TW202206518A - 光學膜及柔性顯示裝置 - Google Patents

光學膜及柔性顯示裝置 Download PDF

Info

Publication number
TW202206518A
TW202206518A TW110124206A TW110124206A TW202206518A TW 202206518 A TW202206518 A TW 202206518A TW 110124206 A TW110124206 A TW 110124206A TW 110124206 A TW110124206 A TW 110124206A TW 202206518 A TW202206518 A TW 202206518A
Authority
TW
Taiwan
Prior art keywords
optical film
formula
group
carbon atoms
polyimide
Prior art date
Application number
TW110124206A
Other languages
English (en)
Inventor
桜井孝至
克里斯第安 謝勒德
麥特 布洛姆
家宏 朱
Original Assignee
日商住友化學股份有限公司
美商齊默爾根公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021013622A external-priority patent/JP2022013625A/ja
Application filed by 日商住友化學股份有限公司, 美商齊默爾根公司 filed Critical 日商住友化學股份有限公司
Publication of TW202206518A publication Critical patent/TW202206518A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本發明是有關於一種光學膜,其含有具有源自脂肪族二胺的構成單元的聚醯亞胺系樹脂,且玻璃轉移溫度為165℃以上,350 nm的光透過率為10%以下。

Description

光學膜
本發明是有關於一種柔性顯示裝置的材料等中所使用的光學膜、以及包括該光學膜的柔性顯示裝置。
光學膜被用於液晶或有機電致發光(electroluminescence,EL)等的顯示裝置、觸控感測器、揚聲器、半導體等各種用途中。例如,作為觸控感測器基板材料,已知有具有尺寸穩定性等的聚醯亞胺系膜(例如,專利文獻1及專利文獻2)。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2005-336243號公報 [專利文獻2]WO2019/156717號
[發明所欲解決之課題]
然而,根據本發明者的研究,得知,專利文獻1及專利文獻2般的聚醯亞胺系膜有時耐溶劑性低,例如,若丙二醇單甲醚(propylene glycol monomethyl ether,PGME)等醇系溶媒、或丙二醇甲醚乙酸酯(propylene glycol methyl ether acetate,PGMEA)等酯系溶媒等附著於表面,則有時產生外觀不良。另外,得知,紫外線截止性亦不充分,無法兼顧耐熱性與紫外線截止性。
因此,本發明的目的在於提供一種耐溶劑性、耐熱性及紫外線截止性優異的光學膜、以及包括該光學膜的柔性顯示裝置。 [解決課題之手段]
本發明者為了解決所述課題而進行了努力研究,結果發現,若於光學膜中包含具有源自脂肪族二胺的構成單元的聚醯亞胺系樹脂,且將玻璃轉移溫度及350 nm的光透過率分別調整為165℃以上及10%以下,則可解決所述課題,從而完成了本發明。即,本發明包括以下的適宜的態樣。
[1] 一種光學膜,含有具有源自脂肪族二胺的構成單元的聚醯亞胺系樹脂,且玻璃轉移溫度為165℃以上,350 nm的光透過率為10%以下。 [2] 如[1]所述的光學膜,其中玻璃轉移溫度超過180℃。 [3] 如[1]或[2]所述的光學膜,其中500 nm的光透過率為90%以上。 [4] 如[1]至[3]中任一項所述的光學膜,其中拉伸強度超過86 MPa。 [5] 如[1]至[4]中任一項所述的光學膜,其中膜厚為10 μm~100 μm。 [6] 如[1]至[5]中任一項所述的光學膜,其中溶媒含量相對於膜的質量而為3.0質量%以下。 [7] 如[1]至[6]中任一項所述的光學膜,其中所述聚醯亞胺系樹脂具有式(1)所表示的構成單元, [化1]
Figure 02_image001
[式(1)中,X表示二價有機基,Y表示四價有機基,*表示鍵結鍵] 且式(1)所表示的構成單元含有二價脂肪族基作為X。 [8] 如[7]所述的光學膜,其中式(1)所表示的構成單元包含式(2)所表示的結構作為Y, [化2]
Figure 02_image003
[式(2)中,R2 ~R7 彼此獨立地表示氫原子、碳數1~6的烷基、碳數1~6的烷氧基或碳數6~12的芳基,R2 ~R7 中所含的氫原子可彼此獨立地經鹵素原子取代,V表示單鍵、-O-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -、-C(CF3 )2 -、-SO2 -、-S-、-CO-或-N(R8 )-,R8 表示氫原子、或可經鹵素原子取代的碳數1~12的一價烴基,*表示鍵結鍵]。 [9] 如[7]或[8]所述的光學膜,其中所述聚醯亞胺系樹脂包含氟原子。 [10] 如[1]至[9]中任一項所述的光學膜,含有填料。 [11] 如[10]所述的光學膜,其中所述填料為二氧化矽粒子。 [12] 一種柔性顯示裝置,包括如[1]至[11]中任一項所述的光學膜。 [13] 如[12]所述的柔性顯示裝置,進而包括偏光板。 [14] 如[12]或[13]所述的柔性顯示裝置,進而包括觸控感測器。 [發明的效果]
本發明的光學膜的耐溶劑性、耐熱性及紫外線截止性優異。因此,可適宜地用作柔性顯示裝置等的材料。
[光學膜] 本發明的光學膜含有具有源自脂肪族二胺的構成單元的聚醯亞胺系樹脂,且玻璃轉移溫度為165℃以上,350 nm的光透過率為10%以下。
本發明者發現,若於含有聚醯亞胺系樹脂的光學膜中,包含源自脂肪族二胺的構成單元作為構成該聚醯亞胺系樹脂的構成單元,且將該光學膜的玻璃轉移溫度調整為165℃以上及將350 nm的光透過率調整為10%以下,則可意外地同時具有優異的耐溶劑性、耐熱性及紫外線截止性。
<聚醯亞胺系樹脂> 所謂聚醯亞胺系樹脂,是指包含含有醯亞胺基的重複結構單元(亦稱為構成單元)的聚合物,可進而包含含有醯胺基的重複結構單元。
本發明的聚醯亞胺系樹脂含有源自脂肪族二胺的構成單元。所謂脂肪族二胺,表示具有脂肪族基的二胺,其結構的一部分中可含有其他取代基,但不具有芳香環。若聚醯亞胺系樹脂含有源自脂肪族二胺的構成單元,則可提升所獲得的光學膜的耐溶劑性。作為脂肪族二胺,例如可列舉非環式脂肪族二胺、環式脂肪族二胺等,就容易同時滿足優異的耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,較佳為非環式脂肪族二胺。作為非環式脂肪族二胺,例如可列舉:1,2-二胺基乙烷、1,3-二胺基丙烷、1,4-二胺基丁烷、1,5-二胺基戊烷、1,6-二胺基己烷、1,2-二胺基丙烷、1,2-二胺基丁烷、1,3-二胺基丁烷、2-甲基-1,2-二胺基丙烷、2-甲基-1,3-二胺基丙烷等碳數2~10的直鏈狀或分支鏈狀二胺基烷烴等。作為環式脂肪族二胺,例如可列舉:1,3-雙(胺基甲基)環己烷、1,4-雙(胺基甲基)環己烷、降冰片烷二胺及4,4'-二胺基二環己基甲烷等。該些可單獨使用或將兩種以上組合使用。該些中,就容易提升光學膜的耐溶劑性、光學特性、耐熱性及拉伸強度的觀點而言,較佳為1,2-二胺基乙烷、1,3-二胺基丙烷、1,4-二胺基丁烷(有時稱為1,4-DAB)、1,5-二胺基戊烷、1,6-二胺基己烷、1,2-二胺基丙烷、1,2-二胺基丁烷、1,3-二胺基丁烷、2-甲基-1,2-二胺基丙烷、2-甲基-1,3-二胺基丙烷等碳數2~10的二胺基烷烴,更佳為碳數2~6的二胺基烷烴,進而佳為1,4-二胺基丁烷。再者,於本說明書中,所謂光學特性,是指包含相位差、透明性及紫外線截止性在內的光學膜所具有的光學性特性,所謂光學特性提升或提高,例如是指相位差變低、500 nm的光透過率變高(或透明性變高)、350 nm的光透過率變低(或紫外線截止性變高)等,所謂光學特性優異,是指顯示出低的相位差、500 nm的高的光透過率(或高的透明性)、及350 nm的低的光透過率(或高的紫外線截止性)。
聚醯亞胺系樹脂除了含有源自脂肪族二胺的構成單元以外,亦可含有源自芳香族二胺的構成單元。所謂芳香族二胺,表示具有芳香環的二胺,其結構的一部分中可含有脂肪族基或其他取代基。該芳香環可為單環亦可為縮合環,可例示苯環、萘環、蒽環及芴環等,但並不限定於該些。
作為芳香族二胺,例如可列舉:對苯二胺、間苯二胺、2,4-甲苯二胺、間苯二甲胺、對苯二甲胺、1,5-二胺基萘、2,6-二胺基萘等具有一個芳香環的芳香族二胺,4,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基丙烷、4,4'-二胺基二苯基醚、3,4'-二胺基二苯基醚、3,3'-二胺基二苯基醚、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基碸、1,4-雙(4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、雙〔4-(4-胺基苯氧基)苯基〕碸、雙〔4-(3-胺基苯氧基)苯基〕碸、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、2,2-雙[4-(3-胺基苯氧基)苯基]丙烷、2,2'-二甲基聯苯胺、2,2'-雙(三氟甲基)-4,4'-二胺基二苯基(有時稱為TFMB)、4,4'-(六氟亞丙基)二苯胺、4,4'-雙(4-胺基苯氧基)聯苯、9,9-雙(4-胺基苯基)芴、9,9-雙(4-胺基-3-甲基苯基)芴、9,9-雙(4-胺基-3-氯苯基)芴、9,9-雙(4-胺基-3-氟苯基)芴等具有兩個以上的芳香環的芳香族二胺。該些可單獨使用或將兩種以上組合使用。
聚醯亞胺系樹脂可進而含有源自四羧酸化合物的構成單元。若含有源自四羧酸化合物的構成單元,則容易提升耐溶劑性、耐熱性、光學特性及拉伸強度。作為四羧酸化合物,可列舉:芳香族四羧酸二酐等芳香族四羧酸化合物;以及脂肪族四羧酸二酐等脂肪族四羧酸化合物等。四羧酸化合物可單獨使用,亦可將兩種以上組合使用。四羧酸化合物除了為二酐以外,亦可為醯氯化合物等四羧酸化合物類似物。
作為芳香族四羧酸二酐的具體例,可列舉:非縮合多環式的芳香族四羧酸二酐、單環式的芳香族四羧酸二酐及縮合多環式的芳香族四羧酸二酐。作為非縮合多環式的芳香族四羧酸二酐,例如可列舉:4,4'-氧基二鄰苯二甲酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、3,3',4,4'-聯苯基四羧酸二酐(有時記載為BPDA)、2,2',3,3'-聯苯基四羧酸二酐、3,3',4,4'-二苯基碸四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷二酐、2,2-雙(2,3-二羧基苯基)丙烷二酐、2,2-雙(3,4-二羧基苯氧基苯基)丙烷二酐、4,4'-(六氟亞異丙基)二鄰苯二甲酸二酐(有時記載為6FDA)、1,2-雙(2,3-二羧基苯基)乙烷二酐、1,1-雙(2,3-二羧基苯基)乙烷二酐、1,2-雙(3,4-二羧基苯基)乙烷二酐、1,1-雙(3,4-二羧基苯基)乙烷二酐、雙(3,4-二羧基苯基)甲烷二酐、雙(2,3-二羧基苯基)甲烷二酐、4,4'-(對伸苯基二氧基)二鄰苯二甲酸二酐、4,4'-(間伸苯基二氧基)二鄰苯二甲酸二酐。另外,作為單環式的芳香族四羧酸二酐,例如可列舉1,2,4,5-苯四羧酸二酐,作為縮合多環式的芳香族四羧酸二酐,例如可列舉2,3,6,7-萘四羧酸二酐。該些可單獨使用或將兩種以上組合使用。
作為脂肪族四羧酸二酐,可列舉環式或非環式的脂肪族四羧酸二酐。所謂環式脂肪族四羧酸二酐,為具有脂環式烴結構的四羧酸二酐,作為其具體例,可列舉:1,2,4,5-環己烷四羧酸二酐、1,2,3,4-環丁烷四羧酸二酐、1,2,3,4-環戊烷四羧酸二酐等環烷烴四羧酸二酐、雙環[2.2.2]辛-7-烯-2,3,5,6-四羧酸二酐、二環己基-3,3',4,4'-四羧酸二酐及該些的位置異構體。該些可單獨使用或將兩種以上組合使用。作為非環式脂肪族四羧酸二酐的具體例,可列舉:1,2,3,4-丁烷四羧酸二酐、及1,2,3,4-戊烷四羧酸二酐等,該些可單獨使用或將兩種以上組合使用。另外,亦可將環式脂肪族四羧酸二酐及非環式脂肪族四羧酸二酐組合使用。
