TW202208274A - 臭氧產生裝置 - Google Patents
臭氧產生裝置 Download PDFInfo
- Publication number
- TW202208274A TW202208274A TW110128283A TW110128283A TW202208274A TW 202208274 A TW202208274 A TW 202208274A TW 110128283 A TW110128283 A TW 110128283A TW 110128283 A TW110128283 A TW 110128283A TW 202208274 A TW202208274 A TW 202208274A
- Authority
- TW
- Taiwan
- Prior art keywords
- ozone
- power supply
- gas flow
- flow rate
- ozone concentration
- Prior art date
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims abstract description 242
- 230000006870 function Effects 0.000 claims abstract description 109
- 238000003860 storage Methods 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 131
- 239000002994 raw material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 101000911772 Homo sapiens Hsc70-interacting protein Proteins 0.000 description 1
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
- C01B13/115—Preparation of ozone by electric discharge characterised by the electrical circuits producing the electrical discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D21/00—Control of chemical or physico-chemical variables, e.g. pH value
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D21/00—Control of chemical or physico-chemical variables, e.g. pH value
- G05D21/02—Control of chemical or physico-chemical variables, e.g. pH value characterised by the use of electric means
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/90—Control of the process
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
本發明旨在提供一種臭氧產生裝置,藉由回饋控制能夠使臭氧濃度迅速地成為設定臭氧濃度。控制裝置具有儲存部,該儲存部根據臭氧產生部中的不同的氣體流量,儲存兩個以上表示電源輸出及與該電源輸出對應的臭氧濃度之關係的函數。控制裝置執行回饋控制,該回饋控制根據臭氧產生部的設定臭氧濃度、表示臭氧產生部的氣體流量的指標、檢測臭氧濃度以及複數個函數,求出與設定臭氧濃度對應的第一電源輸出及與檢測臭氧濃度對應的第二電源輸出,並根據第一電源輸出及第二電源輸出之差來控制電源輸出。
Description
本發明關係一種臭氧產生裝置。
產生臭氧氣體的臭氧產生裝置廣泛應用於半導體的製造製程等中。在專利文獻1的臭氧產生裝置中,記載了藉由回饋控制來控制臭氧產生裝置的電源輸出這一技術內容。
[先前技術文獻]
[專利文獻]
