TW202208620A - 經修飾的麩胺酸脫氫酶及其應用 - Google Patents

經修飾的麩胺酸脫氫酶及其應用 Download PDF

Info

Publication number
TW202208620A
TW202208620A TW110125318A TW110125318A TW202208620A TW 202208620 A TW202208620 A TW 202208620A TW 110125318 A TW110125318 A TW 110125318A TW 110125318 A TW110125318 A TW 110125318A TW 202208620 A TW202208620 A TW 202208620A
Authority
TW
Taiwan
Prior art keywords
amino acid
substituted
gludh
modified
positions
Prior art date
Application number
TW110125318A
Other languages
English (en)
Inventor
謝新開
徐偉
范俊英
Original Assignee
大陸商四川利爾生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商四川利爾生物科技有限公司 filed Critical 大陸商四川利爾生物科技有限公司
Publication of TW202208620A publication Critical patent/TW202208620A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/01Oxidoreductases acting on the CH-NH2 group of donors (1.4) with NAD+ or NADP+ as acceptor (1.4.1)
    • C12Y104/01002Glutamate dehydrogenase (1.4.1.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本發明涉及經修飾的麩胺酸脫氫酶(GluDH)。具體而言,本發明的經修飾的GluDH具有提高的催化PPO與胺基供體反應生成L-草銨膦的活性和/或改進的動力學性質。本發明還涉及編碼本發明的經修飾的GluDH的多核苷酸、表現本發明的經修飾的GluDH的載體和宿主細胞以及使用本發明的經修飾的GluDH和宿主細胞生產L-草銨膦的方法。