所述四羧酸二酐中,就容易提升光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,較佳為4,4'-氧基二鄰苯二甲酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、3,3',4,4'-聯苯基四羧酸二酐、2,2',3,3'-聯苯基四羧酸二酐、3,3',4,4'-二苯基碸四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷二酐、4,4'-(六氟亞異丙基)二鄰苯二甲酸二酐、以及該些的混合物,更佳為4,4'-(六氟亞異丙基)二鄰苯二甲酸二酐(6FDA)。
於本發明的一實施方式中,源自脂肪族二胺的構成單元的比例相對於構成聚醯亞胺系樹脂的所有構成單元的總莫耳量而較佳為30莫耳%以上,更佳為50莫耳%以上,進而佳為70莫耳%以上,特佳為90莫耳%以上,且較佳為100莫耳%以下。若源自脂肪族二胺的構成單元的比例為所述範圍,則容易提升光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。該構成單元的比例例如可使用氫譜核磁共振(1 H-Nuclear Magnetic Resonance,1 H-NMR)進行測定,或者,亦可根據原料的投入比來算出。
再者,於不損及光學膜的各種物性的範圍內,所述聚醯亞胺系樹脂除了含有源自所述四羧酸化合物的構成單元以外,亦可進而含有源自其他四羧酸的構成單元及源自三羧酸的構成單元以及源自該些的酸酐及衍生物的構成單元。
作為其他四羧酸,可列舉所述四羧酸化合物的酐的水加成物。
作為三羧酸化合物,可列舉芳香族三羧酸、脂肪族三羧酸及類似該些的醯氯化合物、酸酐等,亦可將兩種以上組合使用。作為具體例,可列舉:1,2,4-苯三羧酸的酐;2,3,6-萘三羧酸-2,3-酐;鄰苯二甲酸酐與苯甲酸藉由單鍵、-O-、-CH2 -、-C(CH3 )2 -、-C(CF3 )2 -、-SO2 -或伸苯基連結而成的化合物。
於本發明的適宜的實施方式中,較佳為聚醯亞胺系樹脂具有式(1)所表示的構成單元, [化3]
Figure 02_image005
[式(1)中,X表示二價有機基,Y表示四價有機基,*表示鍵結鍵] 且式(1)所表示的構成單元含有二價脂肪族基作為X。若含有此種聚醯亞胺系樹脂,則容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。
式(1)中的X分別獨立地表示二價有機基,較佳為表示碳數2~40的二價有機基。作為二價有機基,例如可列舉:二價芳香族基、二價脂肪族基等。再者,於本說明書中,二價芳香族基為具有芳香族基的二價有機基,其結構的一部分中可含有脂肪族基或其他取代基。另外,二價脂肪族基為具有脂肪族基的二價有機基,其結構的一部分中可含有其他取代基,但不含芳香族基。
式(1)中的X包含二價脂肪族基,作為二價脂肪族基,例如可列舉二價非環式脂肪族基或二價環式脂肪族基。該些中,就容易提高光學特性、耐熱性、耐溶劑性及拉伸強度的觀點而言,較佳為二價非環式脂肪族基。
於本發明的一實施方式中,作為式(1)中的X中的二價非環式脂肪族基,例如可列舉:伸乙基、三亞甲基、四亞甲基、五亞甲基、六亞甲基、伸丙基、1,2-丁二基、1,3-丁二基、2-甲基-1,2-丙二基、2-甲基-1,3-丙二基等直鏈狀或分支鏈狀伸烷基等。二價非環式脂肪族基中的氫原子可經鹵素原子取代,碳原子可經雜原子(例如,氧原子、氮原子等)取代。就容易平衡良好地顯現出耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,直鏈狀或分支鏈狀伸烷基的碳數較佳為2以上,更佳為3以上,進而佳為4以上,且較佳為10以下,更佳為8以下,進而佳為6以下。所述二價非環式脂肪族基中,就容易平衡良好地顯現出耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,較佳為伸乙基、三亞甲基、四亞甲基、五亞甲基、六亞甲基等碳數2~6的伸烷基,更佳為四亞甲基。
於本發明的一實施方式中,作為式(1)中的X中的二價芳香族基或二價環式脂肪族基,可列舉:式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及式(18)所表示的基;該些式(10)~式(18)所表示的基中的氫原子經甲基、氟基、氯基或三氟甲基取代的基;以及碳數6以下的鏈式烴基。
[化4]
Figure 02_image007
式(10)~式(18)中, *表示鍵結鍵, V1 、V2 及V3 彼此獨立地表示單鍵、-O-、-S-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -、-C(CF3 )2 -、-SO2 -、-CO-或-N(Q)-。此處,Q表示可經鹵素原子取代的碳數1~12的一價烴基。作為可經鹵素原子取代的碳數1~12的一價烴基,例如可列舉:甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、正戊基、2-甲基-丁基、3-甲基丁基、2-乙基-丙基、正己基、正庚基、正辛基、第三辛基、正壬基及正癸基等。作為所述鹵素原子,可列舉:氟原子、氯原子、溴原子及碘原子等。 一個例子中,V1 及V3 為單鍵、-O-或-S-,且V2 為-CH2 -、-C(CH3 )2 -、-C(CF3 )2 -或-SO2 -。V1 與V2 相對於各環的鍵結位置、以及V2 與V3 相對於各環的鍵結位置彼此獨立地相對於各環而較佳為間位或對位,更佳為對位。再者,式(10)~式(18)中的環上的氫原子亦可經碳數1~6的烷基、碳數1~6的烷氧基或碳數6~12的芳基取代。作為碳數1~6的烷基,例如可列舉:甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、正戊基、2-甲基-丁基、3-甲基丁基、2-乙基-丙基、正己基等。作為碳數1~6的烷氧基,例如可列舉:甲氧基、乙氧基、丙基氧基、異丙基氧基、丁氧基、異丁氧基、第三丁氧基、戊基氧基、己基氧基及環己基氧基等。作為碳數6~12的芳基,例如可列舉:苯基、甲苯基、二甲苯基、萘基及聯苯基等。該些二價環式脂肪族基或二價芳香族基可單獨使用或將兩種以上組合使用。
本發明的聚醯亞胺系樹脂可含有多種X,多種X可彼此相同,亦可不同。例如,作為式(1)中的X,亦可含有二價非環式脂肪族基、與二價芳香族基及/或二價環式脂肪族基。
於本發明的一實施方式中,式(1)中的X為二價脂肪族基、較佳為二價非環式脂肪族基的構成單元的比例相對於式(1)所表示的構成單元的總莫耳量而較佳為30莫耳%以上,更佳為50莫耳%以上,進而佳為70莫耳%以上,特佳為90莫耳%以上,且較佳為100莫耳%以下。若式(1)中的X為二價脂肪族基、較佳為二價非環式脂肪族基的構成單元的比例為所述範圍,則容易提升光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。該構成單元的比例例如可使用1 H-NMR進行測定,或者,亦可根據原料的投入比來算出。
式(1)中,Y分別獨立地表示四價有機基,較佳為表示碳數4~40的四價有機基,更佳為表示具有環狀結構的碳數4~40的四價有機基。作為環狀結構,可列舉:脂環、芳香環、雜環結構。所述有機基為有機基中的氫原子可被烴基或經氟取代的烴基取代的有機基,該情況下,烴基及經氟取代的烴基的碳數較佳為1~8。本發明的聚醯亞胺系樹脂可含有多種Y,多種Y可彼此相同,亦可不同。作為Y,可列舉:以下的式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及式(29)所表示的基;該些式(20)~式(29)所表示的基中的氫原子經甲基、氟基、氯基或三氟甲基取代的基;以及四價的碳數6以下的鏈式烴基。
[化5]
Figure 02_image009
式(20)~式(29)中, *表示鍵結鍵, W1 表示單鍵、-O-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -、-C(CF3 )2 -、-Ar-、-SO2 -、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH2 -Ar-、-Ar-C(CH3 )2 -Ar-或-Ar-SO2 -Ar-。Ar表示氫原子可經氟原子取代的碳數6~20的伸芳基,作為具體例,可列舉伸苯基。
式(20)~式(29)所表示的基中,就容易提高耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,較佳為式(26)、式(28)或式(29)所表示的基,更佳為式(26)所表示的基。另外,就容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,W1 分別獨立地較佳為單鍵、-O-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -或-C(CF3 )2 -,更佳為單鍵、-O-、-CH2 -、-CH(CH3 )-、-C(CH3 )2 -或-C(CF3 )2 -,進而佳為單鍵、-C(CH3 )2 -或-C(CF3 )2 -。
於本發明的適宜的實施方式中,式(1)所表示的構成單元含有式(2)所表示的結構作為Y。 [化6]
Figure 02_image011
[式(2)中,R2 ~R7 彼此獨立地表示氫原子、碳數1~6的烷基、碳數1~6的烷氧基或碳數6~12的芳基,R2 ~R7 中所含的氫原子可彼此獨立地經鹵素原子取代,V表示單鍵、-O-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -、-C(CF3 )2 -、-SO2 -、-S-、-CO-或-N(R8 )-,R8 表示氫原子、或可經鹵素原子取代的碳數1~12的一價烴基,*表示鍵結鍵] 若為此種實施方式,則光學膜容易顯現出優異的耐溶劑性、耐熱性、光學特性及拉伸強度。再者,式(1)所表示的構成單元亦可含有一種或多種式(2)所表示的結構作為Y。
式(2)中,R2 、R3 、R4 、R5 、R6 及R7 彼此獨立地表示氫原子、碳數1~6的烷基、碳數1~6的烷氧基或碳數6~12的芳基。作為碳數1~6的烷基、碳數1~6的烷氧基及碳數6~12的芳基,分別可列舉:所述例示的碳數1~6的烷基、碳數1~6的烷氧基及碳數6~12的芳基。R2 ~R7 彼此獨立地較佳為表示氫原子或碳數1~6的烷基,更佳為表示氫原子或碳數1~3的烷基,此處,R2 ~R7 中所含的氫原子可彼此獨立地經鹵素原子取代。作為鹵素原子,可列舉:氟原子、氯原子、溴原子、碘原子。V表示單鍵、-O-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -、-C(CF3 )2 -、-SO2 -、-S-、-CO-或-N(R8 )-,R8 表示氫原子、或可經鹵素原子取代的碳數1~12的一價烴基。作為可經鹵素原子取代的碳數1~12的一價烴基,可列舉作為可經鹵素原子取代的碳數1~12的一價烴基而於所述例示的基。該些中,就容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,V較佳為單鍵、-O-、-CH2 -、-CH(CH3 )-、-C(CH3 )2 -或-C(CF3 )2 -,更佳為單鍵、-C(CH3 )2 -或-C(CF3 )2 -,進而佳為單鍵或-C(CF3 )2 -。
於本發明的適宜的實施方式中,式(2)由式(2')表示。 [化7]
Figure 02_image013
[式(2')中,*表示鍵結鍵] 若為此種實施方式,則光學膜更容易顯現出優異的耐溶劑性、耐熱性、光學特性及拉伸強度。另外,藉由包含氟元素的骨架來提升樹脂於溶媒中的溶解性,可將清漆的黏度抑制得低,可使光學膜的加工容易。