[專利文獻1] 日本專利第4085043號。
[發明所欲解決之課題]
在專利文獻1記載的回饋控制中,對設定臭氧濃度及檢測臭氧濃度進行比較,增加或減小臭氧產生裝置的電源輸出,以使檢測臭氧濃度接近設定臭氧濃度。然而,在未充分考慮流過臭氧產生部的氣體流量的情況下,有時無法藉由回饋控制最佳地調節電源輸出。
具體而言,在氣體流量比較小的條件下,相對於電源輸出的變化,臭氧濃度發生較大的變化。因此,在如此的條件下,臭氧濃度容易根據電源輸出的調節而波動。在氣體流量比較大的條件下,相對於電源輸出的變化,臭氧濃度則不怎麼變化。因此,在如此的條件下,電源輸出的調節量變得不充分,臭氧濃度非常難接近設定臭氧濃度。因此,在習知的回饋控制中,不能使臭氧濃度迅速地落在設定臭氧濃度上。
本發明著眼於如此技術問題,目的在於:提供一種臭氧產生裝置,藉由進行回饋控制,能夠使臭氧濃度迅速地成為設定臭氧濃度,與氣體流量的變化無關。
[用以解決課題之手段]
為了解決上述課題,在本發明的臭氧產生裝置中執行回饋控制,前述回饋控制根據臭氧產生部的設定臭氧濃度、表示前述臭氧產生部的氣體流量的指標、前述檢測臭氧濃度以及複數個函數,求出與前述設定臭氧濃度對應的第一電源輸出及與前述檢測臭氧濃度對應的第二電源輸出,並根據前述第一電源輸出及前述第二電源輸出之差來控制前述電源輸出。
藉此,即使臭氧產生部的氣體流量發生變化,也能夠根據複數個函數求出對與氣體流量對應的電源輸出的最佳調節量。因此,能夠使檢測臭氧濃度迅速地成為設定臭氧濃度。
較佳為,儲存部儲存三個以上與相互不同的氣體流量對應的函數。
藉由使用三個以上與氣體流量對應的函數,則能夠跟上氣體流量的更精細的變化。藉此,能夠求出電源輸出的最佳調節量。
較佳為,複數個函數中的各個函數是將表示電源輸出和與該電源輸出對應的臭氧濃度的複數個點直線性地連接起來而得到的函數。
藉此,能夠實現函數的簡化,從而減輕運算處理伴隨著函數生成帶來的負荷。
控制裝置執行前饋控制,該前饋控制在表示氣體流量的指標的變化量為預定值以上的第一條件、及設定臭氧濃度的變化量為預定值以上的第二條件中的至少一者成立時,進行控制以使電源輸出接近第一電源輸出。
若第一條件或第二條件成立,則檢測臭氧濃度與設定臭氧濃度之差變大,在上述回饋控制中,檢測臭氧濃度有可能非常難成為設定臭氧濃度。當第一條件及第二條件中的至少一者成立時,藉由使電源輸出接近與設定臭氧濃度對應的第一電源輸出,能夠使檢測臭氧濃度迅速地接近設定臭氧濃度。
較佳為,前述控制裝置藉由一邊改變氣體流量一邊對檢測臭氧濃度進行檢測,來執行自動獲取複數個函數的自動獲取運轉。
藉由該自動獲取運轉,在將臭氧產生裝置安裝於現場後便能夠自動地生成複數個函數。
[發明功效]
根據本發明,能夠提供一種藉由回饋控制而能使臭氧濃度迅速地成為設定臭氧濃度的臭氧產生裝置。
以下,參照圖式對本發明的實施形態做詳細的說明。需要說明的是,以下實施形態為說明本發明本質的較佳示例,並沒有限制本發明、本發明之適用對象、或用途的應用範圍之意圖。
[發明的實施形態]
本實施形態的臭氧產生裝置20組裝於臭氧氣體生成系統S中。臭氧氣體生成系統S例如應用於半導體的製造設備中。臭氧氣體生成系統S具有第一流路11及第二流路12。第一流路11設置於臭氧產生部22的上游側。第二流路12設置於臭氧產生部22的下游側。
第一流路11為供原料氣體流動的流路。向第一流路11供給含有氧的原料氣體。作為原料氣體,使用高純度氧氣(99.9%以上)。原料氣體可以是由PSA(pressure swing adsorption;變壓吸附)式等氧產生裝置生成的濃縮氧氣。原料氣體可以是空氣。
第二流路12為供由臭氧產生部22生成的臭氧氣體流動的流路。臭氧氣體經由第二流路12供向預定的對象。在第二流路12上設置有壓力調節閥13。
(臭氧產生裝置)
臭氧產生裝置20生成臭氧氣體。臭氧產生裝置20包括電源部21、臭氧產生部22、流量檢測部23、濃度檢測部24、壓力檢測部25以及控制裝置30。
電源部21由高頻高壓電源構成。電源部21向臭氧產生部22供給高壓的電源輸出。
臭氧產生部22藉由放電產生臭氧。臭氧產生部22為無聲放電方式。向臭氧產生部22供給第一流路11的原料氣體。當從電源部21向放電單元供給電力時,就會在至少一對電極單元之間進行放電。原料氣體中的一部分伴隨著該放電而轉換為臭氧。由臭氧產生部22產生的臭氧經由第二流路12供向預定的對象。
流量檢測部23檢測流過第一流路11的原料氣體的流量作為檢測氣體流量。檢測氣體流量為表示流過臭氧產生部22的氣體流量的指標。