Description

經修飾的麩胺酸脫氫酶及其應用
本發明涉及酶工程領域。具體而言,本發明涉及經修飾的麩胺酸脫氫酶(GluDH)及其在生產草銨膦中的應用。
草銨膦(glufosinate,也稱為4-[羥基(甲基)膦醯基]-D,L-高丙胺酸)是世界銷量第二的轉基因作物耐受的除草劑。草銨膦是一種廣譜觸殺型除草劑,通過抑制植物體內的L-麩醯胺酸合成酶的活性,導致植物體內氮代謝紊亂,最終殺死植物。與草甘膦相比,草銨膦具有顯著優勢,如應用範圍廣、見效快、持效期長、更低毒、安全等。因此,草銨膦的銷量增長迅速,在未來一段時間內市場需求巨大,前景非常廣闊。
但是,草銨膦的工藝路線複雜,導致產品生產技術難度高。高昂的價格阻礙其迅速取代草甘膦。目前市售的草銨膦是包含等量的兩種光學異構體的外消旋混合物(D,L-草銨膦),但其中只有L-構型具有生理活性。因此,通過D,L-草銨膦去消旋化製備手性純的L-草銨膦具有重要現實意義,成為近年來合成L-草銨膦的熱門方向。
近年來報導從D,L-草銨膦製備L-草銨膦的方法眾多。傳統的化學修飾拆分法因成本高且不能利用D-型草銨膦而不具備競爭性。目前報導了下列將D-草銨膦轉化成為L-草銨膦的主要代表性技術路線:
將D,L-草銨膦轉化成N-乙醯基草銨膦,再經羧肽酶催化,L型N-乙醯基草銨膦經選擇性水解,獲得L-草銨膦,而D型N-乙醯基草銨膦不水解,可經化學或酶法消旋化後再次迴圈進入水解步驟(參見例如中國專利申請CN108690854A)。該方法的缺點是需多步反應,還有需要將經水解獲得的L-草銨膦與N-乙醯化的基質分離。
將D-草銨膦氧化成2-羰基-4-(羥基甲基膦醯基)丁酸(PPO),再對PPO進行還原或轉胺生成L-草銨膦。在大部分文獻中,使用D-胺基酸氧化酶(DAAO)催化將D-草銨膦氧化成PPO,而PPO可以在鈀碳催化下被甲酸還原生成D,L-草銨膦。利用DAAO的立體選擇性,將D,L-草銨膦逐漸轉化為L-草銨膦(參見,例如,CN105567780A)。這個方案的缺點是鈀碳催化劑用量大,並且浪費反應原料(如氧氣和甲酸銨)。
還可以採用L-胺基酸轉胺酶(L-TA)催化的立體選擇性轉胺反應將PPO轉化成L-草銨膦(參見,例如,US20180030487A1)。這個方案的缺點在於,轉胺步驟是平衡反應,需要提供過量的胺基供體(胺基酸或有機胺)來實現高轉化率(例如提供3倍當量的胺基供體,轉化率90%),而過量的胺基供體和對應的副產物將嚴重影響後續的分離純化步驟。
此外,可以通過L-胺基酸脫氫酶(L-AADH)催化的立體選擇性還原反應,以無機銨鹽為胺基供體,輔以NAD(P)H循環系統,消耗甲酸、葡萄糖或簡單醇類,將PPO轉化為L-草銨膦。L-AADH催化的反應並不需要大大過量的氫給體,可以實現高轉化率。
有報導利用天然的或經修飾的麩胺酸脫氫酶(GluDH)催化PPO不對稱還原胺化製備L-草銨膦(參見,例如,CN107630052B、CN106978453B、CN108588045B和CN109609474A)。
但是,本領域仍需要提供具有提高的催化PPO與胺基供體反應生成L-草銨膦的活性和/或具有改進的動力學性質(例如,提高的Vmax值、降低的Km值或增加的Vmax/Km)的GluDH。
在第一方面,本發明提供一種經修飾的麩胺酸脫氫酶(GluDH),與其起始GluDH相比,包含兩個或多個位置的胺基酸取代,其中所述經修飾的GluDH具有提高的催化PPO與胺基供體反應生成L-草銨膦的活性和/或具有改進的動力學性質(例如,提高的Vmax值、降低的Km值或增加的Vmax/Km)。
在一些實施方案中,所述經修飾的GluDH與其起始GluDH相比,具有選自以下組合的胺基酸取代:
第104位的胺基酸取代為C,且第175位的胺基酸取代為G;
第132位的胺基酸取代為L,且第175位的胺基酸取代為G;
第133位的胺基酸取代為V,且第175位的胺基酸取代為G;
第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G;
第175位的胺基酸取代為G,且第181位的胺基酸取代為K或R;
第175位的胺基酸取代為G,且第182位的胺基酸取代為R;
第175位的胺基酸取代為G,且第203位的胺基酸取代為I;
第132位的胺基酸取代為L,第133位的胺基酸取代為V,且第175位的胺基酸取代為G;
第132位的胺基酸取代為L,第173位的胺基酸取代為S,且第175位的胺基酸取代為G;
第132位的胺基酸取代為L,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;
第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G;
第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;
第173位的胺基酸取代為G,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;
第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為S,且第175位的胺基酸取代為G;
第132位的胺基酸取代為L,第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;
第132位的胺基酸取代為L,第173位的胺基酸取代為S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;
第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;和
第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R,
其中所述位置參照SEQ ID NO: 1進行編號。
在一些實施方案中,所述經修飾的GluDH與其起始GluDH相比,包含第173、175和182位的取代,其中所述位置參照SEQ ID NO: 1進行編號。在一些實施方案中,第173位的胺基酸取代為G。優選地,第175位的胺基酸取代為G。優選地,第182位的胺基酸取代為R。在一些實施方案中,所述經修飾的GluDH,還包含選自第9、22、23、25、31、56、124、143、199、216、242、263、339、420、431和437位的一或多個位置的胺基酸取代。優選地,第9位的胺基酸取代為S、L或Y。優選地,第22位的胺基酸取代為W或E。優選地,第23位的胺基酸取代為M。優選地,第25位的胺基酸取代為D。優選地,第31位的胺基酸取代為H。優選地,第56位的胺基酸取代為Q。優選地,第124位的胺基酸取代為L。優選地,第143位的胺基酸取代為E。優選地,第199位的胺基酸取代為W或Y。優選地,第216位的胺基酸取代為G。優選地,第263位的胺基酸取代為S。優選地,第339位的胺基酸取代為Q。優選地,第420位的胺基酸取代為R。優選地,第431位的胺基酸取代為S。優選地,第437位的胺基酸取代為K。
在一些實施方案中,所述經修飾的GluDH與其起始GluDH相比,包含第22、56、173、175、182、199和420位的胺基酸取代。優選地,第22位的胺基酸取代為E。優選地,第56位的胺基酸取代為Q。優選地,第173位的胺基酸取代為G。優選地,第175位的胺基酸取代為G。優選地,第182位的胺基酸取代為R。優選地,第199位的胺基酸取代為Y。優選地,第420位的胺基酸取代為R。在一些實施方案中,所述經修飾的GluDH還包含選自第31、124和216位的一或多個位置的胺基酸取代。優選地,第31位的胺基酸取代為H。優選地,第124位的胺基酸取代為L。優選地,第216位的胺基酸取代為G。在一些實施方案中,所述起始GluDH是野生型GluDH。在一些實施方案中,所述起始GluDH來源於芽胞桿菌科(Bacillaceae)的微生物,優選離胺酸芽孢桿菌屬(Lysinibacillus )或芽胞桿菌屬(Bacillus )的微生物,更優選球形離胺酸芽胞桿菌(Lysinibacillus sphaericus )或貝萊斯芽胞桿菌(Bacillus velezensis )。在優選的實施方案中,所述起始GluDH包含SEQ ID NO:1或2的胺基酸序列。
在一些實施方案中,所述經修飾的GluDH包含SEQ ID NO: 4-14、16-19、21、22、24、25、27-30、32-48、50、51和53-72之一的胺基酸序列。
在一些實施方案中,所述經修飾的GluDH催化PPO與胺基供體反應生成L-草銨膦的活性是SEQ ID NO: 3的催化此反應的活性的至少100%、105%、110%、120%、130%、140%、150%、160%、170%、180%、190%、200%或更高。
在第二方面,本發明提供編碼本發明的經修飾的GluDH的多核苷酸,以及包含本發明的多核苷酸的載體。
在第三方面,本發明提供包含本發明的的經修飾的GluDH、其編碼多核苷酸或包含所述多核苷酸的載體的宿主細胞。
在第四方面,本發明還提供一種生產L-草銨膦的方法,包括使本發明的經修飾的GluDH或本發明的宿主細胞與PPO接觸。
本發明主要涉及經修飾的GluDH,用於催化PPO與胺基供體反應,以生產L-草銨膦。除非另有說明,本文中使用的術語具有本領域技術人員一般理解的含義。 一、經修飾的麩胺酸脫氫酶