於本發明的一實施方式中,在含有式(2)所表示的結構作為式(1)中的Y的情況下,式(1)中的Y為式(2)所表示的結構的構成單元的比例相對於式(1)所表示的構成單元的總莫耳量而較佳為30莫耳%以上,更佳為50莫耳%以上,進而佳為70莫耳%以上,特佳為90莫耳%以上,且較佳為100莫耳%以下。若式(1)中的Y為式(2)所表示的結構的構成單元的比例為所述範圍,則更容易提升光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。式(1)中的Y為式(2)所表示的結構的構成單元的比例例如可使用1 H-NMR進行測定,或者,亦可根據原料的投入比來算出。
本發明的聚醯亞胺系樹脂除了含有式(1)所表示的構成單元以外,亦可含有式(30)所表示的構成單元及/或式(31)所表示的構成單元。 [化8]
Figure 02_image015
式(30)中,Y1 為四價有機基,較佳為有機基中的氫原子可被烴基或經氟取代的烴基取代的有機基。作為Y1 ,可列舉:式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及式(29)所表示的基,該些式(20)~式(29)所表示的基中的氫原子經甲基、氟基、氯基或三氟甲基取代的基,以及四價的碳數6以下的鏈式烴基。於本發明的一實施方式中,聚醯亞胺系樹脂可包含多種Y1 ,多種Y1 可彼此相同,亦可不同。
式(31)中,Y2 為三價有機基,較佳為有機基中的氫原子可被烴基或經氟取代的烴基取代的有機基。作為Y2 ,可列舉:所述式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及式(29)所表示的基的鍵結鍵的任一個經取代為氫原子的基、以及三價的碳數6以下的鏈式烴基。於本發明的一實施方式中,聚醯亞胺系樹脂可包含多種Y2 ,多種Y2 可彼此相同,亦可不同。
式(30)及式(31)中,X1 及X2 彼此獨立地表示二價有機基,較佳為表示碳數2~40的二價有機基。作為二價有機基,例如可列舉二價芳香族基、二價脂肪族基等,作為二價脂肪族基,例如可列舉二價非環式脂肪族基或二價環式脂肪族基。作為X1 及X2 中的二價環式脂肪族基或二價芳香族基,可列舉:所述式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及式(18)所表示的基;該些式(10)~式(18)所表示的基中的氫原子經甲基、氟基、氯基或三氟甲基取代的基;以及碳數6以下的鏈式烴基等。作為二價非環式脂肪族基,例如可列舉:伸乙基、三亞甲基、四亞甲基、五亞甲基、六亞甲基、伸丙基、1,2-丁二基、1,3-丁二基、2-甲基-1,2-丙二基、2-甲基-1,3-丙二基等碳數2~10的直鏈狀或分支鏈狀伸烷基等。
於本發明的一實施方式中,聚醯亞胺系樹脂包含式(1)所表示的構成單元、以及視情況的選自式(30)所表示的構成單元及式(31)所表示的構成單元中的至少一個構成單元。另外,就容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,於所述聚醯亞胺系樹脂中,式(1)所表示的構成單元的比例基於聚醯亞胺系樹脂中所含的所有構成單元、例如式(1)所表示的構成單元、以及視情況的選自式(30)所表示的構成單元及式(31)所表示的構成單元中的至少一個構成單元的總莫耳量,而較佳為80莫耳%以上,更佳為90莫耳%以上,進而佳為95莫耳%以上。再者,於聚醯亞胺系樹脂中,式(1)所表示的構成單元的比例的上限為100莫耳%。再者,所述比例例如可使用1 H-NMR進行測定,或者,亦可根據原料的投入比來算出。另外,就容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度的觀點而言,本發明中的聚醯亞胺系樹脂較佳為聚醯亞胺樹脂。
於本發明的較佳的一實施方式中,本發明的聚醯亞胺系樹脂例如可包含可藉由所述含鹵素原子取代基等來導入的、鹵素原子、較佳為氟原子。於聚醯亞胺系樹脂含有鹵素原子、較佳為氟原子的情況下,除了容易提高耐溶劑性、耐熱性及拉伸強度以外,亦容易提高光學特性。作為用於使聚醯亞胺系樹脂包含氟原子而較佳的含氟取代基,例如可列舉氟基及三氟甲基。
關於聚醯亞胺系樹脂中的鹵素原子的含量,以聚醯亞胺系樹脂的質量為基準而分別較佳為1質量%~40質量%,更佳為5質量%~40質量%,進而佳為5質量%~30質量%。若鹵素原子的含量為所述下限以上,則容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。若鹵素原子的含量為所述上限以下,則容易合成。
聚醯亞胺系樹脂的重量平均分子量(Mw)較佳為超過250,000,更佳為270,000以上,進而佳為300,000以上,特佳為350,000以上,且較佳為800,000以下,更佳為700,000以下,進而佳為600,000以下。若重量平均分子量(Mw)為所述下限以上,則容易提高耐屈曲性及拉伸強度,另外,若為所述上限以下,則容易提升膜的加工性。重量平均分子量(Mw)可進行凝膠滲透層析(Gel Permeation Chromatography,GPC)測定,並藉由標準聚苯乙烯換算來求出,例如可藉由實施例中記載的方法來算出。
聚醯亞胺系樹脂的醯亞胺化率較佳為90%以上,更佳為93%以上,進而佳為95%以上,進而更佳為97%以上,特佳為99%以上。就容易提高光學膜的光學特性的觀點而言,醯亞胺化率較佳為所述下限以上。另外,醯亞胺化率的上限為100%。醯亞胺化率表示聚醯亞胺系樹脂中的醯亞胺鍵的莫耳量相對於聚醯亞胺系樹脂中的源自四羧酸化合物的構成單元的莫耳量的2倍的值的比例。再者,於聚醯亞胺系樹脂包含三羧酸化合物的情況下,表示聚醯亞胺系樹脂中的醯亞胺鍵的莫耳量相對於聚醯亞胺系樹脂中的源自四羧酸化合物的構成單元的莫耳量的2倍的值、與源自三羧酸化合物的構成單元的莫耳量的合計的比例。另外,醯亞胺化率可藉由紅外線(infrared ray,IR)法、NMR法等求出,例如可藉由實施例中記載的方法來求出。
於本發明的一實施方式中,光學膜中所含的聚醯亞胺系樹脂的含量相對於光學膜的質量(100質量%)而較佳為40質量%以上,更佳為50質量%以上,進而佳為60質量%以上,特佳為80質量%以上,且較佳為100質量%以下。若光學膜中所含的聚醯亞胺系樹脂的含量為所述範圍內,則容易提高所獲得的光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。
<聚醯亞胺系樹脂的製造方法> 光學膜中所含的聚醯亞胺系樹脂的製造方法並無特別限定,例如,含有式(1)所表示的構成單元的聚醯亞胺系樹脂可藉由包括如下步驟的方法來製造:使二胺化合物與四羧酸化合物反應而獲得聚醯胺酸的步驟;以及使該聚醯胺酸醯亞胺化的步驟。再者,除了四羧酸化合物以外,亦可使三羧酸化合物反應。
聚醯亞胺系樹脂的合成中所使用的四羧酸化合物、二胺化合物及三羧酸化合物例如可分別使用與<聚醯亞胺系樹脂>一項中記載的所述四羧酸化合物、所述二胺化合物及所述三羧酸化合物相同者。
於聚醯亞胺系樹脂的製造中,二胺化合物、四羧酸化合物及三羧酸化合物的使用量可根據所期望的樹脂的各構成單元的比率來適宜選擇。 於本發明的適宜的實施方式中,二胺化合物的使用量相對於四羧酸化合物1莫耳而較佳為0.94莫耳以上,更佳為0.96莫耳以上,進而佳為0.98莫耳以上,特佳為0.99莫耳以上,且較佳為1.20莫耳以下,更佳為1.10莫耳以下,進而佳為1.05莫耳以下,特佳為1.02莫耳以下。若二胺化合物相對於四羧酸化合物的使用量為所述範圍,則容易提高所獲得的光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。
二胺化合物與四羧酸化合物的反應溫度並無特別限定,例如可為5℃~200℃,反應時間亦無特別限定,例如可為30分鐘~72小時左右。於本發明的適宜的實施方式中,反應溫度較佳為5℃~200℃,更佳為50℃~190℃,進而佳為100℃~180℃,反應時間較佳為3小時~24小時,更佳為5小時~20小時。若為此種反應溫度及反應時間,則容易將所獲得的光學膜的Tg及光透過率調整為後述的範圍,容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。再者,聚醯亞胺系樹脂的Mw可藉由對反應時間及反應溫度等反應條件;二胺化合物、四羧酸化合物、觸媒、及溶媒的種類及使用量;析出操作中的良溶媒與不良溶媒的組成;以及清洗溶液的組成等進行適宜變更而進行調整。
二胺化合物與四羧酸化合物的反應較佳為於溶媒中進行。作為溶媒,只要不對反應造成影響,則並無特別限定,例如可列舉:水、甲醇、乙醇、乙二醇、異丙基醇、丙二醇、乙二醇甲醚、乙二醇丁醚、1-甲氧基-2-丙醇、2-丁氧基乙醇、丙二醇單甲醚等醇系溶媒;苯酚、甲酚等酚系溶媒;乙酸乙酯、乙酸丁酯、乙二醇甲醚乙酸酯、γ-丁內酯、γ-戊內酯、丙二醇甲醚乙酸酯、乳酸乙酯等酯系溶媒;丙酮、甲基乙基酮、環戊酮、環己酮、2-庚酮、甲基異丁基酮等酮系溶媒;戊烷、己烷、庚烷等脂肪族烴溶媒;乙基環己烷等脂環式烴溶媒;甲苯、二甲苯等芳香族烴溶媒;乙腈等腈系溶媒;四氫呋喃及二甲氧基乙烷等醚系溶媒;氯仿及氯苯等含氯溶媒;N,N-二甲基乙醯胺、N,N-二甲基甲醯胺等醯胺系溶媒;二甲基碸、二甲基亞碸、環丁碸等含硫系溶媒;碳酸伸乙酯、碳酸伸丙酯等碳酸酯系溶媒;以及該些的組合等。該些中,就溶解性的觀點而言,可適宜地使用酚系溶媒、醯胺系溶媒。 於本發明的適宜的實施方式中,反應中使用的溶媒較佳為嚴格脫水至水分量700 ppm以下的溶媒。若使用此種溶媒,則容易將所獲得的光學膜的Tg及光透過率調整為後述的範圍,容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。
二胺化合物與四羧酸化合物的反應視需要可於惰性氣氛(氮氣氣氛、氬氣氣氛等)或減壓的條件下進行,較佳為於惰性氣氛(氮氣氣氛、氬氣氣氛等)下、在經嚴格控制的脫水溶媒中一邊進行攪拌一邊進行反應。若為此種條件,則容易將所獲得的光學膜的Tg及光透過率調整為後述的範圍,容易提高光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。
於醯亞胺化步驟中,可使用醯亞胺化觸媒進行醯亞胺化,亦可藉由加熱進行醯亞胺化,亦可將該些組合。作為醯亞胺化步驟中使用的醯亞胺化觸媒,例如可列舉:三丙基胺、二丁基丙基胺、乙基二丁基胺等脂肪族胺;N-乙基哌啶、N-丙基哌啶、N-丁基吡咯啶、N-丁基哌啶、及N-丙基六氫氮呯等脂環式胺(單環式);氮雜雙環[2.2.1]庚烷、氮雜雙環[3.2.1]辛烷、氮雜雙環[2.2.2]辛烷、及氮雜雙環[3.2.2]壬烷等脂環式胺(多環式);以及吡啶、2-甲基吡啶(2-甲吡啶)、3-甲基吡啶(3-甲吡啶)、4-甲基吡啶(4-甲吡啶)、2-乙基吡啶、3-乙基吡啶、4-乙基吡啶、2,4-二甲基吡啶、2,4,6-三甲基吡啶、3,4-環戊烯並吡啶、5,6,7,8-四氫異喹啉、及異喹啉等芳香族胺。另外,就容易促進醯亞胺化反應的觀點而言,較佳為與醯亞胺化觸媒一起使用酸酐。酸酐可列舉醯亞胺化反應中所使用的慣用的酸酐等,作為其具體例,可列舉:乙酸酐、丙酸酐、丁酸酐等脂肪族酸酐、鄰苯二甲酸等芳香族酸酐等。
於本發明的一實施方式中,在進行醯亞胺化的情況下,反應溫度較佳為40℃以上,更佳為60℃以上,進而佳為80℃以上,且較佳為190℃以下,更佳為170℃以下。醯亞胺化步驟的反應時間較佳為30分鐘~24小時,更佳為1小時~12小時。若反應溫度及反應時間處於所述範圍,則容易提高所獲得的光學膜的耐溶劑性、耐熱性、光學特性及拉伸強度。
聚醯亞胺系樹脂可藉由慣用的方法、例如過濾、濃縮、提取、晶析、再結晶、管柱層析等分離手段、或將該些組合而成的分離手段來離析(分離精製),於較佳的態樣中,可藉由如下方式進行離析:對包含樹脂的反應液加入大量的甲醇、乙醇、正丙醇、異丙醇等醇系溶媒,使樹脂析出,並進行濃縮、過濾、乾燥等。
<光學膜> 本發明的光學膜含有所述聚醯亞胺系樹脂,且玻璃轉移溫度為165℃以上及350 nm的光透過率為10%以下,因此耐溶劑性、耐熱性及紫外線截止性優異。進而,於本發明的適宜的實施方式中,本發明的光學膜的相位差低,另外,透明性及拉伸強度亦優異。於本說明書中,所謂耐溶劑性,是指如下特性:可抑制溶劑附著於膜表面時的外觀不良的產生。
本發明的光學膜的耐溶劑性、尤其是對於PGME(丙二醇單甲醚)等醇系溶媒、或PGMEA(丙二醇甲醚乙酸酯)等酯系溶媒等的耐溶劑性優異。因此,即便此種溶劑附著於表面,亦可有效地抑制膜的外觀不良。