濃度檢測部24檢測流過第二流路12的臭氧氣體中的臭氧濃度作為檢測臭氧濃度Cd。
壓力檢測部25檢測第二流路12的壓力作為檢測壓力。
控制裝置30包括微電腦及記憶體裝置。記憶體裝置儲存用於操作微電腦的軟體。
向控制裝置30輸入檢測氣體流量、檢測臭氧濃度Cd以及檢測壓力。
控制裝置30具有設定部31、運算部32、儲存部33以及輸出控制部34。
在設定部31,將供向對象的臭氧氣體中臭氧濃度的目標值設定為設定臭氧濃度Cs。向設定部31輸入用於生成複數個函數的資料,於後面做詳細敘述。
運算部32根據臭氧產生部中的不同的氣體流量,生成兩個以上表示電源輸出及與該電源輸出對應的臭氧濃度之關係的函數。於此,所謂「與電源輸出對應的臭氧濃度」是指以預定的電源輸出讓臭氧產生部運轉時,根據該電源輸出在臭氧產生部產生的臭氧氣體的臭氧濃度。
儲存部33包括例如HDD(Hard Disk Drive;硬碟機)、RAM(Random Access Memory;隨機存取記憶體)、ROM(Read Only Memory;唯讀記憶體)以及SSD(Solid State Drive;固態硬碟)等。在儲存部33中儲存有由運算部32生成的複數個函數。
輸出控制部34控制電源部21的電源輸出(放電輸出)。當電源輸出變化時,臭氧產生部22產生的臭氧量就會發生變化。供向對象的臭氧氣體中臭氧的濃度會伴隨於此而發生變化。
輸出控制部34對電源輸出進行回饋控制。此外,輸出控制部34在詳情後述的第一條件及第二條件中的至少一者成立時,對電源輸出進行前饋控制。輸出控制部34根據儲存在儲存部33中的複數個函數,執行回饋控制以及前饋控制。
(關於複數個函數)
如圖2所示,在儲存部33中儲存有複數個函數。這些函數由運算部32生成。在本實施形態中,運算部32根據人(使用者、安裝業者、維護業者等)輸入設定部31的資料來生成複數個函數。
複數個函數為表示電源部21的電源輸出及與該電源輸出對應的臭氧濃度的關係的資訊。這些函數是根據氣體流量決定的。這些函數具有臭氧濃度隨著電源輸出變大而變大的特性。此外,這些函數具有斜率隨著電源輸出變大而變小的特性。這些函數的斜率具有隨著氣體流量變小而變大的傾向。
在本實施形態中,在儲存部33中儲存有三個函數。這三個函數包括第一函數R1、第二函數R2以及第三函數R3。
第一函數R1對應臭氧產生部22的最大氣體流量。本例的第一函數R1對應50L/min的氣體流量。第三函數R3對應最小氣體流量。本例的第三函數R3對應10L/min的氣體流量。第二函數R2對應最大氣體流量及最小氣體流量之間的中間氣體流量。本例的第二函數R2對應30L/min的氣體流量。
較佳為,最大氣體流量、最小氣體流量以及中間氣體流量為在臭氧產生裝置20實際運轉時流過臭氧產生部22的頻率高的氣體流量。較佳為,最大氣體流量為能夠向臭氧產生部22供給最高的氣體流量。較佳為,最小氣體流量為能夠向臭氧產生部22供給的最低的氣體流量或其以下的流量。
三個函數根據臭氧濃度產生點、最大點、第一中間點以及第二中間點確定。臭氧濃度產生點為表示臭氧產生部22生成臭氧所需要的最小電源輸出及與該電源輸出對應的臭氧濃度的點。臭氧濃度產生點由電源部21等的構造和方式決定,不會根據氣體流量而發生大幅變動。因此,臭氧濃度產生點可以設為相同值,與氣體流量無關。本例的臭氧濃度產生點的電源輸出為20%。
最大點為表示電源部21的最大的電源輸出及與該電源輸出對應的臭氧濃度的點。最大點的電源輸出為100%。第一中間點及第二中間點為與臭氧濃度產生點及最大點之間的預定的電源輸出對應的點。在本例中,第一中間點的電源輸出為50%,第二中間點的電源輸出為70%。
人對控制裝置30設定複數個氣體流量中各個氣體流量的臭氧濃度產生點、最大點、第一中間點以及第二中間點。這些點是在將臭氧產生裝置20安裝於設備後,根據基於氣體流量求出的實測值確定的。
運算部32根據這些點,對複數個氣體流量中的每個氣體流量生成複數個函數。具體而言,運算部32藉由用直線將最大氣體流量、最小氣體流量、中間氣體流量各個流量下的各個點連接起來,生成接近曲線的函數。
在圖2中,單點劃線k、l、m是藉由實驗得到的與氣體流量對應的電源輸出及臭氧濃度之間的關係的曲線。k、l、m,以比三個函數更窄的間隔變更電源輸出,更準確地確定出了電源輸出及臭氧濃度的關係。k對應氣體流量50L/min,l對應氣體流量30L/min,m對應氣體流量10L/min。由圖2明顯可知,藉由運算部32得到的三個函數與各個曲線圖k、l、m基本一致。因此,可知藉由三個函數能夠準確地確定與氣體流量對應的臭氧濃度及電源輸出的關係。