如本文所用,術語“麩胺酸脫氫酶”和“GluDH”是指催化麩胺酸脫氫產生α-酮戊二酸的酶。此外,GluDH還具有催化PPO與胺基供體反應,生成L-草銨膦的活性。本發明提供經修飾的GluDH多肽,其具有提高的催化PPO與氨基供體反應生成L-草銨膦的活性和/或具有改進的動力學性質,包括但不限於提高的Vmax、降低的Km和提高的Vmax/Km。
如本文所用,術語“肽”表示通過肽鍵連接的至少兩個胺基酸的鏈。術語“多肽”在本文中可以與術語“蛋白質”互換使用,是指含有十個或更多個胺基酸殘基的鏈。本文中的所有肽和多肽化學式或序列均是從左至右書寫的,表示從胺基末端至羧基末端的方向。
術語“胺基酸”包括蛋白質中天然存在的胺基酸和非天然胺基酸。蛋白質中天然存在的胺基酸的單字母和三字母命名採用本領域慣用名,可見於Sambrook, et al. (Molecular Cloning: A Laboratory Manual, 2nd, ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989)。 胺基酸                單字母        三字母 丙胺酸                A               Ala 精胺酸                R                Arg 天冬醯胺             N               Asn 天冬胺酸             D               Asp 半胱胺酸             C                Cys 麩醯胺酸             Q               Gln 麩胺酸                E                Glu 甘胺酸                G               Gly 組胺酸                H               His 異白胺酸             I                 Ile 白胺酸                L                Leu 離胺酸                K                Lys 甲硫胺酸             M               Met 苯丙胺酸             F                Phe 脯胺酸                P                Pro 絲胺酸                S                Ser 蘇胺酸                T                Thr 色胺酸                W               Trp 酪胺酸                Y               Tyr 纈胺酸                V               Val
如本文所用,術語“修飾”是指對由本發明的多肽或其同源序列組成的多肽的任何修飾,包括但不限於,取代、刪除、插入和/或添加一或多個胺基酸。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含兩個或多個位置的胺基酸取代,其中所述經修飾的GluDH具有提高的催化PPO與胺基供體反應生成L-草銨膦的活性和/或具有改進的動力學性質,包括但不限於提高的Vmax、降低的Km和提高的Vmax/Km。
在一些實施方案中,所述經修飾的GluDH與其起始GluDH相比,具有選自以下組合的胺基酸取代: 第104位的胺基酸取代為C,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,且第175位的胺基酸取代為G; 第133位的胺基酸取代為V,且第175位的胺基酸取代為G; 第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G; 第175位的胺基酸取代為G,且第181位的胺基酸取代為K或R; 第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第175位的胺基酸取代為G,且第203位的胺基酸取代為I; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第173位的胺基酸取代為S,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G; 第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第173位的胺基酸取代為G,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為S,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第132位的胺基酸取代為L,第173位的胺基酸取代為S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;和 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R, 其中所述位置參照SEQ ID NO: 1進行編號。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、133、173、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置133和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置133的胺基酸取代為V,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、173、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置173和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置173的胺基酸取代為G或S,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、133、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、133、173和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132、133和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,位置133的胺基酸取代為V,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、173、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132、173和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,位置173的胺基酸取代為G或S,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、133、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置133、173和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置133的胺基酸取代為V,位置173的胺基酸取代為G或S,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132、175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、133、173和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置133、175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置133的胺基酸取代為V,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、173和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置173、175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置173的胺基酸取代為G或S,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、133、和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置181的胺基酸取代為K或R。
在本文中,在其基礎上進行胺基酸修飾的GluDH多肽稱為起始GluDH。所述起始GluDH可以是野生型GluDH,也可以是野生型GluDH的變體。例如,從SEQ ID NO: 1的多肽開始進行修飾,則相對於經修飾的GluDH,SEQ ID NO: 1的多肽是“起始GluDH”;而如果從SEQ ID NO: 1的變體多肽(例如SEQ ID NO: 3-30)開始進行修飾,則相對於經修飾的GluDH,所述變體多肽是“起始GluDH”。