本發明的光學膜的玻璃轉移溫度(有時簡稱為Tg)為165℃以上。若玻璃轉移溫度小於165℃,則耐熱性不充分。另外,耐溶劑性及拉伸強度有時不充分。本發明的光學膜的玻璃轉移溫度較佳為170℃以上,更佳為175℃以上,進而佳為180℃以上,特佳為超過180℃,尤佳為180.5℃以上,極佳為181℃以上,最佳為190℃以上,且較佳為400℃以下,更佳為380℃以下,進而佳為350℃以下,特佳為300℃以下。若玻璃轉移溫度為所述下限以上,則可提升耐熱性,另外,容易提高耐溶劑性及拉伸強度。若玻璃轉移溫度為所述上限以下,則容易提高光學特性。再者,玻璃轉移溫度(Tg)可藉由對構成光學膜中所含的樹脂的構成單元的種類或構成比;光學膜的溶媒含量;添加劑的種類或調配量;樹脂的製造條件或單體的純度;光學膜的製造條件進行適宜調整而設為所述範圍內,尤其是,可藉由使用作為構成樹脂的構成單元的種類或構成比而所述的較佳者、調整光學膜的溶媒含量、應用後述的光學膜製造步驟中的乾燥條件等而調整為所述範圍。
本發明中的玻璃轉移溫度是藉由示差掃描熱析法(differential scanning calorimetry,DSC)(示差掃描熱量測定)而得的玻璃轉移溫度。該玻璃轉移溫度可使用熱分析裝置於測定試樣量:5 mg、溫度區域:自室溫至400℃、升溫速度:10℃/分鐘的條件下進行測定,例如,可藉由實施例中記載的方法來測定。
本發明的光學膜的350 nm的光透過率為10%以下。若350 nm的光透過率超過10%,則有紫外線截止性降低的傾向。本發明的光學膜的350 nm中的光透過率較佳為8%以下,更佳為5%以下。若350 nm的光透過率為所述上限以下,則可提升紫外線截止性。350 nm的光透過率的下限為0%。350 nm的光透過率可使用紫外可見近紅外分光光度計來測定,例如可藉由實施例中記載的方法來測定。350 nm的光透過率較佳為本發明的光學膜的厚度(膜厚)的範圍中的光透過率。再者,350 nm的光透過率可藉由對構成光學膜中所含的樹脂的構成單元的種類或構成比;光學膜的厚度;光學膜的溶媒含量;添加劑的種類或調配量;樹脂的製造條件或單體的純度;光學膜的製造條件進行適宜調整而設為所述範圍內,例如藉由對光學膜中所含的紫外線吸收劑的種類或量進行適宜調整而容易調整為所述範圍。
於本發明的適宜的實施方式中,本發明的光學膜的面內相位差(面內方向上的相位差)較佳為30 nm以下,厚度相位差(厚度方向上的相位差)較佳為100 nm以下。若面內相位差及/或厚度相位差為所述範圍,則於應用於顯示裝置等中的情況下,容易提高視認性。本發明的光學膜的厚度相位差Rth由式(A)表示。 Rth={(Nx+Ny)/2-Nz}×d  …(A) [式中,Nx表示光學膜面內的一方向上的折射率,Ny表示光學膜面內的與Nx正交的方向上的折射率,Nz表示光學膜的厚度方向上的折射率,d表示光學膜的厚度(nm),滿足Nx>Ny] 即,Nx為慢軸方向上的折射率,Ny為快軸方向上的折射率,Nx-Ny為雙折射。
本發明的光學膜的厚度相位差Rth更佳為90 nm以下,進而佳為80 nm以下,特佳為70 nm以下,尤佳為60 nm以下,最佳為50 nm以下,且較佳為1 nm以上,更佳為5 nm以上。若厚度相位差Rth為所述上限以下,則於將光學膜應用於顯示裝置等中的情況下,容易提升視認性,另外,若厚度相位差Rth為所述下限以上,則難以產生視認性的不均。
本發明的光學膜的面內相位差R0由式(B)表示。 R0=(Nx-Ny)×d(nm)  …(B) [式中,Nx、Ny及d與式(A)中的Nx、Ny及d相同]
本發明的光學膜的面內相位差R0更佳為20 nm以下,進而佳為15 nm以下,特佳為10 nm以下,尤佳為5 nm以下,且較佳為0.1 nm以上,更佳為1 nm以上。若面內相位差R0為所述上限以下,則於將光學膜應用於顯示裝置等中的情況下,容易提升視認性,另外,若面內相位差R0為所述下限以上,則難以產生視認性的不均。
光學膜的厚度相位差Rth及面內相位差R0可使用相位差測定裝置進行測定,例如可藉由實施例中記載的方法來測定。再者,Rth及R0可藉由對構成光學膜中所含的樹脂的構成單元的種類或構成比;光學膜的厚度;光學膜的溶媒含量;添加劑的種類或調配量;樹脂的製造條件或單體的純度;光學膜的製造條件進行適宜調整而設為所述範圍內,尤其是,若包含具有非環式脂肪族骨架的構成單元作為構成光學膜中所含的樹脂的構成單元,則容易調整為所述範圍。
本發明的光學膜的500 nm的光透過率較佳為90.0%以上。因此,於本發明的適宜的實施方式中,光學膜可兼顧紫外區域的截止性、與可見光區域的透過性。500 nm的光透過率更佳為90.2%以上,進而佳為90.4%以上。若500 nm的光透過率為所述下限以上,則於應用於顯示裝置等中的情況下,容易提高視認性。500 nm的光透過率的上限為100%。500 nm的光透過率可使用紫外可見近紅外分光光度計來測定,例如可藉由實施例中記載的方法來測定。500 nm的光透過率較佳為本發明的光學膜的厚度(膜厚)的範圍中的光透過率,尤其是光學膜的厚度較佳為22 μm~40 μm、更佳為23 μm~27 μm、進而佳為25 μm時的光透過率。再者,500 nm的光透過率可藉由對構成光學膜中所含的樹脂的構成單元的種類或構成比;光學膜的厚度;光學膜的溶媒含量;添加劑的種類或調配量;樹脂的製造條件或單體的純度;光學膜的製造條件進行適宜調整而設為所述範圍內,尤其是,可藉由使用作為構成樹脂的構成單元的種類或構成比而所述的較佳者、調整光學膜的溶媒含量、應用後述的光學膜製造步驟中的乾燥條件等而調整為所述範圍。
於本發明的適宜的實施方式中,本發明的光學膜除了可顯現出耐溶劑性、耐熱性及紫外線截止性以外,亦可顯現出優異的拉伸強度。本發明的光學膜的拉伸強度較佳為70 MPa以上,更佳為80 MPa以上,進而佳為85 MPa以上,進而更佳為超過86 MPa,特佳為87 MPa以上,尤佳為89 MPa以上,極佳為95 MPa以上,最佳為100 MPa以上,且較佳為200 MPa以下,更佳為180 MPa以下。若拉伸強度為所述下限以上,則容易抑制光學膜的破損等,另外,若拉伸強度為所述上限以下,則容易提高柔軟性。拉伸強度可使用拉伸試驗機等於夾頭間距離50 mm、拉伸速度20 mm/分鐘的條件下進行測定,例如可藉由實施例中記載的方法來測定。再者,拉伸強度可藉由對構成光學膜中所含的樹脂的構成單元的種類或構成比;光學膜的溶媒含量;添加劑的種類或調配量;樹脂的製造條件或單體的純度;光學膜的製造條件進行適宜調整而設為所述範圍內,尤其是,可藉由使用作為構成樹脂的構成單元的種類或構成比而所述的較佳者、調整光學膜的溶媒含量、應用後述的光學膜製造步驟中的乾燥條件等而調整為所述範圍。
於本發明的適宜的實施方式中,本發明的光學膜的溶媒含量(亦稱為殘留溶媒量)相對於光學膜的質量而較佳為3.0質量%以下,更佳為2.5質量%以下,進而佳為2.0質量%以下,且較佳為0.01質量%以上,更佳為0.1質量%以上,進而佳為0.5質量%以上。若溶媒含量為所述上限以下,則容易將Tg調整為所述範圍,容易提高耐熱性、耐溶劑性及拉伸強度。若溶媒含量為所述下限以上,則容易提升光學特性,例如容易提高500 nm的光透過率,另外,容易減低350 nm的光透過率。溶媒含量(殘存溶媒量)相當於使用熱重-示差熱分析(Thermogravimetric-Differential Thermal Analysis,TG-DTA)的測定裝置獲得的自120℃至250℃的質量減少率S(質量%)。關於該質量減少率S,例如可將約20 mg的光學膜以10℃/分鐘的升溫速度自室溫升溫到120℃,於120℃下保持5分鐘後,一邊以10℃/分鐘的升溫速度升溫(加熱)到400℃,一邊進行TG-DTA測定,並基於TG-DTA測定結果,由式(1)算出。 質量減少率S(質量%)=100-(W1/W0)×100  (1) [式(1)中,W0是於120℃下保持5分鐘後的試樣的質量,W1是250℃下的試樣的質量] 例如,可藉由實施例中記載的方法來進行測定及算出。再者,溶媒含量可藉由對後述的光學膜製造步驟中的乾燥條件(尤其是乾燥溫度或乾燥時間等)等進行適宜調整而調整為所述範圍。例如,有越提高乾燥溫度而溶媒含量越變小的傾向。另外,有溶媒含量越小而Tg越變高、耐熱性及耐溶劑性越變高的傾向。
本發明的光學膜的厚度可根據用途來適宜選擇,較佳為5 μm以上,更佳為10 μm以上,進而佳為15 μm以上,且較佳為100 μm以下,更佳為80 μm以下,進而佳為60 μm以下,特佳為50 μm以下。光學膜的厚度可使用厚度計等來測定,例如可藉由實施例中記載的方法來測定。
<添加劑> 本發明的光學膜亦可包含紫外線吸收劑。於本發明中,由於含有所述聚醯亞胺系樹脂,且將Tg調整為所述範圍內,因此即便包含紫外線吸收劑,亦可形成耐熱性及耐溶劑性、較佳為耐熱性、耐溶劑性及拉伸強度優異的光學膜。因此,使用紫外線吸收劑而降低紫外線區域的光吸收性,藉此可形成可平衡良好地顯現出紫外線截止性、耐熱性及耐溶劑性、較佳為紫外線截止性、耐熱性、耐溶劑性及拉伸強度的光學膜。作為紫外線吸收劑,例如可列舉:苯並三唑衍生物(苯並三唑系紫外線吸收劑)、1,3,5-三苯基三嗪衍生物等三嗪衍生物(三嗪系紫外線吸收劑)、二苯甲酮衍生物(二苯甲酮系紫外線吸收劑)、及水楊酸酯衍生物(水楊酸酯系紫外線吸收劑),可使用選自由該些所組成的群組中的至少一種。就於300 nm~400 nm、較佳為320 nm~360 nm附近具有紫外線吸收性、且可於不使可見光區域中的透過率降低的情況下提升光學膜的紫外線截止性的觀點而言,較佳為使用選自由苯並三唑系紫外線吸收劑及三嗪系紫外線吸收劑所組成的群組中的至少一種,更佳為苯並三唑系紫外線吸收劑。
作為苯並三唑系紫外線吸收劑的具體例,可列舉式(I)所表示的化合物、住友化學(股)製造的商品名:斯密索博(Sumisorb)(註冊商標)250(2-[2-羥基-3-(3,4,5,6-四氫鄰苯二甲醯亞胺-甲基)-5-甲基苯基]苯並三唑)、日本巴斯夫(BASF Japan)(股)製造的商品名:帝奴彬(Tinuvin)(註冊商標)360(2,2'-亞甲基雙[6-(2H-苯並三唑-2-基)-4-第三辛基苯酚])及帝奴彬(Tinuvin)213(甲基3-[3-(2H-苯並三唑-2-基)5-第三丁基-4-羥基苯基]丙酸酯與PEG300的反應產物),該些可單獨使用或將兩種以上組合使用。作為式(I)所表示的化合物的具體例,可列舉:住友化學(股)製造的商品名:斯密索博(Sumisorb)200(2-(2-羥基-5-甲基苯基)苯並三唑)、斯密索博(Sumisorb)300(2-(3-第三丁基-2-羥基-5-甲基苯基)-5-氯苯並三唑)、斯密索博(Sumisorb)340(2-(2-羥基-5-第三辛基苯基)苯並三唑)、斯密索博(Sumisorb)350(2-(2-羥基3,5-二-第三戊基苯基)苯並三唑)、及日本巴斯夫(BASF Japan)(股)製造的商品名:帝奴彬(Tinuvin)327(2-(2'-羥基-3',5'-二-第三丁基苯基)-5-氯苯並三唑)、帝奴彬(Tinuvin)571(2-(2H-苯並三唑-2-基)-6-十二烷基-4-甲基-苯酚)及帝奴彬(Tinuvin)234(2-(2H-苯並三唑-2-基)-4,6-雙(1-甲基-1-苯基乙基)苯酚)及艾迪科(ADEKA)(股)的製品名:艾迪科斯塔波(Adekastab)(註冊商標)LA-31(2,2'-亞甲基雙[6-(2H-苯並三唑-2-基)-4-(1,1,3,3-四甲基丁基)苯酚])。紫外線吸收劑較佳為式(I)所表示的化合物及帝奴彬(Tinuvin)213(甲基3-[3-(2H-苯並三唑-2-基)5-第三丁基-4-羥基苯基]丙酸酯與PEG300的反應產物,更佳為住友化學(股)製造的商品名:斯密索博(Sumisorb)200(2-(2-羥基-5-甲基苯基)苯並三唑)、斯密索博(Sumisorb)300(2-(3-第三丁基-2-羥基-5-甲基苯基)-5-氯苯並三唑)、斯密索博(Sumisorb)340(2-(2-羥基-5-第三辛基苯基)苯並三唑)、斯密索博(Sumisorb)350(2-(2-羥基3,5-二-第三戊基苯基)苯並三唑)、艾迪科(ADEKA)(股)的製品名:艾迪科斯塔波(Adekastab)LA-31(2,2'-亞甲基雙[6-(2H-苯並三唑-2-基)-4-(1,1,3,3-四甲基丁基)苯酚])及日本巴斯夫(BASF Japan)(股)製造的商品名:帝奴彬(Tinuvin)327(2-(2'-羥基-3',5'-二-第三丁基苯基)-5-氯苯並三唑)及帝奴彬(Tinuvin)571(2-(2H-苯並三唑-2-基)-6-十二烷基-4-甲基-苯酚),最佳為住友化學(股)製造的商品名:斯密索博(Sumisorb)340(2-(2-羥基-5-第三辛基苯基)苯並三唑)、斯密索博(Sumisorb)350(2-(2-羥基3,5-二-第三戊基苯基)苯並三唑)、及艾迪科(ADEKA)(股)的製品名:艾迪科斯塔波(Adekastab)LA-31(2,2'-亞甲基雙[6-(2H-苯並三唑-2-基)-4-(1,1,3,3-四甲基丁基)苯酚])。
