺鍵以外還包含醯胺鍵,因此有時被稱為「聚醯胺醯亞胺」。於聚醯胺醯亞胺之製備中,可預先準備具有醯胺鍵之二胺,將其用作二胺,亦可除了使用二胺及四羧酸二酐作為單體成分以外還使用二羧酸或其衍生物作為單體成分,於聚合時使二胺與二羧酸(衍生物)反應而生成醯胺鍵。
作為二羧酸,可例舉:己二酸、辛二酸、壬二酸、癸二酸、十二烷二酸等脂肪族二羧酸;對苯二甲酸、間苯二甲酸、2-氯對苯二甲酸、2-甲基對苯二甲酸、5-甲基間苯二甲酸、2,6-萘二羧酸、4,4'-氧雙苯甲酸、聯苯-4,4'-二羧酸、2-氟對苯二甲酸等芳香族二羧酸;1,4-環己烷二羧酸、1,3-環己烷二羧酸、1,2-六氫對苯二甲酸、六氫間苯二甲酸、環己烷二羧酸、1,3-環戊烷二羧酸等脂環式二羧酸;2,5-噻吩二羧酸、2,5-呋喃二羧酸等雜環式二羧酸。於包含二胺與二羧酸之縮合結構之化合物之製備中,亦可使用二羧醯氯或二羧酸酐等二羧酸衍生物來代替二羧酸。
含通式(IV)所表示之醯胺結構之二胺由1個二羧酸(衍生物)與2個二胺構成,但於二胺之莫耳比之計算中,係將通式(IV)所表示之化合物作為1個二胺計算。例如,氟烷基取代聯苯胺之胺基與二羧酸之兩端各自之羧基縮合而形成有醯胺鍵的化合物包含2個氟烷基取代聯苯胺,但於莫耳比之計算中,係將該化合物作為1個二胺(氟烷基取代聯苯胺)計算。
作為包含氟烷基取代聯苯胺與二羧酸之縮合結構之二胺之具體例,可例舉TFMB與二羧酸之縮合物。作為二羧酸,特佳為對苯二甲酸及/或間苯二甲酸。例如,TFMB縮合於對苯二甲酸之兩端之二胺具有下述式(4)之結構。
(其他二胺) 作為上述以外之二胺之例,可例舉:對伸苯基二胺、間伸苯基二胺、鄰伸苯基二胺、對二甲苯二胺、間二甲苯二胺、鄰二甲苯二胺、3,3'-二胺基二苯醚、3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,3'-二胺基二苯硫醚、3,4'-二胺基二苯硫醚、4,4'-二胺基二苯硫醚、3,3'-二胺基二苯甲酮、4,4'-二胺基二苯甲酮、3,4'-二胺基二苯甲酮、3,3'-二胺基二苯甲烷、4,4'-二胺基二苯甲烷、3,4'-二胺基二苯甲烷、2,2-二(3-胺基苯基)丙烷、2,2-二(4-胺基苯基)丙烷、2-(3-胺基苯基)-2-(4-胺基苯基)丙烷、1,1-二(3-胺基苯基)-1-苯基乙烷、1,1-二(4-胺基苯基)-1-苯基乙烷、1-(3-胺基苯基)-1-(4-胺基苯基)-1-苯基乙烷、1,3-雙(3-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,4-雙(3-胺基苯氧基)苯、1,4-雙(4-胺基苯氧基)苯、1,3-雙(3-胺基苯甲醯基)苯、1,3-雙(4-胺基苯甲醯基)苯、1,4-雙(3-胺基苯甲醯基)苯、1,4-雙(4-胺基苯甲醯基)苯、1,3-雙(3-胺基-α,α-二甲基苄基)苯、1,3-雙(4-胺基-α,α-二甲基苄基)苯、1,4-雙(3-胺基-α,α-二甲基苄基)苯、1,4-雙(4-胺基-α,α-二甲基苄基)苯、2,6-雙(3-胺基苯氧基)苯甲腈、2,6-雙(3-胺基苯氧基)吡啶、4,4'-雙(3-胺基苯氧基)聯苯、4,4'-雙(4-胺基苯氧基)聯苯、雙[4-(3-胺基苯氧基)苯基]酮、雙[4-(4-胺基苯氧基)苯基]酮、雙[4-(3-胺基苯氧基)苯基]硫化物、雙[4-(4-胺基苯氧基)苯基]硫化物、雙[4-(3-胺基苯氧基)苯基]醚、雙[4-(4-胺基苯氧基)苯基]醚、2,2-雙[4-(3-胺基苯氧基)苯基]丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、1,3-雙[4-(3-胺基苯氧基)苯甲醯基]苯、1,3-雙[4-(4-胺基苯氧基)苯甲醯基]苯、1,4-雙[4-(3-胺基苯氧基)苯甲醯基]苯、1,4-雙[4-(4-胺基苯氧基)苯甲醯基]苯、1,3-雙[4-(3-胺基苯氧基)-α,α-二甲基苄基]苯、1,3-雙[4-(4-胺基苯氧基)-α,α-二甲基苄基]苯、1,4-雙[4-(3-胺基苯氧基)-α,α-二甲基苄基]苯、1,4-雙[4-(4-胺基苯氧基)-α,α-二甲基苄基]苯、4,4'-雙[4-(4-胺基苯氧基)苯甲醯基]二苯基醚、4,4'-雙[4-(4-胺基-α,α-二甲基苄基)苯氧基]二苯甲酮、3,3'-二胺基-4,4'-二苯氧基二苯甲酮、3,3'-二胺基-4,4'-二聯苯氧基二苯甲酮、3,3'-二胺基-4-苯氧基二苯甲酮、3,3'-二胺基-4-聯苯氧基二苯甲酮、6,6'-雙(3-胺基苯氧基)-3,3,3',3'-四甲基-1,1'-螺二茚滿、6,6'-雙(4-胺基苯氧基)-3,3,3',3'-四甲基-1,1'-螺二茚滿等芳香族二胺。
作為二胺,亦可使用雙(胺甲基)醚、雙(2-胺乙基)醚、雙(3-胺丙基)醚、雙[(2-胺基甲氧基)乙基]醚、雙[2-(2-胺基乙氧基)乙基]醚、雙[2-(3-胺基丙氧基)乙基]醚、1,2-雙(胺基甲氧基)乙烷、1,2-雙(2-胺基乙氧基)乙烷、1,2-雙[2-(胺基甲氧基)乙氧基]乙烷、1,2-雙[2-(2-胺基乙氧基)乙氧基]乙烷、乙二醇雙(3-胺丙基)醚、二乙二醇雙(3-胺丙基)醚、三乙二醇雙(3-胺丙基)醚、伸乙基二胺、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-二胺基戊烷、1,6-二胺基己烷、1,7-二胺基庚烷、1,8-二胺基辛烷、1,9-二胺基壬烷、1,10-二胺基癸烷、1,11-二胺基十一烷、1,12-二胺基十二烷、1,3-雙(3-胺丙基)四甲基二矽氧烷、1,3-雙(4-胺丁基)四甲基二矽氧烷、α,ω-雙(3-胺丙基)聚二甲基矽氧烷、α,ω-雙(3-胺丁基)聚二甲基矽氧烷等鏈狀二胺。
<酸二酐> 聚醯亞胺之酸二酐成分並無特別限定,就提高與丙烯酸系樹脂之相溶性之觀點而言,聚醯亞胺較佳為包含含氟芳香族四羧酸二酐及脂環式四羧酸二酐中之至少一者作為酸二酐成分者。
(含氟芳香族四羧酸二酐) 作為含氟芳香族四羧酸二酐,可例舉:4,4'-(六氟亞異丙基)二鄰苯二甲酸酐、2,2-雙[4-(3,4-二羧基苯氧基)苯基]六氟丙烷二酐、1,4-二氟均苯四甲酸二酐、1,4-雙(三氟甲基)均苯四甲酸二酐、4-三氟甲基均苯四甲酸二酐、3,6-二[3',5'-雙(三氟甲基)苯基]均苯四甲酸二酐、1-(3',5'-雙(三氟甲基)苯基)均苯四甲酸二酐等。其中,就兼顧聚醯亞胺之透明性與機械強度之觀點而言,特佳為4,4'-(六氟亞異丙基)二鄰苯二甲酸酐(6FDA)。
(脂環式四羧酸二酐) 脂環式四羧酸二酐具有至少1個脂環結構即可,亦可於1分子中具有脂環及芳香環兩者。脂環可為多環,亦可具有螺環結構。
作為脂環式四羧酸二酐,可例舉:1,2,3,4-環丁烷四羧酸二酐、1,2,3,4-環戊烷四羧酸二酐、1,3-二甲基環丁烷-1,2,3,4-四羧酸二酐、1,2,3,4-四甲基-1,2,3,4-環丁烷四羧酸二酐、1,2,4,5-環己烷四羧酸二酐、1,2,3,4-丁烷四羧酸二酐、內消旋-丁烷-1,2,3,4-四羧酸二酐、1,1'-雙環己烷-3,3',4,4'四羧酸-3,4:3',4'-二酐、降𦯉烷-2-螺-α-環戊酮-α'-螺-2''-降𦯉烷-5,5'',6,6''-四羧酸二酐、2,2'-雙降𦯉烷-5,5',6,6'四羧酸二酐、3-(羧甲基)-1,2,4-環戊烷三羧酸1,4:2,3-二酐、雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、4-(2,5-二側氧四氫呋喃-3-基)-1,2,3,4-四氫萘-1,2-二羧酸酐、環己烷-1,4-二基雙(亞甲基)雙(1,3-二側氧-1,3-二氫異苯并呋喃-5-羧酸酯)、5-(2,5-二側氧四氫呋喃基)-3-甲基-3-環己烯-1,2-二羧酸酐、5,5'-[亞環己基雙(4,1-伸苯氧基)]雙-1,3-異苯并呋喃二酮、5-異苯并呋喃羧酸,1,3-二氫-1,3-二側氧-,5,5'-[1,4-環己烷二基雙(亞甲基)]酯、雙環[2.2.1]庚烷-2,3,5,6-四羧酸二酐、雙環[2.2.2]辛烷-2,3,5,6-四羧酸二酐、3,5,6-三羧基降𦯉烷-2-乙酸2,3:5,6-二酐、十氫-1,4,5,8-二甲橋萘-2,3,6,7-四羧酸二酐、三環[6.4.0.0(2,7)]十二烷-1,8:2,7-四羧酸二酐、八氫-1H,3H,8H,10H-伸聯苯基[4a,4b-c:8a,8b-c']二呋喃-1,3,8,10-四酮、乙二醇雙(氫化偏苯三甲酸酐)酯、十氫[2]苯并哌喃并[6,5,4,-def][2]苯并哌喃-1,3,6,8-四酮等。