如本文所用,術語“野生型GluDH”是指天然存在的GluDH。在一些實施方案中,所述起始GluDH來源於芽胞桿菌科的微生物。在一些實施方案中,所述野生型GluDH是來自離胺酸芽孢桿菌屬或芽胞桿菌屬的微生物的GluDH。優選地,所述野生型GluDH是來自球形離胺酸芽胞桿菌的GluDH (SEQ ID NO: 2)或來自貝萊斯芽胞桿菌的GluDH (SEQ ID NO: 1)。
對於本發明,為確定兩個胺基酸序列或兩個核酸序列的相同性百分比,以最佳比較為目的比對序列(例如在第一個胺基酸或核酸序列中可導入缺口,以與第二個胺基酸或核酸序列進行最佳比對)。然後比較在相應胺基酸位置或核苷酸位置的胺基酸殘基或核苷酸。當第一個序列中的位置在第二個序列中相應位置由相同胺基酸殘基或核苷酸佔據時,則這些分子在這個位置是相同的。兩個序列之間的相同性百分比是所述序列共有的相同位置的數量的函數(即相同性百分比=相同位置的數量/位置(即重疊位置)的總數量×100)。優選地,這兩個序列是相同長度的。
本領域技術人員知曉,可以使用不同的電腦程式確定兩個序列之間的相同性。
“胺基酸相同性百分比”或者“胺基酸序列相同性百分比”是指比較兩個多肽的胺基酸,當最佳比對時,所述兩個多肽具有大約指定的相同胺基酸百分比。例如,“95%的胺基酸相同性”是指比較兩個多肽的胺基酸,當最佳比對時,所述兩個多肽有95%的胺基酸相同。
在一些實施方案中,本文所用的野生型GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,所述經修飾的GluDH與其起始GluDH相比,具有選自以下組合的胺基酸取代: 第104位的胺基酸取代為C,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,且第175位的胺基酸取代為G; 第133位的胺基酸取代為V,且第175位的胺基酸取代為G; 第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G; 第175位的胺基酸取代為G,且第181位的胺基酸取代為K或R; 第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第175位的胺基酸取代為G,且第203位的胺基酸取代為I; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第173位的胺基酸取代為S,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G; 第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第173位的胺基酸取代為G,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為S,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第132位的胺基酸取代為L,第173位的胺基酸取代為S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;和 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R, 其中所述位置參照SEQ ID NO: 1進行編號。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、133、173、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置133和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置133的胺基酸取代為V,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、173、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置173和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置173的胺基酸取代為G或S,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、133、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、133、173和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132、133和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,位置133的胺基酸取代為V,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、173、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132、173和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,位置173的胺基酸取代為G或S,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、133、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置133、173和175的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置133的胺基酸取代為V,位置173的胺基酸取代為G或S,且位置175的胺基酸取代為G。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、181和182的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置181的胺基酸取代為K或R。在一些實施方案中,位置182的胺基酸取代為R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置132、175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置132的胺基酸取代為L,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、133、173和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置133、175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置133的胺基酸取代為V,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、173和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置173的胺基酸取代為G或S。在一些實施方案中,位置181的胺基酸取代為K或R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含位置173、175和182的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,位置173的胺基酸取代為G或S,位置175的胺基酸取代為G,且位置182的胺基酸取代為R。在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,還包含選自位置104、132、133、和181的一或多個位置的取代。在一些實施方案中,位置104的胺基酸取代為C。在一些實施方案中,位置132的胺基酸取代為L。在一些實施方案中,位置133的胺基酸取代為V。在一些實施方案中,位置181的胺基酸取代為K或R。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案中,本發明的經修飾的GluDH與其起始GluDH相比,包含第173、175和182位的取代,其中所述位置參照SEQ ID NO: 1進行編號。優選地,第173位的胺基酸取代為G,第175位的胺基酸取代為G,且第182位的胺基酸取代為R。在一些實施方案中,所述經修飾的GluDH,還包含選自第9、22、23、25、31、56、124、143、199、216、263、339、420、431和437位的一或多個位置的胺基酸取代。優選地,第9位的胺基酸取代為S、L或Y。優選地,第22位的胺基酸取代為W或E。優選地,第23位的胺基酸取代為M。優選地,第25位的胺基酸取代為D。優選地,第31位的胺基酸取代為H。優選地,第56位的胺基酸取代為Q。優選地,第124位的胺基酸取代為L。優選地,第143位的胺基酸取代為E。優選地,第199位的胺基酸取代為W或Y。優選地,第216位的胺基酸取代為G。優選地,第263位的胺基酸取代為S。優選地,第339位的胺基酸取代為Q。優選地,第420位的胺基酸取代為R。優選地,第431位的胺基酸取代為S。優選地,第437位的胺基酸取代為K。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。例如,所述起始GluDH包含SEQ ID NO: 1或由SEQ ID NO: 1組成。