(運轉狀況)
參照圖3到圖6詳細說明臭氧產生裝置20的運轉狀況。
在本實施形態的臭氧產生裝置20運轉前,將如上所述獲取的三個函數儲存在儲存部33中。
如圖4所示,當臭氧產生裝置20開始運轉時(步驟ST1的YES),轉移到步驟ST2,執行前饋控制。
如圖5所示,在前饋控制的步驟ST11中,運算部32決定或生成與氣體流量對應的函數。
例如在檢測氣體流量為10L/min的情況下,直接使用預先生成的第三函數R3。例如在檢測氣體流量與預先生成的函數的流量不對應的情況下,生成新的函數。
臭氧濃度產生點、最大點、第一中間點以及第二中間點根據氣體流量成正比例地變化。因此,例如在氣體流量為20L/min的情況下,如圖3所示,新生成的函數的各個點被決定在第二函數R2及第三函數R3各自的各個點的中間位置(一半的位置)。運算部32根據與氣體流量20L/min對應的臭氧濃度產生點、最大點、第一中間點以及第二中間點來生成新的函數(圖3所示的第四函數R4)。第四函數R4藉由直線性地連接這些點而得到。
例如在氣體流量為40L/min的情況下,如圖3所示,新生成的函數的各個點被決定在第一函數R1及第二函數R2各自的各個點的中間位置(一半的位置)。運算部32根據與氣體流量40L/min對應的臭氧濃度產生點、最大點、第一中間點以及第二中間點來生成新的函數(圖3所示的第五函數R5)。第五函數R5藉由直線性地連接這些點而生成。
在步驟ST12中,運算部32根據與當前的檢測氣體流量對應的函數決定電源輸出的目標值。具體而言,運算部32在與當前的檢測氣體流量對應的函數中,將與設定臭氧濃度Cs對應的電源輸出作為目標值。在圖3的例子中,圖示了在當前的檢測氣體流量為20L/min的情況下,與第四函數R4中的設定臭氧濃度Cs對應的電源輸出的目標值Po。
在步驟ST13中,輸出控制部34控制電源部21,以使電源部21的實際的電源輸出達到在步驟ST12中求出的目標值。
如圖4所示,前饋控制在步驟ST3中反復執行直到經過預定時間。需要說明的是,在反復執行前饋控制的情況下,可以逐步地增大電源輸出,以使電源部21的實際的電源輸出最終達到上述目標值Po。
藉由在臭氧產生裝置20開始運轉時執行前饋控制,能夠使供向對象的臭氧氣體中臭氧的濃度迅速地接近設定臭氧濃度Cs。
在步驟ST3中經過預定時間後,轉移到步驟ST4,執行回饋控制。
如圖6所示,在步驟ST21中,例如在檢測氣體流量為10L/min的情況下,直接使用預先生成的第三函數R3。例如在檢測氣體流量與預先生成的函數的流量不對應的情況下,生成新的函數。新的函數的生成方法與上述的前饋控制相同。亦即,運算部32根據既存的三個函數,藉由與流量對應的比例分配來決定臭氧濃度產生點、最大點、第一中間點以及第二中間點。運算部32藉由直線地連接這些點來生成新的函數。
在步驟ST22中,運算部32根據與當前的檢測氣體流量對應的函數,求出與設定臭氧濃度Cs對應的第一電源輸出P1及與檢測臭氧濃度對應的第二電源輸出P2。在圖3中,圖示了在氣體流量為40L/min的情況下,與設定臭氧濃度Cs對應的第一電源輸出P1及與檢測臭氧濃度Cd對應的第二電源輸出P2。
接著,在步驟ST23中,運算部32計算第一電源輸出P1與第二電源輸出P2之差ΔP(=P1-P2)。接著,運算部32將當前的電源輸出Pc加上ΔP後的值作為電源輸出的目標值。ΔP是電源輸出的調節量。
藉此,在第一電源輸出P1比第二電源輸出P2大的情況下,電源輸出增大。在第一電源輸出P1比第二電源輸出P2小的情況下,電源輸出減小。
在步驟ST24中,輸出控制部34控制電源部21,以使電源部21的實際的電源輸出達到在步驟ST23中求出的目標值。
在如上所述的回饋控制中,根據與臭氧產生部22的氣體流量對應的函數求出電源輸出之差ΔP,根據該差ΔP決定電源輸出的目標值。因此,能夠充分考慮著與氣體流量對應的臭氧濃度及電源輸出的特性,最佳地控制電源輸出。
如圖4所示,於回饋控制之後步驟ST5的條件不成立的情況下,經由步驟ST1,反復執行步驟ST4的回饋控制。於此,較佳為,執行回饋控制的間隔ΔTb,考慮著從臭氧產生部22到濃度檢測部24的管內氣體被置換的時間(置換時間ΔTr)來決定。具體而言,在控制裝置30的設定部31,能夠將管內的容積V設定為參數。置換時間ΔTr能夠根據管內的容積V和檢測氣體流量來計算。較佳為,執行回饋控制的間隔ΔTb至少在置換時間ΔTr以上。