就聚醯亞胺之透明性及與丙烯酸系樹脂之相溶性之觀點而言,脂環式四羧酸二酐較佳為不包含芳香環而於脂環鍵結有酸酐基者。就聚醯亞胺之透明性及機械強度之觀點而言,脂環式四羧酸二酐中,較佳為1,2,3,4-環丁烷四羧酸二酐(CBDA)、1,2,3,4-環戊烷四羧酸二酐(CPDA)、1,2,4,5-環己烷四羧酸二酐(H-PMDA)或1,1'-雙環己烷-3,3',4,4'四羧酸-3,4:3',4'-二酐(H-BPDA),特佳為CBDA。
(其他酸二酐) 聚醯亞胺亦可包含除含氟芳香族酸二酐及脂環式酸二酐以外之酸二酐作為酸二酐成分。藉由聚醯亞胺除了包含含氟芳香族酸二酐及/或脂環式酸二酐作為酸二酐成分以外,還包含不含氟之芳香族四羧酸二酐作為酸二酐成分,而存在聚醯亞胺樹脂與丙烯酸系樹脂之相溶性提高,並且膜之機械強度提高之情形。
作為不含氟之芳香族四羧酸二酐,可例舉:均苯四甲酸二酐及1,2,3,5-苯四甲酸二酐等之於1個苯環鍵結有2個酸酐基之酸二酐;2,3,6,7-萘四羧酸2,3:6,7-二酐、萘-1,4,5,8-四羧酸二酐、聯三苯基四羧酸二酐等於1個縮合多環鍵結有2個酸酐基之酸二酐;雙(偏苯三甲酸酐)酯、3,3',4,4'-聯苯四羧酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、4,4'-氧二鄰苯二甲酸酐、3,4'-氧二鄰苯二甲酸酐、3,3',4,4'-二苯基碸四羧酸二酐、4,4'-(4,4'-亞異丙基二苯氧基)二鄰苯二甲酸酐、5,5'-二甲基亞甲基雙(鄰苯二甲酸酐)、9,9-雙(3,4-二羧基苯基)茀二酐、11,11-二甲基-1H-二呋喃并[3,4-b:3',4'-i]𠮿-1,3,7,9(11H)-四酮、1,4-雙(3,4-二羧基苯氧基)苯二酐、4-(2,5-二氧四氫呋喃-3-基)-1,2,3,4-四氫萘-1,2-二羧酸二酐、乙二醇雙(偏苯三甲酸酐)、N,N'-(9H-茀-9-亞基二-4,1-伸苯基)雙[1,3-二氫-1,3-二側氧-5-異苯并呋喃甲醯胺]、N,N'-[[2,2,2-三氟-1-(三氟甲基)亞乙基]雙(6-羥基-3,1-伸苯基)]雙[1,3-二氫-1,3-二側氧-5-異苯并呋喃甲醯胺]、2,2-雙(4-羥基苯基)丙烷二苯甲酸酯-3,3',4,4'-四羧酸二酐等於不同芳香環鍵結有酸酐基之酸二酐。
該等中,就聚醯亞胺之透明性及溶解性、以及與丙烯酸系樹脂之相溶性之觀點而言,作為不含氟之四羧酸二酐,較佳為均苯四甲酸二酐(PMDA)、1,2,3,5-苯四甲酸二酐(MPDA)、3,3',4,4'-聯苯四羧酸二酐(BPDA)、4,4'-氧二鄰苯二甲酸酐(ODPA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)、4'-(4,4'-亞異丙基二苯氧基)二鄰苯二甲酸酐(BPADA)、9,9-雙(3,4-二羧基苯基)茀二酐(BPAF)、雙(偏苯三甲酸酐)酯。
雙(偏苯三甲酸酐)酯由下述通式(1)所表示。
通式(1)中之X為任意之2價有機基,於X之兩端,羧基與X之碳原子鍵結。鍵結於羧基之碳原子亦可形成環結構。作為2價有機基X之具體例,可例舉下述(A)~(K)。
式(A)中之R 1為碳原子數1~20之烷基,m為0~4之整數。式(A)所表示之基為從可於苯環上具有取代基之氫醌衍生物中除去2個羥基而成之基。作為於苯環上具有取代基之氫醌,可例舉:第三丁基氫醌、2,5-二第三丁基氫醌、2,5-二第三戊基氫醌等。於通式(1)中,X為(A),m=0(即,於苯環上不具有取代基)之情形時,雙(偏苯三甲酸酐)酯為對伸苯基雙(偏苯三酸酐)(略稱:TAHQ)。
式(B)中之R 2為碳原子數1~20之烷基,n為0~4之整數。式(B)所表示之基為從可於苯環上具有取代基之聯苯酚中除去2個羥基而成之基。作為於苯環上具有取代基之聯苯酚衍生物,可例舉:2,2'-二甲基聯苯-4,4'-二醇、3,3'-二甲基聯苯-4,4'-二醇、3,3',5,5'-四甲基聯苯-4,4'-二醇、2,2',3,3',5,5'-六甲基聯苯-4,4'-二醇等。
式(C)所表示之基為從4,4'-亞異丙基二苯酚(雙酚A)中除去2個羥基而成之基。式(D)所表示之基為從間苯二酚中除去2個羥基而成之基。
式(E)中之p為1~10之整數。式(E)所表示之基為從碳數1~10之直鏈二醇中除去2個羥基而成之基。作為碳數1~10之直鏈二醇,可例舉乙二醇、1,4-丁烷二醇等。
式(F)所表示之基為從1,4-環己烷二甲醇中除去2個羥基而成之基。
式(G)中之R 3為碳原子數1~20之烷基,q為0~4之整數。式(G)所表示之基為從可於具有酚性羥基之苯環上具有取代基之雙酚茀中除去2個羥基而成之基。作為於具有酚性羥基之苯環上具有取代基之雙酚茀衍生物,可例舉雙甲酚茀等。
雙(偏苯三甲酸酐)酯較佳為芳香族酯。作為X,於上述(A)~(K)中,較佳為(A)(B)(C)(D)(G)(H)(I)。其中,較佳為(A)~(D),特佳為具有(B)之聯苯骨架之基。於X為通式(B)所表示之基之情形時,就聚醯亞胺於有機溶劑中之溶解性之觀點而言,X較佳為下述式(B1)所表示之2,2',3,3',5,5'-六甲基聯苯-4,4'-二基。
通式(1)中X為式(B1)所表示之基之酸二酐係下述式(3)所表示之雙(1,3-二側氧-1,3-二氫異苯并呋喃-5-羧酸)-2,2',3,3',5,5'-六甲基聯苯-4,4'-二基(略稱:TAHMBP)。
作為上述以外之四羧酸二酐之例,可例舉乙烯四羧酸二酐、丁烷四羧酸二酐等。
就提高聚醯亞胺樹脂與丙烯酸系樹脂之相溶性之觀點而言,含氟芳香族四羧酸二酐及脂環式四羧酸二酐之合計含量相對於酸二酐成分總量100莫耳%較佳為15莫耳%以上,更佳為20莫耳%以上,進而較佳為25莫耳%以上,亦可為30莫耳%以上、40莫耳%以上、50莫耳%以上、60莫耳%以上、70莫耳%以上、80莫耳%以上或90莫耳%以上。
於包含含氟芳香族四羧酸二酐而不包含脂環式四羧酸二酐作為酸二酐成分之情形時,含氟芳香族四羧酸二酐之含量相對於酸二酐成分總量100莫耳%較佳為30莫耳%以上,更佳為35莫耳%以上,進而較佳為40莫耳%以上,亦可為50莫耳%以上、60莫耳%以上、70莫耳%以上、80莫耳%以上或90莫耳%以上。酸二酐成分之總量亦可為含氟芳香族四羧酸二酐。
於包含脂環式四羧酸二酐而不包含含氟芳香族四羧酸二酐作為酸二酐成分之情形時,脂環式四羧酸二酐之含量相對於酸二酐成分總量100莫耳%較佳為15莫耳%以上,更佳為20莫耳%以上,亦可為25莫耳%以上或30莫耳%以上。
於包含含氟芳香族四羧酸二酐及脂環式四羧酸二酐作為酸二酐成分之情形時,含氟芳香族四羧酸二酐及脂環式四羧酸二酐之合計含量相對於酸二酐成分總量100莫耳%較佳為20莫耳%以上,更佳為25莫耳%以上,進而較佳為30莫耳%以上,亦可為35莫耳%以上、40莫耳%以上、50莫耳%以上、60莫耳%以上、70莫耳%以上、80莫耳%以上或90莫耳%以上。
就無論是否包含含氟芳香族四羧酸二酐作為酸二酐成分,均確保聚醯亞胺樹脂於有機溶劑中之溶解性之觀點而言,脂環式四羧酸二酐之含量相對於酸二酐成分總量100莫耳%較佳為80莫耳%以下,更佳為70莫耳%以下,進而較佳為65莫耳%以下,亦可為60莫耳%以下、55莫耳%以下或50莫耳%以下。為了亦於低沸點之非醯胺系溶劑(例如,二氯甲烷等鹵素系溶劑)中使丙烯酸系樹脂與聚醯亞胺樹脂相溶,脂環式四羧酸二酐之含量相對於聚醯亞胺之酸二酐成分總量較佳為45莫耳%以下,更佳為40莫耳%以下,亦可為35莫耳%以下。
於包含脂環式四羧酸二酐作為酸二酐成分之情形時,為了於有機溶劑中使聚醯亞胺樹脂與丙烯酸系樹脂相溶,較佳為聚醯亞胺除了包含脂環式四羧酸二酐作為酸二酐成分以外,還包含含氟芳香族四羧酸二酐、及/或不含氟之芳香族四羧酸二酐作為酸二酐成分。如上所述,作為脂環式四羧酸二酐,較佳為CBDA,作為含氟芳香族四羧酸二酐,較佳為6FDA,作為不含氟之芳香族四羧酸二酐,較佳為PMDA、MPDA、BPDA、ODPA、BTDA、BPADA、BPAF、雙(偏苯三甲酸酐)酯。作為雙(偏苯三甲酸酐)酯,較佳為TAHQ及TAHMBP,特佳為TAHMBP。
於包含含氟芳香族四羧酸二酐作為酸二酐成分之情形時,即便酸二酐之總量為含氟芳香族四羧酸二酐,於有機溶劑中聚醯亞胺樹脂與丙烯酸系樹脂亦可相溶。為了亦於低沸點之非醯胺系溶劑(例如,二氯甲烷等鹵素系溶劑)中使丙烯酸系樹脂與聚醯亞胺樹脂相溶,含氟四羧酸二酐之含量相對於聚醯亞胺之酸二酐成分總量較佳為90莫耳%以下,更佳為85莫耳%以下,亦可為80莫耳%以下、70莫耳%以下、65莫耳%以下或60莫耳%以下。
於包含含氟芳香族四羧酸二酐而不包含脂環式四羧酸二酐作為酸二酐成分之情形時,為了於低沸點之非醯胺系溶劑中使丙烯酸系樹脂與聚醯亞胺樹脂相溶,含氟芳香族四羧酸二酐之含量相對於酸二酐成分總量100莫耳%較佳為30~90莫耳%,更佳為35~80莫耳%,進而較佳為40~75莫耳%。就相同之觀點而言,不含氟之芳香族四羧酸二酐之含量相對於酸二酐成分總量100莫耳%較佳為10~70莫耳%,更佳為20~65莫耳%,進而較佳為25~60莫耳%。如上所述,作為含氟芳香族四羧酸二酐,較佳為6FDA,作為不含氟之芳香族四羧酸二酐,較佳為PMDA、MPDA、BPDA、ODPA、BTDA、BPADA、BPAF、雙(偏苯三甲酸酐)酯。作為雙(偏苯三甲酸酐)酯,較佳為TAHQ及TAHMBP,特佳為TAHMBP。