在一些實施方案中,所述經修飾的GluDH與其起始GluDH相比,包含第22、56、173、175、182、199和420位的胺基酸取代。優選地,第22位的胺基酸取代為E。優選地,第56位的胺基酸取代為Q。優選地,第173位的胺基酸取代為G。優選地,第175位的胺基酸取代為G。優選地,第182位的胺基酸取代為R。優選地,第199位的胺基酸取代為Y。優選地,第420位的胺基酸取代為R。在一些實施方案中,所述經修飾的GluDH還包含選自第31、124和216位的一或多個位置的胺基酸取代。優選地,第31位的胺基酸取代為H。優選地,第124位的胺基酸取代為L。優選地,第216位的胺基酸取代為G。優選地,所述起始GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。例如,所述起始GluDH包含SEQ ID NO: 1或由SEQ ID NO: 1組成。
在一些實施方案中,本發明的經修飾的GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
在一些實施方案,所述起始GluDH與SEQ ID NO: 1或2的區別在於,具有一或多個胺基酸的取代、刪除、插入和/或添加。在一些實施方案中,所述起始GluDH與SEQ ID NO: 1或2相比,具有一或多個胺基酸的保守取代。在一些實施方案中,所述起始GluDH與SEQ ID NO: 1或2相比,具有一或多個胺基酸的插入或刪除。
術語“保守取代”也稱為由“同源”胺基酸殘基取代,是指其中胺基酸殘基由具有相似側鏈的胺基酸殘基置換的取代,例如,鹼性側鏈的胺基酸(例如離胺酸、精胺酸和組胺酸)、酸性側鏈的胺基酸(例如天冬胺酸、麩胺酸)、非荷電極性側鏈胺基酸(例如甘胺酸、天冬醯胺、麩醯胺酸、絲胺酸、蘇胺酸、酪胺酸、半胱胺酸)、非極性側鏈胺基酸(例如丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸、甲硫胺酸、色胺酸)、β-分支的側鏈胺基酸(例如蘇胺酸、纈胺酸、異白胺酸)及芳香側鏈胺基酸(例如酪胺酸、苯丙胺酸、色胺酸、組胺酸)。
保守胺基酸取代通常對所得蛋白質的活性的影響最小。這種取代在下文描述。保守取代是用大小、疏水性、電荷、極性、空間特徵、芳香性等相似的胺基酸置換一個胺基酸。當希望精細調節蛋白質的特性時,這種取代通常是保守的。
如本文所用,“同源”胺基酸殘基是指具有相似化學性質的胺基酸殘基,所述化學性質涉及疏水性、電荷、極性、空間特徵、芳香性特徵等。彼此同源的胺基酸的例子包括正電荷的離胺酸、精胺酸、組胺酸,負電荷的麩胺酸、天冬胺酸,疏水性的甘胺酸、丙胺酸、纈胺酸、白胺酸、異白胺酸、脯胺酸、苯丙胺酸,極性的絲胺酸、蘇胺酸、半胱胺酸、甲硫胺酸、色胺酸、酪胺酸、天冬醯胺、麩醯胺酸,芳香性的苯丙胺酸、酪胺酸、色胺酸,化學相似側鏈基團的絲胺酸與蘇胺酸,或者麩醯胺酸和天冬醯胺,或者白胺酸和異白胺酸。
蛋白質中胺基酸保守取代的例子包括:Ser取代Ala,Lys取代Arg,Gln或His取代Asn,Glu取代Asp,Ser取代Cys,Asn取代Gln,Asp取代Glu,Pro取代Gly,Asn或Gln取代His,Leu或Val取代Ile,Ile或Val取代Leu,Arg或Gln取代Lys,Leu或Ile取代Met,Met、Leu或Tyr取代Phe,Thr取代Ser,Ser取代Thr,Tyr取代Trp,Trp或Phe取代Tyr,及Ile或Leu取代Val。
在一些實施方案中,經修飾的GluDH,包含SEQ ID NO: 4-14、16-19、21、22、24、25、27-30、32-48、50、51和53-72之一的胺基酸序列或由SEQ ID NO: 4-14、16-19、21、22、24、25、27-30、32-48、50、51和53-72之一的胺基酸序列組成,或者所述經修飾的GluDH與SEQ ID NO: 4-14、16-19、21、22、24、25、27-30和、32-48、50、51和53-72之一相比包含1-10個胺基酸取代(例如,保守取代),其中所述取代位於位置9、22、23、25、31、56、104、124、132、133、143、173、175、181、182、199、203、216、242、263、339、420、431和437之外的位置,其中與其起始GluDH相比,所述經修飾的GluDH具有提高的催化PPO與胺基供體反應生成L-草銨膦的活性,和/或所述經修飾的GluDH具有改進的動力學性質,例如提高的Vmax值、降低的Km值或增加的Vmax/Km。在一些實施方案中,所述經修飾的GluDH與與SEQ ID NO: 4-14、16-19、21、22、24、25、27-30、32-48、50、51和53-72之一相比,包含1、2、3、4、5、6、7、8、9、10或更多個胺基酸取代(例如,保守取代),其中所述取代位於位置9、22、23、25、31、56、104、124、132、133、143、173、175、181、182、199、203、216、242、263、339、420、431和437之外的位置。在一些實施方案中,本發明的經修飾的GluDH與SEQ ID NO: 1或2具有至少65%或70%,優選至少75%或80%,更優選至少85%或90%,特別優選至少94%、95%、96%、97%、98%或99%的序列相同性。
如本文所用,酶的活性指在一定條件下,在單位品質的酶催化的化學反應中,單位時間內基質的減少量或產物的增加量。例如,本發明的經修飾的GluDH的活性,用一定條件下,在單位品質的經修飾的GluDH催化下,單位時間內PPO減少的量或L-草銨膦增加的量來表示。
在本文中,酶的活性也可以指酶的相對活性,以感興趣的酶的活性與催化相同反應的給定的酶的活性的比值表示,如百分比相對活性。
在一些實施方案中,本發明的經修飾的GluDH的活性以與SEQ ID NO: 3相比的百分比相對活性表示。在一些實施方案中,所述經修飾的GluDH催化PPO與胺基供體反應生成L-草銨膦的活性是SEQ ID NO: 3的催化此反應的活性的至少100%、105%、110%、120%、130%、140%、150%、160%、170%、180%、190%、200%或更高。
在一些實施方案中,本發明的經修飾的GluDH的活性以與SEQ ID NO: 31相比的百分比相對活性表示。在一些實施方案中,所述經修飾的GluDH催化PPO與氨基供體反應生成L-草銨膦的活性是SEQ ID NO: 31的催化此反應的活性的至少100%、105%、110%、120%、130%、140%、150%、160%、170%、180%、190%、200%或更高。
如本文所用,術語“胺基供體”是指提供胺基的化合物,包括無機化合物和有機化合物。“胺基供體”包括但不限於銨鹽(例如NH4 Cl、NH4 NO3 、(NH4 )2 SO4 、醋酸銨等)、胺基酸或有機胺。在一些實施方案中,所述胺基供體是銨鹽,例如NH4 Cl。
在生產中,除了酶活性之外,還需要考慮酶的動力學性質。在本文中,酶的動力學性質包括但不限於酶的Vmax、Km和Vmax/Km。在本文中,改進的動力學性質包括,例如但不限於,提高的Vmax、降低的Km和提高的Vmax/Km。
如本文所用,術語“Vmax”是指在一定酶濃度下,所能達到的催化反應的最大速度。具體而言,在酶濃度不變的條件下,當基質濃度在一定範圍內時,反應速度通常會隨著基質濃度的提升而提升;而當基質濃度達到一定值時,反應速度達到最大值(即Vmax),不再隨著基質濃度的提升而提升。
如本文所用,術語“Km”是指在一定酶濃度下,當催化速度達到最大催化速度(即Vmax)的一半時的基質濃度。 二、編碼經修飾的GluDH的多核苷酸。
如本文所用,術語“多核苷酸”或者“核酸分子”包括DNA分子(例如cDNA或基因組DNA)和RNA分子(例如mRNA)及使用核苷酸類似物產生的DNA或RNA的類似物。所述核酸分子可以是單鏈或雙鏈的,優選雙鏈DNA。所述核酸的合成可以使用核苷酸類似物或衍生物(例如肌苷或硫代磷酸核苷酸)。這種核苷酸可以用於,例如,製備具有改變的鹼基配對能力或者增加的核酸酶抗性的核酸。
本發明還提供編碼本發明的經修飾的GluDH的多核苷酸。因此,在本發明中,術語修飾還包括對編碼本發明的GluDH多肽的多核苷酸的遺傳操作。所述修飾可以是取代、刪除、插入和/或添加一或多個核苷酸。
如本文所用,術語“編碼”是指多核苷酸直接指定其蛋白質產物的胺基酸序列。編碼序列的邊界一般由開放讀框確定,所述開放讀框通常以ATG起始密碼子或另外的起始密碼子如GTG和TTG開始,以終止密碼子如TAA、TAG和TGA結束。所述編碼序列可以是DNA、cDNA或重組核苷酸序列。
此外,涵蓋本發明的全部或部分核酸序列的核酸分子可以通過聚合酶鏈反應(PCR)分離,所述PCR使用基於所述序列中包含的序列資訊設計合成的寡核苷酸引物。
本發明的多核苷酸可以使用cDNA、mRNA或者基因組DNA作為範本及合適的寡核苷酸引物根據標準PCR擴增技術進行擴增。如此擴增的核酸可以克隆進合適的載體中,並通過DNA序列分析進行表徵。
本發明的多核苷酸可以通過標準的合成技術製備,例如使用自動化DNA合成儀製備。
本發明還涉及本文描述的核酸分子的互補鏈。與其它核苷酸序列互補的核酸分子是與該核苷酸序列充分互補的分子,使得其可以與其他核苷酸序列雜交,從而形成穩定雙鏈體。
如本文所用,術語“雜交”是在給定的嚴格雜交和洗滌條件下,彼此至少大約90%、優選至少大約95%、更優選至少大約96%、更優選至少98%同源的核苷酸序列通常保持彼此雜交。