[化9]
Figure 02_image017
式(I)中,XI 為氫原子、氟原子、氯原子、碳數1~5的烷基或碳數1~5的烷氧基,RI1 及RI2 分別獨立地為氫原子或碳數1~20的烴基,RI1 或RI2 中的至少任一者為碳數1~20的烴基。
作為XI 中的碳數1~5的烷基,可列舉:甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、正戊基、2-甲基-丁基、3-甲基丁基、2-乙基-丙基等。 作為XI 中的碳數1~5的烷氧基,可列舉:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第二丁氧基、第三丁氧基、正戊基氧基、2-甲基-丁氧基、3-甲基丁氧基、2-乙基-丙氧基等。 XI 較佳為氫原子、氟原子、氯原子或甲基,更佳為氫原子、氟原子或氯原子。
RI1 及RI2 分別獨立地為氫原子或碳數1~20的烴基,RI1 及RI2 中的至少任一者為烴基。於RI1 及RI2 分別為烴基的情況下,較佳為碳數1~12的烴基,更佳為碳數1~8的烴基。具體而言,可例示:甲基、第三丁基、第三戊基及第三辛基。
另一較佳的一態樣的紫外線吸收劑是於包含聚醯亞胺系樹脂的光學膜中使用三嗪系紫外線吸收劑。作為三嗪系紫外線吸收劑,可列舉下述式(II)所表示的化合物。作為其具體例,可列舉:艾迪科(ADEKA)(股)的製品名:艾迪科斯塔波(Adekastab)LA-46(2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-[2-(2-乙基己醯氧基)乙氧基]苯酚)、日本巴斯夫(BASF Japan)(股)製造的商品名:帝奴彬(Tinuvin)400(2-[4-[2-羥基-3-十三烷氧基丙基]氧基]-2-羥基苯基]-4,6-雙(2,4-二甲基苯基)-1,3,5-三嗪)、2-[4-[2-羥基-3-二癸氧基丙基]氧基]-2-羥基苯基]-4,6-雙(2,4-二甲基苯基)-1,3,5-三嗪)、帝奴彬(Tinuvin)405(2-[4-(2-羥基-3-(2'-乙基)己基)氧基]-2-羥基苯基]-4,6-雙(2,4-二甲基苯基)-1,3,5-三嗪)、帝奴彬(Tinuvin)460(2,4-雙(2-羥基-4-丁氧基苯基)-6-(2,4-雙-丁氧基苯基)-1,3,5-三嗪)、帝奴彬(Tinuvin)479(羥基苯基三嗪系紫外線吸收劑)、及凱米普羅(Chemipro)化成(股)的製品名:凱米索博(KEMISORB)(註冊商標)102(2-[4,6-雙(2,4-二甲基苯基)-1,3,5-三嗪-2-基]-5-(正辛氧基)苯酚)等,該些可單獨使用或將兩種以上組合使用。式(II)所表示的化合物較佳為艾迪科斯塔波(Adekastab)LA-46(2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-[2-(2-乙基己醯氧基)乙氧基]苯酚)。
[化10]
Figure 02_image019
式(II)中,YI1 ~YI4 分別獨立地為氫原子、氟原子、氯原子、羥基、碳數1~20的烷基或碳數1~20的烷氧基,較佳為氫原子、碳數1~12的烷基或碳數1~12的烷氧基,更佳為氫原子。
式(II)中,RI3 為氫原子、碳數1~20的烴基、所含的氧原子為一個的碳數1~20的烷氧基、或經碳數1~12的烷基酮氧基取代的碳數1~4的烷氧基,較佳為含有一個氧原子的碳數1~12的烷氧基或經碳數8~12的烷基酮氧基取代的碳數2~4的烷氧基,更佳為經碳數8~12的烷基酮氧基取代的碳數2~4的烷氧基。
作為YI1 ~YI4 的碳數1~20的烷基的例子可列舉:甲基、乙基、正丙基、異丙基、正丁基、第二丁基、第三丁基、正戊基、正己基、正庚基、正辛基、正壬基、正癸基、正十二烷基、正十一烷基。作為碳數1~20的烷氧基的例子,可列舉:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第二丁氧基、第三丁氧基、正戊基氧基、正己基氧基、正庚基氧基、正辛基氧基、正壬基氧基、正癸基氧基、正十二烷基氧基、正十一烷基氧基。
紫外線吸收劑較佳為於300 nm~400 nm具有光吸收者,更佳為於320 nm~360 nm具有光吸收者,進而佳為於350 nm附近具有光吸收者。
於本發明的光學膜包含紫外線吸收劑的情況下,紫外線吸收劑的含量相對於聚醯亞胺系樹脂100質量份而較佳為0.1質量份以上,更佳為0.5質量份以上,進而佳為0.8質量份以上,特佳為1質量份以上,且較佳為10質量份以下,更佳為8質量份以下,進而佳為5質量份以下。若紫外線吸收劑的含量為所述下限以上,則容易提升光學膜的紫外線截止性,若紫外線吸收劑的含量為所述上限以下,則容易提高光學膜的透明性、耐熱性、耐溶劑性及拉伸強度。
本發明的光學膜可含有至少一種填料。若含有填料,則容易提高光學膜的光學特性、拉伸強度、耐熱性、耐溶劑性及耐屈曲性。作為填料,例如可列舉有機粒子、無機粒子等,較佳為可列舉無機粒子。作為無機粒子,可列舉二氧化矽、氧化鋯、氧化鋁、二氧化鈦、氧化鋅、氧化鍺、氧化銦、氧化錫、銦錫氧化物(indium tin oxide,ITO)、氧化銻、氧化鈰等金屬氧化物粒子、氟化鎂、氟化鈉等金屬氟化物粒子等,該些中,就容易平衡良好地具有光學膜的光學特性、拉伸強度、耐熱性、耐溶劑性及耐屈曲性的觀點而言,較佳為可列舉二氧化矽粒子、氧化鋯粒子、氧化鋁粒子,更佳為可列舉二氧化矽粒子。該些填料可單獨使用或將兩種以上組合使用。
填料、較佳為二氧化矽粒子的平均一次粒子徑通常為1 nm以上,較佳為5 nm以上,更佳為10 nm以上,進而佳為15 nm以上,特佳為20 nm以上,且較佳為100 nm以下,更佳為80 nm以下,進而佳為60 nm以下,進而更佳為40 nm以下。若二氧化矽粒子的平均一次粒子徑為所述範圍內,則抑制二氧化矽粒子的凝聚,容易提升所獲得的光學膜的光學特性、拉伸強度、耐熱性、耐溶劑性及耐屈曲性。填料的平均一次粒子徑可藉由布厄特(Brunauer-Emmett-Teller,BET)法來測定。再者,亦可藉由穿透式電子顯微鏡或掃描式電子顯微鏡的圖像分析來測定平均一次粒子徑。
於本發明的光學膜包含填料、較佳為二氧化矽粒子的情況下,填料的含量相對於光學膜的質量而通常為0.1質量%以上,較佳為1質量%以上,更佳為5質量%以上,進而佳為10質量%以上,且較佳為60質量%以下,更佳為50質量%以下,進而佳為40質量%以下。若填料的含量為所述範圍內,則容易提升光學膜的光學特性、拉伸強度、耐熱性、耐溶劑性及耐屈曲性。
本發明的光學膜亦可進而包含紫外線吸收劑及填料以外的其他添加劑。作為其他添加劑,例如可列舉:抗氧化劑、脫模劑、穩定劑、上藍劑(blueing agent)、阻燃劑、pH值調整劑、二氧化矽分散劑、潤滑劑、增黏劑、及調平劑等。於包含其他添加劑的情況下,其含量相對於光學膜的質量而可較佳為0.001質量%~20質量%、更佳為0.01質量%~15質量%、進而佳為0.1質量%~10質量%。
本發明的光學膜的用途並無特別限定,可用於各種用途、例如觸控感測器用基板、柔性顯示裝置用材料、保護膜、邊框印刷用途膜、半導體用途、揚聲器振動板、IR截止濾波器等中。如上所述,本發明的光學膜可為單層,亦可為積層體,可直接使用本發明的光學膜,亦可進而作為與其他膜的積層體來使用。再者,於光學膜為積層體的情況下,包含積層於光學膜的單面或兩面的所有層在內而稱為光學膜。
於本發明的光學膜為積層體的情況下,較佳為於光學膜的至少一面具有一個以上的功能層。作為功能層,例如可列舉:硬塗層、底塗層、阻氣層、紫外線吸收層、黏著層、色相調整層、折射率調整層等。功能層可單獨使用或將兩種以上組合使用。
於本發明的一實施方式中,光學膜可於至少一面(單面或兩面)具有保護膜。例如,於在光學膜的單面具有功能層的情況下,保護膜可積層於光學膜側的表面或功能層側的表面,亦可積層於光學膜側與功能層側兩者。於在光學膜的兩面具有功能層的情況下,保護膜可積層於單側功能層側的表面,亦可積層於兩側功能層側的表面。保護膜是用於暫時保護光學膜或功能層的表面的膜,只要為可保護光學膜或功能層的表面且能夠剝離的膜,則並無特別限定。作為保護膜,例如可列舉:聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯等聚酯系樹脂膜;聚乙烯、聚丙烯膜等聚烯烴系樹脂膜、丙烯酸系樹脂膜等,較佳為選自由聚烯烴系樹脂膜、聚對苯二甲酸乙二酯系樹脂膜及丙烯酸系樹脂膜所組成的群組中。於光學膜具有兩個保護膜的情況下,各保護膜可相同或者不同。
保護膜的厚度並無特別限定,通常為10 μm~120 μm,較佳為15 μm~110 μm,更佳為20 μm~100 μm。於光學膜具有兩個保護膜的情況下,各保護膜的厚度可相同,亦可不同。
[光學膜的製造方法] 本發明的光學膜並無特別限定,例如可藉由包括以下步驟的方法來製造: (a)製備含有所述聚醯亞胺系樹脂的液體(有時稱為清漆)的步驟(清漆製備步驟); (b)將清漆塗佈於基材上而形成塗膜的步驟(塗佈步驟);以及 (c)使所塗佈的液體(塗膜)乾燥而形成光學膜的步驟(光學膜形成步驟)。
於清漆製備步驟中,將所述聚醯亞胺系樹脂溶解於溶媒中,視需要添加所述添加劑並進行攪拌混合,藉此製備清漆。
清漆的製備中所使用的溶媒若能夠溶解所述樹脂,則並無特別限定。作為所述溶媒,例如可列舉:N,N-二甲基乙醯胺(N,N-Dimethylacetamide,DMAc)、N,N-二甲基甲醯胺(N,N-Dimethylformamide,DMF)等醯胺系溶媒;γ-丁內酯(γ-butyrolactone,GBL)、γ-戊內酯等內酯系溶媒;丙酮、甲基乙基酮、環戊酮、環己酮、2-庚酮、甲基異丁基酮等酮系溶媒;二甲基碸、二甲基亞碸、環丁碸等含硫系溶媒;碳酸伸乙酯、碳酸伸丙酯等碳酸酯系溶媒;以及該些的組合。該些中,就容易提高光學膜的耐熱性、耐溶劑性、光學特性及拉伸強度的觀點而言,較佳為醯胺系溶媒、內酯系溶媒或酮系溶媒。該些溶媒可單獨使用或將兩種以上組合使用。另外,清漆中亦可含有水、醇系溶媒、非環狀酯系溶媒、醚系溶媒等。
清漆的固體成分濃度較佳為1質量%~30質量%,更佳為5質量%~25質量%,進而佳為10質量%~20質量%。再者,於本說明書中,所謂清漆的固體成分,表示自清漆去除溶媒後的成分的合計量。另外,清漆的黏度較佳為5 Pa·s~100 Pa·s,更佳為10 Pa·s~50 Pa·s。若清漆的黏度為所述範圍,則容易使光學膜均勻化,容易獲得耐熱性、耐溶劑性、光學特性及拉伸強度優異的光學膜。再者,清漆的黏度可使用黏度計來測定,例如可藉由實施例中記載的方法來測定。
於塗佈步驟中,藉由公知的塗佈方法,於基材上塗佈清漆而形成塗膜。作為公知的塗佈方法,例如可列舉:線棒塗佈法、反向塗佈、凹版塗佈等輥塗佈法、模塗法、缺角輪塗佈法、模唇塗佈法、旋轉塗佈法、網版塗佈法、噴注式塗佈法(fountain coating method)、浸漬法、噴霧法、流涎成形法等。
於光學膜形成步驟中,可藉由將塗膜乾燥並自基材剝離而形成光學膜。亦可於剝離後進而進行使光學膜乾燥的乾燥步驟。塗膜的乾燥通常可於50℃~350℃、較佳為50℃~220℃的溫度下進行。於本發明的適宜的實施方式中,較佳為階段性地進行乾燥。包含高分子量樹脂的清漆容易變成高黏度,通常難以獲得均勻的膜,光學特性(尤其是透明性)、Tg或耐溶劑性有時降低。因此,藉由階段性地進行乾燥,可均勻地使包含高分子量樹脂的清漆乾燥,可獲得光學特性(尤其是透明性)優異、並且Tg高、耐熱性、耐溶劑性及拉伸強度優異的光學膜。於本發明的更適宜的實施方式中,可於在100℃~170℃的比較低的溫度下進行加熱後,以185℃~220℃進行加熱。乾燥(或加熱時間)較佳為5分鐘~5小時,更佳為10分鐘~1小時。藉由在此種範圍內階段性地自低溫加熱到高溫,容易將Tg調整為所述範圍,容易獲得光學特性(例如500 nm的高的光透過率等)更優異、並且耐熱性、耐溶劑性及拉伸強度更優異的光學膜。視需要,亦可於惰性氣氛條件下進行塗膜的乾燥。另外,若於真空條件下進行光學膜的乾燥,則膜中有時產生並殘存微小的氣泡,成為透明性降低的主要原因,因此較佳為於大氣壓下進行。
作為基材的例子,可列舉:玻璃基板、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)膜、聚萘二甲酸乙二酯(polyethylene naphthalate,PEN)膜、其他聚醯亞胺系樹脂或聚醯胺系樹脂膜等。其中,就耐熱性優異的觀點而言,較佳為玻璃、PET膜、PEN膜等,進而,就與光學膜的密接性及成本的觀點而言,更佳為玻璃基板或PET膜。