<聚醯亞胺之製備> 藉由酸二酐與二胺之反應而獲得作為聚醯亞胺前驅物之聚醯胺酸,藉由聚醯胺酸之脫水環化(醯亞胺化)而獲得聚醯亞胺。如上所述,藉由調整聚醯亞胺之組成、即酸二酐及二胺之種類及比率,聚醯亞胺具有透明性及於有機溶劑中之溶解性,並表現出與丙烯酸系樹脂之相溶性。
聚醯胺酸之製備方法並無特別限定,可應用公知之所有方法。例如,使酸二酐及二胺以大致等莫耳量(95:100~105:100之莫耳比)溶解於有機溶劑中並加以攪拌,藉此獲得聚醯胺酸溶液。聚醯胺酸溶液之濃度通常為5~35重量%,較佳為10~30重量%。於為此範圍之濃度之情形時,藉由聚合而獲得之聚醯胺酸會具有適宜之分子量,並且聚醯胺酸溶液會具有適宜之黏度。
於聚醯胺酸之聚合時,為了抑制酸二酐之開環,較佳為於二胺中加入酸二酐之方法。於添加複數種二胺或複數種酸二酐之情形時,可一次添加,亦可分成複數次添加。藉由調整單體之添加順序,亦可控制聚醯亞胺之各物性。
聚醯胺酸之聚合所使用之有機溶劑只要為不與二胺及酸二酐反應而能夠使聚醯胺酸溶解之溶劑則無特別限定。作為有機溶劑,可例舉:甲基脲、N,N-二甲基乙基脲等脲系溶劑、二甲基亞碸、二苯基碸、四甲基碸等亞碸或碸系溶劑、N,N-二甲基乙醯胺(DMAc)、N,N-二甲基甲醯胺(DMF)、N,N'-二乙基乙醯胺、N-甲基-2-吡咯啶酮(NMP)、γ-丁內酯、六甲基磷酸三醯胺等醯胺系溶劑、氯仿、二氯甲烷等鹵素化烷基系溶劑、苯、甲苯等芳香族烴系溶劑、四氫呋喃、1,3-二氧戊環、1,4-二㗁烷、二甲醚、二乙醚、對甲酚甲基醚等醚系溶劑。通常單獨使用該等溶劑或視需要適當組合使用2種以上。就聚醯胺酸之溶解性及聚合反應性之觀點而言,可較佳地使用DMAc、DMF、NMP等。
藉由聚醯胺酸之脫水環化而獲得聚醯亞胺。作為由聚醯胺酸溶液製備聚醯亞胺之方法,可例舉於聚醯胺酸溶液中添加脫水劑、醯亞胺化觸媒等,於溶液中使醯亞胺化進行之方法。為了促進醯亞胺化之進行,可對聚醯胺酸溶液進行加熱。藉由將包含藉由聚醯胺酸之醯亞胺化所生成之聚醯亞胺之溶液與不良溶劑混合,聚醯亞胺樹脂作為固形物析出。藉由將聚醯亞胺樹脂作為固形物單離,可利用不良溶劑清洗、去除合成聚醯胺酸時所產生之雜質、或殘存脫水劑及醯亞胺化觸媒等,可防止聚醯亞胺之著色或黃度上升等。又,藉由將聚醯亞胺樹脂作為固形物單離,於製備用以製作膜之溶液時,可應用低沸點溶劑等適合膜化之溶劑。
聚醯亞胺之分子量(利用凝膠過濾層析法(GPC)測定之聚環氧乙烷換算之重量平均分子量)較佳為10,000~300,000,更佳為20,000~250,000,進而較佳為40,000~200,000。於分子量過小之情形時,存在膜之強度不足之情形。於分子量過大之情形時,存在與丙烯酸系樹脂之相溶性差之情形。
聚醯亞胺樹脂較佳為可溶於酮系溶劑或鹵素化烷基系溶劑等非醯胺系溶劑者。聚醯亞胺樹脂對溶劑表現出溶解性意指以5重量%以上之濃度溶解。於一實施方式中,聚醯亞胺樹脂表現出對於二氯甲烷之溶解性。二氯甲烷為低沸點,製作膜時之殘存溶劑之去除較為容易,因此藉由使用可溶於二氯甲烷之聚醯亞胺樹脂,可期待膜之生產性提高。
就樹脂組合物及膜之熱穩定性及光穩定性之觀點而言,聚醯亞胺較佳為反應性較低。聚醯亞胺之酸值較佳為0.4 mmol/g以下,更佳為0.3 mmol/g以下,進而較佳為0.2 mmol/g以下。聚醯亞胺之酸值亦可為0.1 mmol/g以下、0.05 mmol/g以下或0.03 mmol/g以下。就使酸值變小之觀點而言,聚醯亞胺較佳為醯亞胺化率較高。藉由酸值較小,可提高聚醯亞胺之穩定性,並且存在與丙烯酸系樹脂之相溶性提高之傾向。
[丙烯酸系樹脂] 作為丙烯酸系樹脂,可例舉:聚甲基丙烯酸甲酯等聚(甲基)丙烯酸酯、甲基丙烯酸甲酯-(甲基)丙烯酸共聚物、甲基丙烯酸甲酯-(甲基)丙烯酸酯共聚物、甲基丙烯酸甲酯-丙烯酸酯-(甲基)丙烯酸共聚物、(甲基)丙烯酸甲酯-苯乙烯共聚物等。丙烯酸系樹脂亦可為藉由改性而導入了戊二醯亞胺結構單元或內酯環結構單元者。聚合物之立體規則性並無特別限定,可為同排型、對排型、雜排型中之任一者。
就透明性及與聚醯亞胺之相溶性、以及膜之機械強度之觀點而言,丙烯酸系樹脂較佳為以甲基丙烯酸甲酯為主要結構單元者。甲基丙烯酸甲酯之量相對於丙烯酸系樹脂中之單體成分總量較佳為60重量%以上,亦可為70重量%以上、80重量%以上、85重量%以上、90重量%以上或95重量%以上。丙烯酸系樹脂亦可為甲基丙烯酸甲酯之均聚物。
如上所述,丙烯酸系樹脂亦可為導入了戊二醯亞胺結構或內酯環結構者。此種改性聚合物較佳為向甲基丙烯酸甲酯之含量處於上述範圍內之丙烯酸系聚合物中導入了戊二醯亞胺結構或內酯環結構者。即,藉由戊二醯亞胺結構或內酯環結構之導入而改性之丙烯酸系樹脂較佳為甲基丙烯酸甲酯及甲基丙烯酸甲酯之改性結構之合計量為60重量%以上,亦可為70重量%以上、80重量%以上、85重量%以上、90重量%以上或95重量%以上。改性聚合物亦可為向甲基丙烯酸甲酯之均聚物中導入了戊二醯亞胺結構或內酯環結構者。
藉由向甲基丙烯酸甲酯等丙烯酸系聚合物中導入戊二醯亞胺結構或內酯環結構,存在丙烯酸系樹脂之玻璃轉移溫度提高之傾向。又,經戊二醯亞胺改性之丙烯酸系樹脂包含醯亞胺結構,因此存在與聚醯亞胺之相溶性提高之情形。
具有戊二醯亞胺結構之丙烯酸系樹脂係例如如日本專利特開2010-261025號公報所記載,藉由對聚甲基丙烯酸甲酯樹脂進行加熱熔融,利用醯亞胺化劑進行處理而獲得。於丙烯酸系聚合物具有戊二醯亞胺結構之情形時,戊二醯亞胺含量可為3重量%以上、5重量%以上、10重量%以上、20重量%以上、30重量%以上或50重量%以上。
戊二醯亞胺含量係藉由根據丙烯酸系樹脂之 1H-NMR光譜求出戊二醯亞胺結構之導入率(醯亞胺化率),對醯亞胺化率進行重量換算而算出。例如,於導入了戊二醯亞胺結構之甲基丙烯酸甲酯中,根據源自甲基丙烯酸甲酯之O-CH 3質子之峰(3.5~3.8 ppm附近)之面積A、及源自戊二醯亞胺之N-CH 3質子之峰(3.0~3.3 ppm附近)之面積B,而求出醯亞胺化率Im=B/(A+B)。
就膜之耐熱性之觀點而言,丙烯酸系樹脂之玻璃轉移溫度較佳為90℃以上,更佳為100℃以上,進而較佳為110℃以上,亦可為115℃以上或120℃以上。
就於有機溶劑中之溶解性、與上述聚醯亞胺之相溶性及膜強度之觀點而言,丙烯酸系樹脂之重量平均分子量(聚苯乙烯換算)較佳為5,000~500,000,更佳為10,000~300,000,進而較佳為15,000~200,000。
就樹脂組合物及膜之熱穩定性及光穩定性之觀點而言,丙烯酸系樹脂較佳為乙烯性不飽和基或羧基等反應性官能基之含量較少。丙烯酸系樹脂之碘值較佳為10.16 g/100 g(0.4 mmol/g)以下,更佳為7.62 g/100 g(0.3 mmol/g)以下,進而較佳為5.08 g/100 g(0.2 mmol/g)以下。丙烯酸系樹脂之碘值亦可為2.54 g/100 g(0.1 mmol/g)以下或1.27 g/100 g(0.05 mmol/g)以下。丙烯酸系樹脂之酸值較佳為0.4 mmol/g以下,更佳為0.3 mmol/g以下,進而較佳為0.2 mmol/g以下。丙烯酸系樹脂之酸值亦可為0.1 mmol/g以下、0.05 mmol/g以下或0.03 mmol/g以下。藉由酸值較小,可提高丙烯酸系樹脂之穩定性,並且存在與聚醯亞胺之相溶性提高之傾向。
[樹脂組合物] 藉由將上述聚醯亞胺樹脂與丙烯酸系樹脂混合,可獲得包含聚醯亞胺樹脂及丙烯酸系樹脂之樹脂組合物。上述聚醯亞胺樹脂與丙烯酸系樹脂能夠以任意比率表現出相溶性,因此樹脂組合物中之聚醯亞胺樹脂與丙烯酸系樹脂之比率並無特別限定。聚醯亞胺樹脂與丙烯酸系樹脂之混合比(重量比)可為98:2~2:98、95:5~10:90、或90:10~15:85。聚醯亞胺樹脂之比率越高,膜之彈性模數及鉛筆硬度越高,機械強度優異,並且存在延伸所致之拉伸彈性模數及耐彎曲性之提高變得顯著之傾向。丙烯酸系樹脂之比率越高,膜之著色越少且透明性越高,並且存在玻璃轉移溫度變低,膜之延伸等加工性提高之傾向。
為了充分發揮聚醯亞胺樹脂與丙烯酸系樹脂之混合所帶來之透明性及加工性提高之效果,丙烯酸系樹脂相對於聚醯亞胺樹脂及丙烯酸系樹脂之合計的比率較佳為10重量%以上,亦可為15重量%以上、20重量%以上、25重量%以上、30重量%以上、35重量%以上、40重量%以上、45重量%以上、50重量%以上、60重量%以上或70重量%以上。另一方面,就獲得機械強度優異之膜之觀點而言,聚醯亞胺樹脂相對於聚醯亞胺樹脂及丙烯酸系樹脂之合計的比率較佳為10重量%以上,更佳為20重量%以上,進而較佳為30重量%以上,亦可為40重量%以上、50重量%以上、60重量%以上、65重量%以上、70重量%以上、75重量%以上或80重量%以上。