本領域技術人員知道各種用於雜交的條件,如嚴格雜交條件和高度嚴格雜交條件。參見,例如,Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, N.Y.;和Ausubel et al. (eds.), 1995, Current Protocols in Molecular Biology, John Wiley & Sons, N.Y.。
當然,本發明的多核苷酸不包括僅與poly A序列(如mRNA的3’末端poly(A))或者與互補的一段poly T (或U)殘基雜交的多核苷酸。 三、表現和生產經修飾的GluDH
為表現本發明的經修飾的GluDH,還提供包含本發明的多核苷酸的核酸構建體和載體,如表現載體。
如本文所用,術語“表現”包括多肽生產中包含的任何步驟,包括但不限於轉錄、轉錄後修飾、翻譯、翻譯後修飾和分泌。
術語“核酸構建體”是指單鏈或雙鏈的核酸分子,其分離自天然存在的基因或者被修飾為含有天然不存在的核酸區段。當所述核酸構建體含有表現本發明編碼序列所需的控制序列時,術語核酸構建體與術語“表現盒”同義。
術語“表現載體”在本文是指線性或環形DNA分子,其包含編碼本發明多肽的多核苷酸,所述多核苷酸與為所述多核苷酸表現而提供的另外的核苷酸,例如,控制序列,可操縱地連接。所述表現載體包括病毒載體或質體載體。
術語“控制序列”在本文是指包括表現編碼本發明多肽的多核苷酸所需或有利的所有元件。各控制序列對於編碼多肽的核苷酸序列可以是天然的或者是外來的,或者彼此是天然或者外來的。這種控制序列包括但不限於前導序列、聚腺苷酸化序列、前肽序列、啟動子、信號肽序列及轉錄終止子。最低限度,控制序列包括啟動子和轉錄及翻譯終止信號。
例如,所述控制序列可以是合適的啟動子序列,一種由宿主細胞識別以表現編碼本發明多肽的多核苷酸的核苷酸序列。所述啟動子序列含有介導所述多肽的表現的轉錄控制序列。所述啟動子可以是在所選擇的宿主細胞中表現出轉錄活性的任何核苷酸序列,例如,大腸桿菌(Escherichia coli ) lac操縱子。所述啟動子還包括突變的、截短的和雜合的啟動子,並且可以從與宿主細胞同源或異源的編碼胞外或胞內多肽的基因獲得。
術語“可操縱地連接”在本文是指這樣的構型,其中控制序列置於相對於多核苷酸序列的編碼序列的適當位置,由此所述控制序列指導多肽編碼序列的表現。
編碼本發明多肽的多核苷酸可以進行各種操作,以使得多肽表現。在將其插入載體之前,根據表現載體對多核苷酸的操作是可取的或必需的。利用重組DNA方法修飾多核苷酸序列的技術為本領域熟知。
為了鑒定和選擇包含本發明的表現載體的宿主細胞,本發明的載體優選含有一或多個可選擇標記,其使得可以對轉化、轉染、轉導等的細胞進行簡單的選擇。可選擇標記是一種基因,其產物提供生物殺滅劑或病毒抗性、重金屬抗性、補充營養缺陷型等。例如,細菌的可選擇標記是來自枯草芽孢桿菌或地衣芽孢桿菌的dal基因,或者賦予抗生素抗性如氨苄青黴素、卡那黴素、氯黴素或四環素抗性的標記。
本發明的載體可整合進宿主細胞基因組中或者在細胞中不依賴基因組而自主複製。為了整合進宿主細胞基因組中或者自主複製所需的元件是本領域已知的(參見例如前述Sambrook et al., 1989)。
載體DNA可以通過常規轉化或轉染技術導入原核或真核細胞中。如本文所用,術語“轉化”和“轉染”是指將外源核酸(例如DNA)導入宿主細胞中的各種本領域公認的技術,可見於例如前述Sambrook et al., 1989;Davis et al., Basic Methods in Molecular Biology (1986)及其它實驗室手冊。
本發明還涉及重組宿主細胞,其包含本發明的多核苷酸,所述多核苷酸有利地用於GluDH多肽的重組產生中。包含本發明多核苷酸的載體被導入宿主細胞中,由此所述載體作為染色體整合體或作為自身複製染色體外載體被保留。本領域技術人員知曉表現蛋白質的常規載體和宿主細胞。
在一些實施方案中,本發明的宿主細胞是大腸桿菌細胞,如大腸桿菌BL21(DE3)。在一些實施方案中,所述表現載體是pET-30a(+)。
本發明的經修飾的GluDH可以與非-GluDH多肽(例如異源胺基酸序列)可操縱地連接,形成融合蛋白。例如,在一個實施方案中,所述融合蛋白是GST-GluDH融合蛋白,其中GluDH序列與GST序列的C-末端融合。這種融合蛋白可幫助重組GluDH的純化。在另一實施方案中,所述融合蛋白是在其N末端含有異源信號序列的GluDH蛋白。在某些宿主細胞中(例如哺乳動物和酵母宿主細胞),可以通過使用異源信號序列增加GluDH的表現和/或分泌。 四、生產L-草銨膦
此外,本發明提供一種製備L-草銨膦的方法,包括使本發明的經修飾的GluDH或宿主細胞與PPO接觸。
在一些實施方案中,本發明的製備L-草銨膦的方法包括如下步驟: (a) 向包含PPO和胺基供體的反應介質提供本發明的經修飾的GluDH的活性,視情況地,所述反應介質包含NADPH/NADP循環系統,及 (b) 培育所述反應介質以生成L-草銨膦。
在一些實施方案中,使用無細胞催化方法生產L-草銨膦,在步驟(a)中,提供本發明的經修飾的GluDH。在一些實施方案中,可以使用游離或固定化的本發明的修飾的GluDH。
在一些實施方案中,所述胺基供體是銨鹽,例如NH4 Cl。
在一些實施方案中,所述反應介質包含NADPH/NADP。適用於本發明的NADPH/NADP循環系統是本領域已知的,其包含,包括但不限於,醇脫氫酶、葡萄糖脫氫酶(GDH)或葡糖-6-磷酸脫氫酶(G6PD)。在一些實施方案中,所述NADPH/NADP循環系統包含醇脫氫酶。在一些實施方案中,所述醇脫氫酶也可以被固定化。
在一些實施方案中,所述培育在20-50ºC,優選25-40ºC,更優選28-35ºC,例如30ºC進行。
在一些實施方案中,所述介質包含緩衝液,例如PBS、Tris-HCl緩衝液。在一個實施方案中,所述介質包含PBS,例如100mM的PBS。在一些實施方案中,所述反應介質的pH值為7.5-8。
在一些實施方案中,反應介質是部分或全部由細胞培養基組成的介質,本發明的經修飾的GluDH的活性由本發明的宿主細胞提供,所述宿主細胞在所述反應介質中培養。
在一些實施方案中,所述反應介質是部分或全部由細胞培養基組成的介質,且所述NADPH/NADP循環系統,如醇脫氫酶活性由本發明的宿主細胞或者由第二種宿主細胞提供,所述宿主細胞在所述反應介質中培養。
在一些實施方案中,將本發明的宿主細胞和/或所述第二宿主細胞在細胞培養基中培養並擴增,然後從細胞培養基分離經擴增的宿主細胞,使用緩衝液或水使生物量重懸浮。在加入所述經擴增的宿主細胞之前、期間或之後向所述緩衝液或水提供PPO。
在一些實施方案中,可以使用細菌細胞,例如大腸桿菌細胞。 實施例
通過以下實施例,本領域技術人員會更清楚地理解本發明。應理解,實施例只是用於說明,而非限制本發明的範圍 實施例1、材料和方法
如無特別說明,本發明中使用的實驗方法均為常規方法,基因克隆操作具體可參見前述Sambrook et al., 1989。 i) 試劑:DNA聚合酶(PrimeSTAR Max DNA Polymerase)和DpnI內切酶購自TaKaRa公司,質體提取試劑盒購自Axygen公司,PPO是申請人根據現有技術(參見J. Org. Chem. 1991, 56, 1783-1788)合成的,NH4 Cl購自國藥集團化學試劑北京有限公司,NADP+/NADPH購自阿拉丁,醇脫氫酶是大腸桿菌重組表現的來自高加索優酪乳乳桿菌的脫氫酶(NCBI登錄號WP_054768785.1)。 ii) 載體和菌株:所使用的表現載體為pET-30a(+),質體購自Novagen公司,所使用的宿主細胞為大腸桿菌BL21(DE3),購自天根生化科技(北京)有限公司。 iii) 測序與引物合成由蘇州泓迅生物科技股份有限公司完成。 iv) 定點突變: 設計特異性引物對,在所需突變的胺基酸位置對應的鹼基引入所需的取代。用提取的突變前質體(包含野生型GluDH編碼序列,pET-30a(+)骨架)為模版,利用Quickchange技術(Nucleic Acids Research , 2004, 32(14):e115)通過PCR引入突變。PCR擴增結束後,擴增產物用Dpn I消化4h去除模版質體。將消化產物轉化至大腸桿菌BL21(DE3)感受態細胞中,塗布於LB瓊脂培養基(含有50mg/L的卡那黴素)、挑單菌落至LB液體培養基(含有50mg/L的卡那黴素)中培養,測序驗證突變正確性。經驗證的克隆置於-80℃保藏備用。 v) 蛋白質表現及粗酶液的製備: 在LB瓊脂培養基上將保藏的克隆活化。然後,將單菌落接種至LB液體培養基(含有50mg/L的卡那黴素)中,37°C震盪培育12h。將1mL培養物轉接至50mL新鮮的LB液體培養基(含有50mg/L的卡那黴素)中,37°C震盪培育至OD600達到0.6左右,加入IPTG (終濃度為0.4mM)在25°C培育16h以誘導蛋白質表現。 培育後,將培養物以4,000g在4°C離心10min,棄上清液,收集大腸桿菌細胞。將收集的大腸桿菌細胞重懸於預冷的15mL pH 7.0的50mM PBS中,在4°C超音波破碎大腸桿菌細胞。細胞破碎液以6,000g在4°C離心15min去除沉澱,得到的上清液為含重組酶的粗酶液。 vi) 酶活性測定 向PPO的PBS (100mM)溶液,中加入NH4 Cl、NADP+,並用氨水調節溶液pH值至8,溶液中PPO的終濃度為100mM,NH4 Cl的終濃度為50mM,而NADP+的終濃度為0.2g/L。向上述溶液加入如v)中描述的方法製備的GluDH粗酶液和醇脫氫酶,GluDH終濃度為0.02g/L,而醇脫氫酶的終濃度為0.2g/L。在30°C,於振盪器上持續震盪(400rpm) 2小時,取樣並用OPA柱前衍生化高效液相層析檢測L-草銨膦的生成量,從而測定催化反應初始速度。 vii) 酶動力學測定 在96孔酶標盤上配置多個200μL反應體系,其中含100mM pH 7.5 PBS (用氨水調pH)、0.15mM的NADPH (還原型)、50mM的NH4 Cl,10%體積稀釋後的粗酶液(稀釋500倍)、不同濃度基質PPO (5-100mM)。在30°C檢測340nm紫外吸光強度的變化,記錄並計算吸收隨時間的變化率mA/min。所得參數帶入Michaelis-Menten方程式,其中的反應速度用吸光度變化率計。 實施例2、製備和檢測來自貝萊斯芽胞桿菌的GluDH (BvGluDH)的突變體