本發明的光學膜可適宜地用作顯示裝置、尤其是觸控感測器用基板。另外,作為顯示裝置,可列舉:電視機、智慧型電話、行動電話、汽車導航、平板個人電腦(personal computer,PC)、可攜式遊戲機、電子紙、指示器(indicator)、佈告板、鐘錶、及智慧型手錶等可穿戴裝置等。
[柔性顯示裝置] 本發明包括含有本發明的光學膜的柔性顯示裝置。作為該柔性顯示裝置,可列舉具有柔性特性的顯示裝置、例如電視機、智慧型電話、行動電話、智慧型手錶等。 柔性顯示裝置是伴隨重覆彎折顯示裝置的重覆捲曲等操作而使用的顯示裝置,例如可列舉可捲動(rollable)顯示器或可折疊(foldable)顯示器等。所謂可捲動顯示器,是將圖像顯示部分捲取成卷狀、並於將該圖像顯示部分拉出而設為平面或曲面的狀態下使用的圖像顯示裝置,是每次使用時均進行捲取成卷狀等操作般的圖像顯示裝置。另外,所謂可折疊顯示器,是將圖像顯示部分彎折、並於將該圖像顯示部分展開而設為平面或曲面的狀態下使用的圖像顯示裝置,是每次使用時均進行彎折等操作般的圖像顯示裝置。 作為柔性顯示裝置的具體結構,並無特別限定,例如可列舉含有柔性顯示裝置用積層體及有機EL顯示面板而成的結構。此種本發明的柔性顯示裝置較佳為進而包括偏光板及/或觸控感測器。作為偏光板或觸控感測器,可使用慣用者,該些亦可含有於所述柔性顯示裝置用積層體中。作為偏光板,例如可列舉圓偏光板,作為觸控感測器,可列舉電阻膜方式、表面彈性波方式、紅外線方式、電磁感應方式、靜電電容方式等各種樣式。對此種柔性顯示裝置中所使用的觸控感測器用基板(或觸控感測器用膜)要求耐屈曲性,本發明的光學膜由於耐屈曲性優異,因此可適宜地用作所述觸控感測器用基板(或觸控感測器用膜)。 另外,於本發明的一實施方式中,柔性顯示裝置用積層體較佳為於視認側進而含有窗膜,例如,可自視認側起依次積層窗膜、偏光板、觸控感測器、或窗膜、觸控感測器、偏光板。該些構件可使用接著劑或黏著劑來積層,亦可含有該些構件以外的其他構件。 [實施例]
以下,基於實施例及比較例更具體地說明本發明,但本發明並不限定於以下實施例。首先,對測定方法進行說明。
<玻璃轉移溫度的測定> 利用熱分析裝置(「DSC Q200」,TA儀器(TA Instruments)製造)測定實施例及比較例中所獲得的光學膜的基於DSC(示差掃描熱量測定)的玻璃轉移溫度(Tg)。測定條件為測定試樣量:5 mg、溫度區域:自室溫至400℃、升溫速度:10℃/分鐘。
<相位差的測定> 實施例及比較例中所獲得的光學膜的Rth及R0是使用王子測量機器(股)製造的相位差測定裝置(商品名:KOBRA)來測定。關於光學膜的厚度相位差Rth,於將膜面內的一方向上的折射率設為Nx、將與Nx正交的方向上的折射率設為Ny、將膜的厚度方向上的折射率設為Nz、將光學膜的厚度設為d(nm)時,是利用(A)式來算出。此處,Nx為慢軸方向上的折射率,Ny為快軸方向上的折射率,滿足Nx>Ny。 Rth={(Nx+Ny)/2-Nz}×d(nm)  …(A)
關於光學膜的面內相位差R0,於將膜面內的一個方向上的折射率設為Nx、將與Nx正交的方向上的折射率設為Ny、將光學膜的厚度設為d(nm)時,是利用(B)式來算出。此處,Nx為慢軸方向上的折射率,Ny為快軸方向上的折射率,滿足Nx>Ny。 R0=(Nx-Ny)×d(nm)  …(B)
<350 nm及500 nm的光透過率> 實施例及比較例中所獲得的光學膜的350 nm及500 nm的光透過率是藉由如下方式而獲得:使用日本分光(股)製造的紫外可見近紅外分光光度計V-670,測定相對於200 nm~800 nm的光的光透過率。
<拉伸強度的測定> 實施例及比較例中所獲得的光學膜的拉伸強度是使用精密萬能試驗機(「奧特古拉夫(autograph)AG-IS」,島津製作所(股)製造)如以下般測定。 將該光學膜切割為寬度10 mm、長度100 mm,準備細長狀的試驗片。繼而,使用該精密萬能試驗機,於夾頭間距離50 mm、拉伸速度20 mm/分鐘的條件下進行拉伸試驗,測定光學膜的拉伸強度。
<耐溶劑性的評價> 將實施例及比較例中所獲得的光學膜切斷為寬度100 mm、長度100 mm而製成試驗片。用耐熱膠帶將該試驗片固定於110℃的溫度的加熱板上,對該試驗片的表面分別滴加1滴PGME(丙二醇單甲醚)或PGMEA(丙二醇甲醚乙酸酯)。其後,於1分鐘左右,觀察試驗片的表面的變化。將試驗片的表面完全沒有滴加痕跡、且滴加前後完全沒有看到表面的變化者評價為「◎」,將試驗片的表面沒有滴加痕跡、且滴加前後幾乎沒有看到表面的變化者評價為「○」,將略微存在滴加痕跡者評價為「△」,將明顯存在滴加痕跡者評價為「×」。若PGME及PGMEA兩者的評價結果為◎、〇或△,則可評價為光學膜的耐溶劑性良好。
<殘留溶媒量的測定方法> (熱重-示差熱(TG-DTA)測定) 使用TG-DTA的測定裝置(「TG/DTA6300」,日立高科技科學(Hitachi High-Tech Science)公司製造),測定實施例及比較例中所獲得的光學膜的殘留溶媒量。 自該光學膜取得約20 mg的試樣。對該試樣,以10℃/分鐘的升溫速度自室溫升溫到120℃,於120℃下保持5分鐘後,一邊以10℃/分鐘的升溫速度升溫(加熱)到400℃,一邊測定試樣的質量變化。 根據TG-DTA測定結果,依照下述式(1),算出自120℃至250℃的質量減少率S(質量%)。 S(質量%)=100-(W1/W0)×100  (1) 〔式(1)中,W0是於120℃下保持5分鐘後的試樣的質量,W1是250℃下的試樣的質量〕 將所算出的質量減少率S設為光學膜中的殘留溶媒量S(質量%)。
<厚度> 實施例及比較例中所獲得的光學膜的厚度是使用接觸式的數位厚度計(三豐(Mitutoyo)公司製造)進行3次測定,並將3次測定而得的值的平均值設為光學膜的厚度。
<黏度> 實施例及比較例中所獲得的清漆的黏度是使用E型黏度計(「HBDV-II+P CP」 博勒飛(Brook Field)公司製造),以清漆0.6 cc為試樣,於25℃、轉數3 rpm的條件下來測定。
<重量平均分子量(Mw)> 合成例中所獲得的聚醯亞胺系樹脂的重量平均分子量(Mw)是使用GPC,並藉由以下條件進行測定。 (GPC條件) 裝置:島津LC-20A 管柱:TSKgel GMHHR-M(混合管柱,排除極限分子量:400萬) 保護管柱:TSKgel guardcolumn HHR-H 移動相:添加N-甲基-2-吡咯啶酮(N-Methyl-2-pyrrolidinone,NMP)10 mM LiBr ※NMP使用高效液相層析(High Performance Liquid Chromatography,HPLC)用等級,LiBr使用試劑一級(酐) 流速:1 mL/分鐘 測定時間:20分鐘 管柱烘箱:40℃ 檢測:UV 275 nm 清洗溶媒:NMP 試樣濃度:1 mg/mL(※20 wt%反應質量是用移動相稀釋為5 mg/mL後進行分析) 分子量校正:聚合物實驗室(Polymer Laboratories)製造 標準聚苯乙烯(分子量500萬~400萬的17分子量)
<醯亞胺化率> 合成例中所獲得的聚醯亞胺系樹脂的醯亞胺化率是使用NMR,並藉由以下條件進行測定。 (NMR條件) 秤量聚醯亞胺系樹脂10 mg,添加氘代二甲基亞碸0.75 ml後,於120℃下加熱20分鐘,藉此進行溶解。將溶液轉移到NMR管中,使用布魯克(Bruker)製造的AV600裝置,於100℃下實施1H NMR測定。根據1H NMR光譜,對源自醯亞胺基的質子與源自醯胺基的質子進行歸類,使用下式求出醯亞胺化率。 醯亞胺化率={醯亞胺基積分比/(醯亞胺基積分比+醯胺基積分比)}×100
<合成例1> 藉由國際公開第2019/156717號中記載的方法,如以下般製造包含源自6FDA的構成單元與源自1,4-DAB的構成單元的聚醯亞胺系樹脂(6FDA-DAB)。 於氮氣氣體氣氛下,在包括攪拌葉片的反應容器中,加入間甲酚(本州化學工業(股)製造)178.78 kg、1,4-DAB(賽默飛世爾(ThermoFisher)公司製造)7.928 kg、及6FDA(八幸通商(股))40.000 kg,接著,添加異喹啉(富士軟片和光純藥(股)製造)3.256 kg後,升溫到158℃,攪拌5小時後,加入74.49 kg的間甲酚,將所獲得的反應液冷卻至50℃。一邊進行攪拌,一邊添加118.97 kg的索爾米庫斯(Solmix)AP-1(日本醇銷售(股)製造),進而加入356.91 kg的索爾米庫斯(Solmix)AP-1後,進行過濾。利用索爾米庫斯(Solmix)AP-1(70.62 kg)對過濾後的沈澱物進行清洗,進而利用索爾米庫斯(Solmix)AP-1(141.23 kg)進行4次懸浮過濾,利用乾燥機於70℃下使沈澱物乾燥96小時,藉此獲得39.97 kg的聚醯亞胺系樹脂。所製造的聚醯亞胺系樹脂的重量平均分子量(Mw)為252,000,醯亞胺化率為99.9%。
<實施例1> 將合成例1中所獲得的聚醯亞胺系樹脂以固體成分濃度成為15質量%的方式溶解於環己酮中,作為紫外線吸收劑(UVA),添加2 phr的斯密索博(Sumisorb)340,製備清漆。所述清漆的黏度為26 Pa·s。繼而,將所獲得的清漆塗佈於玻璃基板上,於140℃下加熱10分鐘後,進而於200℃下加熱30分鐘,並自玻璃基板剝離,藉此獲得厚度25 μm的光學膜。所獲得的光學膜的殘留溶媒量為1.2質量%。
<實施例2> 將合成例1中所獲得的聚醯亞胺系樹脂以固體成分濃度成為15質量%的方式溶解於環己酮中,作為紫外線吸收劑(UVA),添加2 phr的斯密索博(Sumisorb)340。繼而,以相對於聚醯亞胺系樹脂成為20質量%的方式添加二氧化矽(製品名:CHO-ST-M,製造商名:日產化學股份有限公司,平均一次粒子徑22 nm),製備清漆。所述清漆的黏度為10 Pa·s。將所獲得的清漆塗佈於玻璃基板上,於140℃下加熱10分鐘後,進而於200℃下加熱30分鐘,並自玻璃基板剝離,藉此獲得厚度25 μm的光學膜。所獲得的光學膜的殘留溶媒量為1.5質量%。再者,二氧化矽的含量相對於光學膜的質量為16.4質量%。
<比較例1> 將聚醯亞胺樹脂(「KPI-MX300F」,河村產業(股)製造)以固體成分濃度成為12質量%的方式溶解於DMAc中,製備清漆。將所述清漆塗佈於玻璃基板上,於140℃下加熱10分鐘後,進而於200℃下加熱20分鐘,並自玻璃基板剝離,藉此獲得厚度25 μm的光學膜。
<比較例2> 將合成例1中所獲得的聚醯亞胺系樹脂以固體成分濃度成為15質量%的方式溶解於環己酮中,作為紫外線吸收劑(UVA),添加2 phr的斯密索博(Sumisorb)340,製備清漆。所述清漆的黏度為26 Pa·s。繼而,將所獲得的清漆塗佈於玻璃基板上,於140℃下加熱10分鐘後,進而於180℃下加熱20分鐘,並自玻璃基板剝離,藉此獲得厚度25 μm的光學膜。所獲得的光學膜的殘留溶媒量為4.9質量%。
對於實施例及比較例中所獲得的光學膜,測定玻璃轉移溫度(Tg)、350 nm的光透過率(%)、500 nm的光透過率(%)、面內相位差R0(nm)、厚度相位差Rth(nm)、以及拉伸強度(MPa),將測定而得的結果及耐溶劑性的評價結果示於表1中。 [表1]
  樹脂 Tg (℃) 350 nm的光透過率 500 nm的光透過率 R0 (nm) Rth (nm) 拉伸強度 (MPa) 耐溶劑性的評價
PGME PGMEA
實施例1 6FDA-DAB 181 1.1 90.5 5.9 55.6 90
實施例2 6FDA-DAB 200 1.1 90.7 2.9 47.6 110
比較例1 芳香族系 PI 350 0.1 91.0 56.5 675.0 150 × ×
比較例2 6FDA-DAB 145 1.8 90.3 6.1 59.5 84 ×
如表1所示般,實施例1中所獲得的光學膜的PGME及PGMEA兩者的耐溶劑性評價為○,實施例2中所獲得的光學膜的PGME的耐溶劑性評價為○,PGMEA的耐溶劑性評價為◎,相對於此,比較例1的PGME及PGMEA兩者的評價結果為×,比較例2的PGMEA的評價結果為×。另外,確認到實施例1及實施例2中所獲得的光學膜與比較例2相比,Tg高,且350 nm的光透過率低。因此,得知,實施例1及實施例2中所獲得的光學膜的耐溶劑性、耐熱性及紫外線截止性優異。進而,亦得知,實施例1及實施例2中所獲得的光學膜的500 nm的光透過率及拉伸強度高、透明性及拉伸強度優異,並且R0及Rth低、且為低相位差。