聚醯亞胺係具有特殊之分子結構之聚合物,一般而言,對於有機溶劑之溶解性較低,與其他聚合物不表現出相溶性,但如上所述,包含特定之二胺成分及酸二酐成分之聚醯亞胺對有機溶劑表現出較高之溶解性,並表現出與丙烯酸系樹脂之相溶性。
包含聚醯亞胺樹脂及丙烯酸系樹脂之樹脂組合物較佳為於示差掃描熱量測定(DSC)及/或動態黏彈性測定(DMA)中具有單一之玻璃轉移溫度。於樹脂組合物具有單一之玻璃轉移溫度時,可視為聚醯亞胺樹脂與丙烯酸系樹脂完全相溶。包含聚醯亞胺樹脂及丙烯酸系樹脂之膜較佳為亦具有單一之玻璃轉移溫度。
就耐熱性之觀點而言,樹脂組合物及膜之玻璃轉移溫度較佳為110℃以上,亦可為115℃以上、120℃以上、125℃以上、130℃以上、135℃以上、140℃以上、145℃以上或150℃以上。另一方面,就延伸等加工性之觀點而言,樹脂組合物及膜之玻璃轉移溫度較佳為未達250℃,亦可為240℃以下、230℃以下、220℃以下或210℃以下。
樹脂組合物可為僅混合了作為固形物成分析出之聚醯亞胺樹脂與丙烯酸系樹脂者,亦可為混練了聚醯亞胺樹脂與丙烯酸系樹脂者。又,亦可於將聚醯亞胺溶液與不良溶劑混合而使聚醯亞胺樹脂析出時,於溶液中混合丙烯酸系樹脂,使混合了聚醯亞胺與丙烯酸系樹脂之樹脂組合物作為固形物(粉末)析出。
樹脂組合物亦可為包含聚醯亞胺樹脂及丙烯酸系樹脂之混合溶液。樹脂之混合方法並無特別限定,可於固體之狀態下混合,亦可於液體中混合而製成混合溶液。亦可個別地製備聚醯亞胺溶液及丙烯酸系樹脂溶液,將兩者混合而製備聚醯亞胺與丙烯酸系樹脂之混合溶液。
作為包含聚醯亞胺樹脂及丙烯酸系樹脂之溶液之溶劑,只要為表現出對於聚醯亞胺樹脂及丙烯酸系樹脂兩者之溶解性者則無特別限定。作為溶劑之例,可例舉:N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基-2-吡咯啶酮等醯胺系溶劑;四氫呋喃、1,4-二㗁烷等醚系溶劑;丙酮、甲基乙基酮、甲基丙基酮、甲基異丙基酮、甲基異丁基酮、二乙基酮、環戊酮、環己酮、甲基環己酮等酮系溶劑;氯仿、1,2-二氯乙烷、1,1,2,2-四氯乙烷、氯苯、二氯苯、二氯甲烷等鹵素化烷基系溶劑。
於聚醯亞胺樹脂之溶解性、及溶液中之聚醯亞胺樹脂與丙烯酸系樹脂之相溶性之觀點下,較佳為醯胺系溶劑。另一方面,於製作膜時之溶劑之去除性之觀點下,較佳為低沸點之非醯胺系溶劑,對於聚醯亞胺樹脂及丙烯酸系樹脂兩者之溶解性優異,且為低沸點,膜製作時之殘存溶劑之去除較為容易,因此較佳為酮系溶劑及鹵素化烷基系溶劑。
以提高膜之加工性或賦予各種功能等為目的,亦可於樹脂組合物(溶液)中調配有機或無機之低分子化合物、高分子化合物(例如環氧樹脂)等。樹脂組合物亦可包含阻燃劑、紫外線吸收劑、交聯劑、染料、顏料、界面活性劑、調平劑、塑化劑、微粒子、增感劑等。微粒子包含聚苯乙烯、聚四氟乙烯等有機微粒子、膠體二氧化矽、碳、層狀矽酸鹽等無機微粒子等,亦可為多孔質或中空結構。纖維強化材包含碳纖維、玻璃纖維、芳香族聚醯胺纖維等。
[膜] <製膜> 包含聚醯亞胺樹脂及丙烯酸系樹脂之膜可藉由熔融法、溶液法等公知之方法製造。如上所述,聚醯亞胺樹脂與丙烯酸系樹脂可提前混合,亦可於膜化時混合。亦可使用混練聚醯亞胺樹脂與丙烯酸系樹脂而複合物化者。
包含聚醯亞胺樹脂及丙烯酸系樹脂之樹脂組合物與單一聚醯亞胺之情形相比,存在熔融黏度較小之傾向,熔融擠出成形等成形性優異。又,包含聚醯亞胺樹脂及丙烯酸系樹脂之樹脂組合物之溶液與相同固形物成分濃度之單一聚醯亞胺樹脂之溶液相比,存在溶液黏度較低之傾向。因此,溶液之輸送等操作性優異,並且塗佈性較高,於減少膜之厚度不均等中較為有利。
如上所述,膜之成形方法可為熔融法及溶液法中之任一者,但就製作透明性及均勻性優異之膜之觀點而言,較佳為溶液法。於溶液法中,將上述包含聚醯亞胺樹脂及丙烯酸系樹脂之溶液塗佈於支持體上,將溶劑進行乾燥去除,藉此獲得膜。
作為將樹脂溶液塗佈於支持體上之方法,可應用使用棒式塗佈機或缺角輪塗佈機等之公知之方法。作為支持體,可使用玻璃基板、SUS(Steel Use Stainless,日本不鏽鋼標準)等金屬基板、金屬鼓(drum)、金屬帶、塑膠膜等。就提高生產性之觀點而言,較佳為使用金屬鼓、金屬帶等環形支持體、或長條塑膠膜等作為支持體,藉由卷對卷式而製造膜。於使用塑膠膜作為支持體之情形時,適當選擇不溶解於製膜塗料之溶劑之材料即可。
較佳為於溶劑之乾燥時進行加熱。加熱溫度只要為能夠去除溶劑,且能夠抑制所獲得之膜之著色之溫度則無特別限制,以室溫~大致250℃適當進行設定,較佳為50℃~220℃。加熱溫度亦可階段性上升。為了提高溶劑之去除效率,亦可於乾燥進行了一定程度後,從支持體剝離樹脂膜而進行乾燥。為了促進溶劑之去除,亦可於減壓下進行加熱。
<延伸> 剛製膜後(於溶液法之情形時,為溶劑乾燥後)之膜為無延伸膜,一般而言不具有折射率各向異性。藉由將膜向至少一方向延伸,膜面內之折射率各向異性變大,並且存在膜之機械強度提高之傾向。
包含聚醯亞胺樹脂及丙烯酸系樹脂之膜一般而言存在延伸方向之折射率變大之傾向。於聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統中,膜之延伸方向之拉伸彈性模數變大,提高了延伸倍率之情形時之拉伸彈性模數之上升顯著。又,藉由膜之延伸,存在延伸方向之耐彎曲性(將與延伸方向正交之方向作為彎曲軸之情形時之耐彎曲性)提高之傾向。
於與延伸方向正交之方向上,與延伸前(無延伸膜)相比,存在拉伸彈性模數變小之傾向,但與延伸方向之拉伸彈性模數之上升相比,正交方向上之拉伸彈性模數之下降較少。又,於聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統中,藉由將膜進行延伸,不僅延伸方向之耐彎曲性提高,還存在與延伸方向正交之方向之耐彎曲性亦提高之傾向。
膜之延伸條件並無特別限定,可採用於周速不同之一對夾輥間將膜向搬送方向進行延伸之方法(自由端單軸延伸),用銷或夾具固定膜之寬度方向之兩端,向寬度方向進行延伸之方法(固定端單軸延伸)等。
延伸時之加熱溫度並無特別限定,例如,於膜之玻璃轉移溫度±40℃左右之範圍內設定即可。存在延伸溫度越低,膜之折射率各向異性越大之傾向。又,存在延伸倍率越大,膜之折射率各向異性越大之傾向。
就抑制延伸時之加熱所導致之膜之著色,獲得透明性較高(黃度較小)之膜之觀點而言,延伸溫度較佳為未達250℃,更佳為245℃以下,亦可為240℃以下、230℃以下、225℃以下、220℃以下、215℃以下、210℃以下、205℃以下、200℃以下、195℃以下或190℃以下。聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統之樹脂組合物之玻璃轉移溫度低於單一聚醯亞胺樹脂,因此即便於未達250℃之溫度下亦具有良好之延伸加工性。
就抑制延伸所導致之膜之霧度上升之觀點而言,延伸溫度較佳為100℃以上,更佳為110℃以上,亦可為120℃以上、130℃以上、140℃以上、150℃以上、160℃以上、170℃以上或180℃以上。
延伸倍率以延伸後之膜之面內之折射率各向異性之指標R(%):100×(n 1-n 2)/n 2為1.0%以上之方式設定即可。延伸倍率例如為1~300%,亦可為5%以上、10%以上、30%以上、50%以上、70%以上、90%以上或120%以上,亦可為250%以下、200%以下或150%以下。再者,延伸倍率(%)以100×(L 1-L 0)/L 0表示,L 0為延伸前之膜之延伸方向上之長度(原長),L 1為延伸後之膜之延伸方向上之長度。
[膜之物性] 膜之厚度並無特別限定,根據用途適當進行設定即可。膜之厚度(延伸後之厚度)例如為5~300 μm。就兼顧自持性與可撓性,且製成透明性較高之膜之觀點而言,膜之厚度較佳為20 μm~100 μm,亦可為30 μm~90 μm、40 μm~85 μm、或50 μm~80 μm。作為顯示器之覆蓋膜用途之膜之厚度較佳為30 μm以上,更佳為40 μm以上,亦可為50 μm以上。
如上所述,延伸後之膜具有折射率各向異性,膜面內之折射率最大之第一方向之折射率n 1和與第一方向正交之方向即第二方向之折射率n 2的差(n 1-n 2)為n 2之1.0%以上。即,膜之面內之折射率各向異性之指標R=100×(n 1-n 2)/n 2為1.0以上。面內之折射率最大之方向(第一方向)係使用相位差計來確定。藉由相位差測定所確定之慢軸方向為第一方向。第一方向之折射率n 1及第二方向之折射率n 2係利用稜鏡耦合法得到之測定值。