以BvGluDH (SEQ ID NO: 1)的編碼核酸為範本,根據實施例1的方法製備突變體,並測量酶活性和動力學參數Vmax和Km。所得突變體及其活性和動力學參數如表1所示,相對酶活性是指突變體的活性vs. SEQ ID NO: 3的突變體的活性的百分比。 表1
突變體中引入的取代 SEQ ID NO: 相對酶活性 Vmax (mA/min) Km (mM)
A175G 3 100% 60 73
A175G-L104C 4 90% 60 34
A175G-P132L 5 131% 56 32
A175G-I133V 6 113% 59 43
A175G-V173S 7 111% 79 52
A175G-V173G 8 123% 80 53
A175G-G181K 9 93% 70 80
A175G-G181R 10 100% 77 84
A175G-A182R 11 111% 61 46
A175G-V203I 12 72% 53 62
A175G-P132L-I133V 13 131% 34 41
A175G-P132L-V173S 14 132% 53 26
A175G-P132L-V173G 15 61% 22 36
A175G-P132L- A182R 16 115% 36 29
A175G-I133V-V173S 17 178% 78 51
A175G-I133V-V173G 18 164% 54 71
A175G-I133V-A182R 19 112% 49 26
A175G-V173S-A182R 20 35% 10 56
A175G-V173G-A182R 21 160% 71 23
A175G-P132L-I133V-V173S 22 95% 46 32
A175G-P132L-I133V-V173G 23 53% 14 47
A175G-P132L-I133V-A182R 24 97% 39 35
A175G-P132L-V173S-A182R 25 79% 40 14
A175G-P132L-V173G-A182R 26 34% 19 22
A175G-I133V-V173S-A182R 27 139% 65 28
A175G-I133V-V173G-A182R 28 139% 73 26
A175G-P132L-I133V-V173S-A182R 29 70% 37 24
A175G-P132L-I133V-V173G-A182R 30 138% 71 53
實施例3、製備和檢測來自球形離胺酸芽胞桿菌的GluDH (LsGluDH)的突變體
以LsGluDH (SEQ ID NO: 2)的編碼核酸為範本,根據實施例1的方法製備突變體,並測量酶活性和動力學參數Vmax和Km。所得突變體及其活性和動力學參數如表2所示,其中SEQ ID NO: 31的突變體是CN108588045B中報導的突變體(LsGluDH A175G),相對酶活性是指突變體的活性vs. SEQ ID NO: 31的突變體的活性的百分比。 表2
突變體中引入的取代 SEQ ID NO: 相對酶活性 Vmax (mA/min) Km (mM)
A175G 31 100% 39 49
A175G-P132L 32 127% 45 35
A175G-I133V 33 106% 39 35
A175G-V173S 34 185% 106 62
A175G-V173G 35 132% 64 49
A175G-A182R 36 102% 46 38
A175G-V173G-A182R 37 169% 58 31
A175G-I133V-V173S-A182R 38 131% 38 26
實施例4、製備和檢測BvGluDH的突變體
根據實施例1的方法製備突變體,在SEQ ID NO: 21的突變體的基礎上引入額外的突變,並測量酶活性。所得突變體及其活性如表3所示,初始相對酶活性是指未經熱處理時,突變體的活性vs. SEQ ID NO: 21的突變體的活性的百分比;熱處理後相對酶活性是指在45°C培育30min之後,突變體的活性vs. SEQ ID NO: 21的突變體的活性的百分比。 表3
突變體中的取代 SEQ ID NO: 初始相對酶活性 熱處理後相對酶活性
A175G-V173G-A182R 21 100% 100%
A175G-V173G-A182R-Q22W 39 106% 143%
A175G-V173G-A182R-Q22E 40 114% 140%
A175G-V173G-A182R-L23M 41 153% 158%
A175G-V173G-A182R-K56Q 42 104% 145%
A175G-V173G-A182R-D9S 43 113% 95%
A175G-V173G-A182R-D9L 44 108% 122%
A175G-V173G-A182R-D9Y 45 86% 82%
A175G-V173G-A182R-N25D 46 105% 117%
A175G-V173G-A182R-N199W 47 142% 201%
A175G-V173G-A182R-N199Y 48 133% 197%
A175G-V173G-A182R-D242G 49 57% 88%
A175G-V173G-A182R-N143E 50 90% 111%
A175G-V173G-A182R-A263S 51 103% 87%
A175G-V173G-A182R-A263K 52 65% 77%
A175G-V173G-A182R-D339Q 53 119% 81%
A175G-V173G-A182R-A420R 54 139% 170%
A175G-V173G-A182R-Y431S 55 142% 156%
A175G-V173G-A182R-V437K 56 156% 132%
A175G-V173G-A182R-K56Q-N199W 57 160% 171%
A175G-V173G-A182R-Q22E-N199W 58 166% 185%
A175G-V173G-A182R-K56Q-N199Y 59 167% 182%
A175G-V173G-A182R-Q22E-N199Y 60 176% 182%
A175G-V173G-A182R-K56Q-N199Y-A420R 61 159% 175%
A175G-V173G-A182R-Q22E-N199Y-A420R 62 175% 193%
A175G-V173G-A182R-Q22E-K56Q-N199Y 63 172% 195%
A175G-V173G-A182R-Q22E-K56Q-N199W 64 161% 172%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R 65 184% 189%
實施例5、製備和檢測BvGluDH的突變體
根據實施例1的方法製備突變體,在SEQ ID NO: 65的突變體的基礎上引入額外的突變,並測量酶活性。所得突變體及其活性如表4所示,初始相對酶活性是指未經熱處理時,突變體的活性vs. SEQ ID NO: 65的突變體的活性的百分比。 表4
突變體中的突變 SEQ ID NO: 相對酶活性
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R 65 100%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-A31H 66 165%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-F124L 67 106%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-A216G 68 117%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-A31H-F124L 69 143%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-A31H-A216G 70 132%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-F124L-A216G 71 97%
A175G-V173G-A182R-Q22E-K56Q-N199Y-A420R-A31H-F124L-A216G 72 103%
 