此外,置換時間ΔTr,除了根據管內的容積V及檢測氣體流量計算之外,還可以根據上述的檢測壓力來計算。
此外,回饋控制的間隔ΔTb可以考慮著從變更輸出電壓開始到檢測臭氧濃度Cd變化為止的時間延遲、臭氧的擴散等影響來決定。考慮到如此的影響,較佳為,將間隔ΔTb設定為置換時間ΔTr乘以預定的係數α所得到的時間。於此,係數α設定為大於1,較佳為設定為2至3左右。
若在步驟ST4的回饋控制之後步驟ST5的條件成立,則轉移到步驟ST2,再次執行前饋控制。在步驟ST5中,進行表示運轉條件發生了較大變化的條件是否成立的判斷。具體而言,該條件包括以下的第一條件及第二條件。
第一條件是檢測氣體流量的變化量為預定值以上的條件,該檢測氣體流量為表示氣體流量的指標。第二條件是設定臭氧濃度Cs的變化量為預定值以上的條件。若在步驟ST5中第一條件及第二條件中的至少一者成立,則轉移到步驟ST2,執行前饋控制。
若流過臭氧產生部22的氣體流量變化較大,則在回饋控制中,檢測臭氧濃度Cd與設定臭氧濃度Cs之差會變大,有可能無法使檢測臭氧濃度Cd迅速地接近設定臭氧濃度Cs。相對於此,在第一條件成立的情況下,藉由執行上述前饋控制,能夠使檢測臭氧濃度Cd迅速地接近設定臭氧濃度Cs。
若設定臭氧濃度Cs變化較大,則在回饋控制中,檢測臭氧濃度Cd與設定臭氧濃度Cs之差會變大,有可能無法使檢測臭氧濃度Cd迅速地接近設定臭氧濃度Cs。相對於此,在第二條件成立的情況下,藉由執行上述前饋控制,能夠使檢測臭氧濃度Cd迅速地接近設定臭氧濃度Cs。
需要說明的是,在步驟ST5中,可以判斷僅第一條件成立,也可以判斷僅第二條件成立。
[實施形態之功效]
在上述實施形態所關係之回饋控制中,控制裝置30根據臭氧產生部22的設定臭氧濃度Cs、作為表示臭氧產生部的氣體流量的指標的檢測氣體流量、檢測臭氧濃度Cd以及複數個函數,來求出與設定臭氧濃度Cs對應的第一電源輸出P1及與檢測臭氧濃度Cd對應的第二電源輸出P2。控制裝置30根據第一電源輸出P1及第二電源輸出P2之差來控制電源輸出。
藉此,便能夠考慮著與氣體流量對應的電源輸出及臭氧濃度之間的關係的特性,來調節電源部21的電源輸出。因此,例如在氣體流量較小的條件下,能夠抑制電源輸出的調節量過剩而檢測臭氧濃度Cd大幅波動。例如在氣體流量較大的條件下,能夠抑制電源輸出的調節量不足,檢測臭氧濃度Cd非常難以接近設定臭氧濃度Cs的情況。其結果,在本實施形態中,能夠使實際的臭氧濃度迅速地成為設定臭氧濃度。
在上述實施形態所關係之前饋控制中,控制裝置30進行控制以使電源輸出接近第一電源輸出P1。第一電源輸出P1為與對應於氣體流量的設定臭氧濃度Cs對應的電源輸出。因此,在檢測臭氧濃度Cd及設定臭氧濃度Cs之差比較大的條件下,能夠求出與氣體流量對應的最佳的電源輸出,從而能夠使檢測臭氧濃度Cd迅速地接近設定臭氧濃度Cs。
儲存在儲存部33中的複數個函數是將表示電源輸出及與該電源輸出對應的臭氧濃度的複數個點直線性地連接起來而得到的函數。因此,能夠簡化這些函數,減輕運算部32的負荷。
在氣體流量與儲存在儲存部33中的複數個函數不對應的情況下,藉由與流量對應的比例分配求出複數個點,根據這些點生成新的函數。因此,即使在檢測氣體流量與儲存在儲存部33中的氣體流量不對應的情況下,也能夠求出與檢測氣體流量對應的最佳的電源輸出。
由於儲存在儲存部33中的函數為三個,因此能夠對應細小的氣體流量的變化而求出最佳的電源輸出。
儲存在儲存部33中的複數個函數是將表示電源輸出及與該電源輸出對應的臭氧濃度的複數個點直線地連接而得到的函數。因此,能夠簡化這些函數,減輕運算部32的負擔。
前饋控制在第一條件及第二條件的至少一者成立時執行。因此,在檢測臭氧濃度Cd與設定臭氧濃度Cs之差較大的條件下,能夠使檢測臭氧濃度Cd迅速接地近設定臭氧濃度Cs。
前饋控制在開始運轉時執行。因此,在檢測臭氧濃度Cd與設定臭氧濃度Cs之差較大的條件下,能夠使檢測臭氧濃度Cd迅速接地近設定臭氧濃度Cs。
[實施形態的變形例]
上述實施形態也可以採用以下變形例的構成。
圖7所示的變形例與上述實施形態相比,臭氧產生裝置20的構成不同。
臭氧產生裝置20具有MFC(mass flow controller;質量流量控制器)(嚴格來說,是質量流量控制器等自動調節閥)26以代替上述實施形態的流量檢測部23。MFC26控制向臭氧產生部22供給的氣體流量,以使其為預先設定的設定氣體流量。設定氣體流量根據輸入控制裝置30的設定值或使用了臭氧產生裝置20的設備一方的裝置的要求決定。