延伸倍率越大,分子朝延伸方向之配向性越高,則存在折射率各向異性之指標R越大,延伸方向之拉伸彈性模數越大之傾向。R亦可為1.2%以上、1.5%以上、2.0%以上或3.0%以上。
膜之全光線透過率較佳為85%以上,更佳為86%以上,進而較佳為87%以上,亦可為88%以上、89%以上、90%以上或91%以上。膜之霧度較佳為10%以下,更佳為5%以下,進而較佳為4%以下,亦可為3.5%以下、3%以下、2%以下或1%以下。於聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統中,即便以R為1.0%之方式進行延伸,亦維持較高之透明性,因此可獲得全光線透過率較高、霧度較低之透明膜。
膜之黃度(YI)較佳為5.0以下,更佳為4.0以下,進而較佳為3.0以下,亦可為2.0以下、1.5以下或1.0以下。藉由將聚醯亞胺樹脂與丙烯酸系樹脂混合,與單獨使用聚醯亞胺樹脂之情形相比,可獲得著色較少、YI較小之膜。又,聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統之樹脂組合物與單一聚醯亞胺樹脂相比玻璃轉移溫度較低,因此能夠於低溫下延伸,抑制延伸時之加熱所導致之膜之著色,因此可獲得YI較小之延伸膜。
就強度之觀點而言,延伸方向(聚合物鏈所配向之方向)之拉伸彈性模數較佳為4.0 GPa以上,更佳為4.2 GPa以上,亦可為4.5 GPa以上或5.0 GPa以上。一般而言,延伸方向與第一方向或第二方向一致,因此較佳為第一方向及第二方向中之至少一者之拉伸彈性模數處於上述範圍內。於聚醯亞胺樹脂與丙烯酸系樹脂之混合系統中,一般而言,延伸方向與第一方向一致,因此較佳為第一方向之拉伸彈性模數處於上述範圍內。
含有包含聚醯亞胺樹脂及丙烯酸系樹脂之樹脂組合物之無延伸之膜與單一聚醯亞胺樹脂之膜相比拉伸彈性模數較小,但當將聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統之膜進行延伸時,延伸方向之拉伸彈性模數顯著上升,因此能夠實現與單一聚醯亞胺樹脂之膜相當或超過單一聚醯亞胺樹脂之高拉伸彈性模數。
伴隨延伸,存在與延伸方向正交之方向(例如,第二方向)之拉伸彈性模數變小之傾向,但與延伸方向之拉伸彈性模數之上升相比,正交方向上之拉伸彈性模數之下降較少。與延伸方向正交之方向之拉伸彈性模數較佳為2.7 GPa以上,更佳為2.8 GPa以上,亦可為3.0 GPa以上。
膜之鉛筆硬度較佳為F以上,亦可為H以上或2H以上。於聚醯亞胺樹脂與丙烯酸系樹脂之相溶系統中,即便提高丙烯酸系樹脂之比率,鉛筆硬度亦不易降低,即便進行延伸,鉛筆硬度亦不大幅變化。因此,可不使聚醯亞胺特有之優異機械強度下降而獲得著色較少、透明性優異之膜。
將與膜之延伸方向正交之方向作為彎曲軸,於彎曲半徑為1.0 mm、彎曲角度為180°、彎曲速度為1次/秒之條件下,實施反覆彎曲之動態彎曲試驗時之耐彎曲次數(膜發生龜裂或斷裂為止之彎曲次數)較佳為10萬次以上,亦可為15萬次以上或20萬次以上。藉由將膜進行延伸,延伸方向之耐彎曲性提高,因此將與延伸方向正交之方向作為彎曲軸而實施動態彎曲試驗時之耐彎曲次數與無延伸膜之耐彎曲次數相比大幅變大。
如上所述,相對於與延伸方向正交之方向之拉伸彈性模數存在與無延伸膜相比變小之傾向,與延伸方向正交之方向之耐彎曲次數(將延伸方向作為彎曲軸之動態彎曲試驗中之耐彎曲次數)存在與無延伸膜之耐彎曲次數相比變大之傾向。將延伸方向作為彎曲軸而實施動態彎曲試驗時之耐彎曲次數亦可為1萬次以上、3萬次以上、5萬次以上或10萬次以上。
[膜之用途] 上述膜之透明性較高,機械強度優異,因此可合適地用於圖像顯示面板之視認側表面所配置之覆蓋膜、或顯示器用透明基板、觸控面板用透明基板、太陽電池用基板等。於膜之實際使用時,亦可於表面設置抗靜電層、易接著層、硬塗層、抗反射層等。
上述膜之耐彎曲性較高,因此可特別合適地用作曲面顯示器或能夠彎折之顯示器之視認側表面所配置之覆蓋膜。例如,能夠摺疊之圖像顯示裝置(可摺疊顯示器)之覆蓋膜係於同一部位沿著彎曲軸進行反覆彎曲,因此要求與彎折軸正交之方向之機械強度高、耐彎曲次數大。藉由以膜之延伸方向與彎曲軸正交之方式配置,可提供即便於同一部位反覆彎曲,亦不易發生覆蓋膜之破裂或龜裂,耐彎曲性優異之設備。 [實施例]
以下,示出實施例,對本發明之實施方式進行進一步具體說明。再者,本發明並不限定於以下實施例。
[聚醯亞胺樹脂之製造例] 向可分離式燒瓶中投入二甲基甲醯胺,於氮氣氛圍下進行攪拌。向其中以表1及表2所示之比率(莫耳%)投入二胺及酸二酐,於氮氣氛圍下攪拌5~10小時進行反應,獲得固形物成分濃度18重量%之聚醯胺酸溶液。
向聚醯胺酸溶液100 g中添加吡啶6.0 g作為醯亞胺化觸媒,完全分散後,添加乙酸酐8 g,於90℃下攪拌3小時。冷卻至室溫後,一面攪拌溶液,一面將2-丙醇(以下,記載為IPA)100 g以2~3滴/秒之速度投入,使聚醯亞胺析出。進而添加150 g之IPA,攪拌約30分鐘後,使用桐山漏斗進行吸引過濾。利用IPA清洗所獲得之固體後,於設定為120℃之真空烘箱中進行12小時乾燥,獲得聚醯亞胺樹脂。
[膜製作例] <比較例1~3> 將上述製造例中獲得之具有6FDA/CBDA//TFMB=70/30//100之組成之聚醯亞胺(PI)及市售之聚甲基丙烯酸甲酯樹脂(可樂麗股份有限公司製造之「parapet HM1000」,玻璃轉移溫度:120℃;酸值:0.0 mmol/g;以下記載為「丙烯酸樹脂1」)以表1所示之重量比溶解於二氯甲烷(DCM)中,製備樹脂成分11重量%之溶液。將此溶液塗佈於無鹼玻璃板上,於大氣氛圍下,於60℃下加熱乾燥15分鐘,於90℃下加熱乾燥15分鐘,於120℃下加熱乾燥15分鐘,於150℃下加熱乾燥15分鐘,於180℃下加熱乾燥15分鐘,於200℃下加熱乾燥15分鐘,製作表1所示之厚度之膜。
利用示差掃描熱量計(日立高新技術製造之「DSC7000X」),於氮氣氛圍下、升溫速度10℃/分鐘、溫度範圍50℃~270℃之條件下,實施比較例1之膜之示差掃描熱量(DSC)測定,從而於178℃確認到DSC曲線之反曲點(玻璃轉移點),未於作為丙烯酸樹脂1之玻璃轉移溫度之120℃附近確認到反曲點。根據此結果,可謂是於比較例1之樹脂組合物中,聚醯亞胺樹脂與丙烯酸系樹脂完全相溶。比較例2、3之膜亦係50~270℃之範圍之DSC曲線示出唯一之反曲點(玻璃轉移點),比較例2之玻璃轉移溫度為148℃,比較例3之玻璃轉移溫度為221℃。
<比較例4~8> 除了使用下述丙烯酸樹脂2~4來代替丙烯酸樹脂1,將聚醯亞胺與丙烯酸系樹脂之混合比變更為如表1所示以外,以與比較例1相同之方式製作膜。實施比較例4、比較例5、比較例6、比較例7及比較例8之膜之DSC測定,均係於50~270℃之範圍內DSC曲線示出唯一之玻璃轉移點,玻璃轉移溫度分別為172℃、177℃、188℃、183℃及196℃。
丙烯酸樹脂2:可樂麗製造之「parapet HR-G」,玻璃轉移溫度116℃,酸值0.0 mmol/g 丙烯酸樹脂3:甲基丙烯酸甲酯/丙烯酸甲酯(單體比87/13)之共聚物(可樂麗製造之「parapet G-1000」),玻璃轉移溫度109℃,酸值0.0 mmol/g) 丙烯酸樹脂4:對排型聚甲基丙烯酸甲酯(可樂麗製造之「parapet SP-01」),玻璃轉移溫度130℃,酸值0.0 mmol/g 丙烯酸樹脂5:按照日本專利特開2018-70710號公報之「丙烯酸系樹脂製造例」製作之具有戊二醯亞胺環之丙烯酸系樹脂(戊二醯亞胺含量4重量%,玻璃轉移溫度125℃,酸值0.4 mmol/g) 丙烯酸樹脂6:按照日本專利特開2018-70710號公報之「丙烯酸系樹脂製造例」製作之具有戊二醯亞胺環之丙烯酸系樹脂(戊二醯亞胺含量70重量%,玻璃轉移溫度146℃,酸值0.1 mmol/g)
<實施例1~8、11~13> 以與比較例1~4、6~8相同之方式製作包含聚醯亞胺樹脂及丙烯酸系樹脂之膜,切成長方形。夾持切成長方形之膜之短邊(長度方向之兩端),於表1所示之溫度之烘箱中使夾持間之距離變化,藉此以表1所示之延伸倍率進行自由端單軸延伸。
<實施例9、10> 以與比較例5相同之方式製作包含聚醯亞胺樹脂及丙烯酸系樹脂之膜,切成長方形。夾持切成長方形之膜之短邊(長度方向之兩端),於利用夾具握持長邊之兩端加以固定之狀態下,於表1所示之溫度之烘箱中使夾持間之距離變化,藉此以表1所示之延伸倍率進行固定端單軸延伸。
<參考例1> 除了製備丙烯酸樹脂1之二氯甲烷溶液,將乾燥時之加熱條件變更為60℃下30分鐘、80℃下30分鐘、100℃下30分鐘、110℃下30分鐘以外,以與比較例1相同之條件製作厚度約50 μm之膜。
<參考例2、3> 以與參考例1相同之方式製作丙烯酸膜,以表1所示之條件進行自由端單軸延伸。