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182

Claims (17)

  1. 一種經修飾的麩胺酸脫氫酶(GluDH),與其起始GluDH相比,具有選自以下組合的胺基酸取代: 第104位的胺基酸取代為C,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,且第175位的胺基酸取代為G; 第133位的胺基酸取代為V,且第175位的胺基酸取代為G; 第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G; 第175位的胺基酸取代為G,且第181位的胺基酸取代為K或R; 第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第175位的胺基酸取代為G,且第203位的胺基酸取代為I; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第173位的胺基酸取代為S,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,且第175位的胺基酸取代為G; 第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第173位的胺基酸取代為G,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為S,且第175位的胺基酸取代為G; 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第132位的胺基酸取代為L,第173位的胺基酸取代為S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R; 第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R;和 第132位的胺基酸取代為L,第133位的胺基酸取代為V,第173位的胺基酸取代為G或S,第175位的胺基酸取代為G,且第182位的胺基酸取代為R, 其中所述位置參照SEQ ID NO: 1進行編號,且其中與其起始GluDH相比,所述經修飾的GluDH具有提高的催化2-羰基-4-(羥基甲基膦醯基)丁酸(PPO)與胺基供體反應生成L-草銨膦的活性,和/或所述經修飾的GluDH具有提高的Vmax、降低的Km或增加的Vmax/Km。
  2. 如請求項1之經修飾的GluDH,其中所述起始GluDH是野生型GluDH。
  3. 如請求項1或2之經修飾的GluDH,其中所述起始GluDH來源於芽胞桿菌科的微生物,優選離胺酸芽孢桿菌屬或芽胞桿菌屬的微生物,更優選球形離胺酸芽胞桿菌(Lysinibacillus sphaericus )或貝萊斯芽胞桿菌(Bacillus velezensis )。
  4. 如請求項1-3中任一項之經修飾的GluDH,其中所述起始GluDH包含SEQ ID NO:1或2的胺基酸序列。
  5. 一種經修飾之GluDH,包含SEQ ID NO: 4-14、16-19、21、22、24、25、27-30、32-48、50、51和53-72之一的胺基酸序列。
  6. 一種經修飾之GluDH,與其起始GluDH相比,包含第173、175和182位的取代,其中第173位的胺基酸取代為G,第175位的胺基酸取代為G,且第182位的胺基酸取代為R,其中所述位置參照SEQ ID NO: 1進行編號,且其中與其起始GluDH相比,所述經修飾的GluDH具有提高的催化PPO與胺基供體反應生成L-草銨膦的活性。
  7. 如請求項6之經修飾的GluDH,其中所述起始GluDH是野生型GluDH。
  8. 如請求項6或7之經修飾的GluDH,其中所述起始GluDH來源於芽胞桿菌科的微生物,優選離胺酸芽孢桿菌屬或芽胞桿菌屬的微生物,更優選球形離胺酸芽胞桿菌或貝萊斯芽胞桿菌。
  9. 如請求項6-8中任一項之經修飾的GluDH,還包含選自第9、22、23、25、31、56、124、143、199、216、242、263、339、420、431和437位的一或多個位置的胺基酸取代,其中第9位的胺基酸取代為S、L或Y,第22位的胺基酸取代為W或E,第23位的胺基酸取代為M,第25位的胺基酸取代為D,第31位的胺基酸取代為H,第56位的胺基酸取代為Q,第124位的胺基酸取代為L,第143位的胺基酸取代為E,第199位的胺基酸取代為W或Y,第216位的胺基酸取代為G,第263位的胺基酸取代為S,第339位的胺基酸取代為Q,第420位的胺基酸取代為R,第431位的胺基酸取代為S,第437位的胺基酸取代為K。
  10. 如請求項6-8中任一項之經修飾的GluDH,還包含第22、56、199和420位的胺基酸取代,其中第22位的胺基酸取代為E,第56位的胺基酸取代為Q,第199位的胺基酸取代為Y,第420位的胺基酸取代為R。
  11. 如請求項10之經修飾的GluDH,還包含選自第31、124和216位的一或多個位置的胺基酸取代,其中第31位的胺基酸取代為H,第124位的胺基酸取代為L,第216位的胺基酸取代為G。
  12. 如請求項6-11中任一項之經修飾的GluDH,其中所述起始GluDH具有SEQ ID NO: 1的胺基酸序列。
  13. 如請求項12之經修飾的GluDH,其中所述經修飾的GluDH催化PPO與胺基供體反應生成L-草銨膦的活性是SEQ ID NO: 3催化此反應的活性的至少130%。
  14. 一種多核苷酸,編碼如請求項1-13中任一項之經修飾的GluDH。
  15. 一種表現載體,包含如請求項14之多核苷酸。
  16. 一種宿主細胞,包含如請求項1-13中任一項之經修飾的GluDH、如請求項14之多核苷酸或如請求項15之載體。
  17. 一種生產L-草銨膦的方法,包括使如請求項1-13中任一項之經修飾的GluDH或如請求項16之宿主細胞與PPO接觸。
TW110125318A 2020-07-09 2021-07-09 經修飾的麩胺酸脫氫酶及其應用 TW202208620A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010659106.8 2020-07-09
CN202010659106 2020-07-09

Publications (1)

Publication Number Publication Date
TW202208620A true TW202208620A (zh) 2022-03-01

Family

ID=79232923

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125318A TW202208620A (zh) 2020-07-09 2021-07-09 經修飾的麩胺酸脫氫酶及其應用

Country Status (13)

Country Link
US (1) US20230332113A1 (zh)
EP (1) EP4180524A1 (zh)
JP (1) JP2023532699A (zh)
KR (1) KR20230031956A (zh)
CN (1) CN113913401A (zh)
AR (1) AR122916A1 (zh)
AU (1) AU2021306531A1 (zh)
BR (1) BR112023000234A2 (zh)
CA (1) CA3184703A1 (zh)
IL (1) IL299379A (zh)
MX (1) MX2023000450A (zh)
TW (1) TW202208620A (zh)
WO (1) WO2022007881A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015885A1 (en) * 2004-08-13 2006-02-16 University College Dublin, National University Of Ireland, Dublin Amino acid dehydrogenase-derived biocatalysts
US10385322B2 (en) * 2014-10-03 2019-08-20 Metabolic Explorer Mutant glutamate dehydrogenase for the conversion of homoserine into 4-hydroxy-2-ketobutyrate
CN105567780A (zh) 2016-01-14 2016-05-11 重庆惠健生物科技有限公司 一种l-草铵膦的酶-化学催化去消旋化制备方法
CN116121316A (zh) 2016-03-02 2023-05-16 巴斯夫欧洲公司 制造l-草胺膦的方法
CN107630052B (zh) 2017-03-29 2018-05-29 武汉茵茂特生物技术有限公司 L-草铵膦的生物转化方法
CN106978453B (zh) 2017-03-31 2019-10-29 浙江大学 一种利用氨基酸脱氢酶制备l-草铵膦的方法
CN108588045B (zh) 2018-03-09 2019-12-10 浙江大学 谷氨酸脱氢酶突变体及其在制备l-草铵膦中的应用
CN108690854B (zh) 2018-04-16 2022-03-18 浙江工业大学 一种利用化学-酶法生产l-草铵膦的方法
CN109609474B (zh) 2018-12-28 2020-07-28 浙江工业大学 一种氨基酸脱氢酶突变体及其在合成l-草铵膦中的应用
CN111057687B (zh) * 2019-05-23 2020-10-27 弈柯莱生物科技(上海)股份有限公司 一种l-谷氨酸脱氢酶突变体及其应用

Also Published As

Publication number Publication date
WO2022007881A1 (zh) 2022-01-13
EP4180524A1 (en) 2023-05-17
JP2023532699A (ja) 2023-07-31
MX2023000450A (es) 2023-04-19
AU2021306531A1 (en) 2023-03-02
CA3184703A1 (en) 2022-01-13
CN113913401A (zh) 2022-01-11
BR112023000234A2 (pt) 2023-03-14
IL299379A (en) 2023-02-01
KR20230031956A (ko) 2023-03-07
AR122916A1 (es) 2022-10-12
US20230332113A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2019192505A1 (zh) 一种l-谷氨酸脱氢酶突变体及其应用
US11667896B2 (en) Modified DAAO enzyme and application thereof
KR102434925B1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2021219124A1 (zh) 经修饰的苏氨酸转醛酶及其应用
JP6279478B2 (ja) ヒダントイナーゼの突然変異体
CN109790557B (zh) 控制生物膜分散以产生氨基酸或氨基酸衍生产物
TWI852256B (zh) 經修飾的麩胺酸脫氫酶及其應用
TW202208620A (zh) 經修飾的麩胺酸脫氫酶及其應用
EP2764111A2 (en) Microorganisms and methods for producing acrylate and other products from homoserine
US11781117B2 (en) Machine learning gene mining method and phosphinothricin dehydrogenase mutant for amino translocation
WO2023226978A1 (zh) 微生物来源的蔗糖合酶及其应用
CN118667785A (zh) 经修饰的高丝氨酸o-乙酰基转移酶及其应用