臭氧產生裝置20具有APC(automatic pressure controller;自動壓力控制器)(嚴格來說,是自動壓力控制器等自動壓力調節閥)27,以代替上述實施形態的壓力檢測部25及壓力調節閥13。APC27進行控制,以使其一級壓力為預先設定的壓力。
在變形例1中,作為表示氣體流量的指標,不使用檢測氣體流量,而使用設定氣體流量。具體而言,在回饋控制的步驟ST21中,決定或生成與設定氣體流量對應的函數。在步驟ST22到步驟ST24中,根據與設定氣體流量對應的函數進行相同的控制。
同樣地,在前饋控制的步驟S11中,決定或生成與設定氣體流量對應的函數。在步驟ST12到步驟ST13中,根據與設定氣體流量對應的函數進行相同的控制。
藉此,藉由使用與設定氣體流量對應的函數,即使在實際的氣體流量非常難成為設定氣體流量的情況下,也能夠朝著最終的目標值對電源輸出進行控制。因此,在回饋控制及前饋控制中,能夠使臭氧濃度迅速地成為設定臭氧濃度Cs。
需要說明的是,在變形例1中,也與上述實施形態同樣地,可以使用與MFC26所檢測出的檢測氣體流量對應的函數。
在變形例1中,也可以對MFC26和APC27的配置進行調換。於此情況,APC27進行控制以使其二級壓力為預先設定的壓力。
(自動獲取運轉)
變形例1的控制裝置30執行自動獲取運轉。自動獲取運轉在將臭氧產生裝置20安裝於設施後執行。自動獲取運轉在臭氧產生裝置20的初次運轉開始前執行。
自動獲取運轉是用於自動地獲取複數個函數的運轉。因此,在控制裝置30的設定部中設定有與複數個函數對應的複數個氣體流量、及用於生成每個氣體流量的函數的複數個電源輸出。
在自動地生成上述實施形態的三個函數的情況下,設定10L/min、30L/min以及50L/min,作為複數個氣體流量。作為複數個電源輸出,設定的是與臭氧濃度產生點對應的20%、與最大點對應的100%、與第一中間點對應的50%、與第二中間點對應的70%。在自動獲取運轉中,依次測量這些設定氣體流量及與設定電源輸出對應的檢測臭氧濃度Cd。需要說明的是,與臭氧濃度產生點對應的臭氧濃度,如上所述,由電源部21等的結構或方式來決定。因此,在自動獲取運轉中,可以省略與臭氧濃度產生點對應的電源輸出的測量。
具體而言,在自動獲取運轉中,藉由MFC26將氣體流量調整為上述設定值(例如10L/min)。在氣體流量為10L/min的條件下,輸出控制部34將電源輸出控制為預定的設定值。此時,濃度檢測部24在經過用於使臭氧濃度穩定的預定時間後,檢測臭氧濃度。接著,輸出控制部34在同樣的氣體流量下將電源輸出變更為不同的設定值,之後,濃度檢測部24檢測臭氧濃度。如此,能夠獲取與氣體流量10L/min對應的各個點(臭氧濃度產生點、最大點、第一中間點、第二中間點)的資料,能夠根據這些資料生成圖3所示的第三函數R3。這些資料及函數儲存在儲存部33中。
控制裝置30一邊改變氣體流量一邊反復地進行相同的動作。藉此,在自動獲取運轉中,能夠自動地生成氣體流量不同的複數個函數。其結果,在安裝控制裝置30後,即使人不輸入各資料,也能夠得到與安裝環境對應的最佳函數。
[其它實施形態]
在上述實施形態及變形例中,也可以採用以下構成。
上述實施形態中的臭氧產生裝置20將由臭氧產生部22生成的臭氧氣體(流體)供向對象。然而,臭氧產生裝置20也可以使由臭氧產生部22生成的臭氧氣體溶解於水中來生成臭氧水,將臭氧水供向對象。
儲存在儲存部33中的複數個函數可以是兩個,也可以是四個以上。
用於生成複數個函數的複數個點可以是兩個,但較佳為三個以上,更佳為如上述實施形態般地為四個以上。較佳為,這些複數個點至少包括臭氧濃度產生點及最大點。
臭氧產生部22可以不是無聲放電方式,例如可以是沿面放電方式或電解方式。
[產業可利用性]
如上述說明,本發明對於臭氧產生裝置是有用的。
11:第一流路
12:第二流路
13:壓力調節閥
20:臭氧產生裝置
21:電源部
22:臭氧產生部
23:流量檢測部
24:濃度檢測部
25:壓力檢測部
26:MFC
27:APC
30:控制裝置
31:設定部
32:運算部
33:儲存部
34:輸出控制部
Cd:檢測臭氧濃度
Cs:設定臭氧濃度
Po:目標值
P1:第一電源輸出
P2:第二電源輸出
R1:第一函數
R2:第二函數