<比較例9~14> 除了將聚醯亞胺之組成變更為如表3所示,以及於比較例12~14中,使用N,N-二甲基甲醯胺(DMF)來代替二氯甲烷(DCM)作為溶劑以外,以與比較例1相同之方式製作膜。實施比較例9、比較例11、比較例12、比較例13及比較例14之膜之DSC測定,均係於50~270℃之範圍內DSC曲線示出唯一之玻璃轉移點,玻璃轉移溫度分別為183℃、185℃、159℃、170℃、及196℃。
<實施例14~19> 以與比較例9~14相同之方式製作包含聚醯亞胺樹脂及丙烯酸系樹脂之膜,以表3所示之條件進行自由端單軸延伸。
<參考例4、5> 於參考例4、5中,製備聚醯亞胺樹脂之二氯甲烷溶液,以與比較例1相同之條件製作厚度約50 μm之膜。
[評估] <霧度及全光線透過率> 將膜切成3 cm見方,利用須賀試驗機製造之測霧計「HZ-V3」,按照JIS K7136及JIS K7361-1,測定霧度及全光線透過率(TT)。
<黃度> 將膜切成3 cm見方,利用須賀試驗機製造之分光測色計「SC-P」,按照JIS K7373測定黃度(YI)。
<第一方向之確定> 使用王子計測機器公司製造之相位差測定裝置「KOBRA」,藉由平行偏光鏡旋轉法進行波長589 nm之相位差測定,將配向軸之方向(慢軸方向)、即於面內折射率最大之方向作為第一方向。將膜面內之與第一方向正交之方向(快軸方向)作為第二方向。
<折射率> 將膜切成3 cm見方,藉由稜鏡耦合器(Metricon製造之「2010/M」),測定第一方向之折射率n 1及第二方向之折射率n 2,根據n 1及n 2算出面內之折射率各向異性之指標R(%):100×(n 1-n 2)/n 2
<拉伸彈性模數> 將膜切成以第一方向作為長邊之寬度10 mm之短條狀,於23℃/55%RH下靜置1天進行濕度控制後,使用島津製作所製造之「AUTOGRAPH AGS-X」,於如下條件下,將第一方向作為拉伸方向進行拉伸試驗,測定第一方向之拉伸彈性模數。針對實施例1~19及參考例2、3之延伸膜,使用以第二方向作為長邊而切成短條狀之試樣,將第二方向作為拉伸方向進行拉伸試驗,亦測定第二方向之拉伸彈性模數。 夾具間距離:100 mm 拉伸速度:20.0 mm/min 測定溫度:23℃
<鉛筆硬度> 藉由JIS K5600-5-4「鉛筆刮痕試驗」,將第一方向作為刮痕方向(鉛筆之移動方向)測定膜之鉛筆硬度。針對實施例1~19及參考例2、3之延伸膜,亦測定將第二方向作為刮痕方向之情形時之鉛筆硬度。
<動態彎曲試驗> 將膜切成以第一方向作為長邊之20 mm×150 mm之短條狀。將此試樣之短邊安裝於U字伸縮試驗治具(YUASA SYSTEM公司製造之「DMX-FS」),於溫度23℃、相對濕度55%之環境下,藉由桌上型耐久試驗機(YUASA SYSTEM公司製造之「DMLHB」),以膜之第二方向為彎曲軸,於彎曲半徑為1.0 mm、彎曲角度為180°、彎曲速度為1次/秒之條件下進行反覆彎曲試驗,求出耐彎曲次數。具體而言,彎曲次數每1000次便確認膜有無龜裂或斷裂,將未發生龜裂或斷裂之最大彎曲次數作為耐彎曲次數。於1000次彎曲試驗中發生了龜裂或斷裂之情形時,則每100次便確認有無龜裂或斷裂。
針對實施例1~19及參考例2、3之延伸膜,使用以第二方向作為長邊而切成短條狀之試樣,亦針對將第一方向作為彎曲軸之情形測定耐彎曲次數。使用以第一方向為長邊之試樣,將以第二方向作為彎曲軸而實施試驗之情形時之耐彎曲次數作為第一方向之耐彎曲次數,使用以第二方向為長邊之試樣,將以第一方向作為彎曲軸而實施試驗之情形時之耐彎曲次數作為第二方向之耐彎曲次數。
<穿透電子顯微鏡(TEM)觀察> 利用穿透式電子顯微鏡(倍率10,000倍)觀察比較例1及實施例3之膜之平面(膜面)及剖面。將TEM圖像示於圖1。
[評估結果] 關於實施例1~13、比較例1~8、及參考例1~3,將樹脂之組成(聚醯亞胺之組成、丙烯酸系樹脂之種類、及混合比)、膜之製作條件(溶劑之種類、及延伸條件)、膜之厚度、霧度、全光線透過率(TT)、及黃度示於表1,將彈性模數、鉛筆硬度、動態彎曲試驗中之耐彎曲次數、及折射率之評估結果示於表2。關於實施例14~19、比較例9~14及參考例4、5,將樹脂之組成、膜之製作條件、及評估結果示於表3、4。未針對拉伸彈性模數、鉛筆硬度及動態彎曲試驗實施評估者於表中記載為「ND」。
於表1~4中,化合物藉由以下略稱進行記載。 <酸二酐> 6FDA:4,4'-(六氟亞異丙基)二鄰苯二甲酸酐 CBDA:1,2,3,4-環丁烷四羧酸二酐 TAHMBP:雙(1,3-二側氧-1,3-二氫異苯并呋喃-5-羧酸)-2,2',3,3',5,5'-六甲基聯苯-4,4'-二基 TAHQ:對伸苯基雙(偏苯三酸酐) BPDA:3,3',4,4'-聯苯四羧酸二酐 ODPA:4,4'-氧二鄰苯二甲酸酐 BPADA:4,4'-(4,4'-亞異丙基二苯氧基)二鄰苯二甲酸酐 PMDA:均苯四甲酸二酐 <二胺> TFMB:2,2'-雙(三氟甲基)聯苯胺 DDS:3,3'-二胺基二苯基碸
[表1]
   樹脂組成 溶劑 延伸 厚度(μm) 霧度(%) TT(%) YI
聚醯亞胺組成(mol%) 丙烯酸樹脂種類 PI/丙烯酸(重量比) 溫度(℃) 倍率(%)
酸二酐 二胺
6FDA CBDA TFMB
比較例1 70 30 100 1 50/50 DCM - 58 0.3 91.7 0.5
實施例1 210 30 50 0.2 91.5 0.6
實施例2 210 50 42 0.4 91.4 0.7
實施例3 210 70 42 0.3 91.5 0.6
實施例4 210 90 37 0.2 91.5 0.6
實施例5 215 120 42 0.3 91.2 0.9
比較例2 1 30/70 DCM - 56 0.2 92.1 0.4
實施例6 185 70 64 0.2 92.0 0.5
比較例3 1 70/30 DCM - 48 0.2 91.2 0.7
實施例7 245 70 50 0.2 91.0 0.7
參考例1 - 1 0/100 DCM - 51 0.3 92.6 0.2
參考例2 145 30 48 0.3 92.6 0.2
參考例3 155 70 53 0.6 92.5 0.2
比較例4 70 30 100 2 50/50 DCM - 60 0.3 91.7 0.6
實施例8 215 70 64 0.2 91.6 0.6
比較例5 3 55/45 DCM - 48 0.9 91.6 0.9
實施例9 195 50 48 0.2 91.4 0.7
實施例10 195 70 49 1.1 91.4 0.8
比較例6 4 50/50 DCM - 63 0.4 91.6 0.6
實施例11 201 90 45 0.2 91.5 0.6
比較例7 5 50/50 DCM - 64 0.3 91.5 0.6
實施例12 200 90 35 0.2 91.4 0.6
比較例8 6 55/45 DCM - 52 0.3 91.3 0.7
實施例13 215 70 44 0.2 91.0 0.8
[表2]
   樹脂組成 溶劑 延伸條件 彈性模數(GPa) 鉛筆硬度 動態彎曲(一千次) 折射率
聚醯亞胺組成 丙烯酸樹脂種類 PI/丙烯酸(重量比) 溫度(℃) 倍率(%)
第一方向 第二方向 第一方向 第二方向 第一方向 第二方向 n 1 n 2 R(%)
比較例1 6FDA/CBDA//TFMB =70/30//100 1 50/50 DCM - 3.9 ND 2H ND 13 ND 1.5290 1.5290 0.00
實施例1 210 30 4.5 3.9 2H H 108 150 1.5433 1.5199 1.54
實施例2 210 50 5.2 3.8 2H 2H 200 400 1.5508 1.5158 2.31
實施例3 210 70 6.3 3.4 H 2H 570 473 1.5522 1.5162 2.37
實施例4 210 90 7.4 3.5 2H H 620 35 1.5600 1.5111 3.24
實施例5 215 120 8.8 3.5 H H 254 100 1.5653 1.5069 3.88
比較例2 1 30/70 DCM - 3.4 ND HB ND 5 ND 1.5118 1.5114 0.03
實施例6 185 70 4.2 3.4 HB 2H 265 100 1.5223 1.5045 1.18
比較例3 1 70/30 DCM - 4.2 ND 2H ND 25 ND 1.5434 1.5433 0.01
實施例7 245 70 7.4 3.7 2H 2H 100 100 1.5766 1.5261 3.31
參考例1 - 1 0/100 DCM - 2.6 ND HB ND 1 ND 1.4932 1.4931 0.00