Claims (14)

  1. 一種光學膜,含有具有源自脂肪族二胺的構成單元的聚醯亞胺系樹脂,且玻璃轉移溫度為165℃以上,350 nm的光透過率為10%以下。
  2. 如請求項1所述的光學膜,其中玻璃轉移溫度超過180℃。
  3. 如請求項1或請求項2所述的光學膜,其中500 nm的光透過率為90%以上。
  4. 如請求項1至請求項3中任一項所述的光學膜,其中拉伸強度超過86 MPa。
  5. 如請求項1至請求項4中任一項所述的光學膜,其中膜厚為10 μm~100 μm。
  6. 如請求項1至請求項5中任一項所述的光學膜,其中溶媒含量相對於膜的質量而為3.0質量%以下。
  7. 如請求項1至請求項6中任一項所述的光學膜,其中所述聚醯亞胺系樹脂具有式(1)所表示的構成單元,
    Figure 03_image021
    式(1)中,X表示二價有機基,Y表示四價有機基,*表示鍵結鍵, 且式(1)所表示的構成單元含有二價脂肪族基作為X。
  8. 如請求項7所述的光學膜,其中式(1)所表示的構成單元含有式(2)所表示的結構作為Y,
    Figure 03_image023
    式(2)中,R2 ~R7 彼此獨立地表示氫原子、碳數1~6的烷基、碳數1~6的烷氧基或碳數6~12的芳基,R2 ~R7 中所含的氫原子可彼此獨立地經鹵素原子取代,V表示單鍵、-O-、-CH2 -、-CH2 -CH2 -、-CH(CH3 )-、-C(CH3 )2 -、-C(CF3 )2 -、-SO2 -、-S-、-CO-或-N(R8 )-,R8 表示氫原子、或可經鹵素原子取代的碳數1~12的一價烴基,*表示鍵結鍵。
  9. 如請求項7或請求項8所述的光學膜,其中所述聚醯亞胺系樹脂包含氟原子。
  10. 如請求項1至請求項9中任一項所述的光學膜,含有填料。
  11. 如請求項10所述的光學膜,其中填料為二氧化矽粒子。
  12. 一種柔性顯示裝置,包括如請求項1至請求項11中任一項所述的光學膜。
  13. 如請求項12所述的柔性顯示裝置,進而包括偏光板。
  14. 如請求項12或請求項13所述的柔性顯示裝置,進而包括觸控感測器。
TW110124206A 2020-07-02 2021-07-01 光學膜及柔性顯示裝置 TW202206518A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-115181 2020-07-02
JP2020115181 2020-07-02
JP2021-013622 2021-01-29
JP2021013622A JP2022013625A (ja) 2020-07-02 2021-01-29 光学フィルム