R3:第三函數
R4:第四函數
R5:第五函數
S:臭氧氣體生成系統
[圖1]為應用實施形態的臭氧產生裝置的臭氧產生系統的整體構成簡圖。
[圖2]為表示儲存在儲存部中的複數個函數的特性的曲線圖。
[圖3]為追加了新生成的複數個函數的相當於圖2的曲線圖。
[圖4]為臭氧產生裝置的運轉的基本流程圖。
[圖5]為前饋控制的流程圖。
[圖6]為回饋控制的流程圖。
[圖7]為變形例所涉及之相當於圖1的圖。
11:第一流路
12:第二流路
13:壓力調節閥
20:臭氧產生裝置
21:電源部
22:臭氧產生部
23:流量檢測部
24:濃度檢測部
25:壓力檢測部
30:控制裝置
31:設定部
32:運算部
33:儲存部
34:輸出控制部
S:臭氧氣體生成系統
Claims (5)
- 一種臭氧產生裝置,係包括電源部及臭氧產生部,前述臭氧產生部生成與前述電源部的電源輸出對應的臭氧氣體; 前述臭氧產生裝置還包括濃度檢測部及控制裝置,前述濃度檢測部檢測在臭氧產生部生成的臭氧氣體中臭氧的濃度作為檢測臭氧濃度;前述控制裝置具有儲存部,執行回饋控制,前述儲存部根據臭氧產生部中的不同的氣體流量,儲存兩個以上表示電源輸出及與前述電源輸出對應的臭氧濃度之關係的函數; 前述回饋控制根據臭氧產生部的設定臭氧濃度、表示前述臭氧產生部的氣體流量的指標、前述檢測臭氧濃度以及前述複數個函數,求出與前述設定臭氧濃度對應的第一電源輸出及與前述檢測臭氧濃度對應的第二電源輸出,並根據前述第一電源輸出及前述第二電源輸出之差控制前述電源輸出。
- 如請求項1所記載之臭氧產生裝置,其中前述儲存部儲存三個以上與相互不同的氣體流量對應的函數。
- 如請求項1或2所記載之臭氧產生裝置,其中前述複數個函數分別是將表示電源輸出及與前述電源輸出對應的臭氧濃度的複數個點直線地連接起來而生成的函數。
- 如請求項1或2所記載之臭氧產生裝置,其中前述控制裝置執行前饋控制,前述前饋控制在表示所述氣體流量的指標的變化量為預定值以上的第一條件、及前述設定臭氧濃度的變化量為預定值以上的第二條件中的至少一者成立時,進行控制以使前述電源輸出接近前述第一電源輸出。
- 如請求項1或2所記載之臭氧產生裝置,其中前述控制裝置藉由一邊改變所述氣體流量一邊檢測前述檢測臭氧濃度,來執行自動獲取前述複數個函數的自動獲取運轉。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-132350 | 2020-08-04 | ||
JP2020132350 | 2020-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202208274A true TW202208274A (zh) | 2022-03-01 |
Family
ID=80117242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110128283A TW202208274A (zh) | 2020-08-04 | 2021-08-02 | 臭氧產生裝置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230271832A1 (zh) |
JP (1) | JP7426489B2 (zh) |
CN (1) | CN116157354A (zh) |
TW (1) | TW202208274A (zh) |
WO (1) | WO2022030050A1 (zh) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54155991A (en) * | 1978-05-31 | 1979-12-08 | Mitsubishi Electric Corp | Ozone concentration controlling method |
JP4085043B2 (ja) | 2003-10-22 | 2008-04-30 | 住友精密工業株式会社 | 発生オゾンの安定制御方法 |
CN101243369B (zh) * | 2005-07-07 | 2010-12-15 | Mks仪器股份有限公司 | 用于多腔室工具的臭氧系统 |
JP4968839B2 (ja) | 2007-08-20 | 2012-07-04 | 三菱電機株式会社 | オゾン発生装置 |