參考例2 145 30 2.7 2.6 HB B 0.6 0.5 1.4930 1.4930 0.00
參考例3 155 70 2.6 2.6 HB HB 0.3 0.5 1.4930 1.4930 0.00
比較例4 6FDA/CBDA//TFMB =70/30//100 2 50/50 DCM - 4.0 ND 2H ND 14 ND 1.5283 1.5280 0.02
實施例8 215 70 5.6 3.3 3H 4H 100 100 1.5517 1.5113 2.67
比較例5 3 55/45 DCM - 4.0 ND 2H ND 80 ND 1.5312 1.5312 0.00
實施例9 195 50 5.0 3.6 3H 3H 330 150 1.5442 1.5240 1.33
實施例10 195 70 5.6 3.5 3H 3H 550 150 1.5502 1.5204 1.96
比較例6 4 50/50 DCM - 3.9 ND 3H ND 10 ND 1.5267 1.5266 0.01
實施例11 201 90 7.7 3.0 2H 3H 300 300 1.5555 1.5107 2.97
比較例7 5 50/50 DCM - 4.0 ND 3H ND 10 ND 1.5308 1.5306 0.02
實施例12 200 90 7.6 3.2 2H H 300 300 1.5571 1.5168 2.66
比較例8 6 55/45 DCM - 4.0 ND 3H ND 10 ND 1.5459 1.5457 0.01
實施例13 215 70 6.8 3.2 3H H 300 300 1.5775 1.5255 3.40
[表3]
   樹脂組成 溶劑 延伸 厚度(μm) 霧度(%) TT(%) YI
聚醯亞胺組成(mol%) 丙烯酸 樹脂 種類 PI/丙烯酸(重量比) 溫度(℃) 倍率(%)
酸二酐 二胺
6FDA CBDA TAHMBP TAHQ BPDA ODPA BPADA PMDA TFMB DDS
比較例9 85 15 - - - - - - 100 - 1 50/50 DCM - 53 0.3 91.7 0.6
實施例14 215 70 51 0.4 91.0 0.7
比較例10 - 30 50 - - 20 - - 90 10 1 50/50 DCM - 51 1.2 90.8 1.1
實施例15 215 70 48 0.5 91.0 0.8
參考例4 - 100/0 DCM - 52 0.5 89.3 2.3
比較例11 40 - - - - - 20 40 80 20 1 50/50 DCM - 53 0.3 91.1 2.3
實施例16 200 70 47 0.4 90.9 2.4
參考例5 - 100/0 DCM - 51 0.3 89.5 7.5
比較例12 100 - - - - - - - 100 - 1 50/50 DMF - 52 0.3 91.7 0.7
實施例17 180 70 48 0.3 91.5 0.6
比較例13 60 - - - 40 - - - 100 - 1 50/50 DMF - 56 0.3 91.3 1.0
實施例18 190 70 48 0.3 91.1 0.9
比較例14 50 - - 25 25 - - - 70 30 1 50/50 DMF - 45 0.2 91.2 1.0
實施例19 195 70 51 0.3 91.1 1.0
[表4]
   樹脂組成 溶劑 延伸條件 彈性模數(GPa) 鉛筆硬度 動態彎曲(一千次) 折射率
聚醯亞胺組成 丙烯酸樹脂種類 PI/丙烯酸(重量比) 溫度(℃) 倍率(%)
第一方向 第二方向 第一方向 第二方向 第一方向 第二方向 n 1 n 2 R(%)
比較例9 6FDA/CBDA//TFMB =85/15//100 1 50/50 DCM - 3.6 ND F ND 20 ND 1.5282 1.5279 0.02
實施例14 50/50 215 70 5.5 3.5 2H H 550 100 1.5540 1.5129 2.72
比較例10 CBDA/TAHMBP/ODPA//TFMB/DDS =30/50/20//90/10 1 50/50 DCM - 4.6 ND 2H ND 10 ND 1.5524 1.5519 0.03
實施例15 50/50 215 70 7.8 4.2 4H 4H 250 25 1.5787 1.5256 3.48
參考例4 - 100/0 DCM - 5.5 ND 3H ND 200 ND 1.6183 1.6183 0.00
比較例11 6FDA/BPADA/PMDA//TFMB/DDS =40/20/40//80/20 1 50/50 DCM - 3.2 ND F ND 10 ND 1.5449 1.5446 0.02
實施例16 1 50/50 200 70 5.3 3.3 3H 2H 250 25 1.5636 1.5320 2.07
參考例5 - 100/0 DCM - 4.0 ND 3H ND 200 ND 1.6095 1.6094 0.01
比較例12 6FDA//TFMB =100//100 1 50/50 DMF - 3.3 ND H ND 5 ND 1.5255 1.5254 0.00
實施例17 50/50 180 70 4.2 2.9 H H 490 40 1.5441 1.5152 1.90
比較例13 6FDA/BPDA//TFMB =60/40//100 1 50/50 DMF - 3.5 ND 3H ND 10 ND 1.5400 1.5399 0.00
實施例18 50/50 190 70 4.5 3.1 2H H 130 36 1.5661 1.5244 2.74
比較例14 6FDA/TAHQ/BPDA//TFMB/DDS =50/25/25//70/30 1 50/50 DMF - 3.6 ND H ND 10 ND 1.5474 1.5469 0.03
實施例19 50/50 195 70 5.0 3.3 H H 75 25 1.5707 1.5349 2.34
 
包含聚醯亞胺樹脂及丙烯酸系樹脂之比較例1~14之無延伸膜、及將該等進行延伸之實施例1~19之延伸膜均係霧度為2%以下,全光線透過率為90%以上,具有與參考例1~3之丙烯酸膜及參考例4、5之聚醯亞胺膜相同之較高之透明性。
如圖1所示,比較例1之膜於TEM圖像中未確認到海島結構,因此可知聚醯亞胺樹脂與丙烯酸系樹脂完全相溶。又,實施例3之膜與比較例1同樣於TEM圖像中未確認到海島結構,因此可知延伸後亦維持完全相溶系統。
相對於參考例5之聚醯亞胺膜之黃度為2.3,比較例11及實施例16之膜與參考例5相比黃度較小,可知藉由將聚醯亞胺與丙烯酸系樹脂混合,可獲得與單獨使用聚醯亞胺之情形相比著色較少之膜。
比較例1之無延伸膜之膜面內之折射率無各向異性,拉伸彈性模數為3.9 GPa,動態彎曲試驗中之耐彎曲次數為13000次。將比較例1之膜進行延伸之實施例1~5之折射率各向異性之指標R超過1.0%,伴隨延伸倍率之增大,可見折射率差變大之傾向。
實施例1~5與比較例1相比第一方向之拉伸彈性模數較大,伴隨延伸倍率之增大,第一方向之拉伸彈性模數顯著上升。另一方面,伴隨延伸倍率之增大,可見第二方向之拉伸彈性模數變小之傾向,但第二方向之拉伸彈性模數之下降與第一方向之拉伸彈性模數之上升相比較少。又,實施例1~5之延伸膜之第一方向之耐彎曲次數超過10萬次,與比較例1之無延伸膜相比耐彎曲性大幅提高。於實施例1~5中,與比較例1相比,第二方向之耐彎曲性亦提高。
根據變更了聚醯亞胺樹脂與丙烯酸系樹脂之比率之比較例2與實施例6之對比、及比較例3與比較例7之對比,亦可知藉由延伸,面內之折射率差增大,第一方向之拉伸彈性模數上升,並且第一方向及第二方向之耐彎曲性提高。
將單一丙烯酸樹脂1之膜進行延伸之參考例2、3之膜與參考例1之無延伸膜進行對比,面內之折射率差未見特別之變化,拉伸彈性模數亦未見明確之差。又,於參考例2、3中,與參考例1相比,耐彎曲性降低。
亦根據變更了丙烯酸系樹脂之種類之比較例4~8與實施例8~13之對比可知,包含聚醯亞胺及丙烯酸系樹脂之膜藉由延伸而折射率各向異性增大,伴隨於此,第一方向(延伸方向)之拉伸彈性模數以及第一方向及第二方向之耐彎曲性大幅提高。
於變更了聚醯亞胺樹脂之種類之比較例9與實施例14之對比、比較例10與實施例15之對比、及比較例11與實施例16之對比中,亦可見與上述相同之傾向。於比較例12~14及實施例17~19中,聚醯亞胺樹脂及丙烯酸樹脂1於DCM溶劑中未表現出相溶性,因此使用DMF作為溶劑而製作了膜,但於該等例中,亦可知藉由延伸而折射率各向異性增大,機械強度大幅提高。