Publications (1)

Publication Number Publication Date
TW202206518A true TW202206518A (zh) 2022-02-16

Family

ID=79316410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124206A TW202206518A (zh) 2020-07-02 2021-07-01 光學膜及柔性顯示裝置

Country Status (5)

Country Link
US (1) US20230272165A1 (zh)
EP (1) EP4177296A1 (zh)
CN (1) CN116209700A (zh)
TW (1) TW202206518A (zh)
WO (1) WO2022004857A1 (zh)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678142B2 (ja) 2004-05-25 2011-04-27 日産化学工業株式会社 高透明性を有するポリ(アミド酸−イミド)共重合体の感光性樹脂組成物およびその硬化膜
JP2008074769A (ja) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp テトラカルボン酸類及びそのポリイミド、ならびにその製造方法
US9850346B2 (en) * 2013-05-14 2017-12-26 Mitsui Chemicals, Inc. Transparent polyimide and precursor thereof
KR20160013772A (ko) * 2014-07-28 2016-02-05 연세대학교 원주산학협력단 폴리이미드 필름의 제조방법 및 이를 통하여 제조된 폴리이미드 필름
JP6579110B2 (ja) * 2014-10-17 2019-09-25 三菱瓦斯化学株式会社 ポリイミド樹脂組成物、ポリイミドフィルム及び積層体
KR102134263B1 (ko) * 2016-06-24 2020-07-15 도레이 카부시키가이샤 폴리이미드 수지, 폴리이미드 수지 조성물, 그것을 사용한 터치 패널 및 그의 제조 방법, 컬러 필터 및 그의 제조 방법, 액정 소자 및 그의 제조 방법, 유기 el 소자 및 그의 제조 방법
JP2020536993A (ja) 2017-10-05 2020-12-17 ザイマージェン インコーポレイテッド 光学的に透明なポリイミド
JP6771525B2 (ja) * 2017-11-09 2020-10-21 住友化学株式会社 光学積層体
JP6628859B2 (ja) * 2017-12-08 2020-01-15 住友化学株式会社 光学積層体
KR20200124670A (ko) * 2018-02-23 2020-11-03 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지, 폴리이미드바니시 및 폴리이미드필름
WO2019203037A1 (ja) * 2018-04-16 2019-10-24 コニカミノルタ株式会社 ポリマーブレンド組成物及びポリマーフィルム
JP2020019936A (ja) * 2018-07-19 2020-02-06 住友化学株式会社 ポリアミドイミド樹脂及び光学フィルム
JP7144003B2 (ja) * 2018-08-02 2022-09-29 国立研究開発法人理化学研究所 有機薄膜太陽電池
JP6541856B1 (ja) * 2018-10-02 2019-07-10 住友化学株式会社 光学フィルム、フレキシブル表示装置及び光学フィルムの製造方法
JP2020076067A (ja) * 2018-11-08 2020-05-21 住友化学株式会社 光学フィルム

Also Published As

Publication number Publication date
EP4177296A1 (en) 2023-05-10
WO2022004857A1 (ja) 2022-01-06
CN116209700A (zh) 2023-06-02
US20230272165A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP7118651B2 (ja) フィルム、樹脂組成物およびポリアミドイミド樹脂の製造方法
JP7072140B2 (ja) ポリイミドフィルム
KR102221744B1 (ko) 광학 필름 및 광학 필름을 이용한 광학 부재
KR102127489B1 (ko) 광학 필름
KR20190053112A (ko) 광학 필름
TW202208512A (zh) 光學膜及柔性顯示裝置
TW202239818A (zh) 光學膜及具備該光學膜的柔性顯示裝置
TW202212509A (zh) 含有聚醯亞胺系樹脂的光學膜及其製造方法與柔性顯示裝置
JP2022013625A (ja) 光学フィルム
TW202212418A (zh) 含有聚醯亞胺系樹脂的長條狀光學膜及其製造方法
TW202206518A (zh) 光學膜及柔性顯示裝置
KR20210123333A (ko) 폴리이미드계 수지 분체의 제조 방법
TW202242000A (zh) 聚醯亞胺系樹脂、光學膜以及柔性顯示裝置
JP2023083147A (ja) フィルム及びポリイミド系樹脂
JP6443579B2 (ja) ポリイミドフィルム
JP7083272B2 (ja) 光学フィルム
JP2022013624A (ja) 光学フィルム
WO2022163758A1 (ja) 積層フィルム
US20220227943A1 (en) Polyamideimide Resin, and Polyamideimide Film and Window Cover Film Including the Same
TW202336098A (zh) 薄膜及可撓性顯示裝置
JP2023132813A (ja) ポリイミド系フィルムの製造方法
JP2020019935A (ja) ポリアミド系樹脂粉体の製造方法およびポリアミド系樹脂組成物