CN102770369B (zh) | 2009-11-26 | 2014-11-26 | 东芝三菱电机产业系统株式会社 | 臭氧发生单元及臭氧气体供给系统 |
CN103885511A (zh) | 2012-12-24 | 2014-06-25 | 江苏康尔臭氧有限公司 | 一种臭氧发生器的闭环控制系统 |
KR101863031B1 (ko) | 2013-10-04 | 2018-05-30 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | 전원 장치 |
-
2021
- 2021-04-26 WO PCT/JP2021/016681 patent/WO2022030050A1/ja active Application Filing
- 2021-04-26 JP JP2022541114A patent/JP7426489B2/ja active Active
- 2021-04-26 US US18/040,250 patent/US20230271832A1/en active Pending
- 2021-04-26 CN CN202180058559.8A patent/CN116157354A/zh active Pending
- 2021-08-02 TW TW110128283A patent/TW202208274A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
KR20230041100A (ko) | 2023-03-23 |
JP7426489B2 (ja) | 2024-02-01 |
CN116157354A (zh) | 2023-05-23 |
WO2022030050A1 (ja) | 2022-02-10 |
US20230271832A1 (en) | 2023-08-31 |
JPWO2022030050A1 (zh) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5404626B2 (ja) | 溶接機用のシールドガス流量コントローラ | |
JP5858139B2 (ja) | 燃料電池システム | |
JP2007035446A (ja) | 燃料電池システムおよびガス漏れ検知装置 | |
AU2014302194B2 (en) | A method for controlling air flow in a fuel cell power system | |
JP6704247B2 (ja) | 空圧システム運転制御装置および制御方法 | |
JP2011128169A (ja) | 熱陰極電離真空計のための圧力制御脱ガスシステム | |
JP2014167364A (ja) | ボイラシステム | |
JP6082620B2 (ja) | ボイラの供給水量制御システムおよび供給水量制御方法 | |
TW202208274A (zh) | 臭氧產生裝置 | |
KR102723386B1 (ko) | 오존 발생 장치 | |
JP4875989B2 (ja) | 流量制御装置 | |
US20100233555A1 (en) | Closed-loop control system for a controlled system | |
JP5215736B2 (ja) | 流体供給装置 | |
JP5760373B2 (ja) | 混合ガス製造装置及び混合ガス製造方法 | |
JP5340611B2 (ja) | 水素生成装置および燃料電池システム | |
JP2005282932A (ja) | ボイラの給水制御方法およびその装置 | |
JP5648789B2 (ja) | ボイラ | |
JP2014154417A (ja) | 燃料電池システム | |
JP7342483B2 (ja) | 送風装置 | |
JP2022156440A (ja) | ボイラシステム | |
JPH035490B2 (zh) | ||
JP2008217247A (ja) | 給水ポンプ過流量防止装置 | |
JP6337697B2 (ja) | ボイラシステム | |
JP2023008000A (ja) | 燃料電池発電装置 | |
JPS63174110A (ja) | 制御弁の流量制御装置 |