比較例10之無延伸膜與參考例4之單一聚醯亞胺之無延伸膜相比黃度較小、透明性優異,但拉伸彈性模數及耐彎曲性差於參考例4。另一方面,將比較例10之膜延伸之實施例15之膜維持與比較例10同等之優異透明性,且第一方向之拉伸彈性模數及耐彎曲性大於參考例4,兼顧優異之透明性與機械強度。參考例5之膜之黃度為7.5,可見著色,但於混合了聚醯亞胺樹脂與丙烯酸系樹脂之比較例11之膜中,黃度為2.4,著色大幅減少。於參考例5、比較例11及實施例16之對比中,可見與參考例5、比較例11及實施例16之對比相同之傾向,實施例16之膜與參考例5之聚醯亞胺膜進行對比,兼顧優異之透明性與機械強度。
根據上述結果可知,聚醯亞胺與丙烯酸系樹脂之相溶系統之膜具有與單一丙烯酸系樹脂之膜相當之優異透明性,並且可獲得如下透明膜,其藉由延伸而折射率各向異性增大,伴隨於此,第一方向(延伸方向)之拉伸彈性模數以及第一方向及第二方向之耐彎曲性大幅提高,具有丙烯酸系樹脂膜所無法達成之優異機械強度。
圖1係實施例及比較例之膜之平面及剖面之穿透式電子顯微鏡圖像。

Claims (17)

  1. 一種膜,其係包含聚醯亞胺及丙烯酸系樹脂者,且 於膜面內,折射率最大之第一方向之折射率n 1及與上述第一方向正交之第二方向之折射率n 2滿足100×(n 1-n 2)/n 2≧1.0, 全光線透過率為85%以上,霧度為10%以下,黃度為5以下。
  2. 如請求項1之膜,其玻璃轉移溫度為110℃以上且未達250℃。
  3. 如請求項1之膜,其中 上述聚醯亞胺 包含選自由含氟芳香族四羧酸二酐及脂環式四羧酸二酐所組成之群中之一種以上之四羧酸二酐作為四羧酸二酐成分, 包含選自由氟烷基取代聯苯胺及脂環式二胺所組成之群中之一種以上之二胺作為二胺成分。
  4. 如請求項3之膜,其中氟烷基取代聯苯胺之量相對於上述聚醯亞胺之二胺成分總量為25莫耳%以上。
  5. 如請求項4之膜,其中上述氟烷基取代聯苯胺為2,2'-雙(三氟甲基)聯苯胺。
  6. 如請求項3之膜,其中含氟芳香族四羧酸二酐與脂環式四羧酸二酐之合計量相對於上述聚醯亞胺之四羧酸二酐成分總量為15莫耳%以上。
  7. 如請求項1至6中任一項之膜,其中上述丙烯酸系樹脂之甲基丙烯酸甲酯及甲基丙烯酸甲酯之改性結構之合計量相對於單體成分總量為60重量%以上。
  8. 如請求項1至6中任一項之膜,其中上述丙烯酸系樹脂之玻璃轉移溫度為90℃以上。
  9. 如請求項1至6中任一項之膜,其以98:2~2:98之範圍之重量比包含上述聚醯亞胺與上述丙烯酸系樹脂。
  10. 如請求項1至6中任一項之膜,其中上述第一方向之拉伸彈性模數及上述第二方向之拉伸彈性模數中之至少一者為4.0 GPa以上。
  11. 如請求項1至6中任一項之膜,其係向至少一方向延伸之延伸膜。
  12. 一種膜之製造方法,其係將包含聚醯亞胺及丙烯酸系樹脂之膜向至少一方向進行延伸。
  13. 一種膜之製造方法,其係如請求項1至11中任一項之膜之製造方法,且將包含聚醯亞胺及丙烯酸系樹脂之無延伸膜向至少一方向進行延伸。
  14. 如請求項12或13之膜之製造方法,其中延伸時之溫度未達250℃。
  15. 如請求項12或13之膜之製造方法,其係將聚醯亞胺及丙烯酸系樹脂溶解於有機溶劑中而成之樹脂溶液塗佈於支持體上,去除上述有機溶劑,藉此製作上述無延伸膜。
  16. 一種圖像顯示裝置,其於圖像顯示面板之視認側表面具備如請求項1至11中任一項之膜。
  17. 如請求項16之圖像顯示裝置,其能夠彎折。
TW111145917A 2021-11-30 2022-11-30 膜及其製造方法、以及圖像顯示裝置 TW202336092A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194540 2021-11-30
JP2021194540 2021-11-30

Publications (1)

Publication Number Publication Date
TW202336092A true TW202336092A (zh) 2023-09-16

Family

ID=86612204

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111145917A TW202336092A (zh) 2021-11-30 2022-11-30 膜及其製造方法、以及圖像顯示裝置

Country Status (2)

Country Link
TW (1) TW202336092A (zh)
WO (1) WO2023100806A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479409B2 (ja) * 2004-08-05 2010-06-09 東ソー株式会社 透明性樹脂組成物及び光学フィルム
JP4506342B2 (ja) * 2004-08-05 2010-07-21 東ソー株式会社 透明性樹脂組成物及び光学フィルム
JP5835586B2 (ja) * 2010-08-05 2015-12-24 日産化学工業株式会社 樹脂組成物、液晶配向材および位相差材
JP6731913B2 (ja) * 2015-05-21 2020-07-29 株式会社日本触媒 樹脂組成物およびフィルム
JP6791133B2 (ja) * 2015-06-10 2020-11-25 コニカミノルタ株式会社 異種の樹脂を表面偏在させた高配向フィルム、その製造方法、それを用いた偏光板、液晶表示装置、加飾用フィルム、及びガスバリアーフィルム
KR101831598B1 (ko) * 2016-12-30 2018-02-23 코오롱인더스트리 주식회사 폴리이미드 수지 조성물 및 이의 필름
CN109666251B (zh) * 2017-10-13 2023-01-10 安徽精卓光显技术有限责任公司 一种柔性聚合物共混膜及其制备方法和触摸屏
WO2021132279A1 (ja) * 2019-12-24 2021-07-01 株式会社カネカ 樹脂組成物およびフィルム

Also Published As

Publication number Publication date
WO2023100806A1 (ja) 2023-06-08

Similar Documents

Publication Publication Date Title
TWI551652B (zh) 聚醯亞胺系溶液和使用其製備的聚醯亞胺系膜及含聚醯亞胺系膜的顯示器基板與裝置
JP7180617B2 (ja) ポリイミド樹脂組成物及びポリイミドフィルム
JP7367699B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP2008297360A (ja) 溶剤可溶性ポリイミド樹脂
WO2020138360A1 (ja) イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム
WO2021132279A1 (ja) 樹脂組成物およびフィルム
TW202014448A (zh) 聚醯亞胺樹脂、聚醯亞胺清漆以及聚醯亞胺薄膜
TW202130706A (zh) 聚醯亞胺樹脂、聚醯亞胺清漆、以及聚醯亞胺薄膜
WO2021100727A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2023026982A1 (ja) 樹脂組成物、成形体およびフィルム
TWI826669B (zh) 無色透明樹脂薄膜之製造方法
TW202336092A (zh) 膜及其製造方法、以及圖像顯示裝置
TWI778125B (zh) 聚醯亞胺、聚醯亞胺清漆及聚醯亞胺薄膜
TW202348399A (zh) 膜及其製造方法、以及圖像顯示裝置
TW202334272A (zh) 樹脂組合物、成形體及膜
CN118339218A (zh) 薄膜和其制造方法、以及图像显示装置
JP7509132B2 (ja) 無色透明樹脂フィルムの製造方法
TW202330710A (zh) 樹脂組合物、成形體及膜
JP2023182123A (ja) 樹脂組成物およびフィルム
JP2023086071A (ja) 樹脂組成物およびフィルム
JP2023155614A (ja) 樹脂組成物、成形体およびフィルム
JP2023073709A (ja) 樹脂組成物およびフィルム
JP2024043439A (ja) 樹脂組成物、成形体およびフィルム
JP2023070869A (ja) 樹脂組成物およびフィルム
WO2023249079A1 (ja) 樹脂組成物、成形体およびフィルム